Sample records for linear network coding

  1. Applications of Coding in Network Communications

    ERIC Educational Resources Information Center

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  2. Apply network coding for H.264/SVC multicasting

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kuo, C.-C. Jay

    2008-08-01

    In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.

  3. In-network Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection

    NASA Astrophysics Data System (ADS)

    Albano, Michele; Gao, Jie

    In a sensor network of n nodes in which k of them have sensed interesting data, we perform in-network erasure coding such that each node stores a linear combination of all the network data with random coefficients. This scheme greatly improves data resilience to node failures: as long as there are k nodes that survive an attack, all the data produced in the sensor network can be recovered with high probability. The in-network coding storage scheme also improves data collection rate by mobile mules and allows for easy scheduling of data mules.

  4. Minimal Increase Network Coding for Dynamic Networks.

    PubMed

    Zhang, Guoyin; Fan, Xu; Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.

  5. Minimal Increase Network Coding for Dynamic Networks

    PubMed Central

    Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211

  6. Deep Hashing for Scalable Image Search.

    PubMed

    Lu, Jiwen; Liong, Venice Erin; Zhou, Jie

    2017-05-01

    In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.

  7. Systematic network coding for two-hop lossy transmissions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Blostein, Steven; Chan, Wai-Yip

    2015-12-01

    In this paper, we consider network transmissions over a single or multiple parallel two-hop lossy paths. These scenarios occur in applications such as sensor networks or WiFi offloading. Random linear network coding (RLNC), where previously received packets are re-encoded at intermediate nodes and forwarded, is known to be a capacity-achieving approach for these networks. However, a major drawback of RLNC is its high encoding and decoding complexity. In this work, a systematic network coding method is proposed. We show through both analysis and simulation that the proposed method achieves higher end-to-end rate as well as lower computational cost than RLNC for finite field sizes and finite-sized packet transmissions.

  8. Statistical mechanics of broadcast channels using low-density parity-check codes.

    PubMed

    Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David

    2003-03-01

    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

  9. Read-Write-Codes: An Erasure Resilient Encoding System for Flexible Reading and Writing in Storage Networks

    NASA Astrophysics Data System (ADS)

    Mense, Mario; Schindelhauer, Christian

    We introduce the Read-Write-Coding-System (RWC) - a very flexible class of linear block codes that generate efficient and flexible erasure codes for storage networks. In particular, given a message x of k symbols and a codeword y of n symbols, an RW code defines additional parameters k ≤ r,w ≤ n that offer enhanced possibilities to adjust the fault-tolerance capability of the code. More precisely, an RWC provides linear left(n,k,dright)-codes that have (a) minimum distance d = n - r + 1 for any two codewords, and (b) for each codeword there exists a codeword for each other message with distance of at most w. Furthermore, depending on the values r,w and the code alphabet, different block codes such as parity codes (e.g. RAID 4/5) or Reed-Solomon (RS) codes (if r = k and thus, w = n) can be generated. In storage networks in which I/O accesses are very costly and redundancy is crucial, this flexibility has considerable advantages as r and w can optimally be adapted to read or write intensive applications; only w symbols must be updated if the message x changes completely, what is different from other codes which always need to rewrite y completely as x changes. In this paper, we first state a tight lower bound and basic conditions for all RW codes. Furthermore, we introduce special RW codes in which all mentioned parameters are adjustable even online, that is, those RW codes are adaptive to changing demands. At last, we point out some useful properties regarding safety and security of the stored data.

  10. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    PubMed

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  11. On optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemes

    NASA Astrophysics Data System (ADS)

    Dao, Thanh Hai

    2018-01-01

    Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.

  12. Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  13. Cascade Optimization for Aircraft Engines With Regression and Neural Network Analysis - Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.

  14. Linear chirp phase perturbing approach for finding binary phased codes

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2017-05-01

    Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.

  15. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

    PubMed Central

    Bharioke, Arjun; Chklovskii, Dmitri B.

    2015-01-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  16. Inter-synaptic learning of combination rules in a cortical network model

    PubMed Central

    Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent

    2014-01-01

    Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529

  17. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  18. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    NASA Astrophysics Data System (ADS)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  19. Coding Instead of Splitting - Algebraic Combinations in Time and Space

    DTIC Science & Technology

    2016-06-09

    sources message. For certain classes of two-unicast-Z networks, we show that the rate-tuple ( N ,1) is achievable as long as the individual source...destination cuts for the two source-destination pairs are respectively at least as large as N and 1, and the generalized network sharing cut - a bound...previously defined by Kamath et. al. - is at least as large as N + 1. We show this through a novel achievable scheme which is based on random linear coding at

  20. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  1. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    PubMed

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  2. Stochastic Control of Multi-Scale Networks: Modeling, Analysis and Algorithms

    DTIC Science & Technology

    2014-10-20

    Theory, (02 2012): 0. doi: B. T. Swapna, Atilla Eryilmaz, Ness B. Shroff. Throughput-Delay Analysis of Random Linear Network Coding for Wireless ... Wireless Sensor Networks and Effects of Long-Range Dependent Data, Sequential Analysis , (10 2012): 0. doi: 10.1080/07474946.2012.719435 Stefano...Sequential Analysis , (10 2012): 0. doi: John S. Baras, Shanshan Zheng. Sequential Anomaly Detection in Wireless Sensor Networks andEffects of Long

  3. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    PubMed Central

    Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  4. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    PubMed

    Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N

    2015-11-01

    Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  5. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    NASA Astrophysics Data System (ADS)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  6. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  7. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    DOE PAGES

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  8. Anisotropic connectivity implements motion-based prediction in a spiking neural network.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U

    2013-01-01

    Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.

  9. Graphing in Groups: Learning about Lines in a Collaborative Classroom Network Environment

    ERIC Educational Resources Information Center

    White, Tobin; Wallace, Matthew; Lai, Kevin

    2012-01-01

    This article presents a design experiment in which we explore new structures for classroom collaboration supported by a classroom network of handheld graphing calculators. We describe a design for small group investigations of linear functions and present findings from its implementation in three high school algebra classrooms. Our coding of the…

  10. MATIN: A Random Network Coding Based Framework for High Quality Peer-to-Peer Live Video Streaming

    PubMed Central

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay. PMID:23940530

  11. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  12. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    PubMed

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  13. Deep Learning Methods for Improved Decoding of Linear Codes

    NASA Astrophysics Data System (ADS)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  14. Entanglement entropy from tensor network states for stabilizer codes

    NASA Astrophysics Data System (ADS)

    He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas

    2018-03-01

    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.

  15. Coding for Parallel Links to Maximize the Expected Value of Decodable Messages

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Chang, Christopher S.

    2011-01-01

    When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from spacecraft under certain conditions.

  16. Predictive Coding of Dynamical Variables in Balanced Spiking Networks

    PubMed Central

    Boerlin, Martin; Machens, Christian K.; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated. PMID:24244113

  17. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  18. Computational models of location-invariant orthographic processing

    NASA Astrophysics Data System (ADS)

    Dandurand, Frédéric; Hannagan, Thomas; Grainger, Jonathan

    2013-03-01

    We trained three topologies of backpropagation neural networks to discriminate 2000 words (lexical representations) presented at different positions of a horizontal letter array. The first topology (zero-deck) contains no hidden layer, the second (one-deck) has a single hidden layer, and for the last topology (two-deck), the task is divided in two subtasks implemented as two stacked neural networks, with explicit word-centred letters as intermediate representations. All topologies successfully simulated two key benchmark phenomena observed in skilled human reading: transposed-letter priming and relative-position priming. However, the two-deck topology most accurately simulated the ability to discriminate words from nonwords, while containing the fewest connection weights. We analysed the internal representations after training. Zero-deck networks implement a letter-based scheme with a position bias to differentiate anagrams. One-deck networks implement a holographic overlap coding in which representations are essentially letter-based and words are linear combinations of letters. Two-deck networks also implement holographic-coding.

  19. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks

    PubMed Central

    Capurro, Alberto; Baroni, Fabiano; Olsson, Shannon B.; Kuebler, Linda S.; Karout, Salah; Hansson, Bill S.; Pearce, Timothy C.

    2012-01-01

    Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies. PMID:22529799

  20. lpNet: a linear programming approach to reconstruct signal transduction networks.

    PubMed

    Matos, Marta R A; Knapp, Bettina; Kaderali, Lars

    2015-10-01

    With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor. This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures. bettina.knapp@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Super-linear Precision in Simple Neural Population Codes

    NASA Astrophysics Data System (ADS)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  2. Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation

    NASA Astrophysics Data System (ADS)

    Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.

    2010-01-01

    To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  4. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  5. Diffusion and Equilibrium Swelling of Macromolecular Networks by Their Linear Homologs.

    DTIC Science & Technology

    1982-10-01

    C/ . 29 OYN 6/81 DISTRIBUTION LIST No. Copies No. Copies Dr. L.V. Schmtdt 1 Dr. F. Roberto 1 Assistant Secretary of the Navy Code AFRPL MKPA (RE, and...Scientific Advisor Directorate of Aerospace Sciences Commandant of the Marine Corps Bolling Air Force Base Code RD-1 Washington, D.C. 20332 Washington...Directorate of Chemical Sciences Arlington VA 22217 Bolling Air Force Base t VWashington, D.C. 20332 Mr. David Siegel Office of Naval Research Dr. John S

  6. Linear-time general decoding algorithm for the surface code

    NASA Astrophysics Data System (ADS)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  7. Dynamical and topological aspects of consensus formation in complex networks

    NASA Astrophysics Data System (ADS)

    Chacoma, A.; Mato, G.; Kuperman, M. N.

    2018-04-01

    The present work analyzes a particular scenario of consensus formation, where the individuals navigate across an underlying network defining the topology of the walks. The consensus, associated to a given opinion coded as a simple message, is generated by interactions during the agent's walk and manifest itself in the collapse of the various opinions into a single one. We analyze how the topology of the underlying networks and the rules of interaction between the agents promote or inhibit the emergence of this consensus. We find that non-linear interaction rules are required to form consensus and that consensus is more easily achieved in networks whose degree distribution is narrower.

  8. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    PubMed

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  9. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.

    PubMed

    Schmitt, Michael

    2004-09-01

    We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.

  10. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  11. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor

    PubMed Central

    Enuka, Yehoshua; Lauriola, Mattia; Feldman, Morris E.; Sas-Chen, Aldema; Ulitsky, Igor; Yarden, Yosef

    2016-01-01

    Circular RNAs (circRNAs) are widespread circles of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and microRNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms with no detectable circRNAs. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. PMID:26657629

  12. Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties.

    PubMed

    Herrera-Ibatá, Diana María; Pazos, Alejandro; Orbegozo-Medina, Ricardo Alfredo; Romero-Durán, Francisco Javier; González-Díaz, Humberto

    2015-06-01

    Using computational algorithms to design tailored drug cocktails for highly active antiretroviral therapy (HAART) on specific populations is a goal of major importance for both pharmaceutical industry and public health policy institutions. New combinations of compounds need to be predicted in order to design HAART cocktails. On the one hand, there are the biomolecular factors related to the drugs in the cocktail (experimental measure, chemical structure, drug target, assay organisms, etc.); on the other hand, there are the socioeconomic factors of the specific population (income inequalities, employment levels, fiscal pressure, education, migration, population structure, etc.) to study the relationship between the socioeconomic status and the disease. In this context, machine learning algorithms, able to seek models for problems with multi-source data, have to be used. In this work, the first artificial neural network (ANN) model is proposed for the prediction of HAART cocktails, to halt AIDS on epidemic networks of U.S. counties using information indices that codify both biomolecular and several socioeconomic factors. The data was obtained from at least three major sources. The first dataset included assays of anti-HIV chemical compounds released to ChEMBL. The second dataset is the AIDSVu database of Emory University. AIDSVu compiled AIDS prevalence for >2300 U.S. counties. The third data set included socioeconomic data from the U.S. Census Bureau. Three scales or levels were employed to group the counties according to the location or population structure codes: state, rural urban continuum code (RUCC) and urban influence code (UIC). An analysis of >130,000 pairs (network links) was performed, corresponding to AIDS prevalence in 2310 counties in U.S. vs. drug cocktails made up of combinations of ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 possible experimental measures. The best model found with the original data was a linear neural network (LNN) with AUROC>0.80 and accuracy, specificity, and sensitivity≈77% in training and external validation series. The change of the spatial and population structure scale (State, UIC, or RUCC codes) does not affect the quality of the model. Unbalance was detected in all the models found comparing positive/negative cases and linear/non-linear model accuracy ratios. Using synthetic minority over-sampling technique (SMOTE), data pre-processing and machine-learning algorithms implemented into the WEKA software, more balanced models were found. In particular, a multilayer perceptron (MLP) with AUROC=97.4% and precision, recall, and F-measure >90% was found. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Analysis of the possibility of using G.729 codec for steganographic transmission

    NASA Astrophysics Data System (ADS)

    Piotrowski, Zbigniew; Ciołek, Michał; Dołowski, Jerzy; Wojtuń, Jarosław

    2017-04-01

    Network steganography is dedicated in particular for those communication services for which there are no bridges or nodes carrying out unintentional attacks on steganographic sequence. In order to set up a hidden communication channel the method of data encoding and decoding was implemented using code books of codec G.729. G.729 codec includes, in its construction, linear prediction vocoder CS-ACELP (Conjugate Structure Algebraic Code Excited Linear Prediction), and by modifying the binary content of the codebook, it is easy to change a binary output stream. The article describes the results of research on the selection of these bits of the codebook codec G.729 which the negation of the least have influence to the loss of quality and fidelity of the output signal. The study was performed with the use of subjective and objective listening tests.

  14. A computational geometry approach to pore network construction for granular packings

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  15. Surveying multidisciplinary aspects in real-time distributed coding for Wireless Sensor Networks.

    PubMed

    Braccini, Carlo; Davoli, Franco; Marchese, Mario; Mongelli, Maurizio

    2015-01-27

    Wireless Sensor Networks (WSNs), where a multiplicity of sensors observe a physical phenomenon and transmit their measurements to one or more sinks, pertain to the class of multi-terminal source and channel coding problems of Information Theory. In this category, "real-time" coding is often encountered for WSNs, referring to the problem of finding the minimum distortion (according to a given measure), under transmission power constraints, attainable by encoding and decoding functions, with stringent limits on delay and complexity. On the other hand, the Decision Theory approach seeks to determine the optimal coding/decoding strategies or some of their structural properties. Since encoder(s) and decoder(s) possess different information, though sharing a common goal, the setting here is that of Team Decision Theory. A more pragmatic vision rooted in Signal Processing consists of fixing the form of the coding strategies (e.g., to linear functions) and, consequently, finding the corresponding optimal decoding strategies and the achievable distortion, generally by applying parametric optimization techniques. All approaches have a long history of past investigations and recent results. The goal of the present paper is to provide the taxonomy of the various formulations, a survey of the vast related literature, examples from the authors' own research, and some highlights on the inter-play of the different theories.

