Sample records for linear motor driven

  1. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  2. Drive control and position measurement of RailCab vehicles driven by linear motors

    NASA Astrophysics Data System (ADS)

    Pottharst, Andreas; Henke, Christian; Schneider, Tobias; Böcker, Joachim; Grotstollen, Horst

    2006-11-01

    The novel railway system RailCab makes use of autonomous vehicles which are driven by an AC linear motor. Depending on the track-side motor part, long-stator or short-stator operations are possible. The paper deals with the operation of the doubly-fed induction motor which is used for motion control and for transferring the energy required onboard the vehicle. This type of linear motor synchronization of the traveling fields generated by the stationary primary and moving secondary windings is an important and demanding task because the instantaneous positions of the vehicle or the primary traveling wave must be determined with high accuracy. The paper shows how this task is solved at the moment and what improvements are under development.

  3. Test Platform for Advanced Digital Control of Brushless DC Motors (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.

    2002-01-01

    A FY 2001 Center Director's Discretionary Fund task to develop a test platform for the development, implementation. and evaluation of adaptive and other advanced control techniques for brushless DC (BLDC) motor-driven mechanisms is described. Important applications for BLDC motor-driven mechanisms are the translation of specimens in microgravity experiments and electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol surfaces are also being utilized in developmental X vehicles. The experimental test platform employs a linear translation stage that is mounted vertically and driven by a BLDC motor. Control approaches are implemented on a digital signal processor-based controller for real-time, closed-loop control of the stage carriage position. The goal of the effort is to explore the application of advanced control approaches that can enhance the performance of a motor-driven actuator over the performance obtained using linear control approaches with fixed gains. Adaptive controllers utilizing an exact model knowledge controller and a self-tuning controller are implemented and the control system performance is illustrated through the presentation of experimental results.

  4. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    PubMed

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  5. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  6. Solar receiver heliostat reflector having a linear drive and position information system

    DOEpatents

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  7. Design and Operation of a 4kW Linear Motor Driven Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Zia, J. H.

    2004-06-01

    A 4 kW electrical input Linear Motor driven pulse tube cryocooler has successfully been designed, built and tested. The optimum operation frequency is 60 Hz with a design refrigeration of >200 W at 80 K. The design exercise involved modeling and optimization in DeltaE software. Load matching between the cold head and linear motor was achieved by careful sizing of the transfer tube. The cryocooler makes use of a dual orifice inertance network and a single compliance tank for phase optimization and streaming suppression in the pulse tube. The in-line cold head design is modular in structure for convenient change-out and re-assembly of various components. The Regenerator consists of layers of two different grades of wire-mesh. The Linear motor is a clearance seal, dual opposed piston design from CFIC Inc. Initial results have demonstrated the refrigeration target of 200 W by liquefying Nitrogen from an ambient temperature and pressure. Overall Carnot efficiencies of 13% have been achieved and efforts to further improve efficiencies are underway. Linear motor efficiencies up to 84% have been observed. Experimental results have shown satisfactory compliance with model predictions, although the effects of streaming were not part of the model. Refrigeration loss due to streaming was minimal at the design operating conditions of 80 K.

  8. Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage

    NASA Technical Reports Server (NTRS)

    Longsworth, R. C.

    1993-01-01

    A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K.

  9. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  10. Design and experiments of a linear piezoelectric motor driven by a single mode.

    PubMed

    Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei

    2016-11-01

    In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.

  11. Split-Stirling-cycle displacer linear-electric drive

    NASA Technical Reports Server (NTRS)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.

    1983-01-01

    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  12. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  13. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    NASA Astrophysics Data System (ADS)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  14. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  15. Power Transfer in Physical Systems.

    ERIC Educational Resources Information Center

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  16. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  17. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  18. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator.

    PubMed

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  19. Exact solution of a linear molecular motor model driven by two-step fluctuations and subject to protein friction.

    PubMed

    Fogedby, Hans C; Metzler, Ralf; Svane, Axel

    2004-08-01

    We investigate by analytical means the stochastic equations of motion of a linear molecular motor model based on the concept of protein friction. Solving the coupled Langevin equations originally proposed by Mogilner et al. [Phys. Lett. A 237, 297 (1998)], and averaging over both the two-step internal conformational fluctuations and the thermal noise, we present explicit, analytical expressions for the average motion and the velocity-force relationship. Our results allow for a direct interpretation of details of this motor model which are not readily accessible from numerical solutions. In particular, we find that the model is able to predict physiologically reasonable values for the load-free motor velocity and the motor mobility.

  20. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...

  1. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...

  2. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...

  3. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... distortion of the enclosure exceeding 0.040 inch per linear foot. (c) When a pressure exceeding 125 pounds...

  4. Development of Torsional and Linear Piezoelectrically Driven Motors

    NASA Technical Reports Server (NTRS)

    Duong, Khanh; Newton, David; Garcia, Ephrahim

    1996-01-01

    The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.

  5. A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg

    2017-08-01

    This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.

  6. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    PubMed

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  7. Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover

    NASA Technical Reports Server (NTRS)

    McMahan, Bert K. (Inventor); Sesler, Joshua J. (Inventor); Paine, Matthew T. (Inventor); McMahan, Mark C. (Inventor); Paine, Jeffrey S. N. (Inventor); Smith, Byron F. (Inventor)

    2018-01-01

    We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover.

  8. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  9. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    NASA Astrophysics Data System (ADS)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  10. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  11. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  12. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  13. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    NASA Astrophysics Data System (ADS)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  14. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion.

    PubMed

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-01

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  15. Comparative analysis of linear motor geometries for Stirling coolers

    NASA Astrophysics Data System (ADS)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  16. New method of writing long-period fiber gratings using high-frequency CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang

    2016-11-01

    In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.

  17. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    NASA Astrophysics Data System (ADS)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  18. Excitation Method of Linear-Motor-Type Rail Brake without Using Power Sources by Dynamic Braking with Zero Electrical Output

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.

  19. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr

    2015-01-15

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less

  20. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  1. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  2. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  3. Experimental studies on twin PTCs driven by dual piston head linear compressor

    NASA Astrophysics Data System (ADS)

    Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.

    2017-02-01

    An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.

  4. External Hand Forces Exerted by Long-Term Care Staff to Push Floor-Based Lifts: Effects of Flooring System and Resident Weight.

    PubMed

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2016-09-01

    The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.

  5. Digital control of magnetic bearings in a cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  6. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  7. The monomeric, tetrameric, and fibrillar organization of Fib: the dynamic building block of the bacterial linear motor of Spiroplasma melliferum BC3.

    PubMed

    Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo

    2011-07-08

    Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Intelligent measurement and compensation of linear motor force ripple: a projection-based learning approach in the presence of noise

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin

    2018-06-01

    Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.

  9. Temperature Dependences of Torque Generation and Membrane Voltage in the Bacterial Flagellar Motor

    PubMed Central

    Inoue, Yuichi; Baker, Matthew A.B.; Fukuoka, Hajime; Takahashi, Hiroto; Berry, Richard M.; Ishijima, Akihiko

    2013-01-01

    In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. PMID:24359752

  10. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  11. Electric vehicle drive train with rollback detection and compensation

    DOEpatents

    Konrad, Charles E.

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delpassand, M.S.

    The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less

  13. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  14. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  15. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft

    PubMed Central

    Kulish, O.; Wright, A. D.; Terentjev, E. M.

    2016-01-01

    F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the ‘no-load’ angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of ‘stall torque’. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the ‘useful outcome’ is measured in the number of H+ pushed against the chemical gradient. PMID:27321713

  16. Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong

    2018-06-01

    In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.

  17. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, R.W.; Silva, L.L.

    1988-05-10

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.

  18. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  19. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application

    NASA Astrophysics Data System (ADS)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan

    2017-04-01

    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  20. Electromagnetic Launchers and Guns. Phase 1

    DTIC Science & Technology

    1980-06-01

    a high-speed maglev transportation system based on a linear synchronous motor (1,2,3). In 1975 Gerard K. O’Neill of Princeton University...fact that the very important railgun- homopolar launcher technology is already being pursued at Westinghouse and university of Texas, Austin. The...shown in Fig. 14 on the following page. There are three comparable options for energy storage: an engine-driven homopolar generator followed by an

  1. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator.

    PubMed

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  2. Improved Speed Control System for the 87,000 HP Wind Tunnel Drive

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  3. Improved speed control system for the 87,000 HP wind tunnel drive

    NASA Astrophysics Data System (ADS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  4. Developing stochastic model of thrust and flight dynamics for small UAVs

    NASA Astrophysics Data System (ADS)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  5. Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds

    PubMed Central

    Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro

    2012-01-01

    Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306

  6. Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This guidebook provides a step-by-step approach to developing a motor system energy-improvement action plan. An action plan includes which motors should be repaired or replaced with higher efficiency models, recommendations on maintaining a spares inventory, and discussion of improvements in maintenance practices. The guidebook is the successor to DOE’s 1997 Energy Management for Motor Driven Systems. It builds on its predecessor publication by including topics such as power transmission systems and matching driven equipment to process requirements in addition to motors.

  7. Oscillating-Linear-Drive Vacuum Compressor for CO2

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  8. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  9. Control of a multidegree of freedom standing wave ultrasonic motor driven precise positioning system

    NASA Astrophysics Data System (ADS)

    Ferreira, Antoine; Minotti, Patrice

    1997-04-01

    A newly developed positioning system incorporating a multidegree of freedom standing wave ultrasonic motor (SWUM) is presented and its advantageous features, operating principles, and some experimental results are described. The principle of motorization is based on the conversion, through frictional contact, of a stationary bending vibration sustained in a slotted metallic resonator, into rigid body displacements. A small autonomous multidegree of freedom nanopositioner using a SWUM motor is presented for fine positioning in scanning tunneling microscopy. The positioning system is achieved via the simultaneous operation of two identical pulse width modulation servo-control systems, each having a laser vibrometer position feedback loop. The closed loop position schemes are theoretically considered and their results are demonstrated and evaluated in practice. Evaluations of experimental tests indicate that a positioning resolution less than 100 nm are successfully achieved for an unlimited X-Y travel range with linear speeds between 1 mm s-1 and few cm s-1.

  10. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks

    NASA Astrophysics Data System (ADS)

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G.; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  11. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks.

    PubMed

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  12. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  13. Quasi-steady state reduction of molecular motor-based models of directed intermittent search.

    PubMed

    Newby, Jay M; Bressloff, Paul C

    2010-10-01

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets.

  14. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  15. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  16. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  17. Controlling An Inverter-Driven Three-Phase Motor

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  18. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  19. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  20. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  1. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  2. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Deming; Cai Zhonghou; Lai, Barry

    2007-01-19

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  3. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Cai, Zhonghou; Lai, Barry

    2007-01-01

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  4. Photographic Equipment Test System (PETS)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Photographic Equipment Test System is presented. The device is a mobile optical system designed for evaluating performance of various sensors in a laboratory, in a vacuum chamber or on a flight line. The carriage is designed to allow elevation as well as azimuth control of the direction of the light from the collimator. The pneumatic tires provide an effective vibration isolation system. A target/illumination system is mounted on a motor driven linear slide, and focusing and exposure control can be operated remotely from the small electronics control console.

  5. CALUTRON ASSEMBLING AND DISASSEMBLING MEANS

    DOEpatents

    Andrews, R.E.; Thornton, J.

    1959-01-27

    This patent relates to the assembling and disassembling of a calutron and, more specifically describes a calutron having the ion separating mechanism carried by a fuce plate removably secured to the tank. When it is desired to withdraw the ion separating mechanism from the tank, a motor is energized and a carriage attached through a bracket to the fuce plate is driven along a track. The face plate moves out from the tank in substantially a linear direction, preventing injury to the ion separating mechanism.

  6. Single reflector interference spectrometer and drive system therefor

    NASA Technical Reports Server (NTRS)

    Schindler, R. A. (Inventor)

    1974-01-01

    In a Fourier interference spectrometer of the doublepass retroreflector type, a single mirror is employed in the path of both split beams of an incoming ray to cause them to double back through separate retroreflectors. Changes in optical path length are achieved by linear displacement of both retroreflectors using a motor driven lead screw on one for large, low frequency changes, a moving-coil actuator on the other for smaller, mid-frequency changes and a piezoelectric actuator on one of these two for small, high frequency changes.

  7. Structural design of off-axis aspheric surface reflective zoom optical system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Chang, Jun; Song, Haiping; Niu, Yajun

    2018-01-01

    Designed an off-axis aspheric reflective zoom optical system, and produced a prototype. The system consists of three aspheric reflective lens, the zoom range is 30mm { 90mm. This system gave up the traditional structure of zoom cam, the lens moved using linear guide rail driven by motor, the positioning precision of which was 0.01mm. And introduced the design of support frames of each lens. The practice tests verified the rationality of the prototype structure design.

  8. A magnetically suspended linearly driven cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.

    1983-01-01

    This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.

  9. Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics.

    PubMed

    Sonoda, S; Imahori, R; Saitoh, E; Tomita, Y; Domen, K; Chino, N

    2000-04-15

    This paper describes a motor-driven orthosis for paraplegics which has been developed. This orthosis is composed of a medially-mounted motor-driven hip joint and bilateral knee-ankle-foot orthosis. With the gear mechanism, the virtual axis of the hip joint of this orthosis is almost as high as the anatomical hip joint. A paraplegic patient with an injury level of T10/11 walked using bilateral lofstrand crutches and this new orthosis with or without the motor system. The motor is initiated by pushing a button attached at the edge of the grab of the crutches. Faster cadence and speed and smaller rotation angle of the trunk was obtained in motor walking compared with non-motor walking. The patient did not feel fearful of falling. The benefit of motor orthosis is that it can be used even in patients with lower motor lesions and that it provides stable regulation of hip flexion movement in spastic patients. In conclusion, this motor orthosis will enhance paraplegic walking.

  10. Prototyping and testing of mechanical components for the GRAVITY spectrometers

    NASA Astrophysics Data System (ADS)

    Wiest, Michael; Fischer, Sebastian; Thiel, Markus; Haug, Marcus; Rohloff, Ralf-Rainer; Straubmeier, Christian; Araujo-Hauck, Constanza; Yazici, Senol; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2010-07-01

    GRAVITY is a 2nd generation VLTI Instrument which operates on 6 interferometric baselines by using all 4 UTs. It will offer narrow angle astrometry in the infrared K-band with an accuracy of 10 ìas. The University of Cologne is part of the international GRAVITY consortium and responsible for the design and manufacturing of the two spectrometers. One is optimized for observing the science object, providing three different spectral resolutions and optional polarimetry, the other is optimized for a fast fringe tracking at a spectral resolution of R=22 with optional polarimetry. In order to achieve the necessary image quality, the current mechanical design foresees 5 motorized functions, 2 linear motions and 3 filter wheels. Additionally the latest optical design proposal includes 20 degrees of freedom for manual adjustments distributed over the different optical elements. Both spectrometers require precise linear and rotational movements on micrometer or arcsecond scales. These movements will be realized using custom linear stages based on compliant joints. These stages will be driven by actuators based on a Phytron/Harmonic Drive combination. For dimensioning and in order to qualify the reliability of these mechanisms, it is necessary to evaluate the mechanisms on the base of several prototypes. Due to the cryogenic environment the wheel mechanisms will be driven by Phytron stepper motors, too. A ratchet mechanism, which is currently in the beginning of his design phase, will deliver the required precision to the filter wheels. This contribution will give a first impression how the next mechanical prototypes will look like. Besides, advantages of purchasing and integrating a distance sensor and a resolver are reported. Both are supposed to work under cryogenic conditions and should achieve high resolutions for the measuring of movements inside the test cryostat.

  11. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  12. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  13. Speed of the bacterial flagellar motor near zero load depends on the number of stator units.

    PubMed

    Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M

    2017-10-31

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.

  14. Speed of the bacterial flagellar motor near zero load depends on the number of stator units

    PubMed Central

    Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.

    2017-01-01

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322

  15. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  16. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.

    PubMed

    Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W

    2016-02-01

    This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.

  17. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off-the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.

  18. ATP synthase--a marvellous rotary engine of the cell.

    PubMed

    Yoshida, M; Muneyuki, E; Hisabori, T

    2001-09-01

    ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.

  19. Design and testing of a novel piezoelectric micro-motor actuated by asymmetrical inertial impact driving principle.

    PubMed

    Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming

    2014-03-01

    In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.

  20. Miniature laser ignited bellows motor

    NASA Technical Reports Server (NTRS)

    Renfro, Steven L.; Beckman, Tom M.

    1994-01-01

    A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.

  1. A new standing-wave-type linear ultrasonic motor based on in-plane modes.

    PubMed

    Shi, Yunlai; Zhao, Chunsheng

    2011-05-01

    This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Proposal of a new electromechanical total artificial heart: the TAH Serpentina.

    PubMed

    Sauer, I M; Frank, J; Bücherl, E S

    1999-03-01

    A new type of energy converter for an electro-mechanical total artificial heart (TAH) based on the principle of a unidirectional moving motor is described. Named the TAH Serpentina, the concept consists of 2 major parts, a pendulum shaped movable element fixed on one side using a joint bearing and a special shaped drum cam. Pusher plates are mounted flexibly to the crossbar of the pendulum. A motor drives the special shaped drum cam linked to the pendulum through a ball bearing. The circular motion of the unidirectional moving brushless DC motor is transferred into the linear motion of the pendulum to drive the pusher plates. Using a crossbar with a variable length, the stroke of the pendulum and therefore the displaced blood volume is alterable. To achieve a variable length, an electric driven screw thread or a hydraulic system is possible. Comparable to the natural heart, cardiac output would be determined by frequency and stroke volume.

  3. Solar powered actuator with continuously variable auxiliary power control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.

  4. Design, development and testing twin pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.

    2017-09-01

    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  5. Proceedings of the NATO-Advanced Study Institute on Computer Aided Analysis of Rigid and Flexible Mechanical Systems Held in Troia, Portugal on June 27-July 9, 1993. Volume 1. Main Lectures

    DTIC Science & Technology

    1993-07-09

    real-time simulation capabilities, highly non -linear control devices, work space path planing, active control of machine flexibilities and reliability...P.M., "The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement," Journal of Experimental Psychology, Vol 47, No...driven many research groups in the challenging problem of flexible sy,;tems with an increasing interaction with finite element methodologies. Basic

  6. Adaptive control of a Stewart platform-based manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami S.; Zhou, Zhen-Lei; Campbell, Charles E., Jr.

    1993-01-01

    A joint-space adaptive control scheme for controlling noncompliant motion of a Stewart platform-based manipulator (SPBM) was implemented in the Hardware Real-Time Emulator at Goddard Space Flight Center. The six-degrees of freedom SPBM uses two platforms and six linear actuators driven by dc motors. The adaptive control scheme is based on proportional-derivative controllers whose gains are adjusted by an adaptation law based on model reference adaptive control and Liapunov direct method. It is concluded that the adaptive control scheme provides superior tracking capability as compared to fixed-gain controllers.

  7. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model. Final Report, Sep. 1981 - Sep. 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keung, C.; Patt, P.J.; Starr, M.

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial positionmore » of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.« less

  8. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    NASA Technical Reports Server (NTRS)

    Keung, C.; Patt, P. J.; Starr, M.; Sweet, R. C.; Bourdillon, L. A.; Figueroa, R.; Hartmann, M.; Mcfarlane, R.

