Science.gov

Sample records for linear parallel-plate active

  1. Non-Linear Flow, Fracture, Mechanical Quenching, and Computer Modeling of a Glass Cylinder Pressed Between Parallel Plates.

    NASA Astrophysics Data System (ADS)

    Sakoske, George Emil

    Analytical, experimental, and computer modeling studies are conducted for axial pressing of a glass cylinder between parallel plates. The classic "no-slip" parallel plate equation is derived from fundamental fluid mechanics with no geometric limitations and its validity is proved for transient and steady state low Reynold's number flow. Similarly, a "perfect-slip" solution yields the fiber elongation equation sigma = 3etadotvarepsilon. These limiting boundary conditions are studied experimentally by pressing directly on graphite and mica providing slip mechanisms, and non-deformable metal discs for no-slip. Linear, non-linear flow, and elastic fracture are observed by varying time scale over which strain is applied, theta, in relationship to glass structural relaxation time, tau. Linear flow is measured for tau<linear flow agree with other non-linear viscometric studies. A bond breakage and re -formation rate process model is applied to better fit "steady -state" viscosity strain-rate results. Initial t ~0 and transient data demonstrate complex time, stress, strain, strain-rate behavior. An energy balance shows viscous dissipation contributes significantly to viscosity decreases measured during forced rate pressing of glass cylinders. Rate dependent flow shapes are filmed. Mica did not significantly reduce loads but allows more flow before fracture. Ability to transmit shearing stresses and breakdown of "slip" boundary material is discussed. Fracture occurs as stresses increase within the sample for increasing time and rates. Cracks are driven by hoop and radial stresses where the origin and mode is a function of pressing rate. A Maxwell fluid finite element model is developed which uses experimental parameters as input. FEM results show general agreement with analytical solutions. A viscous heating analysis brings insight to stress overshoot

  2. Entropy generation in a parallel-plate active magnetic regenerator with insulator layers

    NASA Astrophysics Data System (ADS)

    Mugica Guerrero, Ibai; Poncet, Sébastien; Bouchard, Jonathan

    2017-02-01

    This paper proposes a feasible solution to diminish conduction losses in active magnetic regenerators. Higher performances of these machines are linked to a lower thermal conductivity of the Magneto-Caloric Material (MCM) in the streamwise direction. The concept presented here involves the insertion of insulator layers along the length of a parallel-plate magnetic regenerator in order to reduce the heat conduction within the MCM. This idea is investigated by means of a 1D numerical model. This model solves not only the energy equations for the fluid and solid domains but also the magnetic circuit that conforms the experimental setup of reference. In conclusion, the addition of insulator layers within the MCM increases the temperature span, cooling load, and coefficient of performance by a combination of lower heat conduction losses and an increment of the global Magneto-Caloric Effect. The generated entropy by solid conduction, fluid convection, and conduction and viscous losses are calculated to help understand the implications of introducing insulator layers in magnetic regenerators. Finally, the optimal number of insulator layers is studied.

  3. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  4. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  5. A self-tunable Titanium Sapphire laser by rotating a set of parallel plates of active material.

    PubMed

    Iparraguirre, Ignacio; Azkargorta, Jon; Fernandez, Joaquín; Balda, Rolindes; Del Río Gaztelurrutia, Teresa; Illarramendi, M Asunción; Aramburu, Ibon

    2009-03-02

    In a recent work, the authors reported the experimental demonstration of wavelength tuning in a single birefringent plate of Ti:sapphire crystal based on its own birefringence properties. In that device, the thickness of the active plate, limited by the width of the single order tuning spectral region, imposed a strong constraint in the power performance of the laser. The aim of this work is to overcome this limitation by using a set of several identical birefringent plates so that the wavelength tuning of the laser is obtained by synchronously rotating the plates in their own plane. A discussion about the laser performance is presented.

  6. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  7. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  8. The effects of non-parallel plates in a differential capacitive microaccelerometer

    NASA Astrophysics Data System (ADS)

    Tay, F. E. H.; Jun, Xu; Liang, Y. C.; Logeeswaran, V. J.; Yufeng, Yao

    1999-12-01

    The effects of non-parallel plates on the capacitance, sensitivity, electrostatic force and electrostatic spring constant of a microaccelerometer are investigated. In a deep reactive ion etching similar to the single crystal reactive ion etching and metallization (SCREAM) micromachining process, the width of the fingers increases linearly with depth and the cross section takes on a trapezoidal profile. This non-ideal feature is greater in high aspect ratio structures and significantly affects the capacitance, sensitivity, electrostatic force and electrostatic spring constant of the accelerometer operated in either closed or open loop. Finite-element analyses (FEA) of the capacitance and electrostatic force of the parallel-plate and non-parallel-plate models were completed and the results were compared with those derived from the theoretical approach. It is verified that the capacitance, sensitivity, electrostatic force and electrostatic spring constant of the non-parallel-plate model are larger than the parallel-plate model. Hence this non-ideal feature should not be neglected and the assumption of parallel-plate model would give an underestimate of these physical parameters.

  9. Parallel-Plate Electrostatic Dual Mass Oscillator

    SciTech Connect

    Allen, James J.; Dyck, Christopher W.; Huber, Robert J.

    1999-07-22

    A surface-micromachined two-degree-of-freedom system that was driven by parallel-plate actuation at antiresonance was demonstrated. The system consisted of an absorbing mass connected by folded springs to a drive mass. The system demonstrated substantial motion amplification at antiresonance. The absorber mass amplitudes were 0.8-0.85 pm at atmospheric pressure while the drive mass amplitudes were below 0.1 pm. Larger absorber mass amplitudes were not possible because of spring softening in the drive mass springs. Simple theory of the dual-mass oscillator has indicated that the absorber mass may be insensitive to limited variations in strain and damping. This needs experimental verification. Resonant and antiresonant frequencies were measured and compared to the designed values. Resonant frequency measurements were difficult to compare to the design calculations because of time-varying spring softening terms that were caused by the drive configuration. Antiresonant frequency measurements were close to the design value of 5.1 kHz. The antiresonant frequency was not dependent on spring softening. The measured absorber mass displacement at antiresonance was compared to computer simulated results. The measured value was significantly greater, possibly due to neglecting fringe fields in the force expression used in the simulation.

  10. Multipactor saturation in parallel-plate waveguides

    SciTech Connect

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  11. Particle Transport in Parallel-Plate Reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  12. A numerical model for thermoelectric generator with the parallel-plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Yu, Jianlin; Zhao, Hua

    This paper presents a numerical model to predict the performance of thermoelectric generator with the parallel-plate heat exchanger. The model is based on an elemental approach and exhibits its feature in analyzing the temperature change in a thermoelectric generator and concomitantly its performance under operation conditions. The numerical simulated examples are demonstrated for the thermoelectric generator of parallel flow type and counter flow type in this paper. Simulation results show that the variations in temperature of the fluids in the thermoelectric generator are linear. The numerical model developed in this paper may be also applied to further optimization study for thermoelectric generator.

  13. WET EFFLUENT PARALLEL PLATE DIFFUSION DENUDER COUPLED CAPILLARY ION CHROMATOGRAPH FOR THE DETERMINATION OF ATMOSPHERIC TRACE GASES. (R825344)

    EPA Science Inventory

    We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...