  16. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.

  17. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  18. Supervised dictionary learning for inferring concurrent brain networks.

    PubMed

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  19. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  20. Machine learning topological states

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  1. PubMed

    Trinker, Horst

    2011-10-28

    We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859-2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound.

  2. Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.

    PubMed

    Sokoloski, Sacha

    2017-09-01

    In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.

  3. Neuronal and network computation in the brain

    NASA Astrophysics Data System (ADS)

    Babloyantz, A.

    1999-03-01

    The concepts and methods of non-linear dynamics have been a powerful tool for studying some gamow aspects of brain dynamics. In this paper we show how, from time series analysis of electroencepholograms in sick and healthy subjects, chaotic nature of brain activity could be unveiled. This finding gave rise to the concept of spatiotemporal cortical chaotic networks which in turn was the foundation for a simple brain-like device which is able to become attentive, perform pattern recognition and motion detection. A new method of time series analysis is also proposed which demonstrates for the first time the existence of neuronal code in interspike intervals of coclear cells.

  4. Optical network security using unipolar Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila

    2018-04-01

    Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).

  5. A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink

    NASA Technical Reports Server (NTRS)

    Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.

    2000-01-01

    The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.

  6. Inference of gene regulatory networks from genome-wide knockout fitness data

    PubMed Central

    Wang, Liming; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2013-01-01

    Motivation: Genome-wide fitness is an emerging type of high-throughput biological data generated for individual organisms by creating libraries of knockouts, subjecting them to broad ranges of environmental conditions, and measuring the resulting clone-specific fitnesses. Since fitness is an organism-scale measure of gene regulatory network behaviour, it may offer certain advantages when insights into such phenotypical and functional features are of primary interest over individual gene expression. Previous works have shown that genome-wide fitness data can be used to uncover novel gene regulatory interactions, when compared with results of more conventional gene expression analysis. Yet, to date, few algorithms have been proposed for systematically using genome-wide mutant fitness data for gene regulatory network inference. Results: In this article, we describe a model and propose an inference algorithm for using fitness data from knockout libraries to identify underlying gene regulatory networks. Unlike most prior methods, the presented approach captures not only structural, but also dynamical and non-linear nature of biomolecular systems involved. A state–space model with non-linear basis is used for dynamically describing gene regulatory networks. Network structure is then elucidated by estimating unknown model parameters. Unscented Kalman filter is used to cope with the non-linearities introduced in the model, which also enables the algorithm to run in on-line mode for practical use. Here, we demonstrate that the algorithm provides satisfying results for both synthetic data as well as empirical measurements of GAL network in yeast Saccharomyces cerevisiae and TyrR–LiuR network in bacteria Shewanella oneidensis. Availability: MATLAB code and datasets are available to download at http://www.duke.edu/∼lw174/Fitness.zip and http://genomics.lbl.gov/supplemental/fitness-bioinf/ Contact: wangx@ee.columbia.edu or mssamoilov@lbl.gov Supplementary information: Supplementary data are available at Bioinformatics online PMID:23271269

  7. Network analysis for the visualization and analysis of qualitative data.

    PubMed

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  9. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    PubMed

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  10. Deep generative learning of location-invariant visual word recognition.

    PubMed

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective-is largely based on letter-level information.

  11. Neuron Learning to Network Organization.

    DTIC Science & Technology

    1983-12-20

    02912 N 0-8 1t COTOLIGOF 1HV AflRS 12. REPORT OATE Pesne an ann Research Program December 20, 1983 Office of Naval Research , Code 442PT 13. NUMBER...visual cortc\\ from R. Cajal, Histologie du Systete Nerveux. mostly hard-wired and perform a great variety of control functions took hundreds of millions of...certain sense there is much that is known. A set of coupled non -linear differential equations. including time delays, can be written down that in

  12. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.

    PubMed

    Deng, Yue; Zenil, Hector; Tegnér, Jesper; Kiani, Narsis A

    2017-12-15

    The use of differential equations (ODE) is one of the most promising approaches to network inference. The success of ODE-based approaches has, however, been limited, due to the difficulty in estimating parameters and by their lack of scalability. Here, we introduce a novel method and pipeline to reverse engineer gene regulatory networks from gene expression of time series and perturbation data based upon an improvement on the calculation scheme of the derivatives and a pre-filtration step to reduce the number of possible links. The method introduces a linear differential equation model with adaptive numerical differentiation that is scalable to extremely large regulatory networks. We demonstrate the ability of this method to outperform current state-of-the-art methods applied to experimental and synthetic data using test data from the DREAM4 and DREAM5 challenges. Our method displays greater accuracy and scalability. We benchmark the performance of the pipeline with respect to dataset size and levels of noise. We show that the computation time is linear over various network sizes. The Matlab code of the HiDi implementation is available at: www.complexitycalculator.com/HiDiScript.zip. hzenilc@gmail.com or narsis.kiani@ki.se. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; An Iterative Decoding Algorithm for Linear Block Codes Based on a Low-Weight Trellis Search

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.

  14. Construction of Protograph LDPC Codes with Linear Minimum Distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  15. Hybrid services efficient provisioning over the network coding-enabled elastic optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen

    2017-03-01

    As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.

  16. State estimation for networked control systems using fixed data rates

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Quan; Jin, Fang

    2017-07-01

    This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.

  17. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  18. An Energy Model of Place Cell Network in Three Dimensional Space.

    PubMed

    Wang, Yihong; Xu, Xuying; Wang, Rubin

    2018-01-01

    Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.

  19. Theory of correlation in a network with synaptic depression

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato

    2012-01-01

    Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.

  20. Variable weight spectral amplitude coding for multiservice OCDMA networks

    NASA Astrophysics Data System (ADS)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  1. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.

    PubMed

    Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai

    2015-12-01

    Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.

  2. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive.

    PubMed

    Encke, Jörg; Hemmert, Werner

    2018-01-01

    The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.

  3. Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.

    PubMed

    Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J

    2015-09-01

    Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.

  5. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less

  6. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound

    NASA Astrophysics Data System (ADS)

    Li, Ruihu; Li, Xueliang; Guo, Luobin

    2015-12-01

    The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code {C}, we show that the parameters of the EAQECC that EA-stabilized by the dual of {C} can be determined by a zero radical quaternary code induced from {C}, and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our [[n,k,d_{ea};c

  7. ARC-2001-ACD01-0018

    NASA Image and Video Library

    2001-02-16

    New Center Network Deployment ribbon Cutting: from left to right: Maryland Edwards, Code JT upgrade project deputy task manager; Ed Murphy, foundry networks systems engineer; Bohdan Cmaylo, Code JT upgrade project task manager, Scott Santiago, Division Chief, Code JT; Greg Miller, Raytheon Network engineer and Frank Daras, Raytheon network engineering manager.

  8. Recurrent Coupling Improves Discrimination of Temporal Spike Patterns

    PubMed Central

    Yuan, Chun-Wei; Leibold, Christian

    2012-01-01

    Despite the ubiquitous presence of recurrent synaptic connections in sensory neuronal systems, their general functional purpose is not well understood. A recent conceptual advance has been achieved by theories of reservoir computing in which recurrent networks have been proposed to generate short-term memory as well as to improve neuronal representation of the sensory input for subsequent computations. Here, we present a numerical study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear classification task. It is found that both types of coupling improve the ability to discriminate temporal spike patterns as compared to a purely feed-forward system, although in different ways. For a large class of inhibitory networks, the network’s performance is optimal as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting population code. Thereby the contribution of inactive neurons to the neural code is found to be even more informative than that of the active neurons, generating an inherent robustness of classification performance against temporal jitter of the input spikes. Excitatory couplings are found to not only produce a short-term memory buffer but also to improve linear separability of the population patterns by evoking more irregular firing as compared to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing becomes more variable, and pattern separability improves. We argue that the proposed paradigm is particularly well-suited as a conceptual framework for processing of sensory information in the auditory pathway. PMID:22586392

  9. Investigation on the Capability of a Non Linear CFD Code to Simulate Wave Propagation

    DTIC Science & Technology

    2003-02-01

    Linear CFD Code to Simulate Wave Propagation Pedro de la Calzada Pablo Quintana Manuel Antonio Burgos ITP, S.A. Parque Empresarial Fernando avenida...mechanisms above presented, simulation of unsteady aerodynamics with linear and nonlinear CFD codes is an ongoing activity within the turbomachinery industry

  10. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  11. Network Coding in Relay-based Device-to-Device Communications

    PubMed Central

    Huang, Jun; Gharavi, Hamid; Yan, Huifang; Xing, Cong-cong

    2018-01-01

    Device-to-Device (D2D) communications has been realized as an effective means to improve network throughput, reduce transmission latency, and extend cellular coverage in 5G systems. Network coding is a well-established technique known for its capability to reduce the number of retransmissions. In this article, we review state-of-the-art network coding in relay-based D2D communications, in terms of application scenarios and network coding techniques. We then apply two representative network coding techniques to dual-hop D2D communications and present an efficient relay node selecting mechanism as a case study. We also outline potential future research directions, according to the current research challenges. Our intention is to provide researchers and practitioners with a comprehensive overview of the current research status in this area and hope that this article may motivate more researchers to participate in developing network coding techniques for different relay-based D2D communications scenarios. PMID:29503504

  12. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  13. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  14. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    2000-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAFT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAFT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  15. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAPT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAPT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  16. Research In Nonlinear Flight Control for Tiltrotor Aircraft Operating in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Rysdyk, R.

    1996-01-01

    The research during the first year of the effort focused on the implementation of the recently developed combination of neural net work adaptive control and feedback linearization. At the core of this research is the comprehensive simulation code Generic Tiltrotor Simulator (GTRS) of the XV-15 tilt rotor aircraft. For this research the GTRS code has been ported to a Fortran environment for use on PC. The emphasis of the research is on terminal area approach procedures, including conversion from aircraft to helicopter configuration. This report focuses on the longitudinal control which is the more challenging case for augmentation. Therefore, an attitude command attitude hold (ACAH) control augmentation is considered which is typically used for the pitch channel during approach procedures. To evaluate the performance of the neural network adaptive control architecture it was necessary to develop a set of low order pilot models capable of performing such tasks as, follow desired altitude profiles, follow desired speed profiles, operate on both sides of powercurve, convert, including flaps as well as mastangle changes, operate with different stability and control augmentation system (SCAS) modes. The pilot models are divided in two sets, one for the backside of the powercurve and one for the frontside. These two sets are linearly blended with speed. The mastangle is also scheduled with speed. Different aspects of the proposed architecture for the neural network (NNW) augmented model inversion were also demonstrated. The demonstration involved implementation of a NNW architecture using linearized models from GTRS, including rotor states, to represent the XV-15 at various operating points. The dynamics used for the model inversion were based on the XV-15 operating at 30 Kts, with residualized rotor dynamics, and not including cross coupling between translational and rotational states. The neural network demonstrated ACAH control under various circumstances. Future efforts will include the implementation into the Fortran environment of GTRS, including pilot modeling and NNW augmentation for the lateral channels. These efforts should lead to the development of architectures that will provide for fully automated approach, using similar strategies.

  17. Space coding for sensorimotor transformations can emerge through unsupervised learning.

    PubMed

    De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco

    2012-08-01

    The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

  18. A Large Scale Code Resolution Service Network in the Internet of Things

    PubMed Central

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-01-01

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207

  19. A large scale code resolution service network in the Internet of Things.

    PubMed

    Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan

    2012-11-07

    In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.

  20. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  1. APINetworks Java. A Java approach to the efficient treatment of large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Camelia; Niño, Alfonso; Reyes, Sebastián; Castillo, Miriam

    2016-10-01

    We present a new version of the core structural package of our Application Programming Interface, APINetworks, for the treatment of complex networks in arbitrary computational environments. The new version is written in Java and presents several advantages over the previous C++ version: the portability of the Java code, the easiness of object-oriented design implementations, and the simplicity of memory management. In addition, some additional data structures are introduced for storing the sets of nodes and edges. Also, by resorting to the different garbage collectors currently available in the JVM the Java version is much more efficient than the C++ one with respect to memory management. In particular, the G1 collector is the most efficient one because of the parallel execution of G1 and the Java application. Using G1, APINetworks Java outperforms the C++ version and the well-known NetworkX and JGraphT packages in the building and BFS traversal of linear and complete networks. The better memory management of the present version allows for the modeling of much larger networks.

  2. Rectified factor networks for biclustering of omics data.

    PubMed

    Clevert, Djork-Arné; Unterthiner, Thomas; Povysil, Gundula; Hochreiter, Sepp

    2017-07-15

    Biclustering has become a major tool for analyzing large datasets given as matrix of samples times features and has been successfully applied in life sciences and e-commerce for drug design and recommender systems, respectively. actor nalysis for cluster cquisition (FABIA), one of the most successful biclustering methods, is a generative model that represents each bicluster by two sparse membership vectors: one for the samples and one for the features. However, FABIA is restricted to about 20 code units because of the high computational complexity of computing the posterior. Furthermore, code units are sometimes insufficiently decorrelated and sample membership is difficult to determine. We propose to use the recently introduced unsupervised Deep Learning approach Rectified Factor Networks (RFNs) to overcome the drawbacks of existing biclustering methods. RFNs efficiently construct very sparse, non-linear, high-dimensional representations of the input via their posterior means. RFN learning is a generalized alternating minimization algorithm based on the posterior regularization method which enforces non-negative and normalized posterior means. Each code unit represents a bicluster, where samples for which the code unit is active belong to the bicluster and features that have activating weights to the code unit belong to the bicluster. On 400 benchmark datasets and on three gene expression datasets with known clusters, RFN outperformed 13 other biclustering methods including FABIA. On data of the 1000 Genomes Project, RFN could identify DNA segments which indicate, that interbreeding with other hominins starting already before ancestors of modern humans left Africa. https://github.com/bioinf-jku/librfn. djork-arne.clevert@bayer.com or hochreit@bioinf.jku.at. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot

    PubMed Central

    Raman, Rajani; Sarkar, Sandip

    2016-01-01

    Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812

  4. Extension of analog network coding in wireless information exchange

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Huang, Jiaqing

    2012-01-01

    Ever since the concept of analog network coding(ANC) was put forward by S.Katti, much attention has been focused on how to utilize analog network coding to take advantage of wireless interference, which used to be considered generally harmful, to improve throughput performance. Previously, only the case of two nodes that need to exchange information has been fully discussed while the issue of extending analog network coding to more than three nodes remains undeveloped. In this paper, we propose a practical transmission scheme to extend analog network coding to more than two nodes that need to exchange information among themselves. We start with the case of three nodes that need to exchange information and demonstrate that through utilizing our algorithm, the throughput can achieve 33% and 20% increase compared with that of traditional transmission scheduling and digital network coding, respectively. Then, we generalize the algorithm so that it can fit for occasions with any number of nodes. We also discuss some technical issues and throughput analysis as well as the bit error rate.