    1990-01-01

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.

  9. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  10. Brownian ratchets: How stronger thermal noise can reduce diffusion

    NASA Astrophysics Data System (ADS)

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  11. Brownian ratchets: How stronger thermal noise can reduce diffusion.

    PubMed

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  12. Artificial muscles driven by the cooperative actuation of electrochemical molecular machines. Persistent discrepancies and challenges

    NASA Astrophysics Data System (ADS)

    Otero

    2017-10-01

    Here we review the persisting conceptual discrepancies between different research groups working on artificial muscles based on conducting polymers and other electroactive material. The basic question is if they can be treated as traditional electro-mechanical (physical) actuators driven by electric fields and described by some adaptation of their physical models or if, replicating natural muscles, they are electro-chemo-mechanical actuators driven by electrochemical reaction of the constitutive molecular machines: the polymeric chains. In that case the charge consumed by the reaction will control the volume variation of the muscular material and the motor displacement, following the basic and single Faraday's laws: the charge consumed by the reaction determines the number of exchanged ions and solvent, the film volume variation to lodge/expel them and the amplitude of the movement. Deviations from the linear relationships are due to the osmotic exchange of solvent and to the presence of parallel reactions from the electrolyte, which originate creeping effects. Challenges and limitations are underlined.

  13. Analysis and comparison of end effects in linear switched reluctance and hybrid motors

    NASA Astrophysics Data System (ADS)

    Barhoumi, El Manaa; Abo-Khalil, Ahmed Galal; Berrouche, Youcef; Wurtz, Frederic

    2017-03-01

    This paper presents and discusses the longitudinal and transversal end effects which affects the propulsive force of linear motors. Generally, the modeling of linear machine considers the forces distortion due to the specific geometry of linear actuators. The insertion of permanent magnets on the stator allows improving the propulsive force produced by switched reluctance linear motors. Also, the inserted permanent magnets in the hybrid structure allow reducing considerably the ends effects observed in linear motors. The analysis was conducted using 2D and 3D finite elements method. The permanent magnet reinforces the flux produced by the winding and reorients it which allows modifying the impact of end effects. Presented simulations and discussions show the importance of this study to characterize the end effects in two different linear motors.

  14. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that

  15. 49 CFR 397.17 - Tires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND... is driven. However, the vehicle may be driven to the nearest safe place to perform the required...

  16. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  17. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  18. Towards elucidation of the mechanism of biological nanomotors

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengyi

    Biological functions such as cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging, and cell entry all involve biomotor-driven DNA translocation. In the past, the ubiquitous biological nanomotors were classified into two categories: linear and rotation motors. In 2013, we discovered a third type of biomotor, revolving motor without rotation. The revolving motion is further found to be widespread among many biological systems. In addition, the detailed sequential action mechanism of the ATPase ring in the phi29 dsDNA packaging motor has been elucidated: ATP binding induces a conformational entropy alternation of ATPase to a high affinity toward dsDNA; ATP hydrolysis triggers another conformational entropy change in ATPase to a low DNA affinity, by which the dsDNA substrate is pushed toward an adjacent ATPase subunit. The subunit communication is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit, resulting in an asymmetrical hexameric organization. Continuation of this process promotes the movement and revolving of the dsDNA within the hexameric ATPase ring. Coordination of all the motor components facilitate the motion direction control of the viral DNA packaging motors, and make it unusually powerful and effective. KEYWORDS: Phi29 dsDNA Packaging Motor, Bio-nanomotor, RNA Nanotechnology, DNA Translocase, One-Way Revolving, ASCE Superfamily, AAA+ Superfamily.

  19. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators

    DOE PAGES

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; ...

    2014-11-22

    Peptide–metal–organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. Finally, a new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.

  20. A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang

    2013-01-01

    A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.

  1. Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion

    NASA Technical Reports Server (NTRS)

    Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)

    2014-01-01

    An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.

  2. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  3. GMTIFS: cryogenic rotary mechanisms for the GMT Integral-Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hart, John; Espeland, Brady; Bloxham, Gabe; Boz, Robert; Bundy, Dave; Davies, John; Fordham, Bart; Herald, Nick; Sharp, Rob; Vaccarella, Annino; Vest, Colin

    2016-07-01

    A representative range of the rotary mechanisms proposed for use in GMTIFS is described. All are driven by cryogenically rated stepper motors. For each mechanism, angular position is measured by means of eddy current sensors arranged to function as a resolver. These measure the linear displacement of a decentered aluminum alloy target in two orthogonal directions, from which angular position is determined as a function of the displacement ratio. Resolver function and performance is described. For each mechanism, the mechanical design is described and the adequacy of positioning repeatability assessed. Options for improvement are discussed.

  4. Design and demonstration of a small expandable morphing wing

    NASA Astrophysics Data System (ADS)

    Heryawan, Yudi; Park, Hoon C.; Goo, Nam S.; Yoon, Kwang J.; Byun, Yung H.

    2005-05-01

    In this paper, we present design, manufacturing, and wind tunnel test for a small-scale expandable morphing wing. The wing is separated into inner and outer wings as a typical bird wing. The part from leading edge of the wing chord is made of carbon composite strip and balsa. The remaining part is covered with curved thin carbon fiber composite mimicking wing feathers. The expandable wing is driven by a small DC motor, reduction gear, and fiber reinforced composite linkages. Rotation of the motor is switched to push-pull linear motion by a screw and the linear motion of the screw is transferred to linkages to create wing expansion and folding motions. The wing can change its aspect ratio from 4.7 to 8.5 in about 2 seconds and the speed can be controlled. Two LIPCAs (Lightweight Piezo-Composite Actuators) are attached under the inner wing section and activated on the expanded wing state to modify camber of the wing. In the wind tunnel test, change of lift, drag, and pitching moment during wing expansion have been investigated for various angles of attack. The LIPCA activation has created significant additional lift.

  5. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  6. Combining Load and Motor Encoders to Compensate Nonlinear Disturbances for High Precision Tracking Control of Gear-Driven Gimbal

    PubMed Central

    Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo

    2018-01-01

    High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm. PMID:29498643

  7. Combining Load and Motor Encoders to Compensate Nonlinear Disturbances for High Precision Tracking Control of Gear-Driven Gimbal.

    PubMed

    Tang, Tao; Chen, Sisi; Huang, Xuanlin; Yang, Tao; Qi, Bo

    2018-03-02

    High-performance position control can be improved by the compensation of disturbances for a gear-driven control system. This paper presents a mode-free disturbance observer (DOB) based on sensor-fusion to reduce some errors related disturbances for a gear-driven gimbal. This DOB uses the rate deviation to detect disturbances for implementation of a high-gain compensator. In comparison with the angular position signal the rate deviation between load and motor can exhibits the disturbances exiting in the gear-driven gimbal quickly. Due to high bandwidth of the motor rate closed loop, the inverse model of the plant is not necessary to implement DOB. Besides, this DOB requires neither complex modeling of plant nor the use of additive sensors. Without rate sensors providing angular rate, the rate deviation is easily detected by encoders mounted on the side of motor and load, respectively. Extensive experiments are provided to demonstrate the benefits of the proposed algorithm.

  8. Multiple-region directed functional connectivity based on phase delays.

    PubMed

    Goelman, Gadi; Dan, Rotem

    2017-03-01

    Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Electro-Mechanical Coaxial Valve

    NASA Technical Reports Server (NTRS)

    Patterson, Paul R (Inventor)

    2004-01-01

    Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein indudes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

  10. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  11. Different conical intersections control nonadiabatic photochemistry of fluorene light-driven molecular rotary motor: A CASSCF and spin-flip DFT study

    NASA Astrophysics Data System (ADS)

    Li, Yuanying; Liu, Fengyi; Wang, Bin; Su, Qingqing; Wang, Wenliang; Morokuma, Keiji

    2016-12-01

    We report the light-driven isomerization mechanism of a fluorene-based light-driven rotary motor (corresponding to Feringa's 2nd generation rotary motor, [M. M. Pollard et al., Org. Biomol. Chem. 6, 507-512 (2008)]) at the complete active space self-consistent field (CASSCF) and spin-flip time-dependent density functional theory (TDDFT) (SFDFT) levels, combined with the complete active space second-order perturbation theory (CASPT2) single-point energy corrections. The good consistence between the SFDFT and CASSCF results confirms the capability of SFDFT in investigating the photoisomerization step of the light-driven molecular rotary motor, and proposes the CASPT2//SFDFT as a promising and effective approach in exploring photochemical processes. At the mechanistic aspect, for the fluorene-based motor, the S1/S0 minimum-energy conical intersection (MECIs) caused by pyramidalization of a fluorene carbon have relatively low energies and are easily accessible by the reactive molecule evolution along the rotary reaction path; therefore, the fluorene-type MECIs play the dominant role in nonadiabatic decay, as supported by previous experimental and theoretical works. Comparably, the other type of MECIs that results from pyramidalization of an indene carbon, which has been acting as the dominant nonadiabatic decay channel in the stilbene motor, is energetically inaccessible, thus the indene-type MECIs are "missing" in previous mechanistic studies including molecular dynamic simulations. A correlation between the geometric and electronic factors of MECIs and that of the S1 energy profile along the C═C rotary coordinate was found. The findings in current study are expected to deepen the understanding of nonadiabatic transition in the light-driven molecular rotary motor and provide insights into mechanistic tuning of their performance.

  12. Characteristics of the First Longitudinal-Fourth Bending Mode Linear Ultrasonic Motors

    NASA Astrophysics Data System (ADS)

    Park, Taegone; Kim, Beomjin; Kim, Myong-Ho; Uchino, Kenji

    2002-11-01

    Linear ultrasonic motors using a combination of the first longitudinal mode and the fourth bending mode were designed and fabricated. The driving characteristics of the motors, which were composed of a straight metal bar bonded with piezoelectric ceramic vibrators as a driving element, were measured. Unimorph and bimorph ceramic vibrators were attached on three kinds of metal bars for constructing the stators of the linear motors. As results, motors made with the bimorph ceramic vibrators had higher velocity than motors of the unimorph vibrators. As a metal bar for stator, magnesium alloy, which has lower elastic coefficient than aluminum alloy, was better for the motors.

  13. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  14. Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.

    PubMed

    Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min

    2007-04-01

    This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.

  15. Tensegrity and motor-driven effective interactions in a model cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2012-04-01

    Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.

  16. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    PubMed

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in underground... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources...

  18. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.

    2015-12-01

    Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.

  19. Optimization of MRI-based scoring scales of brain injury severity in children with unilateral cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Fiori, Simona; Boyd, Roslyn N; Guzzetta, Andrea; Doecke, James; Gal, Yaniv; Rose, Stephen; Dowson, Nicholas

    2016-02-01

    Several scoring systems for measuring brain injury severity have been developed to standardize the classification of MRI results, which allows for the prediction of functional outcomes to help plan effective interventions for children with cerebral palsy. The aim of this study is to use statistical techniques to optimize the clinical utility of a recently proposed template-based scoring method by weighting individual anatomical scores of injury, while maintaining its simplicity by retaining only a subset of scored anatomical regions. Seventy-six children with unilateral cerebral palsy were evaluated in terms of upper limb motor function using the Assisting Hand Assessment measure and injuries visible on MRI using a semiquantitative approach. This cohort included 52 children with periventricular white matter injury and 24 with cortical and deep gray matter injuries. A subset of the template-derived cerebral regions was selected using a data-driven region selection algorithm. Linear regression was performed using this subset, with interaction effects excluded. Linear regression improved multiple correlations between MRI-based and Assisting Hand Assessment scores for both periventricular white matter (R squared increased to 0.45 from 0, P < 0.0001) and cortical and deep gray matter (0.84 from 0.44, P < 0.0001) cohorts. In both cohorts, the data-driven approach retained fewer than 8 of the 40 template-derived anatomical regions. The equal or better prediction of the clinically meaningful Assisting Hand Assessment measure using fewer anatomical regions highlights the potential of these developments to enable enhanced quantification of injury and prediction of patient motor outcome, while maintaining the clinical expediency of the scoring approach.

  20. Adaptive nonsingular terminal sliding mode controller for micro/nanopositioning systems driven by linear piezoelectric ceramic motors.

    PubMed

    Safa, Alireza; Abdolmalaki, Reza Yazdanpanah; Shafiee, Saeed; Sadeghi, Behzad

    2018-06-01

    In the field of nanotechnology, there is a growing demand to provide precision control and manipulation of devices with the ability to interact with complex and unstructured environments at micro/nano-scale. As a result, ultrahigh-precision positioning stages have been turned into a key requirement of nanotechnology. In this paper, linear piezoelectric ceramic motors (LPCMs) are adopted to drive micro/nanopositioning stages since they have the ability to achieve high precision in addition to being versatile to be implemented over a wide range of applications. In the establishment of a control scheme for such manipulation systems, the presence of friction, parameter uncertainties, and external disturbances prevent the systems from providing the desired positioning accuracy. The work in this paper focuses on the development of a control framework that addresses these issues as it uses the nonsingular terminal sliding mode technique for the precise position tracking problem of an LPCM-driven positioning stage with friction, uncertain parameters, and external disturbances. The developed control algorithm exhibits the following two attractive features. First, upper bounds of system uncertainties/perturbations are adaptively estimated in the proposed controller; thus, prior knowledge about uncertainty/disturbance bounds is not necessary. Second, the discontinuous signum function is transferred to the time derivative of the control input and the continuous control signal is obtained after integration; consequently, the chattering phenomenon, which presents a major handicap to the implementation of conventional sliding mode control in real applications, is alleviated without deteriorating the robustness of the system. The stability of the controlled system is analyzed, and the convergence of the position tracking error to zero is analytically proven. The proposed control strategy is experimentally validated and compared to the existing control approaches. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  3. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  4. A double B1-mode 4-layer laminated piezoelectric linear motor.

    PubMed

    Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang

    2012-12-01

    We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.

  5. Linear summation of outputs in a balanced network model of motor cortex.

    PubMed

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.

  6. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    PubMed

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  7. Preliminary research of a novel center-driven robot for upper extremity rehabilitation.

    PubMed

    Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling

    2018-01-19

    Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.

  8. The effect of a physical activity intervention on preschoolers' fundamental motor skills - A cluster RCT.

    PubMed

    Wasenius, Niko S; Grattan, Kimberly P; Harvey, Alysha L J; Naylor, Patti-Jean; Goldfield, Gary S; Adamo, Kristi B

    2018-07-01

    To assess the effect of a physical activity intervention delivered in the childcare centres (CC), with or without a parent-driven home physical activity component, on children's fundamental motor skills (FMS). Six-month 3-arm cluster randomized controlled trial. Preschoolers were recruited from 18 licensed CC. CC were randomly assigned to a typical curriculum comparison group (COM), childcare intervention alone (CC), or childcare intervention with parental component (CC+HOME). FMS was measured with the Test of Gross Motor Development-2. Linear mixed models were performed at the level of the individual while accounting for clustering. Raw locomotor skills score increased significantly in the CC group (mean difference=2.5 units, 95% Confidence Intervals, CI, 1.0-4.1, p<0.001) and the CC+HOME group (mean difference=2.4 units, 95% CI, 0.8-4.0, p<0.001) compared to the COM group. No significant (p>0.05) between group differences were observed in the raw object control skills, sum of raw scores, or gross motor quotient. No significant sex differences were found in any of the measured outcomes. A physical activity intervention delivered in childcare with or without parents' involvement was effective in increasing locomotor skills in preschoolers. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. 49 CFR 392.7 - Equipment, inspection and use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.7 Equipment, inspection and use. (a) No commercial motor vehicle shall be driven...

  10. Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator

    PubMed Central

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu

    2014-01-01

    Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936

  11. Functional recovery in upper limb function in stroke survivors by using brain-computer interface A single case A-B-A-B design.

    PubMed

    Ono, Takashi; Mukaino, Masahiko; Ushiba, Junichi

    2013-01-01

    Resent studies suggest that brain-computer interface (BCI) training for chronic stroke patient is useful to improve their motor function of paretic hand. However, these studies does not show the extent of the contribution of the BCI clearly because they prescribed BCI with other rehabilitation systems, e.g. an orthosis itself, a robotic intervention, or electrical stimulation. We therefore compared neurological effects between interventions with neuromuscular electrical stimulation (NMES) with motor imagery and BCI-driven NMES, employing an ABAB experimental design. In epoch A, the subject received NMES on paretic extensor digitorum communis (EDC). The subject was asked to attempt finger extension simultaneously. In epoch B, the subject received NMES when BCI system detected motor-related electroencephalogram change while attempting motor imagery. Both epochs were carried out for 60 min per day, 5 days per week. As a result, EMG activity of EDC was enhanced by BCI-driven NMES and significant cortico-muscular coherence was observed at the final evaluation. These results indicate that the training by BCI-driven NMES is effective even compared to motor imagery combined with NMES, suggesting the superiority of closed-loop training with BCI-driven NMES to open-loop NMES for chronic stroke patients.

  12. Comparison of air-driven vs electric torque control motors on canal centering ability by ProTaper NiTi rotary instruments.

    PubMed

    Zarei, Mina; Javidi, Maryam; Erfanian, Mahdi; Lomee, Mahdi; Afkhami, Farzaneh

    2013-01-01

    Cleaning and shaping is one of the most important phases in root canal therapy. Various rotary NiTi systems minimize accidents and facilitate the shaping process. Todays NiTi files are used with air-driven and electric handpieces. This study compared the canal centering after instrumentation using the ProTaper system using Endo IT, electric torque-control motor, and NSK air-driven handpiece. This ex vivo randomized controlled trial study involved 26 mesial mandibular root canals with 10 to 35° curvature. The roots were randomly divided into 2 groups of 13 canals each. The roots were mounted in an endodontic cube with acrylic resin, sectioned horizontally at 2, 6 and 10 mm from the apex and then reassembled. The canals were instrumented according to the manufacturer's instructions using ProTaper rotary files and electric torque-control motors (group 1) or air-driven handpieces (group 2). Photographs of the cross-sections included shots before and after instrumentation, and image analysis was performed using Photoshop software. The centering ability and canal transportation was also evaluated. Repeated measurement and independent t-test provided statistical analysis of canal transportation. The comparison of the rate of transportation toward internal or external walls between the two groups was not statistically significant (p = 0.62). Comparison of the rate of transportation of sections within one group was not significant (p = 0.28). Use of rotary NiTi file with either electric torquecontrol motor or air-driven handpiece had no effect on canal centering. NiTi rotary instruments can be used with air-driven motors without any considerable changes in root canal anatomy, however it needs the clinician to be expert.

  13. Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging

    PubMed Central

    2018-01-01

    The design of a multicomponent system that aims at the direct visualization of a synthetic rotary motor at the single molecule level on surfaces is presented. The synthesis of two functional motors enabling photochemical rotation and fluorescent detection is described. The light-driven molecular motor is found to operate in the presence of a fluorescent tag if a rigid long rod (32 Å) is installed between both photoactive moieties. The photochemical isomerization and subsequent thermal helix inversion steps are confirmed by 1H NMR and UV–vis absorption spectroscopies. In addition, the tetra-acid functioned motor can be successfully grafted onto amine-coated quartz and it is shown that the light responsive rotary motion on surfaces is preserved. PMID:29741383

  14. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  15. Optimal design of a for middle-low-speed maglev trains

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Zhang, Kunlun; Liu, Guoqing; Jing, Yongzhi; Sykulski, Jan K.