  14. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  15. Parallel-Plate Acoustic Absorbers For Hot Environments

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Parrot, Tony L.

    1995-01-01

    Stacking patterns and materials chosen to suppress noise. Acoustic liners incorporating parallel-plate absorbing elements proposed for use in suppressing broadband aerodynamic noise originating in flows of hot gases in ducts. One potential application lies in suppressing noise generated in exhaust-jet mixer/ejectors in propulsion system of proposed High-Speed Civil Transport. In addition, such absorbers useful in any situation in which high temperature limits use of such conventional resonant acoustic-liner materials as perforated face sheets bonded to honey-comb-core panels.

  16. Analyses of multiple surfaces transform interferometry in parallel plate measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ren, Huan; Yang, Yi; Liu, Yong; Shi, Zhendong; Yuan, Quan; Jiang, Hongzhen

    2014-12-01

    Multiple surfaces transform interferometery is a preferred technology for surface profile and index homogeneity measurement using a Fourier based analysis method combined with phase-shifting interferometer. As a four-surface cavity for example, the surface form and index inhomogeneity of the parallel plate are deduced by extracting the information from the corresponding interference frequency. The errors of surface form and index homogeneity are simultaneously simulated and analyzed with different sampling buckets. The results show the feasibility and high precision of this approach compared with traditional methods.

  17. Parallel Plate System for Collecting Data Used to Determine Viscosity

    NASA Technical Reports Server (NTRS)

    Kaukler, William (Inventor); Ethridge, Edwin C. (Inventor)

    2013-01-01

    A parallel-plate system collects data used to determine viscosity. A first plate is coupled to a translator so that the first plate can be moved along a first direction. A second plate has a pendulum device coupled thereto such that the second plate is suspended above and parallel to the first plate. The pendulum device constrains movement of the second plate to a second direction that is aligned with the first direction and is substantially parallel thereto. A force measuring device is coupled to the second plate for measuring force along the second direction caused by movement of the second plate.

  18. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  19. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  20. Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Yuexiang; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-03-01

    We consider the transverse electric (TE) surface plasmon polaritons (SPPs) supported by a graphene parallel plate waveguide bounded by Kerr-type nonlinear media in the mid-infrared and terahertz frequencies. Through theoretical analysis of the exact dispersion relations, we reveal the existence conditions of the even mode and odd mode of nonlinear TE SPPs in this system. To be specific, if the linear permittivity of the nonlinear cladding is larger than the permittivity of the core, it only supports the even mode and two branches of the dispersion curve exist. However, when the linear permittivity of the nonlinear cladding is smaller than the permittivity of the core, both even and odd modes can be supported. Moreover, it is found that the propagation constant of even and odd modes decreases with the increasing Fermi energy of graphene.

  1. A proposed experimental search for chameleons using asymmetric parallel plates

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James A.

    2016-08-01

    Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.

  2. A two-dimensional investigation about magnetocaloric regenerator design: parallel plates or packed bed?

    NASA Astrophysics Data System (ADS)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2017-01-01

    Magnetic Refrigeration (MR) is a novel refrigeration technique based on eco-friendly solid materials as refrigerants, whom react to the application of magnetic fields, with warming and cooling by magnetocaloric effect. The thermodynamical cycle which best suits the magnetic refrigeration is Active Magnetic Regenerator cycle (AMR). Regenerator is the core of a magnetic refrigerator, since that it plays a dual-role: it operates both as refrigerant and regenerator in an AMR cycle. An AMR cycle consists of two adiabatic stages and two isofield stage. In this paper an investigation is conducted about the magnetocaloric refrigerator design through two-dimensional multiphysics numerical models of two different magnetocaloric regenerators: (1) a packed bed and (2) a parallel plates magnetic regenerators made of gadolinium, operating at room temperature under a 1.5T magnetic field induction. Both models employ water as secondary fluid. The tests were performed with variable fluid flow rate at fixed AMR cycle frequency. The results obtained are presented in terms of temperature span, cooling power, coefficient of performance and mechanical power of the circulation pump, and they indicate under which operating conditions packed bed configuration is to be preferred to parallel plates and vice versa.

  3. Casimir effect for parallel plates in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Elizalde, E.; Saharian, A. A.; Vardanyan, T. A.

    2010-06-01

    The Wightman function and the vacuum expectation values of the field squared and of the energy-momentum tensor are obtained, for a massive scalar field with an arbitrary curvature coupling parameter, in the region between two infinite parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. For the calculation, a mode-summation method is used, supplemented with a variant of the generalized Abel-Plana formula. This allows one to explicitly extract the contributions to the expectation values, which come from each single boundary, and to expand the second-plate-induced part in terms of exponentially convergent integrals. Several limiting cases of interest are then studied. Moreover, the Casimir forces acting on the plates are evaluated, and it is shown that the curvature of the background spacetime decisively influences the behavior of these forces at separations larger than the curvature scale of de Sitter spacetime. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively. The decay of the Casimir force at large plate separation is shown to be power law (monotonic or oscillating), with independence of the value of the field mass.

  4. Casimir effect for parallel plates in de Sitter spacetime

    SciTech Connect

    Elizalde, E.; Saharian, A. A.; Vardanyan, T. A.

    2010-06-15

    The Wightman function and the vacuum expectation values of the field squared and of the energy-momentum tensor are obtained, for a massive scalar field with an arbitrary curvature coupling parameter, in the region between two infinite parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. For the calculation, a mode-summation method is used, supplemented with a variant of the generalized Abel-Plana formula. This allows one to explicitly extract the contributions to the expectation values, which come from each single boundary, and to expand the second-plate-induced part in terms of exponentially convergent integrals. Several limiting cases of interest are then studied. Moreover, the Casimir forces acting on the plates are evaluated, and it is shown that the curvature of the background spacetime decisively influences the behavior of these forces at separations larger than the curvature scale of de Sitter spacetime. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively. The decay of the Casimir force at large plate separation is shown to be power law (monotonic or oscillating), with independence of the value of the field mass.

  5. Casimir Stress on Parallel Plates in de Sitter Space with Signature Change

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    The Casimir stress on two parallel plates in a de Sitter background corresponding to different metric signatures and cosmological constants is calculated for massless scalar fields satisfying Robin boundary conditions on the plates. Our calculation shows that for the parallel plates with false vacuum between and true vacuum outside, the total Casimir pressure leads to an attraction of the plates at very early universe.