  5. Protograph LDPC Codes with Node Degrees at Least 3

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher

    2006-01-01

    In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  6. Delay Analysis of Car-to-Car Reliable Data Delivery Strategies Based on Data Mulling with Network Coding

    NASA Astrophysics Data System (ADS)

    Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok

    Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.

  7. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 836 Contract Award (Version 003010)

    DTIC Science & Technology

    1993-01-01

    upon designation of DoD Activity Address Code (DoDAAC) or other code coordinated with the value-added network (VAN). Mandatory ISA06 106 Interc.ange...coordinated with the value-added network (VAN). Non-DoD activities use identification code qualified by ISA05 and coordinated with the VAN. Mandatory...designation of DoD Activity Address Code (DoDAAC) or other code coordinated with the value-added network (VAN). Mandatory ISA08 107 Interchange Receiver

  8. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  9. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  10. The queueing perspective of asynchronous network coding in two-way relay network

    NASA Astrophysics Data System (ADS)

    Liang, Yaping; Chang, Qing; Li, Xianxu

    2018-04-01

    Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.

  11. Ensemble Weight Enumerators for Protograph LDPC Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush

    2006-01-01

    Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.

  12. Single-shot secure quantum network coding on butterfly network with free public communication

    NASA Astrophysics Data System (ADS)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  13. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  14. Model-based design of RNA hybridization networks implemented in living cells

    PubMed Central

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter

    2017-01-01

    Abstract Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. PMID:28934501

  15. Generalized Bezout's Theorem and its applications in coding theory

    NASA Technical Reports Server (NTRS)

    Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.

  16. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  17. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  18. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  19. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.

  20. Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu

    Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.

  1. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  2. Neural network decoder for quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  3. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  4. Network perturbation by recurrent regulatory variants in cancer

    PubMed Central

    Cho, Ara; Lee, Insuk; Choi, Jung Kyoon

    2017-01-01

    Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes. PMID:28333928

  5. A Novel Design of Reconfigurable Wavelength-Time Optical Codes to Enhance Security in Optical CDMA Networks

    NASA Astrophysics Data System (ADS)

    Nasaruddin; Tsujioka, Tetsuo

    An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.

  6. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    PubMed

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  7. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the modelmore » size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.« less

  8. Continuous-variable quantum network coding for coherent states

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Li, Ke; Liu, Jian-wei

    2017-04-01

    As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.

  9. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    PubMed

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  10. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.

  11. Community Alcohol Outlet Density and Underage Drinking

    PubMed Central

    Chen, Meng-Jinn; Grube, Joel W.; Gruenewald, Paul J.

    2009-01-01

    Aim This study examined how community alcohol outlet density may be associated with drinking among youths. Methods Longitudinal data were collected from 1091 adolescents (aged 14–16 at baseline) recruited from 50 zip codes in California with varying levels of alcohol outlet density and median household income. Hierarchical linear models were used to examine the associations between zip code alcohol outlet density and frequency rates of general alcohol use and excessive drinking, taking into account zip code median household income and individual-level variables (age, gender, race/ethnicity, personal income, mobility, and perceived drinking by parents and peers). Findings When all other factors were controlled, higher initial levels of drinking and excessive drinking were observed among youths residing in zip codes with higher alcohol outlet densities. Growth in drinking and excessive drinking was on average more rapid in zip codes with lower alcohol outlet densities. The relation of zip code alcohol outlet density with drinking appeared to be mitigated by having friends with access to a car. Conclusion Alcohol outlet density may play a significant role in initiation of underage drinking during early teen ages, especially when youths have limited mobility. Youth who reside in areas with low alcohol outlet density may overcome geographic constraints through social networks that increase their mobility and the ability to seek alcohol and drinking opportunities beyond the local community. PMID:20078485

  12. Recent advances in coding theory for near error-free communications

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.

    1991-01-01

    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.

  13. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  14. Medical reliable network using concatenated channel codes through GSM network.

    PubMed

    Ahmed, Emtithal; Kohno, Ryuji

    2013-01-01

    Although the 4(th) generation (4G) of global mobile communication network, i.e. Long Term Evolution (LTE) coexisting with the 3(rd) generation (3G) has successfully started; the 2(nd) generation (2G), i.e. Global System for Mobile communication (GSM) still playing an important role in many developing countries. Without any other reliable network infrastructure, GSM can be applied for tele-monitoring applications, where high mobility and low cost are necessary. A core objective of this paper is to introduce the design of a more reliable and dependable Medical Network Channel Code system (MNCC) through GSM Network. MNCC design based on simple concatenated channel code, which is cascade of an inner code (GSM) and an extra outer code (Convolution Code) in order to protect medical data more robust against channel errors than other data using the existing GSM network. In this paper, the MNCC system will provide Bit Error Rate (BER) equivalent to the BER for medical tele monitoring of physiological signals, which is 10(-5) or less. The performance of the MNCC has been proven and investigated using computer simulations under different channels condition such as, Additive White Gaussian Noise (AWGN), Rayleigh noise and burst noise. Generally the MNCC system has been providing better performance as compared to GSM.

  15. Computer Code for Transportation Network Design and Analysis

    DOT National Transportation Integrated Search

    1977-01-01

    This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...

  16. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

  17. Collective Behavior of Place and Non-place Neurons in the Hippocampal Network.

    PubMed

    Meshulam, Leenoy; Gauthier, Jeffrey L; Brody, Carlos D; Tank, David W; Bialek, William

    2017-12-06

    Discussions of the hippocampus often focus on place cells, but many neurons are not place cells in any given environment. Here we describe the collective activity in such mixed populations, treating place and non-place cells on the same footing. We start with optical imaging experiments on CA1 in mice as they run along a virtual linear track and use maximum entropy methods to approximate the distribution of patterns of activity in the population, matching the correlations between pairs of cells but otherwise assuming as little structure as possible. We find that these simple models accurately predict the activity of each neuron from the state of all the other neurons in the network, regardless of how well that neuron codes for position. Our results suggest that understanding the neural activity may require not only knowledge of the external variables modulating it but also of the internal network state. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Smart photonic networks and computer security for image data

    NASA Astrophysics Data System (ADS)

    Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.

    1998-02-01

    Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.

  19. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  20. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  1. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  2. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †

    PubMed Central

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-01-01

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675

  3. Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.

    PubMed

    Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar

    2015-06-29

    Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.

  4. Digital video technologies and their network requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. P. Tsang; H. Y. Chen; J. M. Brandt

    1999-11-01

    Coded digital video signals are considered to be one of the most difficult data types to transport due to their real-time requirements and high bit rate variability. In this study, the authors discuss the coding mechanisms incorporated by the major compression standards bodies, i.e., JPEG and MPEG, as well as more advanced coding mechanisms such as wavelet and fractal techniques. The relationship between the applications which use these coding schemes and their network requirements are the major focus of this study. Specifically, the authors relate network latency, channel transmission reliability, random access speed, buffering and network bandwidth with the variousmore » coding techniques as a function of the applications which use them. Such applications include High-Definition Television, Video Conferencing, Computer-Supported Collaborative Work (CSCW), and Medical Imaging.« less

  5. Superluminal Labview Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, Robert; Marksteiner, Quinn; Quenzer, Jonathan

    2012-03-26

    This labview code is used to set the phase and amplitudes on the 72 antenna of the superluminal machine, and to map out the radiation patter from the superluminal antenna.Each antenna radiates a modulated signal consisting of two separate frequencies, in the range of 2 GHz to 2.8 GHz. The phases and amplitudes from each antenna are controlled by a pair of AD8349 vector modulators (VMs). These VMs set the phase and amplitude of a high frequency signal using a set of four DC inputs, which are controlled by Linear Technologies LTC1990 digital to analog converters (DACs). The labview codemore » controls these DACs through an 8051 microcontroller.This code also monitors the phases and amplitudes of the 72 channels. Near each antenna, there is a coupler that channels a portion of the power into a binary network. Through a labview controlled switching array, any of the 72 coupled signals can be channeled in to the Tektronix TDS 7404 digital oscilloscope. Then the labview code takes an FFT of the signal, and compares it to the FFT of a reference signal in the oscilloscope to determine the magnitude and phase of each sideband of the signal. The code compensates for phase and amplitude errors introduced by differences in cable lengths.The labview code sets each of the 72 elements to a user determined phase and amplitude. For each element, the code runs an iterative procedure, where it adjusts the DACs until the correct phases and amplitudes have been reached.« less

  6. Simulation of continuously logical base cells (CL BC) with advanced functions for analog-to-digital converters and image processors

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-10-01

    The paper considers results of design and modeling of continuously logical base cells (CL BC) based on current mirrors (CM) with functions of preliminary analogue and subsequent analogue-digital processing for creating sensor multichannel analog-to-digital converters (SMC ADCs) and image processors (IP). For such with vector or matrix parallel inputs-outputs IP and SMC ADCs it is needed active basic photosensitive cells with an extended electronic circuit, which are considered in paper. Such basic cells and ADCs based on them have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the CL BC and ADC of photocurrents and their various possible implementations and its simulations. We consider CL BC for methods of selection and rank preprocessing and linear array of ADCs with conversion to binary codes and Gray codes. In contrast to our previous works here we will dwell more on analogue preprocessing schemes for signals of neighboring cells. Let us show how the introduction of simple nodes based on current mirrors extends the range of functions performed by the image processor. Each channel of the structure consists of several digital-analog cells (DC) on 15-35 CMOS. The amount of DC does not exceed the number of digits of the formed code, and for an iteration type, only one cell of DC, complemented by the device of selection and holding (SHD), is required. One channel of ADC with iteration is based on one DC-(G) and SHD, and it has only 35 CMOS transistors. In such ADCs easily parallel code can be realized and also serial-parallel output code. The circuits and simulation results of their design with OrCAD are shown. The supply voltage of the DC is 1.8÷3.3V, the range of an input photocurrent is 0.1÷24μA, the transformation time is 20÷30nS at 6-8 bit binary or Gray codes. The general power consumption of the ADC with iteration is only 50÷100μW, if the maximum input current is 4μA. Such simple structure of linear array of ADCs with low power consumption and supply voltage 3.3V, and at the same time with good dynamic characteristics (frequency of digitization even for 1.5μm CMOS-technologies is 40÷50 MHz, and can be increased up to 10 times) and accuracy characteristics are show. The SMC ADCs based on CL BC and CM opens new prospects for realization of linear and matrix IP and photo-electronic structures with matrix operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers.

  7. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  8. Spike Code Flow in Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime; Kamimura, Takuya; Yagi, Yasushi; Mizuno-Matsumoto, Yuko; Chen, Yen-Wei

    2016-01-01

    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of "1101" and "1011," which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the "maximum cross-correlations" among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network.

  9. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  10. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J < 10-3, where J is the hydraulic gradient. When the fluid flow is in a linear regime (i.e., J < 10-4), the relative deviation of equivalent permeability induced by shear, δ2, is linearly correlated with J with small variations, while for fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when solving fluid flow problems in fracture networks.

  11. Model-based design of RNA hybridization networks implemented in living cells.

    PubMed

    Rodrigo, Guillermo; Prakash, Satya; Shen, Shensi; Majer, Eszter; Daròs, José-Antonio; Jaramillo, Alfonso

    2017-09-19

    Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermodynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  13. Soft-Input Soft-Output Modules for the Construction and Distributed Iterative Decoding of Code Networks

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1998-01-01

    Soft-input soft-output building blocks (modules) are presented to construct and iteratively decode in a distributed fashion code networks, a new concept that includes, and generalizes, various forms of concatenated coding schemes.

  14. Three-tier multi-granularity switching system based on PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Sun, Hao; Liu, Yanfei

    2017-10-01

    With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.

  15. Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1998-03-01

    The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.

  16. Clustering of neural code words revealed by a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Toyoizumi, Taro

    2016-06-01

    A network of neurons in the central nervous system collectively represents information by its spiking activity states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to constraints imposed by network interactions. Geometrical organization of code words in the state space, critical for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the organization of neural code words using retinal data by computing the entropy of code words as a function of Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located within a reachable distance from most code words. This code-word space structure quantitatively predicts typical deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous structure of the code-word space that shapes information representation in a biological network.

  17. Incorporation of Condensation Heat Transfer in a Flow Network Code

    NASA Technical Reports Server (NTRS)

    Anthony, Miranda; Majumdar, Alok; McConnaughey, Paul K. (Technical Monitor)

    2001-01-01

    In this paper we have investigated the condensation of water vapor in a short tube. A numerical model of condensation heat transfer was incorporated in a flow network code. The flow network code that we have used in this paper is Generalized Fluid System Simulation Program (GFSSP). GFSSP is a finite volume based flow network code. Four different condensation models were presented in the paper. Soliman's correlation has been found to be the most stable in low flow rates which is of particular interest in this application. Another highlight of this investigation is conjugate or coupled heat transfer between solid or fluid. This work was done in support of NASA's International Space Station program.

  18. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks

    PubMed Central

    Avsec, Žiga; Cheng, Jun; Gagneur, Julien

    2018-01-01

    Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928

  19. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  20. On Delay and Security in Network Coding

    ERIC Educational Resources Information Center

    Dikaliotis, Theodoros K.

    2013-01-01

    In this thesis, delay and security issues in network coding are considered. First, we study the delay incurred in the transmission of a fixed number of packets through acyclic networks comprised of erasure links. The two transmission schemes studied are routing with hop-by-hop retransmissions, where every node in the network simply stores and…

  1. Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues

    DTIC Science & Technology

    2011-03-01

    222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b

  2. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  3. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  4. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture.

  5. GLOBECOM '88 - IEEE Global Telecommunications Conference and Exhibition, Hollywood, FL, Nov. 28-Dec. 1, 1988, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on communications for the information age are presented. Among the general topics considered are: telematic services and terminals, satellite communications, telecommunications mangaement network, control of integrated broadband networks, advances in digital radio systems, the intelligent network, broadband networks and services deployment, future switch architectures, performance analysis of computer networks, advances in spread spectrum, optical high-speed LANs, and broadband switching and networks. Also addressed are: multiple access protocols, video coding techniques, modulation and coding, photonic switching, SONET terminals and applications, standards for video coding, digital switching, progress in MANs, mobile and portable radio, software design for improved maintainability, multipath propagation and advanced countermeasure, data communication, network control and management, fiber in the loop, network algorithm and protocols, and advances in computer communications.

  6. Mobile Security Enclaves

    DTIC Science & Technology

    2011-09-01

    LAI Location Area Identity MANET Mobile Ad - hoc Network MCC Mobile Country Code MCD Mobile Communications Device MNC Mobile Network Code ...tower or present within a geographical area. These conditions relate directly to users who often operate with mobile ad - hoc networks. These types of...infrastructures. First responders can use these mobile base stations to set up their own networks on the fly, similar to mobile ad - hoc networks

  7. An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks.

    PubMed

    Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying

    2015-05-28

    Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.