    2018-04-01

    A middle-low-speed maglev train is supported by an electromagnetic force between the suspension electromagnet (EM) and the steel rail and is driven by a linear induction motor. The capability of the suspension system has a direct bearing on safety and the technical and economic performance of the train. This paper focuses on the dependence of the electromagnetic force on the structural configuration of the EM with the purpose of improving performance of a conventional EM. Finally, a novel configuration is proposed of a hybrid suspension magnet, which combines permanent magnets and coils, in order to increase the suspension force while reducing the suspension power loss.

  16. The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos

    NASA Astrophysics Data System (ADS)

    Hide, Raymond

    1997-02-01

    This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor by currents generated by self-exciting magnetohydrodynamic (MHD) dynamo action involving motional induction associated with buoyancy-driven flow in the liquid metallic outer core. The study of biased disk dynamos could bear on the theory of the magnetic fields of natural systems where a significant background field is present (e.g., Galilean satellites of Jupiter) or when the action of motional induction is modified by electromotive forces produced by other mechanisms, such as thermoelectric processes, as in certain stars.

  17. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  18. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  19. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  20. High-precision planar magnetic levitation

    NASA Astrophysics Data System (ADS)

    Kim, Won-Jong

    1997-11-01

    This thesis presents the design and implementation of a high-precision magnetically levitated stage with large planar motion capability. This stage is the first which is capable of providing all the motions required for photolithography in semiconductor manufacturing with only one moving part, namely the platen. The platen is driven in all six-degree-of-freedom motions with small adjustments for focusing and alignment and with large planar motions for positioning across the wafer surface. The underlying electromechanical modeling and analysis, mechanical and electrical design, and real-time control of such a high-precision planar magnetic levitator are presented. The platen is levitated without contact by four novel permanent-magnet linear motors that provide both suspension and drive forces. The linear motors consist of Halbach-type magnet arrays attached to the underside of the levitated platen, and coil sets attached to the fixed machine platform. Since all the motor coils are fixed, no wires need to be connected to the moving part. The platen mass of 5.6 kg is supported against gravity by the combined forces of the four motors. Each motor consumes about 5.4 W to lift the platen. Two of the motors drive the stage in the x-direction, and the two other motors drive in the y-direction. The motor forces are coordinated appropriately to control the remaining four degrees of freedom. The present design has a travel of 50 mm in x and y, a travel of 400 μm in z, and is capable of milliradian-scale rotations about each of these three axes. The stage position in the plane is measured with three laser interferometers with sub-nanometer resolution. The stage position out of the plane is measured by three capacitance probes with nanometer resolution. The stage operates with a position noise of 5 nm rms in x and y, and is demonstrating acceleration capabilities in excess of 10 m/s2 (1 g). The control bandwidth of the system is 50 Hz. This design can readily be scaled to travel on the order of 300 mm for the future needs of lithographic systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  1. 3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation

    PubMed Central

    Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei

    2017-01-01

    Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner. PMID:28205596

  2. 3D printed self-driven thumb-sized motors for in-situ underwater pollutant remediation

    NASA Astrophysics Data System (ADS)

    Yu, Fen; Hu, Qipeng; Dong, Lina; Cui, Xiao; Chen, Tingtao; Xin, Hongbo; Liu, Miaoxing; Xue, Chaowen; Song, Xiangwei; Ai, Fanrong; Li, Ting; Wang, Xiaolei

    2017-02-01

    Green fuel-driven thumb sized motors (TSM) were designed and optimized by 3D printing to explore their in-situ remediation applications in rare studied underwater area. Combined with areogel processing and specialized bacteria domestication, each tiny TSM could realize large area pollutant treatment precisely in an impressive half-automatically manner.

  3. Machine finishes balls to high degree of roundness

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hill, J. P., Jr.

    1972-01-01

    Machine was developed to finish ball to roundness within 12.5 nm (half a microinch) from any types of hard material. Grinding and polishing to this tolerance is accomplished by lapping elements on four to six motor-driven spindles. Spindles are adjustably spring-loaded to ensure constant contact pressure on ball and are driven by variable speed electric motors.

  4. 75 FR 11164 - Pine Prairie Energy Center, LLC; Notice of Intent to Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...) electric motor driven compressors in lieu of four previously authorized, as yet unbuilt, 4,700 hp natural gas engine driven compressors; and Two additional 5,750 hp electric motor drive compressor units. In... Energy Center, LLC; Notice of Intent to Prepare an Environmental Assessment for the Proposed Electric...

  5. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  6. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the bellows holds the outer end of the ball screw, thereby preventing rotation of the ball screw. Positioning is controlled by an electronic control system that includes digital and analog subsystems that interact with the motor and brake and with two sensor/encoder units: a Hall-effect-sensor rotation encoder and a linear glass-scale encoder. This system implements a proportional + integral + derivative control algorithm that results in variation of voltage commands to each of the three pairs of windings of the brushless DC motor. In one of two alternative control modes, the voltages are applied to the windings in a trapezoidal commutation scheme on the basis of timing signals obtained from the Hall-effect sensors; this scheme yields relatively coarse positioning - 24 steps per motor revolution. The second control mode involves a sinusoidal commutation scheme in which the output of the linear glass-scale encoder is transposed to rotational increments to yield much finer position feedback - more than 400,000 steps per revolution.

  7. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis.

    PubMed

    Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren

    2014-01-01

    To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.

  8. Noncontinuous Super-Diffusive Dynamics of a Light-Activated Nanobottle Motor.

    PubMed

    Xuan, Mingjun; Mestre, Rafael; Gao, Changyong; Zhou, Chang; He, Qiang; Sánchez, Samuel

    2018-06-04

    We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light-driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft-template-based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light-driven jet propulsion. This NIR light-powered CNB motor exhibits fuel-free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  10. Stormram 4: An MR Safe Robotic System for Breast Biopsy.

    PubMed

    Groenhuis, Vincent; Siepel, Françoise J; Veltman, Jeroen; van Zandwijk, Jordy K; Stramigioli, Stefano

    2018-05-21

    Suspicious lesions in the breast that are only visible on magnetic resonance imaging (MRI) need to be biopsied under MR guidance with high accuracy and efficiency for accurate diagnosis. The aim of this study is to present a novel robotic system, the Stormram 4, and to perform preclinical tests in an MRI environment. Excluding racks and needle, its dimensions are 72 × 51 × 40 mm. The Stormram 4 is driven by two linear and two curved pneumatic stepper motors. The linear motor is capable of exerting 63 N of force at a pressure of 0.65 MPa. In an MRI environment the maximum observed stepping frequency is 30 Hz (unloaded), or 8 Hz when full force is needed. The Stormram 4's mean positioning error is 0.73 ± 0.47 mm in free air, and 1.29 ± 0.59 mm when targeting breast phantoms in MRI. Excluding the off-the-shelf needle, the robot is inherently MR safe. The robot is able to accurately target lesions under MRI guidance, reducing tissue damage and risk of false negatives. These results are promising for clinical experiments, improving the quality of healthcare in the field of MRI-guided breast biopsies.

  11. Study of linear induction motor characteristics : the Mosebach model

    DOT National Transportation Integrated Search

    1976-05-31

    This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...

  12. Study of linear induction motor characteristics : the Oberretl model

    DOT National Transportation Integrated Search

    1975-05-30

    The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...

  13. 49 CFR 392.11 - Railroad grade crossings; slowing down required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Driving of Commercial Motor Vehicles § 392.11 Railroad grade..., upon approaching a railroad grade crossing, be driven at a rate of speed which will permit said...

  14. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  15. Precision magnetic suspension linear bearing

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Queen, Michael A.

    1992-01-01

    We have shown the design and analyzed the electromechanics of a linear motor suitable for independently controlling two suspension degrees of freedom. This motor, at least on paper, meets the requirements for driving an X-Y stage of 10 Kg mass with about 4 m/sq sec acceleration, with travel of several hundred millimeters in X and Y, and with reasonable power dissipation. A conceptual design for such a stage is presented. The theoretical feasibility of linear and planar bearings using single or multiple magnetic suspension linear motors is demonstrated.

  16. Assessment of Advanced Logistics Delivery System (ALDS) Launch Systems Concepts

    DTIC Science & Technology

    2004-10-01

    highest force vs. rotor weight required, allows much higher magnetic field generation than the linear induction or linear permanent magnet motors , and...provides the highest force vs. rotor weight required, allows much higher magnetic generation than the linear induction or linear permanent magnet motors , and

  17. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  18. How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016

    PubMed Central

    Astumian, R. D.

    2017-01-01

    The Nobel prize in Chemistry for 2016 was awarded to Jean Pierre Sauvage, Sir James Fraser Stoddart, and Bernard (Ben) Feringa for their contributions to the design and synthesis of molecular machines. While this field is still in its infancy, and at present there are no commercial applications, many observers have stressed the tremendous potential of molecular machines to revolutionize technology. However, perhaps the most important result so far accruing from the synthesis of molecular machines is the insight provided into the fundamental mechanisms by which molecular motors, including biological motors such as kinesin, myosin, FoF1 ATPase, and the flagellar motor, function. The ability to “tinker” with separate components of molecular motors allows asking, and answering, specific questions about mechanism, particularly with regard to light driven vs. chemistry driven molecular motors. PMID:28572896

  19. Active DNA gels

    NASA Astrophysics Data System (ADS)

    Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young

    2013-02-01

    Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.

  20. In Vitro Motility of Liver Connexin Vesicles along Microtubules Utilizes Kinesin Motors*

    PubMed Central

    Fort, Alfredo G.; Murray, John W.; Dandachi, Nadine; Davidson, Michael W.; Dermietzel, Rolf; Wolkoff, Allan W.; Spray, David C.

    2011-01-01

    Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μm of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μm ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4–0.5 μm/s, which was inhibited with 1 mm of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μm vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32. PMID:21536677

  1. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  2. Linear versus non-linear measures of temporal variability in finger tapping and their relation to performance on open- versus closed-loop motor tasks: comparing standard deviations to Lyapunov exponents.

    PubMed

    Christman, Stephen D; Weaver, Ryan

    2008-05-01

    The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.

  3. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  4. Application of neural models as controllers in mobile robot velocity control loop

    NASA Astrophysics Data System (ADS)

    Cerkala, Jakub; Jadlovska, Anna

    2017-01-01

    This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.

  5. Loose coupling in the bacterial flagellar motor

    PubMed Central

    Boschert, Ryan; Adler, Frederick R.; Blair, David F.

    2015-01-01

    Physiological properties of the flagellar rotary motor have been taken to indicate a tightly coupled mechanism in which each revolution is driven by a fixed number of energizing ions. Measurements that would directly test the tight-coupling hypothesis have not been made. Energizing ions flow through membrane-bound complexes formed from the proteins MotA and MotB, which are anchored to the cell wall and constitute the stator. Genetic and biochemical evidence points to a “power stroke” mechanism in which the ions interact with an aspartate residue of MotB to drive conformational changes in MotA that are transmitted to the rotor protein FliG. Each stator complex contains two separate ion-binding sites, raising the question of whether the power stroke is driven by one, two, or either number of ions. Here, we describe simulations of a model in which the conformational change can be driven by either one or two ions. This loosely coupled model can account for the observed physiological properties of the motor, including those that have been taken to indicate tight coupling; it also accords with recent measurements of motor torque at high load that are harder to explain in tight-coupling models. Under loads relevant to a swimming cell, the loosely coupled motor would perform about as well as a two-proton motor and significantly better than a one-proton motor. The loosely coupled motor is predicted to be especially advantageous under conditions of diminished energy supply, or of reduced temperature, turning faster than an obligatorily two-proton motor while using fewer ions. PMID:25825730

  6. Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Turbulent Regime

    NASA Astrophysics Data System (ADS)

    Dimonte, G.

    1998-11-01

    The Rayleigh-Taylor instability (RTI) and its shock driven analog, the Richtmyer-Meshkov instability (RMI), affect a wide variety of important phenomena from sub-terrainian to astrophysical environments. The ``fluids" are equally varied from plasmas and magnetic fields to elastic-plastic solids. In most applications, the instabilities occur with a complex acceleration history and evolve to a highly nonlinear state, making the theoretical description formidable. We will link the fluid and plasma regimes while describing the theoretical issues and basic experiments in different venues to isolate key physics issues. RMI experiments on the Nova laser investigate the affects of compressibility with strong radiatively driven shocks (Mach > 10) in near solid density plasmas of sub-millimeter scale. The growth of single sinusoidal and random 3-D perturbations are measured using backlit radiography. RTI experiments with the Linear Electric Motor (LEM) are conducted with a variety of acceleration (<< 10^4 m/s^2) histories and fluids of 10 cm scale. Turbulent RTI experiments with high Reynolds number liquids show self-similar growth which is characterized with laser induced fluorescence. LEM experiments with an elastic-plastic material (yogurt) exhibit a critical wavelength and amplitude for instability. The experimental results will be compared with linear and nonlinear theories and hydrodynamic simulations.

  7. Excitatory motor neurons are local oscillators for backward locomotion

    PubMed Central

    Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher

    2018-01-01

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron’s oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron’s intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. PMID:29360035

  8. Excitatory motor neurons are local oscillators for backward locomotion.

    PubMed

    Gao, Shangbang; Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher; Zhen, Mei

    2018-01-23

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. © 2017, Gao et al.

  9. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Water-driven micromotors.

    PubMed

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  11. Velocity and Drag Forces on motor-protein-driven Vesicles in Cells

    NASA Astrophysics Data System (ADS)

    Hill, David; Holzwarth, George; Bonin, Keith

    2002-10-01

    In cells, vesicle transport is driven by motor proteins such as kinesin and dynein, which use the chemical energy of ATP to overcome drag. Using video-enhanced DIC microscopy at 8 frames/s, we find that vesicles in PC12 neurites move with an average velocity of 1.52 0.66 μm/s. The drag force and work required for such steady movement, calculated from Stokes' Law and the zero-frequency viscosity of the cytoplasm, suggest that multiple motors are required to move one vesicle. In buffer, single kinesin molecules move beads in 8-nm steps, each step taking only 50 μs [1]. The effects of such quick steps in cytoplasm, using viscoelastic moduli of COS7 cells, are small [2]. To measure drag forces more directly, we are using B-field-driven magnetic beads in PC12 cells to mimic kinesin-driven vesicles. [1] Nishiyama, M. et al., Nat. Cell Bio. 3, 425-428 (2001). [2] Holzwarth, Bonin, and Hill, Biophys J 82, 1784-1790 (2002).

  12. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  13. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  14. A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.

    PubMed

    Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A

    1988-05-01

    A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.

  15. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  16. Defocused Imaging of UV-Driven Surface-Bound Molecular Motors.

    PubMed

    Krajnik, Bartosz; Chen, Jiawen; Watson, Matthew A; Cockroft, Scott L; Feringa, Ben L; Hofkens, Johan

    2017-05-31

    Synthetic molecular motors continue to attract great interest due to their ability to transduce energy into nanomechanical motion, the potential to do work and drive systems out-of-equilibrium. Of particular interest are unidirectional rotary molecular motors driven by chemical fuel or light. Probing the mechanistic details of their operation at the single-molecule level is hampered by the diffraction limit, which prevents the collection of dynamic positional information by traditional optical methods. Here, we use defocused wide-field imaging to examine the unidirectional rotation of individual molecular rotary motors on a quartz surface in unprecedented detail. The sequential occupation of nanomechanical states during the UV and heat-induced cycle of rotation are directly imaged in real-time. The approach will undoubtedly prove important in elucidating the mechanistic details and assessing the utility of novel synthetic molecular motors in the future.

  17. Integrated regulation of motor-driven organelle transport by scaffolding proteins.

    PubMed

    Fu, Meng-meng; Holzbaur, Erika L F

    2014-10-01

    Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Climbing fibers predict movement kinematics and performance errors.

    PubMed

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.

  19. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  20. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  1. Behavior of Caulobacter Crescentus Diagnosed Using a 3-Channel Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Tang, Jay; Morse, Michael; Colin, Remy; Wilson, Laurence

    2015-03-01

    Many motile microorganisms are able to detect chemical gradients in their surroundings in order to bias their motion towards more favorable conditions. We study the biased motility of Caulobacter crescentus, a singly flagellated bacteria, which alternate between forward and backward swimming, driven by its flagella motor, which switches in rotation direction. We observe the swimming patterns of C. crescents in an oxygen gradient, which is established by flowing atmospheric air and pure nitrogen through a 3 parallel channel microfluidic device. In this setup, oxygen diffuses through the PDMS device and the bacterial medium, creating a linear gradient. Using low magnification, dark field microscopy, individual cells are tracked over a large field of view, with particular interest in the cells' motion relative to the oxygen gradient. Utilizing observable differences between backward and forward swimming motion, motor switching events can be identified. By analyzing these run time intervals between motor switches as a function of a cell's local oxygen level, we demonstrate that C. crescentus displays aerotacitc behavior by extending forward swimming run times while moving up an oxygen gradient, resulting in directed motility towards oxygen sources. Additionally, motor switching response is sensitive to both the steepness of the gradient experienced and background oxygen levels with cells exhibiting a logarithmic response to oxygen levels. Work funded by the United States National Science Foundation and by the Rowland Institute at Harvard University.

  2. On the spontaneous collective motion of active matter

    PubMed Central

    Wang, Shenshen; Wolynes, Peter G.

    2011-01-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division. PMID:21876141

  3. On the spontaneous collective motion of active matter.

    PubMed

    Wang, Shenshen; Wolynes, Peter G

    2011-09-13

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division.

  4. Device for rapid quantification of human carotid baroreceptor-cardiac reflex responses

    NASA Technical Reports Server (NTRS)

    Sprenkle, J. M.; Eckberg, D. L.; Goble, R. L.; Schelhorn, J. J.; Halliday, H. C.

    1986-01-01

    A new device has been designed, constructed, and evaluated to characterize the human carotid baroreceptor-cardiac reflex response relation rapidly. This system was designed for study of reflex responses of astronauts before, during, and after space travel. The system comprises a new tightly sealing silicon rubber neck chamber, a stepping motor-driven electrodeposited nickel bellows pressure system, capable of delivering sequential R-wave-triggered neck chamber pressure changes between +40 and -65 mmHg, and a microprocessor-based electronics system for control of pressure steps and analysis and display of responses. This new system provokes classic sigmoid baroreceptor-cardiac reflex responses with threshold, linear, and saturation ranges in most human volunteers during one held expiration.

  5. Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience

    NASA Astrophysics Data System (ADS)

    Zhu, Shunmin; Yu, Aifang; Yu, Guoyao; Liu, Yudong; Zhai, Junyi; Dai, Wei; Luo, Ercang

    2017-10-01

    A thermoacoustic heat engine (TAHE) is a type of regenerative heat engine that converts external heat into mechanical power in the form of an acoustic wave with no moving mechanical components. One significant application of the TAHE is the generation of electricity by coupling an acoustic-to-electric conversion unit such as a linear motor or a piezoelectric ceramic assembly. However, present-day conversion technologies have considerable drawbacks, including structural complexity, high cost, and low reliability. The advent of triboelectric nanogenerators (TENGs) offers an alternative means to overcoming these shortcomings. In this paper, we propose a thermoacoustically driven TENG (TA-TENG) that continuously harvests external heat. A test rig involving a standing-wave TAHE and a contact-separation mode TENG was fabricated to demonstrate this concept. Currently, the TA-TENG produces a maximum output voltage of 10 V and a corresponding output power of 0.008 μW with a load of 400 MΩ, demonstrating the viability of this hybrid combination for electricity generation.