  6. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    PubMed

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2017-08-11

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O2 min(-1) m(-2) cm Hg(-1) with pure water and 1.71 ± 1.03 mL O2 min(-1) m(-2) cm Hg(-1) with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Parallel-Plate Waveguide for Volume Radio Frequency Transmission in MRI

    PubMed Central

    Lu, Hai; Shang, Shuo; Wang, Shumin

    2015-01-01

    Purpose Radiofrequency coils in MRI are narrowband resonant structures. The high-quality factor makes their performance sensitive to loading and other operating conditions. We developed a new coil to provide volume transmit in a broad frequency band. Methods The proposed coil is a parallel-plate waveguide. When operating in the transverse electromagnetic mode, a uniform magnetic field is generated between the plates for imaging. The impedance of the transverse electromagnetic mode is matched by a broadband matching circuit. The two plates are actively driven with broadband Wilkinson power dividers and combiners. Re-entrant design is further applied to improve the overall efficiency. Results We developed a prototype of a coil to image the human forearm with a bandwidth of more than one octave. Its feasibility was demonstrated by proton imaging and phosphorous spectroscopy at 7T. Conclusions The proposed coil structure is compact and relatively easier to construct. It can be applied for volume radiofrequency transmit in MRI in a broad frequency band. PMID:25394268

  8. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOEpatents

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  9. Interferences with an Plane Parallel Plate Near the Critical Angel of Total Reflection

    NASA Astrophysics Data System (ADS)

    Eidner, K.; Mayer, G.; Schuster, R.

    1985-07-01

    The fringes of equal inclination with a plane parallel plate surrounded by an optically denser medium start at an angle of incidence less than the critical angle of total reflection. Despite its practical importance this effect was disregarded in optics up to now.

  10. Flow of a Rarefied Gas between Parallel and Almost Parallel Plates

    DTIC Science & Technology

    2005-07-13

    Flow of a Rarefied Gas between Parallel and Almost Parallel Plates Carlo Cercignani, Maria Lampis and Silvia Lorenzani Dipartimento di Matematica ...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Matematica , Politecnico di Milano, Milano, Italy 20133 8. PERFORMING

  11. NONDESTRUCTIVE MEASUREMENT OF MOISTURE CONTENT USING A PARALLEL-PLATE CAPACITANCE SENSOR FOR GRAIN AND NUTS

    USDA-ARS?s Scientific Manuscript database

    A simple, low cost instrument that measures impedance and phase angle was used along with a parallel-plate capacitance system to estimate the moisture content (MC) of in-shell peanuts and yellow field corn. Moisture content of the field crops is important and is measured at various stages of their ...

  12. An adjustable parallel-plate capacitor instrument—Test of the theoretical capacitance formula

    NASA Astrophysics Data System (ADS)

    Wells, Beau; Baker, Emily; Farwell, Austin; Foster, Harrison; Gao, Xiaohan; Gruber, Benjamin; Jones, Erica; Vu, Dennis; Xu, Sonya; Ye, Jingbo

    2016-09-01

    We describe an adjustable parallel-plate capacitor apparatus designed for use in an undergraduate laboratory that permits precise variation of plate separation distances and overlap area. Two experiments are performed with the device to test the ideal capacitor formula derived from Gauss's Law. After correcting for edge effects and minor plate tilt, the device yields capacitance values within 3% of theoretical values.

  13. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  14. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  15. The restoring force on a dielectric in a parallel plate capacitor

    NASA Astrophysics Data System (ADS)

    Staunton, L. P.

    2014-09-01

    We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.

  16. Electron beam guiding by grooved SiO{sub 2} parallel plates without energy loss

    SciTech Connect

    Xue, Yingli; Yu, Deyang Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-21

    Using a pair of grooved SiO{sub 2} parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  17. Casimir effect for parallel plates involving massless Majorana fermions at finite temperature

    SciTech Connect

    Cheng Hongbo

    2010-08-15

    We study the Casimir effect for parallel plates with massless Majorana fermions obeying the bag boundary conditions at finite temperature. The thermal influence will modify the effect. It is found that the sign of the Casimir energy remains negative if the product of the plate distance and the temperature is larger than a special value, otherwise the energy will change to positive. The Casimir energy rises with the stronger thermal influence. We show that the attractive Casimir force between two parallel plates becomes greater with increasing temperature. In the case of the piston system involving the same Majorana fermions with the same boundary conditions, the attractive force on the piston will be weaker in higher-temperature surroundings.

  18. Use of orthogonal or parallel plating techniques to treat distal humerus fractures.

    PubMed

    Abzug, Joshua M; Dantuluri, Phani K

    2010-08-01

    Distal humerus fractures continue to be a complex fracture to treat. This article describes two surgical techniques that can be used to tackle these difficult fractures: Parallel plating and orthogonal plating. Both techniques have yielded excellent outcomes after open reduction and internal fixation; yet each has its own set of unique considerations. However, the key to successful treatment of these difficult fractures regardless of technique remains obtaining anatomic reduction with stable fixation and the implementation of early motion.

  19. Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound.

    PubMed

    Castro, Angelica; Hoyos, Mauricio

    2016-03-01

    In a previous study, we introduced pulse mode ultrasound as a new method for reducing and controlling the acoustic streaming in parallel plate resonators (Hoyos and Castro, 2013). Here, by modifying other parameters such as the resonator geometry and the particle size, we have found a threshold for particle manipulation with ultrasonic standing waves in confined resonators without the influence of the acoustic streaming. We demonstrate that pulse mode ultrasound open the possibility of manipulating particles smaller than 1 μm size.

  20. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  1. Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams.

    PubMed

    von Voigts-Rhetz, Philip; Czarnecki, Damian; Zink, Klemens

    2014-09-01

    The presence of an air filled ionization chamber in a surrounding medium introduces several fluence perturbations in high energy photon and electron beams which have to be accounted for. One of these perturbations, the displacement effect, may be corrected in two different ways: by a correction factor pdis or by the application of the concept of the effective point of measurement (EPOM). The latter means, that the volume averaged ionization within the chamber is not reported to the chambers reference point but to a point within the air filled cavity. Within this study the EPOM was determined for four different parallel plate and two cylindrical chambers in megavoltage electron beams using Monte Carlo simulations. The positioning of the chambers with this EPOM at the depth of measurement results in a largely depth independent residual perturbation correction, which is determined within this study for the first time. For the parallel plate chambers the EPOM is independent of the energy of the primary electrons. Whereas for the Advanced Markus chamber the position of the EPOM coincides with the chambers reference point, it is shifted for the other parallel plate chambers several tenths of millimeters downstream the beam direction into the air filled cavity. For the cylindrical chambers there is an increasing shift of the EPOM with increasing electron energy. This shift is in upstream direction, i.e. away from the chambers reference point toward the focus. For the highest electron energy the position of the calculated EPOM is in fairly good agreement with the recommendation given in common dosimetry protocols, for the smallest energy, the calculated EPOM positions deviate about 30% from this recommendation. Copyright © 2014. Published by Elsevier GmbH.

  2. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  3. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  4. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  5. Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Astley, Victoria; Liu, Jingbo; Mittleman, Daniel M.

    2009-10-01

    We describe a terahertz optical resonator that is ideally suited for highly sensitive and noninvasive refractive-index monitoring. The resonator is formed by machining a rectangular groove into one plate of a parallel-plate waveguide, and is excited using the lowest-order transverse-electric (TE1) waveguide mode. Since the resonator can act as a channel for fluid flow, it can be easily integrated into a microfluidics platform for real-time monitoring. Using this resonator with only a few microliters of liquid, we demonstrate a refractive-index sensitivity of 3.7×105 nm/refractive-index-unit, the highest ever reported in any frequency range.