  8. Some comparisons of complexity in dictionary-based and linear computational models.

    PubMed

    Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello

    2011-03-01

    Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Multiple neural network approaches to clinical expert systems

    NASA Astrophysics Data System (ADS)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  10. Sparse representation of whole-brain fMRI signals for identification of functional networks.

    PubMed

    Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming

    2015-02-01

    There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    PubMed

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  12. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  13. Efficiently modeling neural networks on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Farber, Robert M.

    1993-01-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper describes the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SIMD computers and can be implemented on MIMD computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors (which has a sub-linear runtime growth on the order of O(log(number of processors)). We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can extend to arbitrarily large networks (within memory limitations) by merging the memory space of separate processors with fast adjacent processor interprocessor communications. This paper will consider the simulation of only feed forward neural network although this method is extendable to recurrent networks.

  14. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  15. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    PubMed

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2014-12-29

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  16. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen

    2018-04-01

    Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.

  17. GLOBECOM '87 - Global Telecommunications Conference, Tokyo, Japan, Nov. 15-18, 1987, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.

  18. Population coding in sparsely connected networks of noisy neurons.

    PubMed

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  19. 14 CFR 1215.108 - Defining user service requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to NASA Headquarters, Code OX, Space Network Division, Washington, DC 20546. Upon review and... submitted in writing to both NASA Headquarters, Code OX, Space Network Division, and GSFC, Code 501.... Request for services within priority groups shall be negotiated with non-NASA users on a first come, first...

  20. General linear codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, J. A.

    1988-01-01

    Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.

  1. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  2. An adaptive distributed data aggregation based on RCPC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hua, Guogang; Chen, Chang Wen

    2006-05-01

    One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks

  3. New quantum codes constructed from quaternary BCH codes

    NASA Astrophysics Data System (ADS)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  4. Android platform based smartphones for a logistical remote association repair framework.

    PubMed

    Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing

    2014-06-25

    The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use.

  5. Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.

    PubMed

    Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk

    2018-07-01

    Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.

  6. Product diffusion through on-demand information-seeking behaviour.

    PubMed

    Riedl, Christoph; Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Engø-Monsen, Kenth; Qureshi, Taimur; Sundsøy, Pål Roe; Lazer, David

    2018-02-01

    Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product-a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. © 2018 The Authors.

  7. Product diffusion through on-demand information-seeking behaviour

    PubMed Central

    Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Qureshi, Taimur; Sundsøy, Pål Roe

    2018-01-01

    Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product—a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. PMID:29467257

  8. Power prediction in mobile communication systems using an optimal neural-network structure.

    PubMed

    Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J

    1997-01-01

    Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.

  9. Number of minimum-weight code words in a product code

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1978-01-01

    Consideration is given to the number of minimum-weight code words in a product code. The code is considered as a tensor product of linear codes over a finite field. Complete theorems and proofs are presented.

  10. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    PubMed

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  11. Analyzing big data in social media: Text and network analyses of an eating disorder forum.

    PubMed

    Moessner, Markus; Feldhege, Johannes; Wolf, Markus; Bauer, Stephanie

    2018-05-10

    Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders. Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit. Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses. This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication. © 2018 Wiley Periodicals, Inc.

  12. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  13. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    ERIC Educational Resources Information Center

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  14. The solvability of quantum k-pair network in a measurement-based way.

    PubMed

    Li, Jing; Xu, Gang; Chen, Xiu-Bo; Qu, Zhiguo; Niu, Xin-Xin; Yang, Yi-Xian

    2017-12-01

    Network coding is an effective means to enhance the communication efficiency. The characterization of network solvability is one of the most important topic in this field. However, for general network, the solvability conditions are still a challenge. In this paper, we consider the solvability of general quantum k-pair network in measurement-based framework. For the first time, a detailed account of measurement-based quantum network coding(MB-QNC) is specified systematically. Differing from existing coding schemes, single qubit measurements on a pre-shared graph state are the only allowed coding operations. Since no control operations are concluded, it makes MB-QNC schemes more feasible. Further, the sufficient conditions formulating by eigenvalue equations and stabilizer matrix are presented, which build an unambiguous relation among the solvability and the general network. And this result can also analyze the feasibility of sharing k EPR pairs task in large-scale networks. Finally, in the presence of noise, we analyze the advantage of MB-QNC in contrast to gate-based way. By an instance network [Formula: see text], we show that MB-QNC allows higher error thresholds. Specially, for X error, the error threshold is about 30% higher than 10% in gate-based way. In addition, the specific expressions of fidelity subject to some constraint conditions are given.

  15. Optimal Near-Hitless Network Failure Recovery Using Diversity Coding

    ERIC Educational Resources Information Center

    Avci, Serhat Nazim

    2013-01-01

    Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…

  16. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  17. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters. The field experimental results show the presented method is effective. The echoes are obvious and distinguishable both in co-located MIMO mode and widely distributed MIMO mode. Key words: sky-surface wave hybrid networking; sea-state radar; MIMO; phase-coded

  18. Network analysis of human diseases using Korean nationwide claims data.

    PubMed

    Kim, Jin Hee; Son, Ki Young; Shin, Dong Wook; Kim, Sang Hyuk; Yun, Jae Won; Shin, Jung Hyun; Kang, Mi So; Chung, Eui Heon; Yoo, Kyoung Hun; Yun, Jae Moon

    2016-06-01

    To investigate disease-disease associations by conducting a network analysis using Korean nationwide claims data. We used the claims data from the Health Insurance Review and Assessment Service-National Patient Sample for the year 2011. Among the 2049 disease codes in the claims data, 1154 specific disease codes were used and combined into 795 representative disease codes. We analyzed for 381 representative codes, which had a prevalence of >0.1%. For disease code pairs of a combination of 381 representative disease codes, P values were calculated by using the χ(2) test and the degrees of associations were expressed as odds ratios (ORs). For 5515 (7.62%) statistically significant disease-disease associations with a large effect size (OR>5), we constructed a human disease network consisting of 369 nodes and 5515 edges. The human disease network shows the distribution of diseases in the disease network and the relationships between diseases or disease groups, demonstrating that diseases are associated with each other, forming a complex disease network. We reviewed 5515 disease-disease associations and classified them according to underlying mechanisms. Several disease-disease associations were identified, but the evidence of these associations is not sufficient and the mechanisms underlying these associations have not been clarified yet. Further research studies are needed to investigate these associations and their underlying mechanisms. Human disease network analysis using claims data enriches the understanding of human diseases and provides new insights into disease-disease associations that can be useful in future research. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  20. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  1. Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset

    PubMed Central

    Lipps, David; Devineni, Sree

    2016-01-01

    MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples. The sizes of these datasets are much smaller than the number of known miRNAs. Consequently, the prediction accuracy of these predictors in large dataset becomes unknown and needs to be re-tested. In addition, many predictors were optimized for either high sensitivity or high specificity. These optimization strategies may bring in serious limitations in applications. Moreover, to meet continuously raised expectations on these computational tools, improving the prediction accuracy becomes extremely important. In this study, a meta-predictor mirMeta was developed by integrating a set of non-linear transformations with meta-strategy. More specifically, the outputs of five individual predictors were first preprocessed using non-linear transformations, and then fed into an artificial neural network to make the meta-prediction. The prediction accuracy of meta-predictor was validated using both multi-fold cross-validation and independent dataset. The final accuracy of meta-predictor in newly-designed large dataset is improved by 7% to 93%. The meta-predictor is also proved to be less dependent on datasets, as well as has refined balance between sensitivity and specificity. This study has two folds of importance: First, it shows that the combination of non-linear transformations and artificial neural networks improves the prediction accuracy of individual predictors. Second, a new miRNA predictor with significantly improved prediction accuracy is developed for the community for identifying novel miRNAs and the complete set of miRNAs. Source code is available at: https://github.com/xueLab/mirMeta PMID:28002428

  2. Code Samples Used for Complexity and Control

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  3. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  4. Efficient File Sharing by Multicast - P2P Protocol Using Network Coding and Rank Based Peer Selection

    NASA Technical Reports Server (NTRS)

    Stoenescu, Tudor M.; Woo, Simon S.

    2009-01-01

    In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.

  5. Active distribution network planning considering linearized system loss

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Wang, Mingqiang; Xu, Hao

    2018-02-01

    In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.

  6. Construction of self-dual codes in the Rosenbloom-Tsfasman metric

    NASA Astrophysics Data System (ADS)

    Krisnawati, Vira Hari; Nisa, Anzi Lina Ukhtin

    2017-12-01

    Linear code is a very basic code and very useful in coding theory. Generally, linear code is a code over finite field in Hamming metric. Among the most interesting families of codes, the family of self-dual code is a very important one, because it is the best known error-correcting code. The concept of Hamming metric is develop into Rosenbloom-Tsfasman metric (RT-metric). The inner product in RT-metric is different from Euclid inner product that is used to define duality in Hamming metric. Most of the codes which are self-dual in Hamming metric are not so in RT-metric. And, generator matrix is very important to construct a code because it contains basis of the code. Therefore in this paper, we give some theorems and methods to construct self-dual codes in RT-metric by considering properties of the inner product and generator matrix. Also, we illustrate some examples for every kind of the construction.

  7. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.

    Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.

  8. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  9. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  10. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  11. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  12. Intervention in gene regulatory networks with maximal phenotype alteration.

    PubMed

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  13. A neutron spectrum unfolding computer code based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.

  14. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  15. Optimum Design of Aerospace Structural Components Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  16. Special issue on network coding

    NASA Astrophysics Data System (ADS)

    Monteiro, Francisco A.; Burr, Alister; Chatzigeorgiou, Ioannis; Hollanti, Camilla; Krikidis, Ioannis; Seferoglu, Hulya; Skachek, Vitaly

    2017-12-01

    Future networks are expected to depart from traditional routing schemes in order to embrace network coding (NC)-based schemes. These have created a lot of interest both in academia and industry in recent years. Under the NC paradigm, symbols are transported through the network by combining several information streams originating from the same or different sources. This special issue contains thirteen papers, some dealing with design aspects of NC and related concepts (e.g., fountain codes) and some showcasing the application of NC to new services and technologies, such as data multi-view streaming of video or underwater sensor networks. One can find papers that show how NC turns data transmission more robust to packet losses, faster to decode, and more resilient to network changes, such as dynamic topologies and different user options, and how NC can improve the overall throughput. This issue also includes papers showing that NC principles can be used at different layers of the networks (including the physical layer) and how the same fundamental principles can lead to new distributed storage systems. Some of the papers in this issue have a theoretical nature, including code design, while others describe hardware testbeds and prototypes.

  17. An Extended Microcomputer-Based Network Optimization Package.

    DTIC Science & Technology

    1982-10-01

    Analysis, Laxenberq, Austria, 1981, pp. 781-808. 9. Anton , H., Elementary Linear Algebra , John Wiley & Sons, New York, 1977. 10. Koopmans, T. C...fCaRUlue do leVee. aide It 001100"M OW eedea9f’ OF Nooke~e Network, generalized network, microcomputer, optimization, network with gains, linear ...Oboe &111111041 network problem, in turn, can be viewed as a specialization of a linear programuing problem having at most two non-zero entries in each

  18. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  19. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng

    2014-06-01

    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  20. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  1. Implementing controlled-unitary operations over the butterfly network

    NASA Astrophysics Data System (ADS)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-01

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  2. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  3. Implementing controlled-unitary operations over the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  4. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  5. Physical-Layer Network Coding for VPN in TDM-PON

    NASA Astrophysics Data System (ADS)

    Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang

    2012-12-01

    We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme

  6. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  7. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  8. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  9. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  10. Theoretical analysis of the performance of code division multiple access communications over multimode optical fiber channels. Part 1: Transmission and detection

    NASA Astrophysics Data System (ADS)

    Walker, Ernest L.

    1994-05-01

    This paper presents results of a theoretical investigation to evaluate the performance of code division multiple access communications over multimode optical fiber channels in an asynchronous, multiuser communication network environment. The system is evaluated using Gold sequences for spectral spreading of the baseband signal from each user employing direct-sequence biphase shift keying and intensity modulation techniques. The transmission channel model employed is a lossless linear system approximation of the field transfer function for the alpha -profile multimode optical fiber. Due to channel model complexity, a correlation receiver model employing a suboptimal receive filter was used in calculating the peak output signal at the ith receiver. In Part 1, the performance measures for the system, i.e., signal-to-noise ratio and bit error probability for the ith receiver, are derived as functions of channel characteristics, spectral spreading, number of active users, and the bit energy to noise (white) spectral density ratio. In Part 2, the overall system performance is evaluated.

  11. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus.

    PubMed

    Hernan, Amanda E; Mahoney, J Matthew; Curry, Willie; Richard, Greg; Lucas, Marcella M; Massey, Andrew; Holmes, Gregory L; Scott, Rod C

    2018-01-01

    Neurodevelopmental insults leading to malformations of cortical development (MCD) are a common cause of psychiatric disorders, learning impairments and epilepsy. In the methylazoxymethanol (MAM) model of MCDs, animals have impairments in spatial cognition that, remarkably, are improved by post-weaning environmental enrichment (EE). To establish how EE impacts network-level mechanisms of spatial cognition, hippocampal in vivo single unit recordings were performed in freely moving animals in an open arena. We took a generalized linear modeling approach to extract fine spike timing (FST) characteristics and related these to place cell fidelity used as a surrogate of spatial cognition. We find that MAM disrupts FST and place-modulated rate coding in hippocampal CA1 and that EE improves many FST parameters towards normal. Moreover, FST parameters predict spatial coherence of neurons, suggesting that mechanisms determining altered FST are responsible for impaired cognition in MCDs. This suggests that FST parameters could represent a therapeutic target to improve cognition even in the context of a brain that develops with a structural abnormality.

  12. Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    2000-01-01

    The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.

  13. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  14. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand

    2016-04-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.

  15. MILCOM '85 - Military Communications Conference, Boston, MA, October 20-23, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.

  16. Protograph LDPC Codes Over Burst Erasure Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Jones, Christopher

    2006-01-01

    In this paper we design high rate protograph based LDPC codes suitable for binary erasure channels. To simplify the encoder and decoder implementation for high data rate transmission, the structure of codes are based on protographs and circulants. These LDPC codes can improve data link and network layer protocols in support of communication networks. Two classes of codes were designed. One class is designed for large block sizes with an iterative decoding threshold that approaches capacity of binary erasure channels. The other class is designed for short block sizes based on maximizing minimum stopping set size. For high code rates and short blocks the second class outperforms the first class.

  17. Interactive Video Coding and Transmission over Heterogeneous Wired-to-Wireless IP Networks Using an Edge Proxy

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Modestino, James W.

    2004-12-01

    Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.