  6. Traffic Flow of Interacting Self-Driven Particles: Rails and Trails, Vehicles and Vesicles

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish

    One common feature of a vehicle, an ant and a kinesin motor is that they all convert chemical energy, derived from fuel or food, into mechanical energy required for their forward movement; such objects have been modelled in recent years as self-driven particles. Cytoskeletal filaments, e.g., microtubules, form a rail network for intra-cellular transport of vesicular cargo by molecular motors like, for example, kinesins. Similarly, ants move along trails while vehicles move along lanes. Therefore, the traffic of vehicles and organisms as well as that of molecular motors can be modelled as systems of interacting self-driven particles; these are of current interest in non-equilibrium statistical mechanics. In this paper we point out the common features of these model systems and emphasize the crucial differences in their physical properties.

  7. Theoretical modeling of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.

  8. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System

    PubMed Central

    Li, Xiangfei; Lin, Yuliang

    2017-01-01

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017

  9. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  10. Advanced analysis technique for the evaluation of linear alternators and linear motors

    NASA Technical Reports Server (NTRS)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  11. 49 CFR 392.8 - Emergency equipment, inspection and use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.8 Emergency equipment, inspection and use. No commercial motor vehicle shall be driven unless the driver thereof is satisfied that the emergency equipment...

  12. 49 CFR 397.3 - State and local laws, ordinances, and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS TRANSPORTATION OF HAZARDOUS MATERIALS; DRIVING AND PARKING RULES General § 397.3 State and local laws, ordinances, and regulations. Every motor vehicle containing hazardous materials must be driven...

  13. High-Torque, Lightweight, Pneumatically Driven Wrench For Small Spaces

    NASA Technical Reports Server (NTRS)

    Miller, Thomas W.

    1995-01-01

    Pneumatically driven wrench provides torque up to 3,000 lb. per ft. in small space. Designed to reach into 2.6 x 2.75 x 6 in. pocket. Weighs approximately 25 lbs. Includes reversible pneumatic motor (electric motor could be used instead) and slip clutch. Also includes device indicating total angle through which wrench turned bolt or nut. This feature used for turn-of-the-nut tightening method.

  14. Chronometric Electrical Stimulation of Right Inferior Frontal Cortex Increases Motor Braking

    PubMed Central

    Conner, Christopher R.; Aron, Adam R.; Tandon, Nitin

    2013-01-01

    The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal (“Maybe Stop” [MS] vs “No Stop” [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that—in the case of rIFC—this could lead to augmentation of motor braking. PMID:24336725

  15. The Feasibility of Linear Motors and High-Energy Thrusters for Massive Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Stull, M. A.

    A combination of two propulsion technologies, superconducting linear motors using ambient magnetic fields and high- energy particle beam thrusters, may make it possible to develop massive aerospace vehicles the size of aircraft carriers. If certain critical thresholds can be attained, linear motors can enable massive vehicles to fly within the atmosphere and can propel them to orbit. Thrusters can do neither, because power requirements are prohibitive. However, unless superconductors having extremely high critical current densities can be developed, the interplanetary magnetic field is too weak for linear motors to provide sufficient acceleration to reach even nearby planets. On the other hand, high-energy thrusters can provide adequate acceleration using a minimal amount of reaction mass, at achievable levels of power generation. If the requirements for linear motor propulsion can be met, combining the two modes of propulsion could enable huge nuclear powered spacecraft to reach at least the inner planets of the solar system, the asteroid belt, and possibly Jupiter, in reasonably short times under continuous acceleration, opening them to exploration, resource development and colonization.

  16. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2010-03-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  17. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2009-12-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  18. Closed Loop Control Compact Exercise Device for Use on MPCV

    NASA Technical Reports Server (NTRS)

    Sheehan, Chris; Funk, Justin; Funk, Nathan; Kutnick, Gilead; Humphreys, Brad; Bruinsma, Douwe; Perusek, Gail

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented in terms of addressing key functional requirements and human interfaces. The device aerobic modality is modelled as a rowing exercise using ground data sets obtained from Concept 2 rowers as well as competitive rowing1. A discussion of software and electronic implementations are presented which demonstrate unique approaches to meeting the constrained mass, volume and power requirements of the MPCV. . In addition to utilizing traditional PID control, controllers utilizing state feedback with gains solved using a Linear Quadratic Regulator will be developed. Controllability and observability will be utilized to investigate the need for state measurement in the design. As the control system directly interacts with human test subjects, robust methods such as H-infinity are also being investigated.1. Kleshnev V. Biomechanics. In: Rowing, Handbook of Sports Medicine and Science. ed. by Secher N., Voliantis S. IOC Medical Commission, Blackwell Pub. pp. 22-34, 2007

  19. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion. PMID:24940480

  20. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  1. Influence of prolonged static stretching on motor unit firing properties.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2016-05-01

    The purpose of this study was to examine the influence of a stretching intervention on motor control strategy of the biceps brachii muscle. Ten men performed twelve 100-s passive static stretches of the biceps brachii. Before and after the intervention, isometric strength was tested during maximal voluntary contractions (MVCs) of the elbow flexors. Subjects also performed trapezoid isometric contractions at 30% and 70% of MVC. Surface electromyographic signals from the submaximal contractions were decomposed into individual motor unit action potential trains. Linear regression analysis was used to examine the relationship between motor unit mean firing rate and recruitment threshold. The stretching intervention caused significant decreases in y-intercepts of the linear regression lines. In addition, linear slopes at both intensities remained unchanged. Despite reduced motor unit firing rates following the stretches, the motor control scheme remained unchanged. © 2016 Wiley Periodicals, Inc.

  2. Design of control system for optical fiber drawing machine driven by double motor

    NASA Astrophysics Data System (ADS)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  3. En route to surface-bound electric field-driven molecular motors.

    PubMed

    Jian, Huahua; Tour, James M

    2003-06-27

    Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.

  4. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  5. Learning tactile skills through curious exploration

    PubMed Central

    Pape, Leo; Oddo, Calogero M.; Controzzi, Marco; Cipriani, Christian; Förster, Alexander; Carrozza, Maria C.; Schmidhuber, Jürgen

    2012-01-01

    We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots. PMID:22837748

  6. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  7. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    NASA Astrophysics Data System (ADS)

    Oswald, B.; Best, K.-J.; Setzer, M.; Duffner, E.; Soell, M.; Gawalek, W.; Kovalev, L. K.

    2006-06-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit.

  8. Impact self-excited vibrations of linear motor

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. Ph.

    2010-08-01

    Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.

  9. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part II: Laboratory Proof-of-Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, J.S.

    2001-10-29

    Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine ismore » greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.« less

  10. PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Domijan, Alexander, Jr.; Buchh, Tariq Aslam

    1995-01-01

    A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.

  11. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.

    PubMed

    Takekawa, Norihiro; Nishiyama, Masayoshi; Kaneseki, Tsuyoshi; Kanai, Tamotsu; Atomi, Haruyuki; Kojima, Seiji; Homma, Michio

    2015-08-05

    Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.

  12. DC drive system for cine/pulse cameras

    NASA Technical Reports Server (NTRS)

    Gerlach, R. H.; Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1977-01-01

    Camera-drive functions are separated mechanically into two groups which are driven by two separate dc brushless motors. First motor, a 90 deg stepper, drives rotating shutter; second electronically commutated motor drives claw and film transport. Shutter is made of one piece but has two openings for slow and fast exposures.

  13. Control system for several rotating mirror camera synchronization operation

    NASA Astrophysics Data System (ADS)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  14. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion

    PubMed Central

    Saita, Ei-ichiro; Suzuki, Toshiharu; Kinosita, Kazuhiko; Yoshida, Masasuke

    2015-01-01

    F1-ATPase is a motor enzyme in which a central shaft γ subunit rotates 120° per ATP in the cylinder made of α3β3 subunits. During rotation, the chemical energy of ATP hydrolysis (ΔGATP) is converted almost entirely into mechanical work by an elusive mechanism. We measured the force for rotation (torque) under various ΔGATP conditions as a function of rotation angles of the γ subunit with quasi-static, single-molecule manipulation and estimated mechanical work (torque × traveled angle) from the area of the function. The torque functions show three sawtooth-like repeats of a steep jump and linear descent in one catalytic turnover, indicating a simple physical model in which the motor is driven by three springs aligned along a 120° rotation angle. Although the second spring is unaffected by ΔGATP, activation of the first spring (timing of the torque jump) delays at low [ATP] (or high [ADP]) and activation of the third spring delays at high [Pi]. These shifts decrease the size and area of the sawtooth (magnitude of the work). Thus, F1-ATPase responds to the change of ΔGATP by shifting the torque jump timing and uses ΔGATP for the mechanical work with near-perfect efficiency. PMID:26195785

  15. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.

    PubMed

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.

  16. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform

    PubMed Central

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554

  17. A velocity command stepper motor for CSI application

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1991-01-01

    The application of linear force actuators for vibration suppression of flexible structures has received much attention in recent years. A linear force actuator consists of a movable mass that is restrained such that its motion is linear. By application of a force to the mass, an equal and opposite reaction force can be applied to a structure. The use of an industrial linear stepper motor as a reaction mass actuator is described. With the linear stepper motor mounted on a simple test beam and the NASA Mini-Mast, output feedback of acceleration or displacement are used to augment the structural damping of the test articles. Significant increases in damping were obtained for both the test beam and the Mini-Mast.

  18. Study on static and dynamic characteristics of moving magnet linear compressors

    NASA Astrophysics Data System (ADS)

    Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.

    2007-09-01

    With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.

  19. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  20. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  1. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  2. Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei

    1991-01-01

    The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.

  3. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    PubMed

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  4. Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons

    NASA Astrophysics Data System (ADS)

    Newby, Jay; Bressloff, Paul C.

    2010-09-01

    The tug-of-war model of motor-driven cargo transport is formulated as an intermittent trapping process. An immobile trap, representing the cellular machinery that sequesters a motor-driven cargo for eventual use, is located somewhere within a microtubule track. A particle representing a motor-driven cargo that moves randomly with a forward bias is introduced at the beginning of the track. The particle switches randomly between a fast moving phase and a slow moving phase. When in the slow moving phase, the particle can be captured by the trap. To account for the possibility that the particle avoids the trap, an absorbing boundary is placed at the end of the track. Two local signaling mechanisms—intended to improve the chances of capturing the target—are considered by allowing the trap to affect the tug-of-war parameters within a small region around itself. The first is based on a localized adenosine triphosphate (ATP) concentration gradient surrounding a synapse, and the second is based on a concentration of tau—a microtubule-associated protein involved in Alzheimer's disease—coating the microtubule near the synapse. It is shown that both mechanisms can lead to dramatic improvements in the capture probability, with a minimal increase in the mean capture time. The analysis also shows that tau can cause a cargo to undergo random oscillations, which could explain some experimental observations.

  5. Device with Functions of Linear Motor and Non-contact Power Collector for Wireless Drive

    NASA Astrophysics Data System (ADS)

    Fujii, Nobuo; Mizuma, Tsuyoshi

    The authors propose a new apparatus with functions of propulsion and non-contact power collection for a future vehicle which can run like an electric vehicle supplied from the onboard battery source in most of the root except near stations. The batteries or power-capacitors are non-contact charged from the winding connected with commercial power on ground in the stations etc. The apparatus has both functions of linear motor and transformer, and the basic configuration is a wound-secondary type linear induction motor (LIM). In the paper, the wound type LIM with the concentrated single-phase winding for the primary member on the ground is dealt from the viewpoint of low cost arrangement. The secondary winding is changed to the single-phase connection for zero thrust in the transformer operation, and the two-phase connection for the linear motor respectively. The change of connection is done by the special converter for charge and linear drive on board. The characteristics are studied analytically.

  6. Comparison of linear synchronous and induction motors

    DOT National Transportation Integrated Search

    2004-06-01

    A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...

  7. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  8. Swimming Dynamics of the Lyme Disease Spirochete

    NASA Astrophysics Data System (ADS)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  9. Swimming dynamics of the lyme disease spirochete.

    PubMed

    Vig, Dhruv K; Wolgemuth, Charles W

    2012-11-21

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi's swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  11. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  12. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.

    PubMed

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-12-02

    Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.

  14. Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence

    PubMed Central

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-01-01

    Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122

  15. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    h drynontrol system . Several lines of inves ___ igaion avebee use inaddiionto nputoutut sudis wth hmansubets LI.- 7 Th (nulreycmriigifrainfosusl...TAB Untjc. ao un c ’ n TTci St rLi b DYNAMIC CHARACTERISTICS OF HUMAN MOTOR PERFORMANCE IN CONTROL SYSTEMS %iOSRTR. 8-0 76 0 Ar3) -O75 -8’O’f FINAL...whereby motor patterns are represented in the nervous system . Findings include a detailing of linear and non-linear features of motor activity in

  16. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  17. EXTRACTION APPARATUS

    DOEpatents

    Ballard, A.E.; Brigham, H.R.

    1958-10-28

    An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.

  18. A 50W@170K pulse tube cryocooler used in wide-field survey telescope

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua; Wu, Yinong

    2018-05-01

    In this paper, a pulse tube cryocooler used in a wide-field survey telescope is described, this telescope is going to be launched in 2020 in China. And in the telescope, large focal plane array (FPA) detectors working at 188K generate 100W heat which need to be cooled. In order to cool the detectors, three 50W@170K pulse tube cryocoolers are used, with designed life-time of l0 years. To decrease the vibration and electromagnetic interference to the detectors to the minimal limit, two cryogenic loop heat pipes (LHPs) are used to transfer heat from the detectors to the cold tips of the pulse tube cryocoolers. And each cold tip is specified to match the condensers of the LHPs. The cryolooer is driven by a dual-opposed piston compressor with a pair of moving magnet linear motors, one of the motors is also used as the adaptive active vibration suppressor. The cryocooler reaches 16.6% Carnot efficiency at cooling power of 50W@170K with 230Wac input power.

  19. Active, motor-driven mechanics in a DNA gel.

    PubMed

    Bertrand, Olivier J N; Fygenson, Deborah Kuchnir; Saleh, Omar A

    2012-10-23

    Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g., actin) that are acted upon by motor proteins (e.g., myosin). Here, we describe the synthesis and characterization of an active gel using noncytoskeletal components. We use methods of base-pair-templated DNA self assembly to create a hybrid DNA gel containing stiff tubes and flexible linkers. We then activate the gel by adding the motor FtsK50C, a construct derived from the bacterial protein FtsK that, in vitro, has a strong and processive DNA contraction activity. The motors stiffen the gel and create stochastic contractile events that affect the positions of attached beads. We quantify the fluctuations of the beads and show that they are comparable both to measurements of cytoskeletal systems and to theoretical predictions for active gels. Thus, we present a DNA-based active gel whose behavior highlights the universal aspects of nonequilibrium, motor-driven networks.

  20. Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian

    2008-05-01

    An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.

  1. Survey of the present state of the art of piezoelectric linear motors

    PubMed

    Hemsel; Wallaschek

    2000-03-01

    Piezoelectric ultrasonic motors have been investigated for several years and have already found their first practical applications. Their key feature is that they are able to produce a high thrust force related to their volume. Beside rotary drives like the travelling wave motor, linear drives have also been developed, but only a few are presently commercially available. In the present paper, we first describe the state of the art of linear piezoelectric motors. The motors are characterized with respect to their no-load velocity, maximum thrust force, efficiency and other technical properties. In the second part, we present a new motor, which is judged to be capable of surpassing the characteristics of other piezoelectric motors because of its unique design which allows the piezoelectric drive elements to be pre-stressed in the direction of their polarization. The piezoelectric elements convert energy using the longitudinal d33 effect which allows an improved reliability, large vibration amplitudes and excellent piezoelectric coupling. Energy loss by vibration damping is minimized, and the efficiency can be improved significantly. Experimental results show that the motor characteristics can be optimized for a particular task by choosing the appropriate operating parameters such as exciting voltage, exciting frequency and normal force.

  2. The history of articulators: the wonderful world of "grinders," Part 2.

    PubMed

    Starcke, Edgar N; Engelmeier, Robert L

    2012-04-01

    This is the second article in a three-part series on the history of denture grinding devices. The first article reviewed the earliest attempts to mechanically grind the occlusion of artificial teeth from the manipulation of simple articulators to very elaborate and complex machines powered by hand cranks. This article explores motor-driven grinders, most driven by way of a belt-driven pulley powered by an external source. A few were self-contained; that is, the motor was mounted on the grinder base. There were basically two types of grinders: those with cast holders for mounting processed dentures and those with provisions for using articulators for that purpose. © 2012 by the American College of Prosthodontists.

  3. Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.

    PubMed

    Zhu, M L; Lee, S R; Zhang, T Y; Tong, P

    2000-01-01

    This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.

  4. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  5. Analysis of spontaneous oscillations for a three-state power-stroke model.

    PubMed

    Washio, Takumi; Hisada, Toshiaki; Shintani, Seine A; Higuchi, Hideo

    2017-02-01

    Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.

  6. A Method to Determine Supply Voltage of Permanent Magnet Motor at Optimal Design Stage

    NASA Astrophysics Data System (ADS)

    Matustomo, Shinya; Noguchi, So; Yamashita, Hideo; Tanimoto, Shigeya

    The permanent magnet motors (PM motors) are widely used in electrical machinery, such as air conditioner, refrigerator and so on. In recent years, from the point of view of energy saving, it is necessary to improve the efficiency of PM motor by optimization. However, in the efficiency optimization of PM motor, many design variables and many restrictions are required. In this paper, the efficiency optimization of PM motor with many design variables was performed by using the voltage driven finite element analysis with the rotating simulation of the motor and the genetic algorithm.

  7. Rotation motion of designed nano-turbine.

    PubMed

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-07-28

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called "dragging effect". Moreover, counterintuitively, the ratio of "effective" driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors.

  8. Lipid - Motor Interactions: Soap Opera or Symphony?

    PubMed

    Pathak, Divya; Mallik, Roop

    2017-02-01

    Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Light-induced propulsion of a giant liposome driven by peptide nanofibre growth.

    PubMed

    Inaba, Hiroshi; Uemura, Akihito; Morishita, Kazushi; Kohiki, Taiki; Shigenaga, Akira; Otaka, Akira; Matsuura, Kazunori

    2018-04-19

    Light-driven nano/micromotors are attracting much attention, not only as molecular devices but also as components of bioinspired robots. In nature, several pathogens such as Listeria use actin polymerisation machinery for their propulsion. Despite the development of various motors, it remains challenging to mimic natural systems to create artificial motors propelled by fibre formation. Herein, we report the propulsion of giant liposomes driven by light-induced peptide nanofibre growth on their surface. Peptide-DNA conjugates connected by a photocleavage unit were asymmetrically introduced onto phase-separated giant liposomes. Ultraviolet (UV) light irradiation cleaved the conjugates and released peptide units, which self-assembled into nanofibres, driving the translational movement of the liposomes. The velocity of the liposomes reflected the rates of the photocleavage reaction and subsequent fibre formation of the peptide-DNA conjugates. These results showed that chemical design of the light-induced peptide nanofibre formation is a useful approach to fabricating bioinspired motors with controllable motility.