  6. Unsteady flows of a micropolar fluid between parallel plates using state space approach

    NASA Astrophysics Data System (ADS)

    Devakar, M.; Iyengar, T. K. V.

    2013-04-01

    In this paper, we investigate the unsteady flow of an incompressible micropolar fluid between infinite parallel plates using state space approach when one of the plates is set to move suddenly while the other is at rest. Analytical expressions of the fluid velocity and microrotation are obtained in the Laplace transform domain. A standard numerical inversion technique is used to invert the Laplace transform of the velocity and microrotation. The effect of various material parameters on flow variables is discussed and the results are presented through graphs.

  7. Energy deposition in parallel-plate plasma accelerators. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dicapua, M. S.

    1971-01-01

    To appraise the ratio of energy deposition into kinetic and thermal modes in plasma accelerators, a parallel-plate plasma accelerator has been operated in the quasi-steady mode with current pulses in the range of 10 to 100 kilo-amperes (kA), durations of the order of one millisecond, and argon mass flows up to 100 grams/sec. From photographic observations, spectroscopic measurements of velocity and electron density, and pressure measurements with a fast-rise piezoelectric transducer it is found that, for currents between 50 and 90 kA, the accelerated argon plasma is supersonic with ion velocities of 5 to 6 kilometers/sec.

  8. A new parallel plate dialyser. III. Preliminary experience on clinical performance.

    PubMed

    Dawids, S; Vojnovic, S

    1977-01-01

    The clinical model of a new parallel plate dialyser with a membrane area of 0.96 m2 with cuprophane 150 PM has been tested in more than 2000 dialyses with good clinical results. The simple design permits an aseptic, semiautomatic assembly and makes cheap industrial production possible. Clinical clearance values for urea, creatinine and uric acid are presented as well as data for ultrafiltration, residual blood volume and rupture frequency. The specific efficiency per square meter has been found to be high.

  9. Frequency-dependent stability of parallel-plate electrostatic actuators in conductive fluids

    NASA Astrophysics Data System (ADS)

    Sounart, T. L.; Panchawagh, H. V.; Mahajan, R. L.

    2010-05-01

    We present an electromechanical stability analysis of passivated parallel-plate electrostatic actuators in conductive dielectric media and show that the pull-in instability can be eliminated by tuning the applied frequency below a design-dependent stability limit. A partial instability region is also obtained, where the actuator jumps from the pull-in displacement to another stable position within the gap. The results predict that the stability limit is always greater than the critical actuation frequency, and therefore any device that is feasible to actuate in a conductive fluid can be operated with stability over the full range of motion.

  10. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  11. Super-resolution non-parametric deconvolution in modelling the radial response function of a parallel plate ionization chamber.

    PubMed

    Kulmala, A; Tenhunen, M

    2012-11-07

    The signal of the dosimetric detector is generally dependent on the shape and size of the sensitive volume of the detector. In order to optimize the performance of the detector and reliability of the output signal the effect of the detector size should be corrected or, at least, taken into account. The response of the detector can be modelled using the convolution theorem that connects the system input (actual dose), output (measured result) and the effect of the detector (response function) by a linear convolution operator. We have developed the super-resolution and non-parametric deconvolution method for determination of the cylinder symmetric ionization chamber radial response function. We have demonstrated that the presented deconvolution method is able to determine the radial response for the Roos parallel plate ionization chamber with a better than 0.5 mm correspondence with the physical measures of the chamber. In addition, the performance of the method was proved by the excellent agreement between the output factors of the stereotactic conical collimators (4-20 mm diameter) measured by the Roos chamber, where the detector size is larger than the measured field, and the reference detector (diode). The presented deconvolution method has a potential in providing reference data for more accurate physical models of the ionization chamber as well as for improving and enhancing the performance of the detectors in specific dosimetric problems.

  12. Heat transfer in a rarefied gas enclosed between parallel plates: Role of boundary conditions

    NASA Astrophysics Data System (ADS)

    Loyalka, S. K.; Thomas, J. R., Jr.

    1982-07-01

    The influence of boundary conditions of accomodation coefficients and Maxwellian diffuse specular reflection on heat transfer through a rarefied gas enclosed between two parallel plates is examined. An exact expression for heat transfer for accomodation coefficient boundary conditions and the Bhatnagar-Gross-Krook (BGK) model is constructed by using results of Cercignani and Pagani and Thomas, Chang, and Siewert. These results are compared with some variational results of Cipolla and Cercignani and some exact results of Thomas, Chang, and Siewert and Thomas for the BGK model and Maxwellian diffuse specular reflection boundary conditions. It is concluded that the two boundary conditions provide results that agree within about 3% for a range of Knudsen numbers and boundary parameters. It is found that the variational results are remarkably accurate for the BGK model and both types of boundary conditions. Further, it is noted that the heat transfer between parallel plates with different accommodation coefficients at the two surfaces can be calculated exactly by using a harmonic mean for each surface.

  13. Dynamic pull-in of parallel plate and torsional electrostatic MEMS actuators.

    SciTech Connect

    Nielson, Gregory N.; Barbastathis, George

    2005-02-01

    An analysis of the dynamic characteristics of pull-in for parallel-plate and torsional electrostatic actuators is presented. Traditionally, the analysis for pull-in has been done using quasi-static assumptions. However, it was recently shown experimentally that a step input can cause a decrease in the voltage required for pull-in to occur. We propose an energy-based solution for the step voltage required for pull-in that predicts the experimentally observed decrease in the pull-in voltage. We then use similar energy techniques to explore pull-in due to an actuation signal that is modulated depending on the sign of the velocity of the plate (i.e., modulated at the instantaneous mechanical resonant frequency). For this type of actuation signal, significant reductions in the pull-in voltage can theoretically be achieved without changing the stiffness of the structure. This analysis is significant to both parallel-plate and torsional electrostatic microelectromechanical systems (MEMS) switching structures where a reduced operating voltage without sacrificing stiffness is desired, as well as electrostatic MEMS oscillators where pull-in due to dynamic effects needs to be avoided.

  14. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.

    PubMed

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-09

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  15. Preliminary Diffusive Clearance of Silicon Nanopore Membranes in a Parallel Plate Configuration for Renal Replacement Therapy

    PubMed Central

    Kim, Steven; Heller, James; Iqbal, Zohora; Kant, Rishi; Kim, Eun Jung; Durack, Jeremy; Saeed, Maythem; Do, Loi; Hetts, Steven; Wilson, Mark; Brakeman, Paul; Fissell, William H.; Roy, Shuvo

    2015-01-01

    Silicon nanopore membranes (SNM) with compact geometry and uniform pore size distribution have demonstrated a remarkable capacity for hemofiltration. These advantages could potentially be used for hemodialysis. Here we present an initial evaluation of the SNM’s mechanical robustness, diffusive clearance, and hemocompatibility in a parallel plate configuration. Mechanical robustness of the SNM was demonstrated by exposing membranes to high flows (200ml/min) and pressures (1,448mmHg). Diffusive clearance was performed in an albumin solution and whole blood with blood and dialysate flow rates of 25ml/min. Hemocompatibility was evaluated using scanning electron microscopy and immunohistochemistry after 4-hours in an extra-corporeal porcine model. The pressure drop across the flow cell was 4.6mmHg at 200ml/min. Mechanical testing showed that SNM could withstand up to 775.7mmHg without fracture. Urea clearance did not show an appreciable decline in blood versus albumin solution. Extra-corporeal studies showed blood was successfully driven via the arterial-venous pressure differential without thrombus formation. Bare silicon showed increased cell adhesion with a 4.1 fold increase and 1.8 fold increase over polyethylene-glycol (PEG)-coated surfaces for tissue plasminogen factor (t-PA) and platelet adhesion (CD-41), respectively. These initial results warrant further design and development of a fully scaled SNM-based parallel plate dialyzer for renal replacement therapy. PMID:26692401

  16. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  17. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  18. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber: part II: use of fluorescence imaging.