  18. Integrated coding-aware intra-ONU scheduling for passive optical networks with inter-ONU traffic

    NASA Astrophysics Data System (ADS)

    Li, Yan; Dai, Shifang; Wu, Weiwei

    2016-12-01

    Recently, with the soaring of traffic among optical network units (ONUs), network coding (NC) is becoming an appealing technique for improving the performance of passive optical networks (PONs) with such inter-ONU traffic. However, in the existed NC-based PONs, NC can only be implemented by buffering inter-ONU traffic at the optical line terminal (OLT) to wait for the establishment of coding condition, such passive uncertain waiting severely limits the effect of NC technique. In this paper, we will study integrated coding-aware intra-ONU scheduling in which the scheduling of inter-ONU traffic within each ONU will be undertaken by the OLT to actively facilitate the forming of coding inter-ONU traffic based on the global inter-ONU traffic distribution, and then the performance of PONs with inter-ONU traffic can be significantly improved. We firstly design two report message patterns and an inter-ONU traffic transmission framework as the basis for the integrated coding-aware intra-ONU scheduling. Three specific scheduling strategies are then proposed for adapting diverse global inter-ONU traffic distributions. The effectiveness of the work is finally evaluated by both theoretical analysis and simulations.

  19. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  20. A network coding based routing protocol for underwater sensor networks.

    PubMed

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  1. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  2. Neural Decoder for Topological Codes

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  3. Toward an Improvement of the Analysis of Neural Coding.

    PubMed

    Alegre-Cortés, Javier; Soto-Sánchez, Cristina; Albarracín, Ana L; Farfán, Fernando D; Val-Calvo, Mikel; Ferrandez, José M; Fernandez, Eduardo

    2017-01-01

    Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.

  4. Performance analysis of a cascaded coding scheme with interleaved outer code

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.

  5. Evolutionary Computation with Spatial Receding Horizon Control to Minimize Network Coding Resources

    PubMed Central

    Leeson, Mark S.

    2014-01-01

    The minimization of network coding resources, such as coding nodes and links, is a challenging task, not only because it is a NP-hard problem, but also because the problem scale is huge; for example, networks in real world may have thousands or even millions of nodes and links. Genetic algorithms (GAs) have a good potential of resolving NP-hard problems like the network coding problem (NCP), but as a population-based algorithm, serious scalability and applicability problems are often confronted when GAs are applied to large- or huge-scale systems. Inspired by the temporal receding horizon control in control engineering, this paper proposes a novel spatial receding horizon control (SRHC) strategy as a network partitioning technology, and then designs an efficient GA to tackle the NCP. Traditional network partitioning methods can be viewed as a special case of the proposed SRHC, that is, one-step-wide SRHC, whilst the method in this paper is a generalized N-step-wide SRHC, which can make a better use of global information of network topologies. Besides the SRHC strategy, some useful designs are also reported in this paper. The advantages of the proposed SRHC and GA for the NCP are illustrated by extensive experiments, and they have a good potential of being extended to other large-scale complex problems. PMID:24883371

  6. Video transmission on ATM networks. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1993-01-01

    The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.

  7. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  8. Android Platform Based Smartphones for a Logistical Remote Association Repair Framework

    PubMed Central

    Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing

    2014-01-01

    The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use. PMID:24967603

  9. Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1989-01-01

    Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.

  10. Physical-layer network coding for passive optical interconnect in datacenter networks.

    PubMed

    Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia

    2017-07-24

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  11. The weight hierarchies and chain condition of a class of codes from varieties over finite fields

    NASA Technical Reports Server (NTRS)

    Wu, Xinen; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    The generalized Hamming weights of linear codes were first introduced by Wei. These are fundamental parameters related to the minimal overlap structures of the subcodes and very useful in several fields. It was found that the chain condition of a linear code is convenient in studying the generalized Hamming weights of the product codes. In this paper we consider a class of codes defined over some varieties in projective spaces over finite fields, whose generalized Hamming weights can be determined by studying the orbits of subspaces of the projective spaces under the actions of classical groups over finite fields, i.e., the symplectic groups, the unitary groups and orthogonal groups. We give the weight hierarchies and generalized weight spectra of the codes from Hermitian varieties and prove that the codes satisfy the chain condition.

  12. Linear network representation of multistate models of transport.

    PubMed Central

    Sandblom, J; Ring, A; Eisenman, G

    1982-01-01

    By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425

  13. Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection.

    PubMed

    Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen

    2018-09-01

    We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.

  14. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  15. A new method for computing the reliability of consecutive k-out-of-n:F systems

    NASA Astrophysics Data System (ADS)

    Gökdere, Gökhan; Gürcan, Mehmet; Kılıç, Muhammet Burak

    2016-01-01

    In many physical systems, reliability evaluation, such as ones encountered in telecommunications, the design of integrated circuits, microwave relay stations, oil pipeline systems, vacuum systems in accelerators, computer ring networks, and spacecraft relay stations, have had applied consecutive k-out-of-n system models. These systems are characterized as logical connections among the components of the systems placed in lines or circles. In literature, a great deal of attention has been paid to the study of the reliability evaluation of consecutive k-out-of-n systems. In this paper, we propose a new method to compute the reliability of consecutive k-out-of-n:F systems, with n linearly and circularly arranged components. The proposed method provides a simple way for determining the system failure probability. Also, we write R-Project codes based on our proposed method to compute the reliability of the linear and circular systems which have a great number of components.

  16. A Low Loss Microstrip Antenna for Radiometric Applications

    NASA Technical Reports Server (NTRS)

    Wahid, Parveen

    2000-01-01

    The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.

  17. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  18. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks.

    PubMed

    Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian

    2018-05-10

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.

  19. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks

    PubMed Central

    Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian

    2018-01-01

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525

  20. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  1. When do correlations increase with firing rates in recurrent networks?

    PubMed Central

    2017-01-01

    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix. PMID:28448499

  2. Multi-static networked 3D ladar for surveillance and access control

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ogirala, S. S. R.; Hu, B.; Le, Han Q.

    2007-04-01

    A theoretical design and simulation of a 3D ladar system concept for surveillance, intrusion detection, and access control is described. It is a non-conventional system architecture that consists of: i) multi-static configuration with an arbitrarily scalable number of transmitters (Tx's) and receivers (Rx's) that form an optical wireless code-division-multiple-access (CDMA) network, and ii) flexible system architecture with modular plug-and-play components that can be deployed for any facility with arbitrary topology. Affordability is a driving consideration; and a key feature for low cost is an asymmetric use of many inexpensive Rx's in conjunction with fewer Tx's, which are generally more expensive. The Rx's are spatially distributed close to the surveyed area for large coverage, and capable of receiving signals from multiple Tx's with moderate laser power. The system produces sensing information that scales as NxM, where N, M are the number of Tx's and Rx's, as opposed to linear scaling ~N in non-network system. Also, for target positioning, besides laser pointing direction and time-of-flight, the algorithm includes multiple point-of-view image fusion and triangulation for enhanced accuracy, which is not applicable to non-networked monostatic ladars. Simulation and scaled model experiments on some aspects of this concept are discussed.

  3. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  4. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  5. Fast Exact Search in Hamming Space With Multi-Index Hashing.

    PubMed

    Norouzi, Mohammad; Punjani, Ali; Fleet, David J

    2014-06-01

    There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.

  6. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  7. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  8. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential forreducing or removingother artifacts caused by instrument instability, detector non-linearity,etc. An open-source toolbox, which integratesmore » the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.« less

  9. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W [Idaho Falls, ID

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  10. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  11. System for loading executable code into volatile memory in a downhole tool

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.

    2007-09-25

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  12. Monitor Network Traffic with Packet Capture (pcap) on an Android Device

    DTIC Science & Technology

    2015-09-01

    administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live

  13. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  14. A Very Fast and Angular Momentum Conserving Tree Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcello, Dominic C., E-mail: dmarce504@gmail.com

    There are many methods used to compute the classical gravitational field in astrophysical simulation codes. With the exception of the typically impractical method of direct computation, none ensure conservation of angular momentum to machine precision. Under uniform time-stepping, the Cartesian fast multipole method of Dehnen (also known as the very fast tree code) conserves linear momentum to machine precision. We show that it is possible to modify this method in a way that conserves both angular and linear momenta.

  15. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs. PMID:28786915

  16. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werley, Kenneth Alan; Mccown, Andrew William

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. Thismore » third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.« less

  17. FPGA implementation of advanced FEC schemes for intelligent aggregation networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.

  18. Networked dynamical systems with linear coupling: synchronisation patterns, coherence and other behaviours.

    PubMed

    Judd, Kevin

    2013-12-01

    Many physical and biochemical systems are well modelled as a network of identical non-linear dynamical elements with linear coupling between them. An important question is how network structure affects chaotic dynamics, for example, by patterns of synchronisation and coherence. It is shown that small networks can be characterised precisely into patterns of exact synchronisation and large networks characterised by partial synchronisation at the local and global scale. Exact synchronisation modes are explained using tools of symmetry groups and invariance, and partial synchronisation is explained by finite-time shadowing of exact synchronisation modes.

  19. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    PubMed

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  20. NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding

    PubMed Central

    Valle, Odilson T.; Montez, Carlos; Medeiros de Araujo, Gustavo; Vasques, Francisco; Moraes, Ricardo

    2016-01-01

    Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. PMID:27258280

  1. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    NASA Astrophysics Data System (ADS)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  2. Hierarchical surface code for network quantum computing with modules of arbitrary size

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2016-10-01

    The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.

  3. Simulations of linear and Hamming codes using SageMath

    NASA Astrophysics Data System (ADS)

    Timur, Tahta D.; Adzkiya, Dieky; Soleha

    2018-03-01

    Digital data transmission over a noisy channel could distort the message being transmitted. The goal of coding theory is to ensure data integrity, that is, to find out if and where this noise has distorted the message and what the original message was. Data transmission consists of three stages: encoding, transmission, and decoding. Linear and Hamming codes are codes that we discussed in this work, where encoding algorithms are parity check and generator matrix, and decoding algorithms are nearest neighbor and syndrome. We aim to show that we can simulate these processes using SageMath software, which has built-in class of coding theory in general and linear codes in particular. First we consider the message as a binary vector of size k. This message then will be encoded to a vector with size n using given algorithms. And then a noisy channel with particular value of error probability will be created where the transmission will took place. The last task would be decoding, which will correct and revert the received message back to the original message whenever possible, that is, if the number of error occurred is smaller or equal to the correcting radius of the code. In this paper we will use two types of data for simulations, namely vector and text data.

  4. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

    PubMed

    Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.

  5. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  6. A method of non-contact reading code based on computer vision

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  7. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, T.; De Palma, L.; Laneve, D.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  8. Decoding of finger trajectory from ECoG using deep learning.

    PubMed

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  9. Decoding of finger trajectory from ECoG using deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  10. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  11. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  12. Applying a rateless code in content delivery networks

    NASA Astrophysics Data System (ADS)

    Suherman; Zarlis, Muhammad; Parulian Sitorus, Sahat; Al-Akaidi, Marwan

    2017-09-01

    Content delivery network (CDN) allows internet providers to locate their services, to map their coverage into networks without necessarily to own them. CDN is part of the current internet infrastructures, supporting multi server applications especially social media. Various works have been proposed to improve CDN performances. Since accesses on social media servers tend to be short but frequent, providing redundant to the transmitted packets to ensure lost packets not degrade the information integrity may improve service performances. This paper examines the implementation of rateless code in the CDN infrastructure. The NS-2 evaluations show that rateless code is able to reduce packet loss up to 50%.

  13. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics.

    PubMed

    Koda, Shin-ichi

    2015-05-28

    It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.

  14. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  15. Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.

    2015-06-01

    Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less

  16. Clique-Based Neural Associative Memories with Local Coding and Precoding.

    PubMed

    Mofrad, Asieh Abolpour; Parker, Matthew G; Ferdosi, Zahra; Tadayon, Mohammad H

    2016-08-01

    Techniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters. The model introduced stores patterns as small-size cliques that can be retrieved in spite of partial error. We focus on improving the success of retrieval by applying two techniques: doing a local coding in each cluster and then applying a precoding step. We use a slightly different decoding scheme, which is appropriate for partial erasures and converges faster. Although the ideas of local coding and precoding are not new, the way we apply them is different. Simulations show an increase in the pattern retrieval capacity for both techniques. Moreover, we use self-dual additive codes over field [Formula: see text], which have very interesting properties and a simple-graph representation.

  17. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  18. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  19. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  20. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  1. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-01-01

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols. PMID:24193100

  2. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    PubMed

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  3. Finite-SNR analysis for partial relaying cooperation with channel coding and opportunistic relay selection

    NASA Astrophysics Data System (ADS)

    Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn

    2017-12-01

    This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.

  4. Trading Speed and Accuracy by Coding Time: A Coupled-circuit Cortical Model

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2013-01-01

    Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification. PMID:23592967

  5. Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2015-11-01

    FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.

  6. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  7. Design of Intelligent Cross-Layer Routing Protocols for Airborne Wireless Networks Under Dynamic Spectrum Access Paradigm

    DTIC Science & Technology

    2011-05-01

    rate convolutional codes or the prioritized Rate - Compatible Punctured ...Quality of service RCPC Rate - compatible and punctured convolutional codes SNR Signal to noise ratio SSIM... Convolutional (RCPC) codes . The RCPC codes achieve UEP by puncturing off different amounts of coded bits of the parent code . The

  8. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  9. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  10. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  11. Thermodynamics of Random Reaction Networks

    PubMed Central

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  12. Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures.

    PubMed

    Imran, Noreen; Seet, Boon-Chong; Fong, A C M

    2015-01-01

    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian-Wolf and Wyner-Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs.

  13. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1997-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.

  14. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    NASA Astrophysics Data System (ADS)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  15. Programmable multi-node quantum network design and simulation

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.

    2016-05-01

    Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.

  16. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  17. Permitted and forbidden sets in symmetric threshold-linear networks.

    PubMed

    Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques

    2003-03-01

    The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.

  18. Exploring the Effects of Congruence and Holland's Personality Codes on Job Satisfaction: An Application of Hierarchical Linear Modeling Techniques

    ERIC Educational Resources Information Center

    Ishitani, Terry T.

    2010-01-01

    This study applied hierarchical linear modeling to investigate the effect of congruence on intrinsic and extrinsic aspects of job satisfaction. Particular focus was given to differences in job satisfaction by gender and by Holland's first-letter codes. The study sample included nationally represented 1462 female and 1280 male college graduates who…

  19. Analysis of the faster-than-Nyquist optimal linear multicarrier system

    NASA Astrophysics Data System (ADS)

    Marquet, Alexandre; Siclet, Cyrille; Roque, Damien

    2017-02-01

    Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of an increased computational complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization of the linear part of the system. In this article, we analyze the performance of the optimal linear multicarrier system when used together with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the normality assumption of the interference, used for implementing such non-linear systems. The use of this optimal linear system leads to a closed-form expression of the bit-error probability that can be used to predict the performance and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context. xml:lang="fr"

  20. Multispectral code excited linear prediction coding and its application in magnetic resonance images.

    PubMed

    Hu, J H; Wang, Y; Cahill, P T

    1997-01-01

    This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.