  10. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  11. Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators

    NASA Astrophysics Data System (ADS)

    Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu

    2012-01-01

    We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.

  12. Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction

    NASA Astrophysics Data System (ADS)

    Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.

    2017-12-01

    The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.

  13. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  14. Evidence of motor-control difficulties in children with attention deficit hyperactivity disorder, explored through a hierarchical motor-systems perspective.

    PubMed

    Macoun, Sarah J; Kerns, Kimberly A

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories regarding motor dysfunction in ADHD, and implications for understanding externalizing behaviors in ADHD are discussed.

  15. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  16. Hybrid-fuel bacterial flagellar motors in Escherichia coli

    PubMed Central

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.

    2014-01-01

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452

  17. Linear Arrangement of Motor Protein on a Mechanically Deposited Fluoropolymer Thin Film

    NASA Astrophysics Data System (ADS)

    Suzuki, Hitoshi; Oiwa, Kazuhiro; Yamada, Akira; Sakakibara, Hitoshi; Nakayama, Haruto; Mashiko, Shinro

    1995-07-01

    Motor protein molecules such as heavy meromyosin (HMM), one of the major components of skeletal muscle, were arranged linearly on a mechanically deposited fluoropolymer thin film substrate in order to regulate the direction of movement generated by the motor protein. The fluoropolymer film consisted of many linear parallel ridges whose heights and widths were 10 to 20 nm and 10 to 100 nm, respectively. The fluoropolymer ridges adsorbed HMM molecules that were applied onto the film. Actin filaments labeled with rhodamine-phalloidin were observed under a fluorescence microscope moving linearly on the HMM-coated ridges. The observation indicates that HMM molecules were aligned on the fluoropolymer ridges while retaining their function. The velocity of actin movement was measured in this system.

  18. Evaluation of linear induction motor characteristics : the Yamamura model

    DOT National Transportation Integrated Search

    1975-04-30

    The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...

  19. Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics

    DOT National Transportation Integrated Search

    1972-03-01

    A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...

  20. A Framework to Survey the Energy Efficiency of Installed Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee

    2013-08-01

    While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less

  1. Biomotor structures in elite female handball players.

    PubMed

    Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir

    2007-09-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.

  2. Flexible cue combination in the guidance of attention in visual search

    PubMed Central

    Brand, John; Oriet, Chris; Johnson, Aaron P.; Wolfe, Jeremy M.

    2014-01-01

    Hodsoll and Humphreys (2001) have assessed the relative contributions of stimulus-driven and user-driven knowledge on linearly- and nonlinearly separable search. However, the target feature used to determine linear separability in their task (i.e., target size) was required to locate the target. In the present work, we investigated the contributions of stimulus-driven and user-driven knowledge when a linearly- or nonlinearly-separable feature is available but not required for target identification. We asked observers to complete a series of standard color X orientation conjunction searches in which target size was either linearly- or nonlinearly separable from the size of the distractors. When guidance by color X orientation and by size information are both available, observers rely on whichever information results in the best search efficiency. This is the case irrespective of whether we provide target foreknowledge by blocking stimulus conditions, suggesting that feature information is used in both a stimulus-driven and user-driven fashion. PMID:25463553

  3. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  4. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  5. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  6. Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors

    NASA Astrophysics Data System (ADS)

    Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.

    2015-08-01

    The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.

  7. A cycloidal wobble motor driven by shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Hwang, Donghyun; Higuchi, Toshiro

    2014-05-01

    A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.

  8. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  9. Chloride and salicylate influence prestin-dependent specific membrane capacitance: support for the area motor model.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-04-11

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.

  10. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  11. Design of the science-fold mirrors for the Gemini telescopes

    NASA Astrophysics Data System (ADS)

    Peschel, Thomas; Damm, Christoph; Heilemann, Wolfgang

    2000-07-01

    As a part of the Acquisition and Guidance Unit for the Gemini project a light-weight, 50 cm flat mirror has been designed at the Fraunhofer Institute for Applied Optics and Precision Mechanics in Jena as a subcontractor of the Carl Zeiss Jena company. A light-weight design of the mirror and its mount was essential since the total mass of the whole assembly including the positioning system was limited to 50 kg while interferometric quality of the mirror surface was required for arbitrary orientation. The overall surface error was below 54 nm r.m.s. while 27 nm was achieved in the central part. The mirror was fabricated from low-expansion glass ceramics to avoid thermally induced deformations. By milling pockets into its rear surface the mass of the mirror was reduced by 70%. The mirror is mounted cinematically via six solid-state hinges to three steel levers. The levers are connected to the mount frame at their centers via ball-and- sphere joints. This arrangement determines the position of the mirror uniquely while it allows for the thermal expansion of the mount frame. The position of the mirror as well as its tilt around an axis perpendicular to the optical one may be controlled a precision of 20 micrometers and 3 arcsec, respectively. The tilt axis is driven directly by two high- torque motors. To avoid an excessive power consumption of the motors the torque of the mirror head to be compensated for by a counterweight mechanism. The mirror may be deployed into the optical path using spindle driven linear rails.

  12. Using a generalized linear mixed model approach to explore the role of age, motor proficiency, and cognitive styles in children's reach estimation accuracy.

    PubMed

    Caçola, Priscila M; Pant, Mohan D

    2014-10-01

    The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.

  13. IRON DEFICIENCY AND INFANT MOTOR DEVELOPMENT

    PubMed Central

    Shafir, Tal; Angulo-Barroso, Rosa; Jing, Yuezhou; Lu Angelilli, Mary; Jacobson, Sandra W.; Lozoff, Betsy

    2011-01-01

    Background Iron deficiency (ID) during early development impairs myelination and basal ganglia function in animal models. Aims To examine the effects of iron deficiency anemia (IDA) and iron deficiency (ID) without anemia on infant motor skills that are likely related to myelination and basal ganglia function. Study design Observational study. Subjects Full-term inner-city African-American 9- to 10-month-old infants who were free of acute or chronic health problems with iron status indicators ranging from IDA to iron sufficiency (n = 106). Criteria for final iron status classification were met by 77 of these infants: 28 IDA, 28 non-anemic iron-deficient (NA ID), and 21 iron-sufficient (IS). Outcome measures Gross motor developmental milestones, Peabody Developmental Motor Scale, Infant Neurological International Battery (INFANIB), motor quality factor of the Bayley Behavioral Rating Scale, and a sequential/bi-manual coordination toy retrieval task. General linear model analyses tested for linear effects of iron status group and thresholds for effects. Results There were linear effects of iron status on developmental milestones, Peabody gross motor (suggestive trend), INFANIB standing item, motor quality, and toy retrieval. The threshold for effects was ID with or without anemia for developmental milestones, INFANIB standing item, and motor quality and IDA for toy retrieval. Conclusions Using a comprehensive and sensitive assessment of motor development, this study found poorer motor function in ID infants with and without anemia. Poorer motor function among non-anemic ID infants is particularly concerning, since ID without anemia is not detected by common screening procedures and is more widespread than IDA. PMID:18272298

  14. A simple theory of motor protein kinetics and energetics. II.

    PubMed

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  15. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori

    2007-01-01

    We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.

  17. Sources of signal-dependent noise during isometric force production.

    PubMed

    Jones, Kelvin E; Hamilton, Antonia F; Wolpert, Daniel M

    2002-09-01

    It has been proposed that the invariant kinematics observed during goal-directed movements result from reducing the consequences of signal-dependent noise (SDN) on motor output. The purpose of this study was to investigate the presence of SDN during isometric force production and determine how central and peripheral components contribute to this feature of motor control. Peripheral and central components were distinguished experimentally by comparing voluntary contractions to those elicited by electrical stimulation of the extensor pollicis longus muscle. To determine other factors of motor-unit physiology that may contribute to SDN, a model was constructed and its output compared with the empirical data. SDN was evident in voluntary isometric contractions as a linear scaling of force variability (SD) with respect to the mean force level. However, during electrically stimulated contractions to the same force levels, the variability remained constant over the same range of mean forces. When the subjects were asked to combine voluntary with stimulation-induced contractions, the linear scaling relationship between the SD and mean force returned. The modeling results highlight that much of the basic physiological organization of the motor-unit pool, such as range of twitch amplitudes and range of recruitment thresholds, biases force output to exhibit linearly scaled SDN. This is in contrast to the square root scaling of variability with mean force present in any individual motor-unit of the pool. Orderly recruitment by twitch amplitude was a necessary condition for producing linearly scaled SDN. Surprisingly, the scaling of SDN was independent of the variability of motoneuron firing and therefore by inference, independent of presynaptic noise in the motor command. We conclude that the linear scaling of SDN during voluntary isometric contractions is a natural by-product of the organization of the motor-unit pool that does not depend on signal-dependent noise in the motor command. Synaptic noise in the motor command and common drive, which give rise to the variability and synchronization of motoneuron spiking, determine the magnitude of the force variability at a given level of mean force output.

  18. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.

    PubMed

    Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang

    2015-01-11

    The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.

  19. Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu

    2010-10-26

    The "asymmetric brownian ratchet model" is a variation of Feynman's ratchet and pawl system proposed. In this model, a system consisting of a motor and a rail has two binding states. One is the random brownian state, and the other is the asymmetric potential state. When the system is alternatively switched between these states, the motor can be driven in one direction. This model is believed to explain nanomotor behavior in biological systems. The feasibility of the model has been demonstrated using electrical and magnetic forces; however, switching of these forces is unlikely to be found in biological systems. In this paper, we propose an original mechanism of transition between states by bubble formation in a nanosized channel surrounded by hydrophobic atoms. This amounts to a nanoscale motor system using bubble propulsion. The motor system consists of a hydrophobic motor and a rail on which hydrophobic patterns are printed. Potential asymmetry can be produced by using a left-right asymmetric pattern shape. Hydrophobic interactions are believed to play an important role in the binding of biomolecules and molecular recognition. The bubble formation is controlled by changing the width of the channel by an atomic distance (∼0.1 nm). Therefore, the motor is potentially more efficient than systems controlled by other forces, in which a much larger change in the motor position is necessary. We have simulated the bubble-powered motor using dissipative particle dynamics and found behavior in good agreement with that of motor proteins. Energy efficiency is as high as 60%.

  20. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  1. Simulation and performance of brushless dc motor actuators

    NASA Astrophysics Data System (ADS)

    Gerba, A., Jr.

    1985-12-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.

  2. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    NASA Astrophysics Data System (ADS)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  3. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  4. Relations between basic and specific motor abilities and player quality of young basketball players.

    PubMed

    Marić, Kristijan; Katić, Ratko; Jelicić, Mario

    2013-05-01

    Subjects from 5 first league clubs from Herzegovina were tested with the purpose of determining the relations of basic and specific motor abilities, as well as the effect of specific abilities on player efficiency in young basketball players (cadets). A battery of 12 tests assessing basic motor abilities and 5 specific tests assessing basketball efficiency were used on a sample of 83 basketball players. Two significant canonical correlations, i.e. linear combinations explained the relation between the set of twelve variables of basic motor space and five variables of situational motor abilities. Underlying the first canonical linear combination is the positive effect of the general motor factor, predominantly defined by jumping explosive power, movement speed of the arms, static strength of the arms and coordination, on specific basketball abilities: movement efficiency, the power of the overarm throw, shooting and passing precision, and the skill of handling the ball. The impact of basic motor abilities of precision and balance on specific abilities of passing and shooting precision and ball handling is underlying the second linear combination. The results of regression correlation analysis between the variable set of specific motor abilities and game efficiency have shown that the ability of ball handling has the largest impact on player quality in basketball cadets, followed by shooting precision and passing precision, and the power of the overarm throw.

  5. Design and implementation of a control system for a quadrotor MAV

    NASA Astrophysics Data System (ADS)

    Bawek, Dean

    The quadrotor is a 200 g MAV with rapid-prototyped rotors that are driven by four brushless electric motors, capable of a collective thrust of around 400 g using an 11 V battery. The vehicle is compact with its largest dimension at 188 mm. Without any feedback control, the quadrotor is unstable. For flight stability, the vehicle incorporates a linear quadratic regulator to augment its dynamics for hover. The quadrotor's nonlinear dynamics are linearized about hover in order to be used in controller formulation. Feedback comes both directly from sensors and a Luenberger observer that computes the rotor velocities. A Simulink simulation uses hardware and software properties to serve as an environment for controller gain tuning prior to flight testing. The results from the simulation generate stabilizing control gains for the on-board attitude controller and for an off-board PC autopilot that uses the Vicon computer vision system for position feedback. Through the combined effort of the on-board and off-board controllers, the quadrotor successfully demonstrates stable hover in both nominal and disturbed conditions.

  6. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  7. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  8. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  9. Development of a linear induction motor based artificial muscle system.

    PubMed

    Gruber, A; Arguello, E; Silva, R

    2013-01-01

    We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.

  10. Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex (Inventor)

    2009-01-01

    A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.

  11. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.

  12. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  13. Contact analysis and experimental investigation of a linear ultrasonic motor.

    PubMed

    Lv, Qibao; Yao, Zhiyuan; Li, Xiang

    2017-11-01

    The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    PubMed

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  15. Unmasking the linear behaviour of slow motor adaptation to prolonged convergence.

    PubMed

    Erkelens, Ian M; Thompson, Benjamin; Bobier, William R

    2016-06-01

    Adaptation to changing environmental demands is central to maintaining optimal motor system function. Current theories suggest that adaptation in both the skeletal-motor and oculomotor systems involves a combination of fast (reflexive) and slow (recalibration) mechanisms. Here we used the oculomotor vergence system as a model to investigate the mechanisms underlying slow motor adaptation. Unlike reaching with the upper limbs, vergence is less susceptible to changes in cognitive strategy that can affect the behaviour of motor adaptation. We tested the hypothesis that mechanisms of slow motor adaptation reflect early neural processing by assessing the linearity of adaptive responses over a large range of stimuli. Using varied disparity stimuli in conflict with accommodation, the slow adaptation of tonic vergence was found to exhibit a linear response whereby the rate (R(2)  = 0.85, P < 0.0001) and amplitude (R(2)  = 0.65, P < 0.0001) of the adaptive effects increased proportionally with stimulus amplitude. These results suggest that this slow adaptive mechanism is an early neural process, implying a fundamental physiological nature that is potentially dominated by subcortical and cerebellar substrates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Motor-driven screwing and transporting tool for reactor pressure vessel head retaining fastenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, M.

    1977-09-13

    The invention concerns a motor-driven screwing and transporting tool for tightening or loosening the threaded studs and associated tightening nuts of the head bolting of pressure vessels. After the tightening nuts are loosened or before they are tightened, the weight of the studs is taken over by rotating bearings that can be lifted, so that the studs with their tightening nuts can be screwed in or out, the screw threads of the studs being thus weight-relieved. The invention is intended primarily for nuclear reactor pressure vessels. 21 claims, 6 figures.

  17. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  18. Note: Motor-piezoelectricity coupling driven high temperature fatigue device

    NASA Astrophysics Data System (ADS)

    Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  19. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  20. 49 CFR 569.7 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to owners or operators of motor vehicles and any person who regrooves his own tires for use on motor... tread groove which is at or below the new regrooved depth shall have a minimum of 90 linear inches of tread edges per linear foot of the circumference; (iv) After regrooving, the new groove width generated...

  1. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors

    PubMed Central

    Paul, Sarbajit; Chang, Junghwan

    2015-01-01

    A new method to detect the mover position of a linear motor is proposed in this paper. This method employs a simple cheap Hall Effect sensor-based magnetic sensor unit to detect the mover position of the linear motor. With the movement of the linear motor, Hall Effect sensor modules electrically separated 120° along with the idea of three phase balanced condition (va + vb + vc = 0) are used to produce three phase signals. The amplitude of the sensor output voltage signals are adjusted to unit amplitude to minimize the amplitude errors. With the unit amplitude signals three to two phase transformation is done to reduce the three multiples of harmonic components. The final output thus obtained is converted to position data by the use of arctangent function. The measurement accuracy of the new method is analyzed by experiments and compared with the conventional two phase method. Using the same number of sensor modules as the conventional two phase method, the proposed method gives more accurate position information compared to the conventional system where sensors are separated by 90° electrical angles. PMID:26506348

  2. Magnetically suspended stepping motors for clean room and vacuum environments

    NASA Technical Reports Server (NTRS)

    Higuchi, Toshiro

    1994-01-01

    To answer the growing needs for super-clean or contact free actuators for uses in clean rooms, vacuum chambers, and space, innovative actuators which combine the functions of stepping motors and magnetic bearings in one body were developed. The rotor of the magnetically suspended stepping motor is suspended like a magnetic bearing and rotated and positioned like a stepping motor. The important trait of the motor is that it is not a simple mixture or combination of a stepping motor and conventional magnetic bearing, but an amalgam of a stepping motor and a magnetic bearing. Owing to optimal design and feed-back control, a toothed stator and rotor are all that are needed structurewise for stable suspension. More than ten types of motors such as linear type, high accuracy rotary type, two-dimensional type, and high vacuum type were built and tested. This paper describes the structure and design of these motors and their performance for such applications as precise positioning rotary table, linear conveyor system, and theta-zeta positioner for clean room and high vacuum use.

  3. A study of some non-equilibrium driven models and their contribution to the understanding of molecular motors

    NASA Astrophysics Data System (ADS)

    Mazilu, Irina; Gonzalez, Joshua

    2008-03-01

    From the point of view of a physicist, a bio-molecular motor represents an interesting non-equilibrium system and it is directly amenable to an analysis using standard methods of non-equilibrium statistical physics. We conduct a rigorous Monte Carlo study of three different driven lattice gas models that retain the basic behavior of three types of cytoskeletal molecular motors. Our models incorporate novel features such as realistic dynamics rules and complex motor-motor interactions. We are interested to have a deeper understanding of how various parameters influence the macroscopic behavior of these systems, what is the density profile and if the system undergoes a phase transition. On the analytical front, we computed the steady-state probability distributions exactly for the one of the models using the matrix method that was established in 1993 by B. Derrida et al. We also explored the possibilities offered by the ``Bethe ansatz'' method by mapping some well studied spin models into asymmetric simple exclusion models (already analyzed using computer simulations), and to use the results obtained for the spin models in finding an exact solution for our problem. We have exhaustive computational studies of the kinesin and dynein molecular motor models that prove to be very useful in checking our analytical work.

  4. Microtubule defects influence kinesin-based transport in vitro.

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Microtubules are protein polymers that form ``molecular highways'' for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo. Supported by the UC Merced (to J.X.), NIH (NS048501 to S.J.K.), NSF (EF-1038697 to A.G.), and the James S. McDonnell Foundation (to A.G.). Work carried out at the Aspen Center for Physics was supported by NSF Grant PHY-1066293.