    PubMed

    Li, Jiuyi; Busscher, Henk J; van der Mei, Henny C; Norde, Willem; Krom, Bastiaan P; Sjollema, Jelmer

    2011-10-15

    Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011) 76). Here we describe a novel method for enumerating adhesion of fluorescent bacteria in a parallel plate flow chamber that allows direct imaging of the bacterial distribution along the length of the flow chamber, as caused by sedimentation. Imaging of fluorescence was done using macroscopic bio-optical imaging of the entire flow chamber, including top and bottom plates as well as of the flowing suspension in between. An algorithm is forwarded that allows to separate the fluorescence arising from the suspension and bottom plate and at the same time determines the single cell fluorescence from which the bacterial distribution over the entire bottom plate can be visualized. Enumeration of the numbers of bacteria adhering to the center of the glass bottom plate for a fluorescent Staphylococcus aureus strain was found to coincide with enumerations using phase-contrast microscopy. Moreover, due to the use of macroscopic bio-optical imaging, it was found that the number of adhering staphylococci increases linearly with distance from the inlet of the flow chamber, which could be explained from a simplified mass balance of convection, sedimentation and blocking near the bottom plate of the flow chamber.

  19. Oscillation modes of direct current microdischarges with parallel-plate geometry

    SciTech Connect

    Stefanovic, Ilija; Kuschel, Thomas; Winter, Joerg; Skoro, Nikola; Maric, Dragana; Petrovic, Zoran Lj

    2011-10-15

    Two different oscillation modes in microdischarge with parallel-plate geometry have been observed: relaxation oscillations with frequency range between 1.23 and 2.1 kHz and free-running oscillations with 7 kHz frequency. The oscillation modes are induced by increasing power supply voltage or discharge current. For a given power supply voltage, there is a spontaneous transition from one to other oscillation mode and vice versa. Before the transition from relaxation to free-running oscillations, the spontaneous increase of oscillation frequency of relaxation oscillations form 1.3 kHz to 2.1 kHz is measured. Fourier transform spectra of relaxation oscillations reveal chaotic behavior of microdischarges. Volt-ampere (V-A) characteristics associated with relaxation oscillations describes periodical transition between low current, diffuse discharge, and normal glow. However, free-running oscillations appear in subnormal glow only.

  20. Electrothermal MEMS parallel plate rotation for single-imager stereoscopic endoscopes.

    PubMed

    Jang, Kyung-Won; Yang, Sung-Pyo; Baek, Seung-Hwan; Lee, Min-Suk; Park, Hyeon-Cheol; Seo, Yeong-Hyeon; Kim, Min H; Jeong, Ki-Hun

    2016-05-02

    This work reports electrothermal MEMS parallel plate-rotation (PPR) for a single-imager based stereoscopic endoscope. A thin optical plate was directly connected to an electrothermal MEMS microactuator with bimorph structures of thin silicon and aluminum layers. The fabricated MEMS PPR device precisely rotates an transparent optical plate up to 37° prior to an endoscopic camera and creates the binocular disparities, comparable to those from binocular cameras with a baseline distance over 100 μm. The anaglyph 3D images and disparity maps were successfully achieved by extracting the local binocular disparities from two optical images captured at the relative positions. The physical volume of MEMS PPR is well fit in 3.4 mm x 3.3 mm x 1 mm. This method provides a new direction for compact stereoscopic 3D endoscopic imaging systems.

  1. Ac transport properties of electrons in parallel-plate mesoscopic capacitors in series

    NASA Astrophysics Data System (ADS)

    Chuen, J.; Wang, J. H.

    2017-10-01

    In a self-consistent manner by taking into account three aspects: the frequency of the bias, geometry of the capacitor (e.g. plate separation) and the Fermi energy of the system, ac transport properties of electrons in parallel-plate mesoscopic capacitor in series under an bias are discussed. The charge density, the internal characteristic potential caused by electrons interaction and the size-dependent mesoscopic capacitance are calculated. Results show that these quantities are complex number with very small finite imaginary part in mesoscopic scale, and the current conservation is satisfied in our numerical calculation. Moreover, when the plate separation is large enough, the mesoscopic capacitance approaches to the geometric capacitance, and the imaginary parts vanish. When the plate separation is small, there are some differences between them.

  2. Ultraviolet absorption measurements of CF2 in the parallel plate pyrolytic chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Cruden, Brett A.; Gleason, Karen K.; Sawin, Herbert H.

    2002-03-01

    Polytetrafluoroethylene films have been deposited for use as low dielectric constant materials. Deposition is performed through pyrolysis of hexafluoropropylene oxide (HFPO) to produce CF2, which can then polymerize and deposit as a thin film. The variation of CF2 concentration as a function of reactor conditions has been characterized by ultraviolet absorption spectroscopy. CF2 concentration is observed to go through a maximum with respect to both pressure and pyrolysis temperature when it is present in large amounts (~1014 cm-3). A one-dimensional model including known kinetic reactions for HFPO decomposition and CF2 recombination and multi-component diffusive transport has been applied to the parallel plate system. The result is seen to overestimate the measured concentration and does not capture the maxima observed versus pressure and temperature. An additional mechanism of particle formation, by CF2 insertion into (CF2)n oligomers, has been introduced to produce a kinetic model that explains the CF2 concentration measurements.

  3. A new parallel-plate graphite ionization chamber as a 60Co gamma radiation reference instrument

    NASA Astrophysics Data System (ADS)

    Perini, Ana P.; Neves, Lucio P.; Fernández-Varea, José M.; Cassola, Vagner F.; Kramer, Richard; Khoury, Helen J.; Caldas, Linda V. E.

    2014-02-01

    The calibration procedure in radiotherapy treatments is very important and a sensitive task due to the high doses delivered to the patients. Generally, the air-kerma cavity standards for 60Co gamma rays are graphite cavity ionization chambers. In this work a new parallel-plate graphite ionization chamber was studied to analyze its potential use as a reference instrument. In order to evaluate its performance in 60Co beams, it was submitted to several characterization tests. Moreover, Monte Carlo simulations were undertaken using the EGSnrc code to study the influence of the chamber components on its response. The results obtained showed that this new ionization chamber presented a satisfactory performance in all evaluated tests.

  4. Analysis of slippage in THz-FEL with a parallel plate waveguide

    NASA Astrophysics Data System (ADS)

    Deng, L. Z.; Tan, P.; Qin, B.; Xiong, Y. Q.