  1. LED-based high-speed visible light communications

    NASA Astrophysics Data System (ADS)

    Chi, Nan; Shi, Meng; Zhao, Yiheng; Wang, Fumin; Shi, Jianyang; Zhou, Yingjun; Lu, Xingyu; Qiao, Liang

    2018-01-01

    We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.

  2. Energy-efficient spatial-domain-based hybrid multidimensional coded-modulations enabling multi-Tb/s optical transport.

    PubMed

    Djordjevic, Ivan B

    2011-08-15

    In addition to capacity, the future high-speed optical transport networks will also be constrained by energy consumption. In order to solve the capacity and energy constraints simultaneously, in this paper we propose the use of energy-efficient hybrid D-dimensional signaling (D>4) by employing all available degrees of freedom for conveyance of the information over a single carrier including amplitude, phase, polarization and orbital angular momentum (OAM). Given the fact that the OAM eigenstates, associated with the azimuthal phase dependence of the complex electric field, are orthogonal, they can be used as basis functions for multidimensional signaling. Since the information capacity is a linear function of number of dimensions, through D-dimensional signal constellations we can significantly improve the overall optical channel capacity. The energy-efficiency problem is solved, in this paper, by properly designing the D-dimensional signal constellation such that the mutual information is maximized, while taking the energy constraint into account. We demonstrate high-potential of proposed energy-efficient hybrid D-dimensional coded-modulation scheme by Monte Carlo simulations. © 2011 Optical Society of America

  3. Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

    DTIC Science & Technology

    2015-07-15

    Long-term effects on cancer survivors’ quality of life of physical training versus physical training combined with cognitive-behavioral therapy ...COMPARISON OF NEURAL NETWORK AND LINEAR REGRESSION MODELS IN STATISTICALLY PREDICTING MENTAL AND PHYSICAL HEALTH STATUS OF BREAST...34Comparison of Neural Network and Linear Regression Models in Statistically Predicting Mental and Physical Health Status of Breast Cancer Survivors

  4. Application of General Regression Neural Network to the Prediction of LOD Change

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao

    2012-01-01

    Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.

  5. Opportunistic quantum network coding based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  6. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  7. Multi-GNSS precise point positioning (MGPPP) using raw observations

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Yuan, Yunbin; Zhang, Baocheng; Wang, Ningbo; Tan, Bingfeng; Chen, Yongchang

    2017-03-01

    A joint-processing model for multi-GNSS (GPS, GLONASS, BDS and GALILEO) precise point positioning (PPP) is proposed, in which raw code and phase observations are used. In the proposed model, inter-system biases (ISBs) and GLONASS code inter-frequency biases (IFBs) are carefully considered, among which GLONASS code IFBs are modeled as a linear function of frequency numbers. To get the full rank function model, the unknowns are re-parameterized and the estimable slant ionospheric delays and ISBs/IFBs are derived and estimated simultaneously. One month of data in April, 2015 from 32 stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) tracking network have been used to validate the proposed model. Preliminary results show that RMS values of the positioning errors (with respect to external double-difference solutions) for static/kinematic solutions (four systems) are 6.2 mm/2.1 cm (north), 6.0 mm/2.2 cm (east) and 9.3 mm/4.9 cm (up). One-day stabilities of the estimated ISBs described by STD values are 0.36 and 0.38 ns, for GLONASS and BDS, respectively. Significant ISB jumps are identified between adjacent days for all stations, which are caused by the different satellite clock datums in different days and for different systems. Unlike ISBs, the estimated GLONASS code IFBs are quite stable for all stations, with an average STD of 0.04 ns over a month. Single-difference experiment of short baseline shows that PPP ionospheric delays are more precise than traditional leveling ionospheric delays.

  8. The strategic management of organizational knowledge exchange related to hospital quality measurement and reporting.

    PubMed

    Rangachari, Pavani

    2008-01-01

    CONTEXT/PURPOSE: With the growing momentum toward hospital quality measurement and reporting by public and private health care payers, hospitals face increasing pressures to improve their medical record documentation and administrative data coding accuracy. This study explores the relationship between the organizational knowledge-sharing structure related to quality and hospital coding accuracy for quality measurement. Simultaneously, this study seeks to identify other leadership/management characteristics associated with coding for quality measurement. Drawing upon complexity theory, the literature on "professional complex systems" has put forth various strategies for managing change and turnaround in professional organizations. In so doing, it has emphasized the importance of knowledge creation and organizational learning through interdisciplinary networks. This study integrates complexity, network structure, and "subgoals" theories to develop a framework for knowledge-sharing network effectiveness in professional complex systems. This framework is used to design an exploratory and comparative research study. The sample consists of 4 hospitals, 2 showing "good coding" accuracy for quality measurement and 2 showing "poor coding" accuracy. Interviews and surveys are conducted with administrators and staff in the quality, medical staff, and coding subgroups in each facility. Findings of this study indicate that good coding performance is systematically associated with a knowledge-sharing network structure rich in brokerage and hierarchy (with leaders connecting different professional subgroups to each other and to the external environment), rather than in density (where everyone is directly connected to everyone else). It also implies that for the hospital organization to adapt to the changing environment of quality transparency, senior leaders must undertake proactive and unceasing efforts to coordinate knowledge exchange across physician and coding subgroups and connect these subgroups with the changing external environment.

  9. A neural network approach to job-shop scheduling.

    PubMed

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  10. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  11. Connection anonymity analysis in coded-WDM PONs

    NASA Astrophysics Data System (ADS)

    Sue, Chuan-Ching

    2008-04-01

    A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.

  12. Energy coding in biological neural networks

    PubMed Central

    Zhang, Zhikang

    2007-01-01

    According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513

  13. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  14. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).

  15. IMC/RMC Network Professional Film Collection.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Special Education Instructional Materials Center.

    The compilation is a comprehensive listing of films available from the centers in the Instructional Materials Centers/Regional Media Centers (IMC/RMC) Network. Each IMC/RMC location is given a numerical code in a preliminary listing. These numerical codes are used within the film listing, which is arranged alphabetically according to film titles,…

  16. Physical-layer network coding in coherent optical OFDM systems.

    PubMed

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  17. Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity

    DTIC Science & Technology

    2010-12-10

    Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen

  18. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.

    PubMed

    Kunkel, Susanne; Schenck, Wolfram

    2017-01-01

    NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  19. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    PubMed Central

    Kunkel, Susanne; Schenck, Wolfram

    2017-01-01

    NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling. PMID:28701946

  20. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  1. A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2013-02-01

    Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.

  2. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  3. GLOBECOM '86 - Global Telecommunications Conference, Houston, TX, Dec. 1-4, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.

  4. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  5. A novel all-optical label processing for OPS networks based on multiple OOC sequences from multiple-groups OOC

    NASA Astrophysics Data System (ADS)

    Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo

    2007-11-01

    This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.

  6. A Bayesian network coding scheme for annotating biomedical information presented to genetic counseling clients.

    PubMed

    Green, Nancy

    2005-04-01

    We developed a Bayesian network coding scheme for annotating biomedical content in layperson-oriented clinical genetics documents. The coding scheme supports the representation of probabilistic and causal relationships among concepts in this domain, at a high enough level of abstraction to capture commonalities among genetic processes and their relationship to health. We are using the coding scheme to annotate a corpus of genetic counseling patient letters as part of the requirements analysis and knowledge acquisition phase of a natural language generation project. This paper describes the coding scheme and presents an evaluation of intercoder reliability for its tag set. In addition to giving examples of use of the coding scheme for analysis of discourse and linguistic features in this genre, we suggest other uses for it in analysis of layperson-oriented text and dialogue in medical communication.

  7. Smooth Upgrade of Existing Passive Optical Networks With Spectral-Shaping Line-Coding Service Overlay

    NASA Astrophysics Data System (ADS)

    Hsueh, Yu-Li; Rogge, Matthew S.; Shaw, Wei-Tao; Kim, Jaedon; Yamamoto, Shu; Kazovsky, Leonid G.

    2005-09-01

    A simple and cost-effective upgrade of existing passive optical networks (PONs) is proposed, which realizes service overlay by novel spectral-shaping line codes. A hierarchical coding procedure allows processing simplicity and achieves desired long-term spectral properties. Different code rates are supported, and the spectral shape can be properly tailored to adapt to different systems. The computation can be simplified by quantization of trigonometric functions. DC balance is achieved by passing the dc residual between processing windows. The proposed line codes tend to introduce bit transitions to avoid long consecutive identical bits and facilitate receiver clock recovery. Experiments demonstrate and compare several different optimized line codes. For a specific tolerable interference level, the optimal line code can easily be determined, which maximizes the data throughput. The service overlay using the line-coding technique leaves existing services and field-deployed fibers untouched but fully functional, providing a very flexible and economic way to upgrade existing PONs.

  8. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    PubMed

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  9. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  10. Layered Wyner-Ziv video coding.

    PubMed

    Xu, Qian; Xiong, Zixiang

    2006-12-01

    Following recent theoretical works on successive Wyner-Ziv coding (WZC), we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered WZC for quality enhancement. Similar to FGS coding, there is no performance difference between layered and monolithic WZC when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that WZC gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks.

  11. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  12. Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design

    DTIC Science & Technology

    2011-02-01

    Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the

  13. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

    PubMed

    de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2018-03-01

    Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

  14. Neurobehavioral Assessment from Fetus to Infant: The NICU Network Neurobehavioral Scale and the Fetal Neurobehavior Coding Scale

    ERIC Educational Resources Information Center

    Salisbury, Amy L.; Fallone, Melissa Duncan; Lester, Barry

    2005-01-01

    This review provides an overview and definition of the concept of neurobehavior in human development. Two neurobehavioral assessments used by the authors in current fetal and infant research are discussed: the NICU Network Neurobehavioral Assessment Scale and the Fetal Neurobehavior Coding System. This review will present how the two assessments…

  15. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.

    2007-09-01

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.

  16. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  17. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    PubMed

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  18. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acun, Bilge; Jain, Nikhil; Bhatele, Abhinav

    2015-03-23

    TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.

  19. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Nikhil; Bhatele, Abhinav; Acun, Bilge

    TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.

  20. Wireless visual sensor network resource allocation using cross-layer optimization

    NASA Astrophysics Data System (ADS)

    Bentley, Elizabeth S.; Matyjas, John D.; Medley, Michael J.; Kondi, Lisimachos P.

    2009-01-01

    In this paper, we propose an approach to manage network resources for a Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network where nodes monitor scenes with varying levels of motion. It uses cross-layer optimization across the physical layer, the link layer and the application layer. Our technique simultaneously assigns a source coding rate, a channel coding rate, and a power level to all nodes in the network based on one of two criteria that maximize the quality of video of the entire network as a whole, subject to a constraint on the total chip rate. One criterion results in the minimal average end-to-end distortion amongst all nodes, while the other criterion minimizes the maximum distortion of the network. Our approach allows one to determine the capacity of the visual sensor network based on the number of nodes and the quality of video that must be transmitted. For bandwidth-limited applications, one can also determine the minimum bandwidth needed to accommodate a number of nodes with a specific target chip rate. Video captured by a sensor node camera is encoded and decoded using the H.264 video codec by a centralized control unit at the network layer. To reduce the computational complexity of the solution, Universal Rate-Distortion Characteristics (URDCs) are obtained experimentally to relate bit error probabilities to the distortion of corrupted video. Bit error rates are found first by using Viterbi's upper bounds on the bit error probability and second, by simulating nodes transmitting data spread by Total Square Correlation (TSC) codes over a Rayleigh-faded DS-CDMA channel and receiving that data using Auxiliary Vector (AV) filtering.

  1. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    PubMed

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  2. Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization

    DTIC Science & Technology

    2009-01-01

    Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding

  3. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  4. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  5. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  6. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    PubMed

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms

    DTIC Science & Technology

    2007-09-01

    punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data

  8. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less

  10. A robust low-rate coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.; Arikan, E. (Editor)

    1991-01-01

    Due to the rapidly evolving field of image processing and networking, video information promises to be an important part of telecommunication systems. Although up to now video transmission has been transported mainly over circuit-switched networks, it is likely that packet-switched networks will dominate the communication world in the near future. Asynchronous transfer mode (ATM) techniques in broadband-ISDN can provide a flexible, independent and high performance environment for video communication. For this paper, the network simulator was used only as a channel in this simulation. Mixture blocking coding with progressive transmission (MBCPT) has been investigated for use over packet networks and has been found to provide high compression rate with good visual performance, robustness to packet loss, tractable integration with network mechanics and simplicity in parallel implementation.

  11. Distribution of Orientation Selectivity in Recurrent Networks of Spiking Neurons with Different Random Topologies

    PubMed Central

    Sadeh, Sadra; Rotter, Stefan

    2014-01-01

    Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity. PMID:25469704

  12. Constructing Neuronal Network Models in Massively Parallel Environments.

    PubMed

    Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.

  13. Constructing Neuronal Network Models in Massively Parallel Environments

    PubMed Central

    Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808

  14. Indianapolis emergency medical service and the Indiana Network for Patient Care: evaluating the patient match algorithm.

    PubMed

    Park, Seong C; Finnell, John T

    2012-01-01

    In 2009, Indianapolis launched an electronic medical record system within their ambulances1 and started to exchange patient data with the Indiana Network for Patient Care (INPC) This unique system allows EMS personnel to get important information prior to the patient's arrival to the hospital. In this descriptive study, we found EMS personnel requested patient data on 14% of all transports, with a "success" match rate of 46%, and a match "failure" rate of 17%. The three major factors for causing match "failure" were ZIP code 55%, Patient Name 22%, and Birth date 12%. We conclude that the ZIP code matching process needs to be improved by applying a limitation of 5 digits in ZIP code instead of using ZIP+4 code. Non-ZIP code identifiers may be a better choice due to inaccuracies and changes of the ZIP code in a patient's record.

  15. What the success of brain imaging implies about the neural code.

    PubMed

    Guest, Olivia; Love, Bradley C

    2017-01-19

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.

  16. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    PubMed

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  17. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  18. Global network structure of dominance hierarchy of ant workers.

    PubMed

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-06

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Global network structure of dominance hierarchy of ant workers

    PubMed Central

    Shimoji, Hiroyuki; Abe, Masato S.; Tsuji, Kazuki; Masuda, Naoki

    2014-01-01

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. PMID:25100318

  20. Space-time adaptive decision feedback neural receivers with data selection for high-data-rate users in DS-CDMA systems.