  5. Engineered tug-of-war between kinesin and dynein controls direction of microtubule transport in vivo

    PubMed Central

    Rezaul, Karim; Gupta, Dipika; Semenova, Irina; Ikeda, Kazuho; Kraikivski, Pavel; Yu, Ji; Cowan, Ann; Zaliapin, Ilya; Rodionov, Vladimir

    2017-01-01

    Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo. PMID:26843027

  6. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The present work reveals an unusual force-driven process, the pearling transition, which indicates that Salmonella -induced filaments are under force through the interactions of effector molecules with the motor protein kinesin. This work provides a caution by highlighting how fixation conditions can influence the images observed.

  7. Rotation Motion of Designed Nano-Turbine

    PubMed Central

    Li, Jingyuan; Wang, Xiaofeng; Zhao, Lina; Gao, Xingfa; Zhao, Yuliang; Zhou, Ruhong

    2014-01-01

    Construction of nano-devices that can generate controllable unidirectional rotation is an important part of nanotechnology. Here, we design a nano-turbine composed of carbon nanotube and graphene nanoblades, which can be driven by fluid flow. Rotation motion of nano-turbine is quantitatively studied by molecular dynamics simulations on this model system. A robust linear relationship is achieved with this nano-turbine between its rotation rate and the fluid flow velocity spanning two orders of magnitude, and this linear relationship remains intact at various temperatures. More interestingly, a striking difference from its macroscopic counterpart is identified: the rotation rate is much smaller (by a factor of ~15) than that of the macroscopic turbine with the same driving flow. This discrepancy is shown to be related to the disruption of water flow at nanoscale, together with the water slippage at graphene surface and the so-called “dragging effect”. Moreover, counterintuitively, the ratio of “effective” driving flow velocity increases as the flow velocity increases, suggesting that the linear dependence on the flow velocity can be more complicated in nature. These findings may serve as a foundation for the further development of rotary nano-devices and should also be helpful for a better understanding of the biological molecular motors. PMID:25068725

  8. Industrial robot

    NASA Astrophysics Data System (ADS)

    Prakashan, A.; Mukunda, H. S.; Samuel, S. D.; Colaco, J. C.

    1992-11-01

    This paper addresses the design and development of a four degree of freedom industrial manipulator, with three liner axes in the positioning mechanism and one rotary axis in the orientation mechanism. The positioning mechanism joints are driven with dc servo motors fitted with incremental shaft encoders. The rotary joint of the orientation mechanism is driven by a stepping motor. The manipulator is controlled by an IBM 386 PC/AT. Microcomputer based interface cards have been developed for independent joint control. PID controllers for dc motors have been designed. Kinematic modeling, dynamic modeling, and path planning have been carried out to generate the control sequence to accomplish a given task with reference to source and destination state constraints. This project has been sponsored by the Department of Science and Technology, Government of India, New Delhi, and has been executed in collaboration with M/s Larsen & Toubro Ltd, Mysore, India.

  9. Data-Driven Based Asynchronous Motor Control for Printing Servo Systems

    NASA Astrophysics Data System (ADS)

    Bian, Min; Guo, Qingyun

    Modern digital printing equipment aims to the environmental-friendly industry with high dynamic performances and control precision and low vibration and abrasion. High performance motion control system of printing servo systems was required. Control system of asynchronous motor based on data acquisition was proposed. Iterative learning control (ILC) algorithm was studied. PID control was widely used in the motion control. However, it was sensitive to the disturbances and model parameters variation. The ILC applied the history error data and present control signals to approximate the control signal directly in order to fully track the expect trajectory without the system models and structures. The motor control algorithm based on the ILC and PID was constructed and simulation results were given. The results show that data-driven control method is effective dealing with bounded disturbances for the motion control of printing servo systems.

  10. Development of an electrically driven molecular motor.

    PubMed

    Murphy, Colin J; Sykes, E Charles H

    2014-10-01

    For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.

    PubMed

    Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2007-05-01

    During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.

  12. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    PubMed

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  14. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  15. Permanent Magnet Synchronous Motor Driven by PWM Inverter with Voltage Booster with Regenerating Capability Augmented by Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kichiro; Shinohara, Katsuji; Furukawa, Shinya

    An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by double-layer capacitors is proposed. The motor is driven by a PWM inverter with voltage booster. The voltage booster is used to control the dc link voltage in high speed region to improve the system efficiency. Furthermore, the double-layer capacitor as a storage element is combined with the PWM inverter with voltage booster to gain the efficiency for the regenerating operation. In this system, normally, the regenerative power does not return to a battery directly but is stored in the double-layer capacitors for the next motoring action to suppress the excessive regenerative current to battery, and the regenerative power returns to the battery when the regenerative energy is larger than a certain value. The charging current to the battery is controlled to a constant value to extend the life-time of the battery. The transient and steady state characteristics of the system for 1.5kW IPM motor are investigated by both simulation and experiment. Finally, the effectiveness of the system is demonstrated by the simulated and experimental results.

  16. A nano universal joint made from curved double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Kun; Cai, Haifang; Shi, Jiao

    2015-06-15

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less

  17. A nano universal joint made from curved double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.

    2015-06-01

    A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.

  18. Motor Controllers

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Kollmorgen Corporation's Mermaid II two person submersible is propeller-driven by a system of five DC brushless motors with new electronic controllers that originated in work performed in a NASA/DOE project managed by Lewis Research Center. A key feature of the system is electric commutation rather than mechanical commutation for converting AC current to DC.

  19. 30 CFR 18.62 - Tests to determine explosion-proof characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... electrical components during some of the tests. Not less than 16 explosion tests shall be conducted; however...

  20. 30 CFR 18.48 - Circuit-interrupting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is... motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors...

  1. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...

  2. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a) Liquid pumps or gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...

  3. 29 CFR 1926.902 - Surface transportation of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...

  4. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Ladders. (21) Lathes. (22) Machine tools. (23) Motor-driven tools. (24) Motors. (25) Pipe threading and..., shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... equipment. (a) This account must include the cost of tools, implements, and equipment used in construction...

  5. Structural optimization of the Halbach array PM rim thrust motor

    NASA Astrophysics Data System (ADS)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.

  6. A linear induction motor with a coated conductor superconducting secondary

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Shijun; Li, Jing; Ma, Guang Tong; Yen, Fei

    2018-07-01

    A linear induction motor system composed of a high-Tc superconducting secondary with close-ended coils made of REBCO coated conductor wire was designed and tested experimentally. The measured thrust, normal force and power loss are presented and explained by combining the flux dynamics inside superconductors with existing linear drive theory. It is found that an inherent capacitive component associated to the flux motion of vortices in the Type-II superconductor reduces the impedance of the coils; from such, the associated Lorentz forces are drastically increased. The resulting breakout thrust of the designed linear motor system was found to be extremely high (up to 4.7 kN/m2) while the associated normal forces only a fraction of the thrust. Compared to its conventional counterparts, high-Tc superconducting secondaries appear to be more feasible for use in maglev propulsion and electromagnetic launchers.

  7. Nutating subreflector for a millimeter wave telescope

    NASA Astrophysics Data System (ADS)

    Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco

    1990-03-01

    Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.

  8. A miniature pulse tube cryocooler used in a superspectral imager

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenhua; Wu, Yinong

    2017-05-01

    In this paper, we describe a hihg0 frequency pulse tube cryocooler used in a superspectral imager to be launched in 2020. The superspectral imager is a field-dividing optical imaging system and uses 14 sets of integrated IR detector cryocooler dewar assembly. For the requirements of less heat loss an smaller size, each set is highly integrated by directly mounting the IR dectector's sapphire substrate on the pulse tube's cold tip, and welding the dewar's housing to the flange of the cold finger. Driven by a pair of moving magnet linear motors, the dual-opposed piston compressor of the croycooler is running at 120Hz. Filled with customized stainless screens in the regenerator, the cryolooler reaches 8.1% carnot efficiency at the cooling power of 1W@80K with 34Wac input power.

  9. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  10. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  11. Thermodynamic geometry of minimum-dissipation driven barrier crossing

    NASA Astrophysics Data System (ADS)

    Sivak, David A.; Crooks, Gavin E.

    2016-11-01

    We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.

  12. Thermodynamic geometry of minimum-dissipation driven barrier crossing

    NASA Astrophysics Data System (ADS)

    Sivak, David; Crooks, Gavin

    We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.

  13. Magnetic Eigenmode Analysis of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Forest, C. B.; Kendrick, Roch; O'Connell, R.; Spence, E. J.

    2004-11-01

    The magnetic field generated by a spherical homogeneous liquid-sodium dynamo is explored in terms of the magnetic eigenmodes predicted by Dudley and James. The flow geometry chosen corresponds to the T2S2 flow and is created by two counter-rotating propellers driven by 100HP motors with flow velocities up to 15 m/s. A perturbative magnetic field is generated by pulsing a set axial field coils. The largest growing eigenmode is predicted by linear analysis to be a strong equatorial-dipole field. The field is measured using an array of Hall probes both on the surface of the sphere and within the sphere. From the measured field the growth or decay rates of the magnetic eigenmodes are determined. Turbulence in the flow is expected to give rise to modifications of the growth rates and the structure of the eigenmodes.

  14. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.

    PubMed

    Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning

    2016-12-01

    This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Shelf life extension for the lot AAE nozzle severance LSCs

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  16. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  17. Resettable binary latch mechanism for use with paraffin linear motors

    NASA Technical Reports Server (NTRS)

    Maus, Daryl; Tibbitts, Scott

    1991-01-01

    A new resettable Binary Latch Mechanism was developed utilizing a paraffin actuator as the motor. This linear actuator alternately latches between extended and retracted positions, maintaining either position with zero power consumption. The design evolution and kinematics of the latch mechanism are presented, as well as the development problems and lessons that were learned.

  18. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  19. Mechanisms for the elevation structure of a giant telescope

    NASA Astrophysics Data System (ADS)

    Hu, Shouwei; Song, Xiaoli; Zhang, Hui

    2018-06-01

    This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.

  20. Mechanisms for the elevation structure of a giant telescope

    NASA Astrophysics Data System (ADS)

    Hu, Shouwei; Song, Xiaoli; Zhang, Hui

    2018-05-01

    This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.

  1. Cortical Contribution to Linear, Non-linear and Frequency Components of Motor Variability Control during Standing.

    PubMed

    König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B

    2017-01-01

    Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.

  2. Irrelevance of the Power Stroke for the Directionality, Stopping Force, and Optimal Efficiency of Chemically Driven Molecular Machines

    PubMed Central

    Astumian, R. Dean

    2015-01-01

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678

  3. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    PubMed

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke

    PubMed Central

    Masia, L.; Krebs, Hermano Igo; Cappa, P.; Hogan, N.

    2009-01-01

    In 1991, a novel robot named MIT-MANUS was introduced as a test bed to study the potential of using robots to assist in and quantify the neurorehabilitation of motor function. It introduced a new modality of therapy, offering a highly backdrivable experience with a soft and stable feel for the user. MIT-MANUS proved an excellent fit for shoulder and elbow rehabilitation in stroke patients, showing a reduction of impairment in clinical trials with well over 300 stroke patients. The greatest impairment reduction was observed in the group of muscles exercised. This suggests a need for additional robots to rehabilitate other target areas of the body. Previous work has expanded the planar MIT-MANUS to include an antigravity robot for shoulder and elbow, and a wrist robot. In this paper we present the “missing link”: a hand robot. It consists of a single-degree-of-freedom (DOF) mechanism in a novel statorless configuration, which enables rehabilitation of grasping. The system uses the kinematic configuration of a double crank and slider where the members are linked to stator and rotor; a free base motor, i.e., a motor having two rotors that are free to rotate instead of a fixed stator and a single rotatable rotor (dual-rotor statorless motor). A cylindrical structure, made of six panels and driven by the relative rotation of the rotors, is able to increase its radius linearly, moving or guiding the hand of the patients during grasping. This module completes our development of robots for the upper extremity, yielding for the first time a whole-arm rehabilitation experience. In this paper, we will discuss in detail the design and characterization of the device. PMID:20228969

  5. Multichannel micromanipulator and chamber system for recording multineuronal activity in alert, non-human primates.

    PubMed

    Gray, Charles M; Goodell, Baldwin; Lear, Alex

    2007-07-01

    We describe the design and performance of an electromechanical system for conducting multineuron recording experiments in alert non-human primates. The system is based on a simple design, consisting of a microdrive, control electronics, software, and a unique type of recording chamber. The microdrive consists of an aluminum frame, a set of eight linear actuators driven by computer-controlled miniature stepping motors, and two printed circuit boards (PCBs) that provide connectivity to the electrodes and the control electronics. The control circuitry is structured around an Atmel RISC-based microcontroller, which sends commands to as many as eight motor control cards, each capable of controlling eight motors. The microcontroller is programmed in C and uses serial communication to interface with a host computer. The graphical user interface for sending commands is written in C and runs on a conventional personal computer. The recording chamber is low in profile, mounts within a circular craniotomy, and incorporates a removable internal sleeve. A replaceable Sylastic membrane can be stretched across the bottom opening of the sleeve to provide a watertight seal between the cranial cavity and the external environment. This greatly reduces the susceptibility to infection, nearly eliminates the need for routine cleaning, and permits repeated introduction of electrodes into the brain at the same sites while maintaining the watertight seal. The system is reliable, easy to use, and has several advantages over other commercially available systems with similar capabilities.

  6. Coupling with concentric contact around motor shaft for line start synchronous motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Michael J.; Burdeshaw, Galen E.

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, andmore » driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.« less

  7. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  8. Driven damped harmonic oscillator resonance with an Arduino

    NASA Astrophysics Data System (ADS)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  9. Control of microtubule trajectory within an electric field by altering surface charge density

    PubMed Central

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-01

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins. PMID:25567007

  10. Control of microtubule trajectory within an electric field by altering surface charge density.

    PubMed

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-08

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.

  11. Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2016-02-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure tomore » run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.« less

  12. Dynamic simulation solves process control problem in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-11-16

    A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less

  13. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pump may be used for other purposes. (2) If two independently driven pumps are provided, each capable... requirements. (1) Steam vessels, and motor vessels fitted with steam driven electrical generators shall have at... the necessary connections for this purpose. The arrangement of feed pumps shall be in accordance with...

  14. Integrating Undergraduate Students in Faculty-Driven Motor Behavior Research

    ERIC Educational Resources Information Center

    Robinson, Leah E.

    2013-01-01

    This article described the faculty-sponsored, faculty-driven approach to undergraduate research (UGR) at Auburn University. This approach is centered around research in the Pediatric Movement and Physical Activity Laboratory, and students can get elective course credit for their participation in UGR. The article also describes how students' roles…

  15. Action potentials drive body wall muscle contractions in Caenorhabditis elegans

    PubMed Central

    Gao, Shangbang; Zhen, Mei

    2011-01-01

    The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227

  16. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  17. Parkinson's Disease Subtypes in the Oxford Parkinson Disease Centre (OPDC) Discovery Cohort.

    PubMed

    Lawton, Michael; Baig, Fahd; Rolinski, Michal; Ruffman, Claudio; Nithi, Kannan; May, Margaret T; Ben-Shlomo, Yoav; Hu, Michele T M

    2015-01-01

    Within Parkinson's there is a spectrum of clinical features at presentation which may represent sub-types of the disease. However there is no widely accepted consensus of how best to group patients. Use a data-driven approach to unravel any heterogeneity in the Parkinson's phenotype in a well-characterised, population-based incidence cohort. 769 consecutive patients, with mean disease duration of 1.3 years, were assessed using a broad range of motor, cognitive and non-motor metrics. Multiple imputation was carried out using the chained equations approach to deal with missing data. We used an exploratory and then a confirmatory factor analysis to determine suitable domains to include within our cluster analysis. K-means cluster analysis of the factor scores and all the variables not loading into a factor was used to determine phenotypic subgroups. Our factor analysis found three important factors that were characterised by: psychological well-being features; non-tremor motor features, such as posture and rigidity; and cognitive features. Our subsequent five cluster model identified groups characterised by (1) mild motor and non-motor disease (25.4%), (2) poor posture and cognition (23.3%), (3) severe tremor (20.8%), (4) poor psychological well-being, RBD and sleep (18.9%), and (5) severe motor and non-motor disease with poor psychological well-being (11.7%). Our approach identified several Parkinson's phenotypic sub-groups driven by largely dopaminergic-resistant features (RBD, impaired cognition and posture, poor psychological well-being) that, in addition to dopaminergic-responsive motor features may be important for studying the aetiology, progression, and medication response of early Parkinson's.

  18. A portable integrated system to control an active needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem

    2017-04-01

    The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.

  19. Novel permanent magnet linear motor with isolated movers: analytical, numerical and experimental study.

    PubMed

    Yan, Liang; Peng, Juanjuan; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-01

    This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribution is obtained by using equivalent magnetic circuit method. Following that, the formulation of force output considering armature reaction is carried out. Then inductances are analyzed with finite element method to investigate the relationships of the two movers. It is found that the mutual-inductances are nearly equal to zero, and thus the interaction between the two movers is negligible. A research prototype of the linear motor and a measurement apparatus on thrust force have been developed. Both numerical computation and experiment measurement are conducted to validate the analytical model of thrust force. Comparison shows that the analytical model matches the numerical and experimental results well.

  20. Modeling and experimental analysis of the linear ultrasonic motor with in-plane bending and longitudinal mode.

    PubMed

    Wan, Zhijian; Hu, Hong

    2014-03-01

    A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Oral-Motor Function and Feeding Intervention

    ERIC Educational Resources Information Center

    Garber, June

    2013-01-01

    This article presents the elements of the Oral Motor Intervention section of the Infant Care Path for Physical Therapy in the Neonatal Intensive Care Unit (NICU). The types of physical therapy interventions presented in this path are evidence based as well as infant driven and family focused. In the context of anticipated maturation of…

  2. The Race that Precedes Coactivation: Development of Multisensory Facilitation in Children

    ERIC Educational Resources Information Center

    Barutchu, Ayla; Crewther, David P.; Crewther, Sheila G.

    2009-01-01

    Rationale: The facilitating effect of multisensory integration on motor responses in adults is much larger than predicted by race-models and is in accordance with the idea of coactivation. However, the development of multisensory facilitation of endogenously driven motor processes and its relationship to the development of complex cognitive skills…

  3. 29 CFR 500.105 - DOT standards adopted by the Secretary.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... person possesses the following minimum qualifications: (A) No loss of foot, leg, hand or arm, (B) No mental, nervous, organic, or functional disease, likely to interfere with safe driving. (C) No loss of... loading—(A) Distribution and securing of load. No motor vehicle shall be driven nor shall any motor...

  4. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  5. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  6. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  7. 49 CFR 392.33 - Obscured lamps or reflective devices/material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Obscured lamps or reflective devices/material. 392... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Use of Lighted Lamps and Reflectors § 392.33 Obscured lamps or reflective devices/material. (a) No commercial motor vehicle shall be driven when any of the lamps...