    2014-03-01

    An approach is proposed to analyze the slippage of waveguide FEL. Based on what we find that the derivative of the detuning parameter with respect to the axial wavenumber is proportional to the slippage, several expressions of slippage are derived for analyzing slippage. The analysis results show that both zero-slippage and maximal slippage can be obtained at specific conditions. Especially for the given parameters of THz-FEL oscillator which is under development at Huazhong University of Science and Technology (HUST), the maximal slippage occurs when the parameter Δ approximately equals to 0.5. Then by analyzing the slippage in HUST THz-FEL oscillator, the parallel plate waveguide with the dimension of 4-6 mm is considered for optimum design.

  5. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    SciTech Connect

    Kartavykh, N. N.; Smorodin, B. L. Il’in, V. A.

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimes are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.

  6. A study of turbulent flow between parallel plates by a statistical method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Giddens, D. P.; Bangert, L. H.; Wu, J. C.

    1976-01-01

    Turbulent Couette flow between parallel plates was studied from a statistical mechanics approach utilizing a model equation, similar to the Boltzmann equation of kinetic theory, which was proposed by Lundgren from the velocity distribution of fluid elements. Solutions to this equation are obtained numerically, employing the discrete ordinate method and finite differences. Two types of boundary conditions on the distribution function are considered, and the results of the calculations are compared to available experimental data. The research establishes that Lundgren's equation provides a very good description of turbulence for the flow situation considered and that it offers an analytical tool for further study of more complex turbulent flows. The present work also indicates that modelling of the boundary conditions is an area where further study is required.

  7. Simultaneous evaluation of viscosity and retardation time in glassy polymers by a parallel-plate technique

    NASA Astrophysics Data System (ADS)

    Macho, E.; Alegría, A.; Colmenero, J.

    1988-07-01

    In this work we describe a new experimental procedure for parallel-plate rheometry of glassy polymers above the glass-transition temperature range. This method has been used with an automated setup built by us which is linked to a HP-86 desk computer. Both our experimental procedure and experimental setup allow us not only to determine the Newtonian viscosity in the wide 104-109 Pa s range, but also the evaluation of a kind of retardation time. This is related to the time that the sample needs to reach the viscous behavior. Moreover, this time can be identified with the retardation time corresponding to the effects of the entanglements in the polymer melt, at least for the two polymers investigated here: polycarbonate and polysulfone.

  8. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.

    PubMed

    Ohshima, Hiroyuki

    An approximate analytic expression is derived for the interaction energy between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution. The interaction energy has three components: electrostatic interaction energy between two brush layers before and after their contact, steric interaction energy between two brush layers after their contact, and the van der Waals interaction energy between the cores of the plates. It is shown that these three components are of the same order of magnitude and contribute equally to the total interaction energy between two polyelectrolyte-coated plates in an electrolyte solution. On the basis of Derjaguin's approximation, an approximate expression for the interaction energy between two spherical particles covered with polyelectrolyte brush layers is also derived.

  9. Total Electrode Fall Measurement in a Parallel-Plate Magnetoplasmadynamic Thruster

    NASA Astrophysics Data System (ADS)

    Nakata, Daisuke; Toki, Kyoichiro; Shimizu, Yukio; Funaki, Ikkoh; Kuninaka, Hitoshi; Arakawa, Yoshihiro

    The total electrode fall voltage in a channel of magnetoplasmadynamic (MPD) thruster was determined by using "zero-limit approximating method", which is one of the classical methods widely used in the arc welding field. A new five-channel parallel-plate MPDT was designed and operated in a quasi-steady mode. This paper presents the measurement of the discharge voltage vs. the electrode gap for gaps from 1 mm to 4 mm. The extrapolated zero-gap intercept resulted in 18 V, which was considered as the total electrode-fall voltage. The electrode-fall voltage did not depend on the discharge current unless the discharge current exceeded onset threshold. It is considered that most of the electrode fall is deposited on the cathode side since the space potential at the inter-electrode region was almost equal to the anode potential.

  10. THz transmission characteristics of dielectric-filled parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind

    2007-04-01

    THz transmission characteristics of dielectric-filled (DF) metallic parallel-plate waveguides (PPWGs) are experimentally and theoretically investigated via the propagation of sub-ps THz pulses. It is found that a PPWG having a high-resistivity (>10 kΩ cm) silicon filling can, in fact, exhibit a higher transmission loss compared to one having a polythene filling, despite the significantly lower THz absorption in the bulk silicon. Consequently, it is shown that the key to achieving low-loss transmission in DF-PPWGs is to use a dielectric filling having not only a low absorption, but also a low refractive index. The application of this guided-wave geometry for THz spectroscopy of minute (film) substances is also predicted.

  11. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    NASA Astrophysics Data System (ADS)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  12. Terahertz band gaps induced by metal grooves inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; So, Jin-Kyu; Park, Gun-Sik; Kim, Daisik; Kee, Chul-Sik; Jeon, Tae-In

    2012-03-12

    We report experimental and finite-difference time-domain simulation studies on terahertz (THz) characteristics of band gaps by using metal grooves which are located inside the flare parallel-plate waveguide. The vertically localized standing-wave cavity mode (SWCM) between the upper waveguide surface and groove bottom, and the horizontally localized SWCM between two groove side walls (groove cavity) are observed. The E field intensity of the horizontally localized SWCM in grooves is very strongly enchanced which is three order higher than that of the input THz. The 4 band gaps except the Bragg band gap are caused by the π radian delay (out of phase) between the reflected THz field by grooves and the propagated THz field through the air gap. The measurement and simulation results agree well.

  13. Parallel-plate lab-on-a-chip based on digital microfluidics for on-chip electrochemical analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yuhua; Chen, Jianfeng; Zhou, Jia

    2014-01-01

    This paper describes an electrowetting on dielectric (EWOD) digital microfluidic-based lab-on-a-chip (LOC) integrated with on-chip electrochemical microsensor by IC compatible fabrication process, and its application for the entire online biosensing process capable of fully automatic analysis for ferrocenemethanol (FcM) and dopamine (DA). In this work, we made full use of the parallel-plate structure of the EWOD digital microfluidic device to fabricate the microfluidic module on the bottom plate and the three-microelectrode-system-integrated electrochemical cell together with patterned ground electrode on the top plate. The proposed LOC possesses the multifunction of: (1) creating, merging and transporting of microliter-level sample droplets, (2) online biosensing, and (3) droplets recycling. The three-electrode-integrated microsensor not only reveals a sensitive electrochemical detection for FcM in a wide concentration range (10 µM-1.0 mM), but also shows good stability, selectivity and reproducibility for surface-controlled detection of DA. The calibration of DA was linear for concentration from 1.0 to 50.0 µM with a high sensitivity of 2145 nA µM-1 cm-2 (R2 = 0.9933) and estimated detection limit of 0.42 µM (signal/noise ratio of 3). This work shows the promise of state-of-the-art digital microfluidic biosensors for fully automatic online bioanalysis in a future LOC to perform on-chip biomedical protocols in vitro diagnostic assays.