    PubMed

    de Lamare, Rodrigo C; Sampaio-Neto, Raimundo

    2008-11-01

    A space-time adaptive decision feedback (DF) receiver using recurrent neural networks (RNNs) is proposed for joint equalization and interference suppression in direct-sequence code-division multiple-access (DS-CDMA) systems equipped with antenna arrays. The proposed receiver structure employs dynamically driven RNNs in the feedforward section for equalization and multiaccess interference (MAI) suppression and a finite impulse response (FIR) linear filter in the feedback section for performing interference cancellation. A data selective gradient algorithm, based upon the set-membership (SM) design framework, is proposed for the estimation of the coefficients of RNN structures and is applied to the estimation of the parameters of the proposed neural receiver structure. Simulation results show that the proposed techniques achieve significant performance gains over existing schemes.

  1. Neural coding in graphs of bidirectional associative memories.

    PubMed

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Linear microbunching analysis for recirculation machines

    DOE PAGES

    Tsai, C. -Y.; Douglas, D.; Li, R.; ...

    2016-11-28

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  3. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  4. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less

  5. Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun

    1996-01-01

    In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.

  6. Performance Analysis of Hybrid ARQ Protocols in a Slotted Code Division Multiple-Access Network

    DTIC Science & Technology

    1989-08-01

    Convolutional Codes . in Proc Int. Conf. Commun., 21.4.1-21.4.5, 1987. [27] J. Hagenauer. Rate Compatible Punctured Convolutional Codes . in Proc Int. Conf...achieved by using a low rate (r = 0.5), high constraint length (e.g., 32) punctured convolutional code . Code puncturing provides for a variable rate code ...investigated the use of convolutional codes in Type II Hybrid ARQ protocols. The error

  7. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  8. Decoding the cortical transformations for visually guided reaching in 3D space.

    PubMed

    Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas

    2009-06-01

    To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.

  9. Dynamic quality of service differentiation using fixed code weight in optical CDMA networks

    NASA Astrophysics Data System (ADS)

    Kakaee, Majid H.; Essa, Shawnim I.; Abd, Thanaa H.; Seyedzadeh, Saleh

    2015-11-01

    The emergence of network-driven applications, such as internet, video conferencing, and online gaming, brings in the need for a network the environments with capability of providing diverse Quality of Services (QoS). In this paper, a new code family of novel spreading sequences, called a Multi-Service (MS) code, has been constructed to support multiple services in Optical- Code Division Multiple Access (CDMA) system. The proposed method uses fixed weight for all services, however reducing the interfering codewords for the users requiring higher QoS. The performance of the proposed code is demonstrated using mathematical analysis. It shown that the total number of served users with satisfactory BER of 10-9 using NB=2 is 82, while they are only 36 and 10 when NB=3 and 4 respectively. The developed MS code is compared with variable-weight codes such as Variable Weight-Khazani Syed (VW-KS) and Multi-Weight-Random Diagonal (MW-RD). Different numbers of basic users (NB) are used to support triple-play services (audio, data and video) with different QoS requirements. Furthermore, reference to the BER of 10-12, 10-9, and 10-3 for video, data and audio, respectively, the system can support up to 45 total users. Hence, results show that the technique can clearly provide a relative QoS differentiation with lower value of basic users can support larger number of subscribers as well as better performance in terms of acceptable BER of 10-9 at fixed code weight.

  10. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  11. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  12. Authorship attribution of source code by using back propagation neural network based on particle swarm optimization

    PubMed Central

    Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao

    2017-01-01

    Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead. PMID:29095934

  13. Enhancing Scalability and Efficiency of the TOUGH2_MP for LinuxClusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu

    2006-04-17

    TOUGH2{_}MP, the parallel version TOUGH2 code, has been enhanced by implementing more efficient communication schemes. This enhancement is achieved through reducing the amount of small-size messages and the volume of large messages. The message exchange speed is further improved by using non-blocking communications for both linear and nonlinear iterations. In addition, we have modified the AZTEC parallel linear-equation solver to nonblocking communication. Through the improvement of code structuring and bug fixing, the new version code is now more stable, while demonstrating similar or even better nonlinear iteration converging speed than the original TOUGH2 code. As a result, the new versionmore » of TOUGH2{_}MP is improved significantly in its efficiency. In this paper, the scalability and efficiency of the parallel code are demonstrated by solving two large-scale problems. The testing results indicate that speedup of the code may depend on both problem size and complexity. In general, the code has excellent scalability in memory requirement as well as computing time.« less

  14. Automated Run-Time Mission and Dialog Generation

    DTIC Science & Technology

    2007-03-01

    Processing, Social Network Analysis, Simulation, Automated Scenario Generation 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...9 D. SOCIAL NETWORKS...13 B. MISSION AND DIALOG GENERATION.................................................13 C. SOCIAL NETWORKS

  15. Protection of HEVC Video Delivery in Vehicular Networks with RaptorQ Codes

    PubMed Central

    Martínez-Rach, Miguel; López, Otoniel; Malumbres, Manuel Pérez

    2014-01-01

    With future vehicles equipped with processing capability, storage, and communications, vehicular networks will become a reality. A vast number of applications will arise that will make use of this connectivity. Some of them will be based on video streaming. In this paper we focus on HEVC video coding standard streaming in vehicular networks and how it deals with packet losses with the aid of RaptorQ, a Forward Error Correction scheme. As vehicular networks are packet loss prone networks, protection mechanisms are necessary if we want to guarantee a minimum level of quality of experience to the final user. We have run simulations to evaluate which configurations fit better in this type of scenarios. PMID:25136675

  16. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  17. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  18. Generalised Transfer Functions of Neural Networks

    NASA Astrophysics Data System (ADS)

    Fung, C. F.; Billings, S. A.; Zhang, H.

    1997-11-01

    When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.

  19. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  20. The origins and evolutionary history of human non-coding RNA regulatory networks.

    PubMed

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  1. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  2. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models

    PubMed Central

    de Jesus, Karla; Ayala, Helon V. H.; de Jesus, Kelly; Coelho, Leandro dos S.; Medeiros, Alexandre I.A.; Abraldes, José A.; Vaz, Mário A.P.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo

    2018-01-01

    Abstract Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances. PMID:29599857

  3. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  4. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    NASA Astrophysics Data System (ADS)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  5. Recent research in network problems with applications

    NASA Technical Reports Server (NTRS)

    Thompson, G. L.

    1980-01-01

    The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.

  6. ANNA: A Convolutional Neural Network Code for Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Lee-Brown, Donald; Anthony-Twarog, Barbara J.; Twarog, Bruce A.

    2018-01-01

    We present ANNA, a Python-based convolutional neural network code for the automated analysis of stellar spectra. ANNA provides a flexible framework that allows atmospheric parameters such as temperature and metallicity to be determined with accuracies comparable to those of established but less efficient techniques. ANNA performs its parameterization extremely quickly; typically several thousand spectra can be analyzed in less than a second. Additionally, the code incorporates features which greatly speed up the training process necessary for the neural network to measure spectra accurately, resulting in a tool that can easily be run on a single desktop or laptop computer. Thus, ANNA is useful in an era when spectrographs increasingly have the capability to collect dozens to hundreds of spectra each night. This talk will cover the basic features included in ANNA and demonstrate its performance in two use cases: an open cluster abundance analysis involving several hundred spectra, and a metal-rich field star study. Applicability of the code to large survey datasets will also be discussed.

  7. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres

    PubMed Central

    Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.

    2016-01-01

    A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865

  8. Group delay variations of GPS transmitting and receiving antennas

    NASA Astrophysics Data System (ADS)

    Wanninger, Lambert; Sumaya, Hael; Beer, Susanne

    2017-09-01

    GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.

  9. Linear energy transfer in water phantom within SHIELD-HIT transport code

    NASA Astrophysics Data System (ADS)

    Ergun, A.; Sobolevsky, N.; Botvina, A. S.; Buyukcizmeci, N.; Latysheva, L.; Ogul, R.

    2017-02-01

    The effect of irradiation in tissue is important in hadron therapy for the dose measurement and treatment planning. This biological effect is defined by an equivalent dose H which depends on the Linear Energy Transfer (LET). Usually, H can be expressed in terms of the absorbed dose D and the quality factor K of the radiation under consideration. In literature, various types of transport codes have been used for modeling and simulation of the interaction of the beams of protons and heavier ions with tissue-equivalent materials. In this presentation we used SHIELD-HIT code to simulate decomposition of the absorbed dose by LET in water for 16O beams. A more detailed description of capabilities of the SHIELD-HIT code can be found in the literature.

  10. Rate-compatible protograph LDPC code families with linear minimum distance

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.

  11. Physical Aging of Linear and Network Epoxy Resins.

    DTIC Science & Technology

    1981-03-13

    8217 - methylene dianiline (MDA) (Tm=39°C) 6 00 n0 Polyglycidyl ether of phenol -formaldehyde Novolac (n : 1.6) The resin components 3 and 4 were supplied by...k AO-A097 017 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG -ETC F/G 11/9 PH YSI CAL AGING OF LINEAR AND NETWORK EPOXY RESINS U) IMAR Al J E...0629 Task No. NR 356-692 TECHNICAL REPORT NO. 3 Physical Aging of Linear and Network Epoxy Resins by Eric Siu-Wai Kong, Garth L. Wilkes, James E. McGrath

  12. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less

  13. GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Wang, Jue; Chi, Xuebin; Wang, Lin-Wang

    2017-02-01

    LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper, we present our GPU implementation of the LS3DF code. Our test results show that the GPU code can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same number of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of the communication pattern for heterogeneous supercomputers.

  14. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H. Lee; Ganti, Anand; Resnick, David R

    2013-10-22

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less

  16. Design, decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-06-17

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  17. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-11-18

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  18. A hybrid linear/nonlinear training algorithm for feedforward neural networks.

    PubMed

    McLoone, S; Brown, M D; Irwin, G; Lightbody, A

    1998-01-01

    This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.

  19. Linear and nonlinear verification of gyrokinetic microstability codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravenec, R. V.; Candy, J.; Barnes, M.

    2011-12-15

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set ofmore » parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2[W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of the nonlinear fluxes without collisions. With collisions, the differences between the time-averaged fluxes are larger than the uncertainties defined as the oscillations of the fluxes, with the GS2 fluxes consistently larger (or more positive) than those from GYRO. However, the electrostatic fluxes are much smaller than those without collisions (the electromagnetic energy flux is negligible in both cases). In fact, except for the electron energy fluxes, the absolute magnitudes of the differences in fluxes with collisions are the same or smaller than those without. None of the fluxes exhibit large absolute differences between codes. Beyond these results, the specific linear and nonlinear benchmarks proposed here, as well as the underlying methodology, provide the basis for a wide variety of future verification efforts.« less

  20. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the highest priority followed by NAL units containing pictures used as reference pictures from which others can be predicted. The second method assigned a priority to each NAL unit based on the rate-distortion cost of the VCL coding units contained in the NAL unit. The sum of the rate-distortion costs of each coding unit contained in a NAL unit was used as the priority weighting. The preliminary results of extensive experiments have shown that all three schemes offered an improvement in PSNR, when comparing original and decoded received streams, over uncontrolled packet loss. Using the first method consistently delivered a significant average improvement of 0.97dB over the uncontrolled scenario while the second method provided a measurable, but less consistent, improvement across the range of testing conditions and encoder configurations.

  1. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  2. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    PubMed

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  3. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding

    PubMed Central

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent “deep learning revolution” in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems. PMID:28377709

  4. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Understanding the Implications of Neural Population Activity on Behavior

    NASA Astrophysics Data System (ADS)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the relationship between neural activity and behavior as recorded neural populations continue to grow.

  6. The Modified Cognitive Constructions Coding System: Reliability and Validity Assessments

    ERIC Educational Resources Information Center

    Moran, Galia S.; Diamond, Gary M.

    2006-01-01

    The cognitive constructions coding system (CCCS) was designed for coding client's expressed problem constructions on four dimensions: intrapersonal-interpersonal, internal-external, responsible-not responsible, and linear-circular. This study introduces, and examines the reliability and validity of, a modified version of the CCCS--a version that…

  7. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    PubMed

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfvenmore » modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.« less

  9. Design of convolutional tornado code

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  10. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  11. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  12. Design of Provider-Provisioned Website Protection Scheme against Malware Distribution

    NASA Astrophysics Data System (ADS)

    Yagi, Takeshi; Tanimoto, Naoto; Hariu, Takeo; Itoh, Mitsutaka

    Vulnerabilities in web applications expose computer networks to security threats, and many websites are used by attackers as hopping sites to attack other websites and user terminals. These incidents prevent service providers from constructing secure networking environments. To protect websites from attacks exploiting vulnerabilities in web applications, service providers use web application firewalls (WAFs). WAFs filter accesses from attackers by using signatures, which are generated based on the exploit codes of previous attacks. However, WAFs cannot filter unknown attacks because the signatures cannot reflect new types of attacks. In service provider environments, the number of exploit codes has recently increased rapidly because of the spread of vulnerable web applications that have been developed through cloud computing. Thus, generating signatures for all exploit codes is difficult. To solve these problems, our proposed scheme detects and filters malware downloads that are sent from websites which have already received exploit codes. In addition, to collect information for detecting malware downloads, web honeypots, which automatically extract the communication records of exploit codes, are used. According to the results of experiments using a prototype, our scheme can filter attacks automatically so that service providers can provide secure and cost-effective network environments.

  13. Improvement of signal to noise ratio of time domain mutliplexing fiber Bragg grating sensor network with Golay complementary codes

    NASA Astrophysics Data System (ADS)

    Elgaud, M. M.; Zan, M. S. D.; Abushagur, A. G.; Bakar, A. Ashrif A.

    2017-07-01

    This paper reports the employment of autocorrelation properties of Golay complementary codes (GCC) to enhance the performance of the time domain multiplexing fiber Bragg grating (TDM-FBG) sensing network. By encoding the light from laser with a stream of non-return-to-zero (NRZ) form of GCC and launching it into the sensing area that consists of the FBG sensors, we have found that the FBG signals can be decoded correctly with the autocorrelation calculations, confirming the successful demonstration of coded TDM-FBG sensor network. OptiGrating and OptiSystem simulators were used to design customized FBG sensors and perform the coded TDM-FBG sensor simulations, respectively. Results have substantiated the theoretical dependence of SNR enhancement on the code length of GCC, where the maximum SNR improvement of about 9 dB is achievable with the use of 256 bits of GCC compared to that of 4 bits case. Furthermore, the GCC has also extended the strain exposure up to 30% higher compared to the maximum of the conventional single pulse case. The employment of GCC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse case, under the same conditions.

  14. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .

  15. The effect of an exogenous magnetic field on neural coding in deep spiking neural networks.

    PubMed

    Guo, Lei; Zhang, Wei; Zhang, Jialei

    2018-01-01

    A ten-layer feed forward network is constructed in the presence of an exogenous alternating magnetic field. Specifically, our results indicate that for rate coding, the firing rate is significantly increased in the presence of an exogenous alternating magnetic field and particularly with increasing enhancement of the alternating magnetic field amplitude. For temporal coding, the interspike intervals of the spiking sequence are decreased and the distribution of the interspike intervals of the spiking sequence tends to be uniform in the presence of alternating magnetic field.

  16. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  17. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  18. Deconvolution using a neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  19. Linearized T-Matrix and Mie Scattering Computations

    NASA Technical Reports Server (NTRS)

    Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.

    2011-01-01

    We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.

  20. Method and system for pattern analysis using a coarse-coded neural network

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)

    1994-01-01

    A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.

  1. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  2. Comparing TCV experimental VDE responses with DINA code simulations

    NASA Astrophysics Data System (ADS)

    Favez, J.-Y.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2002-02-01

    The DINA free-boundary equilibrium simulation code has been implemented for TCV, including the full TCV feedback and diagnostic systems. First results showed good agreement with control coil perturbations and correctly reproduced certain non-linear features in the experimental measurements. The latest DINA code simulations, presented in this paper, exploit discharges with different cross-sectional shapes and different vertical instability growth rates which were subjected to controlled vertical displacement events (VDEs), extending previous work with the DINA code on the DIII-D tokamak. The height of the TCV vessel allows observation of the non-linear evolution of the VDE growth rate as regions of different vertical field decay index are crossed. The vertical movement of the plasma is found to be well modelled. For most experiments, DINA reproduces the S-shape of the vertical displacement in TCV with excellent precision. This behaviour cannot be modelled using linear time-independent models because of the predominant exponential shape due to the unstable pole of any linear time-independent model. The other most common equilibrium parameters like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q, the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal magnetic field at the edge of the plasma βp, and the internal self inductance li also show acceptable agreement. The evolution of the growth rate γ is estimated and compared with the evolution of the closed-loop growth rate calculated with the RZIP linear model, confirming the origin of the observed behaviour.

  3. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  4. Global linear gyrokinetic particle-in-cell simulations including electromagnetic effects in shaped plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Borchardt, M.; Cole, M.; Hatzky, R.; Fehér, T.; Kleiber, R.; Könies, A.; Zocco, A.

    2015-05-01

    We give an overview of recent developments in electromagnetic simulations based on the gyrokinetic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic models implemented in the codes and discuss further improvements of the numerical algorithm, in particular the so-called pullback mitigation of the cancellation problem. The improved algorithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator plasmas, which was previously impossible for the parameters considered.

  5. Multiuser receiver for DS-CDMA signals in multipath channels: an enhanced multisurface method.

    PubMed

    Mahendra, Chetan; Puthusserypady, Sadasivan

    2006-11-01

    This paper deals with the problem of multiuser detection in direct-sequence code-division multiple-access (DS-CDMA) systems in multipath environments. The existing multiuser detectors can be divided into two categories: (1) low-complexity poor-performance linear detectors and (2) high-complexity good-performance nonlinear detectors. In particular, in channels where the orthogonality of the code sequences is destroyed by multipath, detectors with linear complexity perform much worse than the nonlinear detectors. In this paper, we propose an enhanced multisurface method (EMSM) for multiuser detection in multipath channels. EMSM is an intermediate piecewise linear detection scheme with a run-time complexity linear in the number of users. Its bit error rate performance is compared with existing linear detectors, a nonlinear radial basis function detector trained by the new support vector learning algorithm, and Verdu's optimal detector. Simulations in multipath channels, for both synchronous and asynchronous cases, indicate that it always outperforms all other linear detectors, performing nearly as well as nonlinear detectors.

  6. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  7. Data Delivery Method Based on Neighbor Nodes' Information in a Mobile Ad Hoc Network

    PubMed Central

    Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow. PMID:24672371

  8. Data delivery method based on neighbor nodes' information in a mobile ad hoc network.

    PubMed

    Kashihara, Shigeru; Hayashi, Takuma; Taenaka, Yuzo; Okuda, Takeshi; Yamaguchi, Suguru

    2014-01-01

    This paper proposes a data delivery method based on neighbor nodes' information to achieve reliable communication in a mobile ad hoc network (MANET). In a MANET, it is difficult to deliver data reliably due to instabilities in network topology and wireless network condition which result from node movement. To overcome such unstable communication, opportunistic routing and network coding schemes have lately attracted considerable attention. Although an existing method that employs such schemes, MAC-independent opportunistic routing and encoding (MORE), Chachulski et al. (2007), improves the efficiency of data delivery in an unstable wireless mesh network, it does not address node movement. To efficiently deliver data in a MANET, the method proposed in this paper thus first employs the same opportunistic routing and network coding used in MORE and also uses the location information and transmission probabilities of neighbor nodes to adapt to changeable network topology and wireless network condition. The simulation experiments showed that the proposed method can achieve efficient data delivery with low network load when the movement speed is relatively slow.

  9. On the linear stability of blood flow through model capillary networks.

    PubMed

    Davis, Jeffrey M

    2014-12-01

    Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.

  10. Phase synchronization motion and neural coding in dynamic transmission of neural information.

    PubMed

    Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting

    2011-07-01

    In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.

  11. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  12. Development of probabilistic design method for annular fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, Takayuki

    2007-07-01

    The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method formore » annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)« less

  13. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  14. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  15. Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network.

    PubMed

    Deng, Lei; Wu, Hongjie; Liu, Chuyao; Zhan, Weihua; Zhang, Jingpu

    2018-06-01

    Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. What the success of brain imaging implies about the neural code

    PubMed Central

    Guest, Olivia; Love, Bradley C

    2017-01-01

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI’s limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI’s successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI. DOI: http://dx.doi.org/10.7554/eLife.21397.001 PMID:28103186

  17. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  18. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  19. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  20. Code 672 observational science branch computer networks

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  1. Consensus Algorithms for Networks of Systems with Second- and Higher-Order Dynamics

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael

    This thesis considers homogeneous networks of linear systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilizable. We show that, in continuous-time, consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. For networks of continuous-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback. For networks of discrete-time second-order systems, we provide a new and simple derivation of the conditions for a second-order polynomials with complex coefficients to be Schur. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. For networks of continuous-time time-variant higher-order systems, we show that uniform consensus can always be achieved if systems are quadratically stabilizable. In this case, we provide a simple condition to obtain a linear feedback control. For networks of discrete-time higher-order systems, we show that constant gains can be chosen such that consensus is achieved for a variety of network topologies. First, we develop simple results for networks of time-invariant systems and networks of time-variant systems that are given in controllable canonical form. Second, we formulate the problem in terms of Linear Matrix Inequalities (LMIs). The condition found simplifies the design process and avoids the parallel solution of multiple LMIs. The result yields a modified Algebraic Riccati Equation (ARE) for which we present an equivalent LMI condition.

  2. Adversaries in Networks

    DTIC Science & Technology

    2010-08-01

    between east and west. In 330 AD, the emperor Constantine I moved the capital of the eastern part to Byzantium, and renamed the city Constantinople . In...Byzantium was renamed. Long after the empire collapsed after Constantinople fell to the Ottomans in 1453, the Byzantine Empire became known for being...It was shown in [19] that standard network coding problems fall into three categories: (1) coding is un- necessary, and routing is enough to achieve

  3. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2011-09-30

    channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1

  4. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  5. A Network Based Method for Analysis of lncRNA-Disease Associations and Prediction of lncRNAs Implicated in Diseases

    PubMed Central

    Yang, Xiaofei; Gao, Lin; Guo, Xingli; Shi, Xinghua; Wu, Hao; Song, Fei; Wang, Bingbo

    2014-01-01

    Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies. PMID:24498199

  6. Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre

    2013-12-01

    In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.

  7. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  8. Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems

    DOE PAGES

    Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...

    2012-01-01

    Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less

  9. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  10. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  11. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  12. A parallel and modular deformable cell Car-Parrinello code

    NASA Astrophysics Data System (ADS)

    Cavazzoni, Carlo; Chiarotti, Guido L.

    1999-12-01

    We have developed a modular parallel code implementing the Car-Parrinello [Phys. Rev. Lett. 55 (1985) 2471] algorithm including the variable cell dynamics [Europhys. Lett. 36 (1994) 345; J. Phys. Chem. Solids 56 (1995) 510]. Our code is written in Fortran 90, and makes use of some new programming concepts like encapsulation, data abstraction and data hiding. The code has a multi-layer hierarchical structure with tree like dependences among modules. The modules include not only the variables but also the methods acting on them, in an object oriented fashion. The modular structure allows easier code maintenance, develop and debugging procedures, and is suitable for a developer team. The layer structure permits high portability. The code displays an almost linear speed-up in a wide range of number of processors independently of the architecture. Super-linear speed up is obtained with a "smart" Fast Fourier Transform (FFT) that uses the available memory on the single node (increasing for a fixed problem with the number of processing elements) as temporary buffer to store wave function transforms. This code has been used to simulate water and ammonia at giant planet conditions for systems as large as 64 molecules for ˜50 ps.

  13. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.

  14. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  15. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  16. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

    PubMed Central

    Whittington, James C. R.; Bogacz, Rafal

    2017-01-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583

  17. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.

    PubMed

    Whittington, James C R; Bogacz, Rafal

    2017-05-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

  18. Design of an MSAT-X mobile transceiver and related base and gateway stations

    NASA Technical Reports Server (NTRS)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    1987-01-01

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  19. Design of an MSAT-X mobile transceiver and related base and gateway stations

    NASA Astrophysics Data System (ADS)

    Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit

    This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.

  20. Inference of directed climate networks: role of instability of causality estimation methods

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-04-01

    Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)

  1. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, T. F.; Lawrence Livermore National Laboratory, Livermore, California 94550; Xu, X. Q.

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan basedmore » on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.« less

  2. Study and simulation of low rate video coding schemes

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Yun-Chung; Kipp, G.

    1992-01-01

    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.

  3. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    PubMed

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  4. Network Coding for Function Computation

    ERIC Educational Resources Information Center

    Appuswamy, Rathinakumar

    2011-01-01

    In this dissertation, the following "network computing problem" is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function f of the messages. The objective is to maximize the average number of times f can be computed per network usage, i.e., the "computing…

  5. Real-time speech encoding based on Code-Excited Linear Prediction (CELP)

    NASA Technical Reports Server (NTRS)

    Leblanc, Wilfrid P.; Mahmoud, S. A.

    1988-01-01

    This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented.

  6. Nonlinear Analysis of Airfoil High-Intensity Gust Response Using a High-Order Prefactored Compact Code

    NASA Technical Reports Server (NTRS)

    Crivellini, A.; Golubev, V.; Mankbadi, R.; Scott, J. R.; Hixon, R.; Povinelli, L.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    The nonlinear response of symmetric and loaded airfoils to an impinging vortical gust is investigated in the parametric space of gust dimension, intensity, and frequency. The study, which was designed to investigate the validity limits for a linear analysis, is implemented by applying a nonlinear high-order prefactored compact code and comparing results with linear solutions from the GUST3D frequency-domain solver. Both the unsteady aerodynamic and acoustic gust responses are examined.

  7. Correcting quantum errors with entanglement.

    PubMed

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  8. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  9. Speech coding at low to medium bit rates

    NASA Astrophysics Data System (ADS)

    Leblanc, Wilfred Paul

    1992-09-01

    Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.

  10. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  11. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  12. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  13. Effect of planning for connectivity on linear reserve networks.

    PubMed

    Lentini, Pia E; Gibbons, Philip; Carwardine, Josie; Fischer, Joern; Drielsma, Michael; Martin, Tara G

    2013-08-01

    Although the concept of connectivity is decades old, it remains poorly understood and defined, and some argue that habitat quality and area should take precedence in conservation planning instead. However, fragmented landscapes are often characterized by linear features that are inherently connected, such as streams and hedgerows. For these, both representation and connectivity targets may be met with little effect on the cost, area, or quality of the reserve network. We assessed how connectivity approaches affect planning outcomes for linear habitat networks by using the stock-route network of Australia as a case study. With the objective of representing vegetation communities across the network at a minimal cost, we ran scenarios with a range of representation targets (10%, 30%, 50%, and 70%) and used 3 approaches to account for connectivity (boundary length modifier, Euclidean distance, and landscape-value [LV]). We found that decisions regarding the target and connectivity approach used affected the spatial allocation of reserve systems. At targets ≥50%, networks designed with the Euclidean distance and LV approaches consisted of a greater number of small reserves. Hence, by maximizing both representation and connectivity, these networks compromised on larger contiguous areas. However, targets this high are rarely used in real-world conservation planning. Approaches for incorporating connectivity into the planning of linear reserve networks that account for both the spatial arrangement of reserves and the characteristics of the intervening matrix highlight important sections that link the landscape and that may otherwise be overlooked. © 2013 Society for Conservation Biology.

  14. Linear and Nonlinear Elasticity of Networks Made of Comb-like Polymers and Bottle-Brushes

    NASA Astrophysics Data System (ADS)

    Liang, H.; Dobrynin, A.; Everhart, M.; Daniel, W.; Vatankhah-Varnoosfaderani, M.; Sheiko, S.

    We study mechanical properties of networks made of combs and bottle-brushes by computer simulations, theoretical calculations and experimental techniques. The networks are prepared by cross-linking backbones of combs or bottle-brushes with linear chains. This results in ``hybrid'' networks consisting of linear chains and strands of combs or bottle-brushes. In the framework of the phantom network model, the network modulus at small deformations G0 can be represented as a sum of contributions from linear chains, G0 , l, and strands of comb or bottle-brush, G0 , bb. If the length of extended backbone between crosslinks, Rmax, is much longer than the Kuhn length, bk, the modulus scales with the degree of polymerization of the side chains, nsc, and number of monomers between side chains, ng, as G0 , bb (nsc/ng + 1)-1. In the limit when bk becomes of the order of Rmax, the combs and bottle-brushes can be considered as semiflexible chains, resulting in a network modulus to be G0 , bb (nsc/ng + 1)-1(nsc2/2/ng) . In the nonlinear deformation regime, the strain-hardening behavior is described by the nonlinear network deformation model, which predicts that the true stress is a universal function of the structural modulus, G, first strain invariant, I1, and deformation ratio, β. The results of the computer simulations and predictions of the theoretical model are in a good agreement with experimental results. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  15. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres.

    PubMed

    Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G

    2016-08-22

    A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.

  16. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  17. Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.

    PubMed

    Scarpetta, Silvia; Giacco, Ferdinando

    2013-04-01

    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.

  18. Performance improvement of optical CDMA networks with stochastic artificial bee colony optimization technique

    NASA Astrophysics Data System (ADS)

    Panda, Satyasen

    2018-05-01

    This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.

  19. Engineering Overview of a Multidisciplinary HSCT Design Framework Using Medium-Fidelity Analysis Codes

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.

    1999-01-01

    An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.

  20. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

Top