  8. Parkinson's: a syndrome rather than a disease?

    PubMed

    Titova, Nataliya; Padmakumar, C; Lewis, Simon J G; Chaudhuri, K Ray

    2017-08-01

    Emerging concepts suggest that a multitude of pathology ranging from misfolding of alpha-synuclein to neuroinflammation, mitochondrial dysfunction, and neurotransmitter driven alteration of brain neuronal networks lead to a syndrome that is commonly known as Parkinson's disease. The complex underlying pathology which may involve degeneration of non-dopaminergic pathways leads to the expression of a range of non-motor symptoms from the prodromal stage of Parkinson's to the palliative stage. Non-motor clinical subtypes, cognitive and non-cognitive, have now been proposed paving the way for possible subtype specific and non-motor treatments, a key unmet need currently. Natural history of these subtypes remains unclear and need to be defined. In addition to in vivo biomarkers which suggest variable involvement of the cholinergic and noradrenergic patterns of the Parkinson syndrome, abnormal alpha-synuclein accumulation have now been demonstrated in the gut, pancreas, heart, salivary glands, and skin suggesting that Parkinson's is a multi-organ disorder. The Parkinson's phenotype is thus not just a dopaminergic motor syndrome, but a dysfunctional multi-neurotransmitter pathway driven central and peripheral nervous system disorder that possibly ought to be considered a syndrome and not a disease.

  9. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion

    PubMed Central

    Zhang, Jingming; Lanuza, Guillermo M.; Britz, Olivier; Wang, Zhi; Siembab, Valerie C.; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J.; Frank, Eric; Goulding, Martyn

    2014-01-01

    SUMMARY The reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally-located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. PMID:24698273

  10. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.

    PubMed

    Worden, Evan J; Dong, Ken C; Martin, Andreas

    2017-09-07

    Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.

    PubMed

    Lan, Ganhui; Sun, Sean X

    2005-06-01

    Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction.

  12. Dynamics of Myosin-Driven Skeletal Muscle Contraction: I. Steady-State Force Generation

    PubMed Central

    Lan, Ganhui; Sun, Sean X.

    2005-01-01

    Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction. PMID:15778440

  13. A novel type of rim thrust motor with Halbach array permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.

  14. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    ERIC Educational Resources Information Center

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  15. Design and Implementation of a Compact Master-Slave Robotic System with Force Feedback and Energy Recycling

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko; Oka, Koichi

    Master-slave control is becoming increasingly popular in the development of robotic systems which can provide rehabilitation training for hemiplegic patients with a unilaterally disabled limb. However, the system structures and control strategies of existent master-slave systems are always complex. An innovative master-slave system implementing force feedback and motion tracking for a rehabilitation robot is presented in this paper. The system consists of two identical motors with a wired connection, and the two motors are located at the master and slave manipulator sites respectively. The slave motor tracks the motion of the master motor directly driven by a patient. As well, the interaction force produced at the slave site is fed back to the patient. Therefore, the impaired limb driven by the slave motor can imitate the motion of the healthy limb controlling the master motor, and the patient can regulate the control force of the healthy limb properly according to the force sensation. The force sensing and motion tracking are achieved simultaneously with neither force sensors nor sophisticated control algorithms. The system is characterized by simple structure, bidirectional controllability, energy recycling, and force feedback without a force sensor. Test experiments on a prototype were conducted, and the results appraise the advantages of the system and demonstrate the feasibility of the proposed control scheme for a rehabilitation robot.

  16. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    PubMed

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  17. Visuo‐manual tracking: does intermittent control with aperiodic sampling explain linear power and non‐linear remnant without sensorimotor noise?

    PubMed Central

    Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.

    2017-01-01

    Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126

  18. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  19. Comparison of success rates of orthodontic mini-screws by the insertion method.

    PubMed

    Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju

    2012-10-01

    The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.

  20. Slip control for LIM propelled transit vehicles

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  1. Quantifying the Contribution of Wind-Driven Linear Response to the Seasonal and Interannual Variability of Amoc Volume Transports Across 26.5ºN

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.

    2014-12-01

    Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.

  2. Environmental characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado.

    PubMed

    Sebert Kuhlmann, Anne K; Brett, John; Thomas, Deborah; Sain, Stephan R

    2009-09-01

    We examined patterns of pedestrian-motor vehicle collisions and associated environmental characteristics in Denver, Colorado. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Spatial analysis revealed global clustering of pedestrian-motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian-motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian-motor vehicle collisions and promoting walking as a routine physical activity.

  3. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  4. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  5. Modeling vocalization with ECoG cortical activity recorded during vocal production in the macaque monkey.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer

    2014-01-01

    Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.

  6. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    PubMed

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  7. 75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... turbocharger (supercharger driven by exhaust gases) * * *.'' The language adopted by FHWA is essentially identical to that established by EPA, except that Sec. 325.91(b) specifically treats a turbocharger as a..., `` such as a turbocharger (supercharger driven by exhaust gases)'' be removed from 49 CFR 325.91(b). In...

  8. 40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...

  9. 40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...

  10. 40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...

  11. 40 CFR 85.1512 - Admission of catalyst and O2 sensor-equipped vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Importation of Motor..., where applicable, § 85.1510(c); and (iv) Has been driven outside the United States, Canada and Mexico or... purpose of this section, “driven outside the United States, Canada and Mexico” does not include mileage...

  12. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Peixuan, E-mail: peixuan.guo@uky.edu; Schwartz, Chad; Haak, Jeannie

    Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and howmore » ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation. - Highlights: • New motion mechanism of revolution without rotation found for phi29 DNA packaging. • Revolution motor finding expands classical linear and rotation biomotor classes. • Revolution motors transport dsDNA unidirectionally without supercoiling. • New mechanism solves many puzzles, mysteries, and debates in biomotor studies. • Motors with all numbers of subunits can utilize the revolution mechanism.« less

  13. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    PubMed

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  14. Fuel Delivery System.

    DTIC Science & Technology

    1996-07-24

    to fuel tank 27 aboard 23 test torpedo 26. Pressure switch 19B operates to close solenoid 24 valve 22A and concurrently open solenoid valve 22D...leading to a pump explosion. The boost pump 4 is driven by its 11 motor 14B and positive displacement pump 1 by its respective 12 motor 14A. Pressure ... switch 19A monitors the head pressure 13 created by the boost pump 4 and it will shut off the motor 14A of 14 the positive displacement pump 1 if

  15. Nanoscale rotary motors driven by electron tunneling.

    PubMed

    Wang, Boyang; Vuković, Lela; Král, Petr

    2008-10-31

    We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.

  16. Influence of electromagnetic interference on implanted cardiac arrhythmia devices in and around a magnetically levitated linear motor car.

    PubMed

    Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa

    2005-01-01

    This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.

  17. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    PubMed

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  18. 21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT SYSTEM ONCE POWERED BY A STEAM ENGINE AND LATER BY TWO LARGE ELECTRICAL MILL MOTORS (NOTICE LARGE GEAR IN FOREGROUND) THAT OPERATED EACH NAIL MACHINE; PRESENTLY THE NAIL MACHINES ARE DRIVEN BY INDIVIDUAL ELECTRICAL MOTORS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  19. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  20. Screw-released roller brake

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1999-01-01

    A screw-released roller brake including an input drive assembly, an output drive assembly, a plurality of locking sprags, a mechanical tripper nut for unlocking the sprags, and a casing therefor. The sprags consist of three dimensional (3-D) sprag members having pairs of contact surface regions which engage respective pairs of contact surface regions included in angular grooves or slots formed in the casing and the output drive assembly. The sprags operate to lock the output drive assembly to the casing to prevent rotation thereof in an idle mode of operation. In a drive mode of operation, the tripper is either self actuated or motor driven and is translated linearly up and down against a spline and at the limit of its travel rotates the sprags which unlock while coupling the input drive assembly to the output drive assembly so as to impart a turning motion thereto in either a clockwise or counterclockwise direction.

  1. Experimental light scattering by small particles: system design and calibration

    NASA Astrophysics Data System (ADS)

    Maconi, Göran; Kassamakov, Ivan; Penttilä, Antti; Gritsevich, Maria; Hæggström, Edward; Muinonen, Karri

    2017-06-01

    We describe a setup for precise multi-angular measurements of light scattered by mm- to μm-sized samples. We present a calibration procedure that ensures accurate measurements. Calibration is done using a spherical sample (d = 5 mm, n = 1.517) fixed on a static holder. The ultimate goal of the project is to allow accurate multi-wavelength measurements (the full Mueller matrix) of single-particle samples which are levitated ultrasonically. The system comprises a tunable multimode Argon-krypton laser, with 12 wavelengths ranging from 465 to 676 nm, a linear polarizer, a reference photomultiplier tube (PMT) monitoring beam intensity, and several PMT:s mounted radially towards the sample at an adjustable radius. The current 150 mm radius allows measuring all azimuthal angles except for ±4° around the backward scattering direction. The measurement angle is controlled by a motor-driven rotational stage with an accuracy of 15'.

  2. Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang

    The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.

  3. Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays

    PubMed Central

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2012-01-01

    In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953

  4. Excited state dynamics & optical control of molecular motors

    NASA Astrophysics Data System (ADS)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  5. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    PubMed

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  6. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  7. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  8. Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle.

    PubMed Central

    Lewis, D M; Parry, D J; Rowlerson, A

    1982-01-01

    1. Isometric contractions of motor units, isolated functionally by ventral root splitting in vivo, were recorded from mouse soleus muscle. 2. Motor unit tensions varied over a narrow symmetrical range and averaged 4.7% of whole muscle tension, corresponding to twenty-one motor units per muscle. 3. There was considerable variation between muscles in isometric twitch times-to-peak and even greater variation for the motor units. The distribution of motor unit times-to-peak was apparently unimodal and could be fitted by a single normal population. A slightly better fit was, however, obtained with two normal populations, as suggested by the histochemistry. 4. Twitch time-to-peak decreased in proportion to axonal conduction velocity in individual animals. The whole population of motor units could be fitted by a linear relation between time-to-peak and the reciprocal of conduction time in the motor axon. Motor unit tension was also linearly related to the reciprocal of conduction time. 5. Histochemistry showed clear division between Type I and Type IIa fibres. Type I fibres reacted strongly with antibody against slow myosin of cat soleus muscle; Type IIa gave a reaction no stronger than the background. The division was as clear as in the cat or rat. Images Fig. 2 Plate 1 PMID:7050345

  9. Study of the In2O3 molecule in the free state and in the crystal

    NASA Astrophysics Data System (ADS)

    Kaplan, Ilya G.; Miranda, Ulises; Trakhtenberg, Leonid I.

    2018-03-01

    The nanomaterials based on the In2O3 molecule are widely used as catalysts and sensors among other applications. In the present study, we discuss the possibility of using nanoclusters of In2O3 as molecular photomotors. A comparative analysis of the electronic structure of the In2O3 molecule in the free state and in the crystal is performed. For the free In2O3 molecule the geometry of its lowest structures, V-shape and linear, was optimised at the CCSD(T) level, which is the most precise computational method applied up to date to study In2O3. Using experimental crystallographic data, we determined the geometry of In2O3 in the crystal. It has a zigzag, not symmetric structure and possesses a dipole moment with magnitude slightly smaller than that of the V-structure of the free molecule (the linear structure due to its symmetry has no dipole moment). According to the Natural Atomic population analysis, the chemical structure of the linear In2O3 can be represented as O = In-O-In = O; the V-shaped molecule has the similar double- and single-bond structure. The construction of nanoclusters from ´bricksʼ of In2O3 with geometry extracted from crystal (or nanoclusters extracted directly from crystal) and their use as photo-driven molecular motors are discussed.

  10. Cerebral-buccal pathways in Aplysia californica: synaptic connections, cooperative interneuronal effects and feedback during buccal motor programs.

    PubMed

    Sánchez, J A; Kirk, M D

    2001-12-01

    Ingestion of seaweed by Aplysia is in part mediated by cerebral-buccal interneurons that drive rhythmic motor output from the buccal ganglia and in some cases cerebral-buccal interneurons act as members of the feeding central pattern generator. Here we document cooperative interactions between cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12, characterize synaptic input to cerebral-buccal interneuron 2 and cerebral-buccal interneuron 12 from buccal peripheral nerve 2,3, describe a synaptic connection between cerebral-buccal interneuron 1 and buccal neuron B34, further characterize connections made by cerebral-buccal interneurons 2 and -12 with B34 and B61/62, and describe a novel, inhibitory connection made by cerebral-buccal interneuron 2 with a buccal neuron. When cerebral-buccal interneurons 2 and 12 were driven synchronously at low frequencies, ingestion-like buccal motor programs were elicited, and if either was driven alone, indirect synaptic input was recruited in the other cerebral-buccal interneuron. Stimulation of BN2,3 recruited both ingestion and rejection-like motor programs without firing in cerebral-buccal interneurons 2 or 12. During motor programs elicited by cerebral-buccal interneurons 2 or 12, high-voltage stimulation of BN2,3 inhibited firing in both cerebral-buccal interneurons. Our results suggest that cerebral-buccal interneurons 2 and 12 use cooperative interactions to modulate buccal motor programs, yet firing in cerebral-buccal interneurons 2 or 12 is not necessary for recruiting motor programs by buccal peripheral nerve BN2,3, even in preparations with intact cerebral-buccal pathways.

  11. L-shaped piezoelectric motor--part I: design and experimental analysis.

    PubMed

    Avirovik, Dragan; Priya, Shashank

    2012-01-01

    This paper proposes an L-shaped piezoelectric motor consisting of two piezoelectric bimorphs of different lengths arranged perpendicularly to each other. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. A detailed finite element model was developed to optimize the dimensions of bimorph to achieve an effective coupling at the resonance frequency of 246 Hz. The motor was characterized by developing rotational and linear stages. The linear stage was tested with different friction contact surfaces and the maximum velocity was measured to be 12 mm/s. The rotational stage was used to obtain additional performance characteristics from the motor: maximum velocity of 120 rad/s, mechanical torque of 4.7 × 10-(5) N·m, and efficiency of 8.55%. © 2012 IEEE

  12. Innervation zones of fasciculating motor units: observations by a linear electrode array

    PubMed Central

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E.; Rymer, William Z.; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs. PMID:26029076

  13. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  14. First Stage of a Highly Reliable Reusable Launch System

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen

    2009-01-01

    Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.

  15. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d

  16. Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K for Telecommunication Applications

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Yasukawa, Y.; Ohshima, K.; Takeuchi, T.; Matsushita, T.; Mizoguchi, Y.

    2008-03-01

    Fuji Electric Group has developed high-reliability technologies for various types of Stirling cryocoolers for space satellite systems. For commercial applications, we also have developed and marketed a miniature pulse-tube cryocooler providing 2W to 3W of refrigeration at 70K with 100W of electric power input. To improve efficiency and power density, we have developed a new moving-magnet linear motor to replace the moving-coil motor (which has only 70% efficiency) and have adopted a coaxial pulse-tube expander. This development is for cooling a high-temperature superconductive (HTS) device in a wireless telecommunication system. The compressor requires total compression work of 75W with 90% efficiency and a lifetime longer than 50,000 hours. At this point, the preliminary testing of each part of the moving magnet linear motor and the coaxial pulse tube has been completed. For the next phase, we constructed a first stage prototype compressor using the new linear motor, and tested the new machine. This paper describes the test results for the compressor.

  17. A piezoelectric ultrasonic linear micromotor using a slotted stator.

    PubMed

    Yun, Cheol-Ho; Watson, Brett; Friend, James; Yeo, Leslie

    2010-08-01

    A novel ultrasonic micro linear motor that uses 1st longitudinal and 2nd bending modes, derived from a bartype stator with a rectangular slot cut through the stator length, has been proposed and designed for end-effect devices of microrobotics and bio-medical applications. The slot structure plays an important role in the motor design, and can be used not only to tune the resonance frequency of the two vibration modes but also to reduce the undesirable longitudinal coupling displacement caused by bending vibration at the end of the stator. By using finite element analysis, the optimal slot dimension to improve the driving tip motion was determined, resulting in the improvement of the motor performance. The trial linear motor, with a weight of 1.6 g, gave a maximum driving velocity of 1.12 m/s and a maximum driving force of 3.4 N. A maximum mechanical output power of 1.1 W was obtained at force of 1.63 N and velocity of 0.68 m/s. The output mechanical power per unit weight was 688 W/kg.

  18. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  19. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  20. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  1. Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort

    PubMed Central

    Daunizeau, Jean; Pessiglione, Mathias

    2012-01-01

    Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia. PMID:22363208

  2. The development and testing of a linear induction motor being fed from the source with limited electric power

    NASA Astrophysics Data System (ADS)

    Tiunov, V. V.

    2018-02-01

    The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.

  3. When syntax meets action: Brain potential evidence of overlapping between language and motor sequencing.

    PubMed

    Casado, Pilar; Martín-Loeches, Manuel; León, Inmaculada; Hernández-Gutiérrez, David; Espuny, Javier; Muñoz, Francisco; Jiménez-Ortega, Laura; Fondevila, Sabela; de Vega, Manuel

    2018-03-01

    This study aims to extend the embodied cognition approach to syntactic processing. The hypothesis is that the brain resources to plan and perform motor sequences are also involved in syntactic processing. To test this hypothesis, Event-Related brain Potentials (ERPs) were recorded while participants read sentences with embedded relative clauses, judging for their acceptability (half of the sentences contained a subject-verb morphosyntactic disagreement). The sentences, previously divided into three segments, were self-administered segment-by-segment in two different sequential manners: linear or non-linear. Linear self-administration consisted of successively pressing three buttons with three consecutive fingers in the right hand, while non-linear self-administration implied the substitution of the finger in the middle position by the right foot. Our aim was to test whether syntactic processing could be affected by the manner the sentences were self-administered. Main results revealed that the ERPs LAN component vanished whereas the P600 component increased in response to incorrect verbs, for non-linear relative to linear self-administration. The LAN and P600 components reflect early and late syntactic processing, respectively. Our results convey evidence that language syntactic processing and performing non-linguistic motor sequences may share resources in the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Computer-aided design studies of the homopolar linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Dawson, G. E.; Eastham, A. R.; Ong, R.

    1984-09-01

    The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.

  5. State Estimation for Linear Systems Driven Simultaneously by Wiener and Poisson Processes.

    DTIC Science & Technology

    1978-12-01

    The state estimation problem of linear stochastic systems driven simultaneously by Wiener and Poisson processes is considered, especially the case...where the incident intensities of the Poisson processes are low and the system is observed in an additive white Gaussian noise. The minimum mean squared

  6. Underwater manipulator

    DOEpatents

    Schrum, Phillip B.; Cohen, George H.

    1993-01-01

    Self-contained, waterproof, water-submersible, remote-controlled apparatus is provided for manipulating a device, such as an ultrasonic transducer for measuring crack propagation on an underwater specimen undergoing shock testing. The subject manipulator includes metal bellows for transmittal of angular motions without the use of rotating shaft seals or O-rings. Inside the manipulator, a first stepper motor controls angular movement. In the preferred embodiment, the bellows permit the first stepper motor to move an ultrasonic transducer .+-.45 degrees in a first plane and a second bellows permit a second stepper motor to move the transducer .+-.10 degrees in a second plane orthogonal to the first. In addition, an XY motor-driven table provides XY motion.

  7. Modeling of the motion of the actin filament on the myosin motility assays

    NASA Astrophysics Data System (ADS)

    Young, Yuan; Shelley, Mike

    2007-11-01

    In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.

  8. Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.

    PubMed

    Mora, Thierry; Yu, Howard; Wingreen, Ned S

    2009-12-11

    We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.