  14. Preparation of magnetorheological elastomers and their slip-free characterization by means of parallel-plate rotational rheometry

    NASA Astrophysics Data System (ADS)

    Walter, Bastian L.; Pelteret, Jean-Paul; Kaschta, Joachim; Schubert, Dirk W.; Steinmann, Paul

    2017-08-01

    A systematic study is presented to highlight a methodology of sample preparation and subsequent slip-free characterization of magnetorheological (MR) elastomers in parallel-plate rotational rheometry. Focusing on the magnetic field-dependent nonlinear viscoelastic behavior an array of oscillatory strain sweep measurements is conducted with samples cured within the rheometer. The examined nonlinear material response (i.e. the amplitude dependence of the storage and loss moduli) as a function of the applied magnetic field is found to be qualitatively similar to the amplitude dependence of particle reinforced elastomers (i.e. the Payne effect). Therefore, the experimental data (both moduli) is decomposed similar to that for reinforced elastomers and a phenomenological model is formulated for both the storage and loss modulus to account for the physical mechanisms governing the nonlinear material characteristics. Parameter identification suggests that the material response at low magnetic fields is dominated by the polymeric network whereas the strong magneto-reinforced microstructure governs the linear and nonlinear viscoelastic behavior at high magnetic fields. The overall experimental outcome further suggests that the underlying concept of the phenomenological model for particle reinforced elastomers (i.e. destruction and reformation of the filler network) can be transfered to MR materials. Consequently, the proposed phenomenological model can be applied to quantify and further analyze the nonlinear response characteristics of MR elastomers (i.e. the amplitude dependence of the storage and loss modulus as a function of the applied magnetic field) that is closely linked to microstructural changes of the magnetizable particle network.

  15. Optimal and Numerical Solutions for an MHD Micropolar Nanofluid between Rotating Horizontal Parallel Plates

    PubMed Central

    Nadeem, Sohail; Masood, Sadaf; Mehmood, Rashid; Sadiq, Muhammad Adil

    2015-01-01

    The present analysis deals with flow and heat transfer aspects of a micropolar nanofluid between two horizontal parallel plates in a rotating system. The governing partial differential equations for momentum, energy, micro rotation and nano-particles concentration are presented. Similarity transformations are utilized to convert the system of partial differential equations into system of ordinary differential equations. The reduced equations are solved analytically with the help of optimal homotopy analysis method (OHAM). Analytical solutions for velocity, temperature, micro-rotation and concentration profiles are expressed graphically against various emerging physical parameters. Physical quantities of interest such as skin friction co-efficient, local heat and local mass fluxes are also computed both analytically and numerically through mid-point integration scheme. It is found that both the solutions are in excellent agreement. Local skin friction coefficient is found to be higher for the case of strong concentration i.e. n=0, as compared to the case of weak concentration n=0.50. Influence of strong and weak concentration on Nusselt and Sherwood number appear to be similar in a quantitative sense. PMID:26046637

  16. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed

    Munn, L L; Melder, R J; Jain, R K

    1994-08-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2.

  17. Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber.

    PubMed

    Li, Jiuyi; Busscher, Henk J; Norde, Willem; Sjollema, Jelmer

    2011-05-01

    In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition efficiencies above unity, despite electrostatic repulsion. It is hypothesized that sedimentation is the major mass transport mechanism in a PPFC. The contribution of sedimentation to the mass transport in a PPFC was experimentally investigated by introducing a novel microscopy-based method. First, height-dependent bacterial concentrations were measured at different times and flow rates and used to calculate bacterial sedimentation velocities. For Staphylococcus aureus ATCC 12600, a sedimentation velocity of 240 μm h(-1) was obtained. Therewith, sedimentation appeared as the predominant contribution to mass transport in a PPFC. Also in the current study, deposition efficiencies of S. aureus ATCC 12600 with respect to the Smoluchowski-Levich solution of the convective-diffusion equation were four-to-five fold higher than unity. However, calculation of deposition efficiencies with respect to sedimentation were below unity and decreased from 0.78 to 0.36 when flow rates increased from 0.017 to 0.33 cm(3) s(-1). The proposed analysis of bacterial mass transport processes is simple, does not require additional equipment and yields a more reasonable interpretation of bacterial deposition in a PPFC.

  18. Effect of azimuthally asymmetric reactor components on a parallel plate capacitively coupled plasma

    SciTech Connect

    Kenney, Jason A.; Rauf, Shahid; Collins, Ken

    2009-11-15

    A three-dimensional fluid plasma model is used to investigate the impact of azimuthally asymmetric reactor components on spatial characteristics of parallel plate capacitively coupled plasmas. We consider three scenarios: high frequency (13.56 MHz) argon discharges with, separately, an off-axis circular plate surrounding the bottom electrode and an access port opening in the reactor sidewall, and a very high frequency (162 MHz) argon discharge with nonparallel electrodes. For the reactor with off-axis plate, both the Ar{sup +} density and flux are strongly perturbed toward the direction of maximum grounded surface area, with azimuthal variation in ion flux up to 10%. Perturbations in Ar{sup +} density due to the access port opening are localized to the region near the access port, and the impact on ion flux in the interelectrode region is minimal. Finally, the nonparallel electrodes result in a significant change in the location and shape of the Ar{sup +} density profile, going from a center-peaked discharge with parallel electrodes to a flattened off-center profile when tilted less than 1 deg. with a nominal 5 cm gap.

  19. Parallel-Plate Waveguide Terahertz Time Domain Spectroscopy for Ultrathin Conductive Films

    NASA Astrophysics Data System (ADS)

    Razanoelina, M.; Kinjo, R.; Takayama, K.; Kawayama, I.; Murakami, H.; Mittleman, Daniel M.; Tonouchi, M.

    2015-12-01

    Development of techniques for characterization of extremely thin films is an important challenge in terahertz (THz) science and applications. Spectroscopic measurements of materials on the nanometer scale or of atomic layer thickness (2D materials) require a sufficient terahertz wave-matter interaction length, which is challenging to achieve in conventional transmission geometry. Waveguide-based THz spectroscopy offers an alternative method to overcome this problem. In this paper, we investigate a new parallel-plate waveguide (PPWG) technique for measuring dielectric properties of ultrathin gold films, in which we mount the thin film sample at the center of the waveguide. We discuss a model of THz dielectric parameter extraction based on waveguide theory and analyze the response of thin films for both transverse magnetic (TM) and transverse electric (TE) waveguide modes. In contrast to other waveguide methods, our approach enables comparison of the material response with different electromagnetic field distributions without significantly changing the experimental setup. As a result, we demonstrate that TE modes have a better sensitivity to the properties of the thin film. For prototype test samples, optical parameters extracted using our method are in good agreement with literature values.

  20. Fermionic Casimir effect for parallel plates in the presence of compact dimensions with applications to nanotubes

    SciTech Connect

    Bellucci, S.; Saharian, A. A.

    2009-11-15

    We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into purely topological, single plate and interaction parts. With independence of the lengths of the compact dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is always negative. In order to obtain the resulting force, the contributions from both sides of the plates must be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out and only the interaction term contributes to the Casimir force. Applications of the general formulae to Kaluza-Klein-type models and carbon nanotubes are given. In particular, we show that for finite-length metallic nanotubes, the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones, they are attractive for small lengths of the nanotube and repulsive for large lengths.