  9. Experimental device for measuring the dynamic properties of diaphragm motors

    NASA Astrophysics Data System (ADS)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  10. 78 FR 2236 - Federal Motor Vehicle Safety Standards; New Pneumatic Tires for Motor Vehicles With a GVWR of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... Society of Automotive Engineers (SAE) Recommended Practice J918b--Passenger Car Tire Performance Requirements and Test Procedures (January 1967). 2, 3 As part of the strength test, a plunger is driven into a...--Passenger Car Tire Performance Requirements and Test Procedures (January 1967) Section 3.1. \\5\\ FMVSS No...

  11. Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor

    PubMed Central

    Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi

    2010-01-01

    The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126

  12. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    PubMed

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.

  14. Ions in motor vehicle exhaust and their dispersion near busy roads

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Ling, X.; Morawska, L.

    2010-09-01

    Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm -3) was about one-half of that near motorways (1211 cm -3) and about twice as high as that in the urban background (269 cm -3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density ( R2 = 0.3 at p < 0.05) and correlated well with each other in real time ( R2 = 0.87 at p < 0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2 m to 5 m of the kerb. Measured concentrations decreased to background at about 15 m from the kerb when the wind speed was 1.3 m s -1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.

  15. An actomyosin motor.

    PubMed

    Shimizu, H

    1984-01-01

    I would like to report some results obtained by Yano , Yamamoto and myself on a novel system ( Yano et al., 1982) we have named the actomyosin motor in which a rotor with attached F-actin rotates in a specific direction, driven by the ATP-splitting interaction with active fragments of myosin, heavy meromyosin or subfragment-1, in a solution containing MgATP. The actomyosin motor is not only interesting as a new kind of motor made of biological material but also, as a stream cell ( Yano , 1978; Yano et al., 1978; Yano & Shimizu, 1978; Shimizu & Yano , 1978; Shimizu, 1979), is suitable for the study of chemo-mechanical coupling by actin and active fragments of myosin. Active motion of the motor was observed in almost 100% of the experiments, when carefully performed.

  16. Neural substrates underlying stimulation-enhanced motor skill learning after stroke

    PubMed Central

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the ‘circuit game’, involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention’s enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham series. Finally, dual transcranial direct current stimulation applied during the first session enhanced continued learning with the paretic limb 1 week later, relative to the sham series. This lasting behavioural enhancement was associated with more efficient recruitment of the motor skill learning network, that is, focused activation on the motor-premotor areas in the damaged hemisphere, especially on the dorsal premotor cortex. Dual transcranial direct current stimulation applied during motor skill learning with a paretic upper limb resulted in prolonged shaping of brain activation, which supported behavioural enhancements in stroke patients. PMID:25488186

  17. Mechanistic logic underlying the axonal transport of cytosolic proteins

    PubMed Central

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  18. Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface.

    PubMed

    Meng, Fanchen; Hao, Wei; Yu, Shengtao; Feng, Rui; Liu, Yanming; Yu, Fan; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-09-13

    This paper explores a new propulsion mechanism that is based on the ejection of hot vapor jet to propel the motor at the liquid/air interface. For conventional photothermal motors, which mostly are driven by Marangoni effect, it is challenging to propel those motors at the surfaces of liquids with low surface tension due to the reduced Marangoni effect. With this new vapor-enabled propulsion mechanism, the motors can move rapidly at the liquid/air interface of liquids with a broad range of surface tensions. A design that can accumulate the hot vapor is further demonstrated to enhance both the propulsion force as well as the applicable range of liquids for such motors. This new propulsion mechanism will help open up new opportunities for the photothermal motors with desired motion controls at a wide range of liquid/air interfaces where hot vapor can be generated.

  19. The Development of Fundamental Motor Skills of Four- to Five-Year-Old Preschool Children and the Effects of a Preschool Physical Education Curriculum

    ERIC Educational Resources Information Center

    Iivonen, S.; Saakslahti, A.; Nissinen, K.

    2011-01-01

    Altogether 38 girls and 46 boys aged four to five years were studied to analyse the linear and non-linear development of fundamental motor skills. The children were grouped into one experimental and one control group to study the effects of an eight-month preschool physical education curriculum. In the course of one year, the balance skills of the…

  20. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  1. 30 CFR 18.3 - Consultation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General Provisions § 18.3... Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia...

  2. 30 CFR 18.3 - Consultation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General Provisions § 18.3... Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia...

  3. 30 CFR 18.3 - Consultation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General Provisions § 18.3... Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia...

  4. 30 CFR 18.3 - Consultation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General Provisions § 18.3... Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia...

  5. 30 CFR 18.3 - Consultation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General Provisions § 18.3... Safety and Health Administration, Approval and Certification Center, 765 Technology Drive, Triadelphia...

  6. Performance of a vane driven-gear pump

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1921-01-01

    Given here are the results of a test conducted in a wind tunnel on the performance of a vane-driven gear pump used to pump gasoline upward into a small tank located within the upper wing from which it flows by gravity to the engine carburetor. Information is given on the efficiency of the pump, the head resistance of the vanes, the performance and characteristics of the unit with and without housing about the vanes, the pump performance when motor driven, and resistance and power characteristics.

  7. Environmental Characteristics Associated With Pedestrian–Motor Vehicle Collisions in Denver, Colorado

    PubMed Central

    Sebert Kuhlmann, Anne K.; Thomas, Deborah; R. Sain, Stephan

    2009-01-01

    Objectives. We examined patterns of pedestrian–motor vehicle collisions and associated environmental characteristics in Denver, Colorado. Methods. We integrated publicly available data on motor vehicle collisions, liquor licenses, land use, and sociodemographic characteristics to analyze spatial patterns and other characteristics of collisions involving pedestrians. We developed both linear and spatially weighted regression models of these collisions. Results. Spatial analysis revealed global clustering of pedestrian–motor vehicle collisions with concentrations in downtown, in a contiguous neighborhood, and along major arterial streets. Walking to work, population density, and liquor license outlet density all contributed significantly to both linear and spatial models of collisions involving pedestrians and were each significantly associated with these collisions. Conclusions. These models, constructed with data from Denver, identified conditions that likely contribute to patterns of pedestrian–motor vehicle collisions. Should these models be verified elsewhere, they will have implications for future research directions, public policy to enhance pedestrian safety, and public health programs aimed at decreasing unintentional injury from pedestrian–motor vehicle collisions and promoting walking as a routine physical activity. PMID:19608966

  8. Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging

    PubMed Central

    Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano

    2013-01-01

    The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431

  9. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task

    NASA Astrophysics Data System (ADS)

    Crouch, Dustin L.; (Helen Huang, He

    2017-06-01

    Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r  =  0.25, p  <  0.0001). The amputee subject could coordinate movement between the wrist and MCP joints, but favored metacarpophalangeal joint motion more highly than able-bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.

  10. Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi

    1996-01-01

    This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.

  11. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  12. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  13. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly

    PubMed Central

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S.; Shaevitz, Joshua W.; Gitai, Zemer

    2011-01-01

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis. PMID:21903929

  14. NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments

    NASA Astrophysics Data System (ADS)

    Vogel, V.; Hess, H.

    Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.

  15. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.

    PubMed

    Trinkl, J; Havlik, P; Mesana, T; Mitsui, N; Morita, S; Demunck, J L; Tourres, J L; Monties, J R

    1993-01-01

    Our ventricular assist device uses a valveless volumetric pump operating on the Maillard-Wankel rotary principle. It is driven by an electric motor and provides a semi pulsatile flow. At each cycle, blood is actively aspirated into the device, and overpumping results in collapse at the pump inlet. To prevent overpumping, it is necessary to ensure that pump intake does not exceed venous return. Poor long-term reliability rules out the use of current implantable pressure sensors for this purpose. To resolve this problem, we have developed a method of control based on monitoring of the intensity of electric current consumed by the motor. The method consists of real time monitoring of current intensity at the beginning of each pump cycle. A sudden change in intensity indicates underfilling, and motor speed is reduced to prevent collapse. The current consumed by the motor also depends on the afterload, but the form of the signal remains the same when afterload changes. After demonstrating the feasibility of this technique in a simulator, we are now testing it in animals. We were able to detect and prevent collapse due to overpumping by the cardiac assist device. This system also enables us to know the maximum possible assistance and to thus adapt assistance to the user.

  16. A motor-driven ventricular assist device controlled with an optical encoder system.

    PubMed

    Nakamura, T; Hayashi, K; Yamane, H

    1993-01-01

    An electric motor-driven ventricular assist device has been developed for long-term use inside the body. The system is composed of a pusher-plate-type blood pump and an actuator consisting of an electrical motor and a ball screw. Cyclic change of the direction of motor rotation makes a back-and-forth axial movement of the ball screw shaft. The shaft, which is detached from the pump diaphragm, pushes the diaphragm via a pusher plate to eject blood during systole; blood is sucked by the diaphragm resilience during diastole. Using the output signals from a newly designed, incremental-type, miniature optical rotary encoder mounted inside the actuator, the input voltage of the motor is optimally controlled referring to the phase difference between the current position of the moving rotor and the electrical reference signal of the rotation generated by a microprocessor-based controller. In vitro performance tests indicated that the system fulfills required specifications. The maximum efficiency was 11%, which was about twice as high as that obtained with the previous open-loop prototype system. In the air, the surface temperature of the actuator elevated to 20 degrees C above the room temperature. An acute in vivo test showed its feasibility as a left ventricular assist device. Analysis of the energy loss in each component of the system indicated that redesign and precise assembly of the mechanical parts could increase the system efficiency.

  17. Apparatus for microbiological sampling. [including automatic swabbing

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1974-01-01

    An automatic apparatus is described for microbiologically sampling surface using a cotton swab which eliminates human error. The apparatus includes a self-powered transport device, such as a motor-driven wheeled cart, which mounts a swabbing motor drive for a crank arm which supports a swab in the free end thereof. The swabbing motor is pivotably mounted and an actuator rod movable responsive to the cart traveling a predetermined distance provides lifting of the swab from the surface being sampled and reversal of the direction of travel of the cart.

  18. 30 CFR 18.47 - Voltage limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements... safeguards for high-voltage equipment, or modify the requirements to recognize improved technology. ...

  19. 30 CFR 18.47 - Voltage limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements... safeguards for high-voltage equipment, or modify the requirements to recognize improved technology. ...

  20. 30 CFR 18.47 - Voltage limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements... safeguards for high-voltage equipment, or modify the requirements to recognize improved technology. ...

  1. 30 CFR 18.47 - Voltage limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements... safeguards for high-voltage equipment, or modify the requirements to recognize improved technology. ...

  2. 30 CFR 18.47 - Voltage limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements... safeguards for high-voltage equipment, or modify the requirements to recognize improved technology. ...

  3. Collective effects in models for interacting molecular motors and motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Menon, Gautam I.

    2006-12-01

    Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.

  4. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion

    PubMed Central

    Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George

    2012-01-01

    Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960

  5. Mobile continuous lunar excavation

    NASA Technical Reports Server (NTRS)

    Paterson, John L.

    1992-01-01

    A novel approach to the concept of lunar mining and the use of in situ oxygen, metallics, and ceramics is presented. The EVA time required to set up, relocate, and maintain equipment, as well as the cost per pound of shipping the mining and processing equipment to the moon are considered. The proposed soil fracturing/loading mechanisms are all based loosely on using the Apollo Lunar Roving Vehicle (LRV) Frame. All use motor driven tracks for mobility in the forward/reverse and left/right direction. All mechanisms employ the concept of rototillers which are attached to a gantry which, through the use of motor-driven lead screws, provide the rototillers with an up/down capability. A self-reactant excavator, a local mass enhanced excavator, and a soil reactant excavator are illustrated.

  6. A study on various methods of supplying propellant to an orbit insertion rocket engine

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.

    1980-01-01

    Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.

  7. Mechanisms of UK radiometers flown on Nimbus 5 and 6 with particular reference to bearings, pivots and lubrication

    NASA Technical Reports Server (NTRS)

    Hadley, H.

    1980-01-01

    The mechanisms incorporated in the vertical sounding infrared radiometry experiments which were launched on Nimbus 5 in 1972 and on Nimbus 6 in 1975 are discussed. Both use dry lubricants. The Nimbus 5 radiometer includes a rotating chopper driven via a carbon fiber-acetal resin gearwheel. The driving motor runs at 2000 rpm and has completed over 7 x 10 to the 9th power revolutions. Four gear driven filter wheels powered by stepper motors have each completed 2 x 10 to the 8th power changes. The input calibration mirror mechanism and its field of view compensation mechanisms are also described. All 25 ball races used in the experiment are of the film transfer type. The Nimbus 6 radiometer includes two cells. Each contains a piston supported on diaphragm springs and driven electromagnetically. The pistons are 6 cm in diameter with a stroke of 1 cm and are driven at their mechanical resonant frequency of approx. 15 Hz. The calibrating mirrors rotate periodically to view a target. The support pivots are synthetic sapphire ring stones with separate end thrust stones. The problems of mounting these stones to withstand vibration loads is described.

  8. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated... requirements for permissibility which must be met to obtain MSHA field approval of electrically operated...

  9. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated... requirements for permissibility which must be met to obtain MSHA field approval of electrically operated...

  10. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to capture emissions; (3) If a mobile scrubber car that does not capture emissions during travel is... each capture system that uses an electric motor to drive the fan, you must maintain the daily average... (ii) For each capture system that does not use a fan driven by an electric motor, you must maintain...

  11. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to capture emissions; (3) If a mobile scrubber car that does not capture emissions during travel is... each capture system that uses an electric motor to drive the fan, you must maintain the daily average... (ii) For each capture system that does not use a fan driven by an electric motor, you must maintain...

  12. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to capture emissions; (3) If a mobile scrubber car that does not capture emissions during travel is... each capture system that uses an electric motor to drive the fan, you must maintain the daily average... (ii) For each capture system that does not use a fan driven by an electric motor, you must maintain...

  13. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to capture emissions; (3) If a mobile scrubber car that does not capture emissions during travel is... each capture system that uses an electric motor to drive the fan, you must maintain the daily average... (ii) For each capture system that does not use a fan driven by an electric motor, you must maintain...

  14. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to capture emissions; (3) If a mobile scrubber car that does not capture emissions during travel is... each capture system that uses an electric motor to drive the fan, you must maintain the daily average... (ii) For each capture system that does not use a fan driven by an electric motor, you must maintain...

  15. Third-generation blood pumps with mechanical noncontact magnetic bearings.

    PubMed

    Hoshi, Hideo; Shinshi, Tadahiko; Takatani, Setsuo

    2006-05-01

    This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.) DuraHeart is an example where the impeller is levitated in the axial or z-direction. The disadvantage of this system is the mechanical wear in the mechanical bearings of the external motor. In the second system, the impeller is made into the rotor of the motor, and the magnetic flux, through the external stator, rotates the impeller, while the impeller levitation is maintained through another electromagnetic system. The Berlin Heart (Berlin, Germany) INCOR is the best example of this principle where one-axis control combination with hydrodynamic force achieves high performance. In the third system, the stator core is shared by the levitation and drive coil to make it as if the bearing does not exist. Levitronix CentriMag (Zürich, Switzerland), which appeared recently, employs this concept to achieve stable and safe operation of the extracorporeal system that can last for a duration of 14 days. Experimental systems including HeartMate III (Thoratec, Woburn, MA, U.S.A.), HeartQuest (WorldHeart, Ottawa, ON, Canada), MagneVAD (Gold Medical Technologies, Valhalla, NY, U.S.A.), MiTiHeart (MiTi Heart, Albany, NY, U.S.A.), Ibaraki University's Heart (Hitachi, Japan) and Tokyo Medical and Dental University/Tokyo Institute of Technology's disposable and implantable maglev blood pumps are also reviewed. In reference to second-generation blood pumps, such as the Jarvik 2000 (Jarvik Heart, New York, NY, U.S.A.), which is showing remarkable achievement, a question is raised whether a complicated system such as the maglev system is really needed. We should pay careful attention to future clinical outcomes of the ongoing clinical trials of the second-generation devices before making any further remarks. What is best for patients is the best for everyone. We should not waste any efforts unless they are actually needed to improve the quality of life of heart-failure patients.

  16. Microtubules and motor proteins: Mechanically regulated self-organization in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, S. K.; Pavin, N.; Maghelli, N.; Jülicher, F.; Tolić-Nørrelykke, I. M.

    2009-11-01

    A key aspect of life is sexual reproduction, which requires concerted movement. For successful mixing of the genetic material, molecular motors move the nucleus back and forth inside the cell. How motors work together to produce these large-scale movements, however, remains a mystery. To answer this question, we studied nuclear movement in fission yeast, which is driven by motor proteins pulling on microtubules. We show that motor proteins dynamically redistribute from one part of the cell to the other, generating asymmetric patterns of motors and, consequently, of forces that generate movement. By combining quantitative live cell imaging and laser ablation with a theoretical model, we find that this dynamic motor redistribution occurs purely as a result of changes in the mechanical strain sensed by the motor proteins. Our work therefore demonstrates that spatio-temporal pattern formation within a cell can occur as a result of mechanical cues (Vogel et al., 2009), which differs from conventional molecular signaling, as well as from self-organization based on a combination of biochemical reactions and diffusion.

  17. Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins

    NASA Astrophysics Data System (ADS)

    Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter

    2017-10-01

    Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.

  18. Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism

    PubMed Central

    Noji, Hiroyuki; Yengo, Christopher M.; Zhao, Zhengyi; Grainge, Ian

    2016-01-01

    SUMMARY The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA. PMID:26819321

  19. Association between White Matter Lesions and Non-Motor Symptoms in Parkinson Disease.

    PubMed

    Lee, Jeong-Yoon; Kim, Ji Sun; Jang, Wooyoung; Park, Jinse; Oh, Eungseok; Youn, Jinyoung; Park, Suyeon; Cho, Jin Whan

    2018-06-05

    There are only few studies exploring the relationship between white matter lesions (WMLs) and non-motor symptoms in Parkinson disease (PD). This study aimed to investigate the association between WMLs and the severity of non-motor symptoms in PD. The severity of motor dysfunction, cognitive impairment, and non-motor symptoms was assessed by various scales in 105 PD patients. We used a visual semiquantitative rating scale and divided the subjects into four groups: no, mild, moderate, and severe WMLs. We compared the means of all scores between the four groups and analyzed the association between the severity of WMLs and the specific domain of non-motor symptoms. The non-motor symptoms as assessed by the Non-Motor Symptoms Scale, Parkinson's Disease Questionnaire (PDQ-39), Parkinson's Disease Sleep Scale, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Neuropsychiatric Inventory (NPI), and Parkinson Fatigue Scale (PFS) were significantly worse in the patients with moderate and severe WMLs than in those without WMLs. Compared with the no WML group, the scores for motor dysfunction were significantly higher in the mild, moderate, and severe WML groups. The scores for cognitive dysfunction were significantly higher in the patients with severe WMLs than in those without WMLs. The severity of WMLs showed linear associations with PFS, BDI, BAI, NPI, and PDQ-39 scores. The severity of WMLs also correlated linearly with scores for motor and cognitive dysfunction. Among the non-motor symptoms, fatigue, depression, anxiety, and quality of life were significantly affected by WMLs in PD. Confirmation of the possible role of WMLs in non-motor symptoms associated with PD in a prospective manner may be crucial not only for understanding non-motor symptoms but also for the development of treatment strategies. © 2018 S. Karger AG, Basel.

  20. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

Top