  1. Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor

    SciTech Connect

    Tadsen, Benjamin Greiner, Franko; Piel, Alexander

    2014-10-15

    Nanodust is produced in an rf-driven push-pull parallel-plate reactor using argon with an acetylene admixture at 5–30 Pa. A scheme for the preparation of nanodust clouds with particle radii up to 400 nm for investigations in magnetized plasmas is proposed. The confinement that keeps the nanodust of different radii inside a moderately magnetized discharge (B ≤ 500 mT) is investigated by a comparison of 2d-Langmuir probe measurements in the dust-free plasma without and with a magnetic field and by the analysis of scattered light of nanodust clouds. It is shown that the dust cloud changes its shape when the dust density changes. This results in a reversed α-γ{sup ′} transition from a dense dust cloud with a central disk-like void to a dilute dust cloud with a toroidal void. When the dust density is further reduced, filaments are observed in the central part of the cloud, which were absent in the high-density phase. It is concluded that the dense nanodust cloud is able to suppress plasma filamentation in magnetized plasmas.

  2. Study of compression settlement of a three-layer rigid-plastic strip between parallel plates

    NASA Astrophysics Data System (ADS)

    Aleksandrov, S. E.; Goldstein, R. V.

    2014-11-01

    The process of compression settlement of a three-layer strip between parallel plates is investigated under the plane strain conditions. The inner layer of the strip is assumed to be made of a rigid-plastic hardening material, and the two outer layers are assumed to be ideally rigid-plastic. The boundary value problem has two symmetry axes. It is assumed that the strip thickness is much less than its width. The boundary conditions at the strip edge and at the center are satisfied in integral form. Two friction regimes, i.e., sliding and adhesion, are possible on the surface of contact between the strip and the plates and on the interface between the layers. It is shown that the general structure of the solution depends on the regimes realized at the moment. In particular, one of the layers can remain rigid at a certain stage of the deformation process. The differential equations are stated which permit exactly determining the conditions of the friction regime change and the state of each layer (rigid or plastic); these equations must be solved numerically. For some values of parameters of the boundary value problem, the velocity field is singular near one or both surfaces of friction. In these cases, it is necessary to calculate the strain rate intensity coefficient whose value probably controls the process of formation of a narrow layer with strongly changed properties near the corresponding surface of friction.

  3. Optimal and Numerical Solutions for an MHD Micropolar Nanofluid between Rotating Horizontal Parallel Plates.

    PubMed

    Nadeem, Sohail; Masood, Sadaf; Mehmood, Rashid; Sadiq, Muhammad Adil

    2015-01-01

    The present analysis deals with flow and heat transfer aspects of a micropolar nanofluid between two horizontal parallel plates in a rotating system. The governing partial differential equations for momentum, energy, micro rotation and nano-particles concentration are presented. Similarity transformations are utilized to convert the system of partial differential equations into system of ordinary differential equations. The reduced equations are solved analytically with the help of optimal homotopy analysis method (OHAM). Analytical solutions for velocity, temperature, micro-rotation and concentration profiles are expressed graphically against various emerging physical parameters. Physical quantities of interest such as skin friction co-efficient, local heat and local mass fluxes are also computed both analytically and numerically through mid-point integration scheme. It is found that both the solutions are in excellent agreement. Local skin friction coefficient is found to be higher for the case of strong concentration i.e. n=0, as compared to the case of weak concentration n=0.50. Influence of strong and weak concentration on Nusselt and Sherwood number appear to be similar in a quantitative sense.

  4. Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production.

    PubMed

    Estejab, Ali; Daramola, Damilola A; Botte, Gerardine G

    2015-06-15

    A mathematical model was developed for the simulation of a parallel plate ammonia electrolyzer to convert ammonia in wastewater to nitrogen and hydrogen under basic conditions. The model consists of fundamental transport equations, the ammonia oxidation kinetics at the anode, and the hydrogen evolution kinetics at the cathode of the electrochemical reactor. The model shows both qualitative and quantitative agreement with experimental measurements at ammonia concentrations found within wastewater (200-1200 mg L(-1)). The optimum electrolyzer performance is dependent on both the applied voltage and the inlet concentrations. Maximum conversion of ammonia to nitrogen at the rates of 0.569 and 0.766 mg L(-1) min(-1) are achieved at low (0.01 M NH4Cl and 0.1 M KOH) and high (0.07 M NH4Cl and 0.15 M KOH) inlet concentrations, respectively. At high and low concentrations, an initial increase in the cell voltage will cause an increase in the system response - current density generated and ammonia converted. These system responses will approach a peak value before they start to decrease due to surface blockage and/or depletion of solvated species at the electrode surface. Furthermore, the model predicts that by increasing the reactant and electrolyte concentrations at a certain voltage, the peak current density will plateau, showing an asymptotic response.

  5. Radio frequency breakdown between structured parallel plate electrodes with a millimetric gap in low pressure gases

    SciTech Connect

    Legradic, B.; Howling, A. A.; Hollenstein, C.

    2010-10-15

    This paper presents an investigation into radio frequency (rf) breakdown for electrodes with holes or protrusions, approximating the situation in real reactors and providing a benchmark for fluid simulations. rf breakdown curves (voltage versus pressure) generally show a steep left-hand branch at low pressures and a flatter right-hand branch at higher pressures. Introducing protrusions or holes in parallel plate electrodes will lower the breakdown voltage in certain conditions. Yet experiments show that the breakdown curves are not perceptibly influenced by the increased electric field at sharp edges or ridges. Instead, both experiments and simulation show that breakdown at high pressure will occur at the protrusion providing the smallest gap, while breakdown at low pressure will occur in the aperture providing the largest gap. This holds true as long as the feature in question is wide enough. Features that are too narrow will lose too many electrons due to diffusion, either to the walls of the apertures or to the surroundings of the protrusion, which negates the effect on the breakdown voltage. The simulation developed presents a tool to aid the design of complex rf parts for dark-space shielding.

  6. Parallel-plate dielectric waveguide for multilayer microwave/millimeterwave integrated circuits: Analysis and experiments

    NASA Astrophysics Data System (ADS)

    Kwan, Godfrey Kwok-Chiu

    1999-12-01

    This dissertation discusses the analysis, design and experiments of the Parallel-Plate Dielectric Waveguide (PPDW), and its applications in multilayer microwave/millimeterwave integrated circuits. The waveguide's basic construction is quite simple. It consists of a rectangular dielectric strip sandwiched between two parallel metallic plates. The fundamental mode of this waveguiding structure is being used. Modal analysis is used to study the dispersion characteristics of this waveguiding structure. A multilayer spectral-domain approach is used to analyze the coaxial-to-PPDW transition and slot-to-PPDW transition as means of exciting, or coupling from, the fundamental mode of propagation within this waveguiding structure. Based a multilayer spectral-domain approach, input impedance of a coaxial-probe to PPDW transition is found using an approximation of the cylindrical coaxial-probe by a thin strip of an equivalent width. This approximation results in a circuit model that can be used for efficient design and accurate simulation of performance of practical PPDW circuits using coaxial-to- PPDW transitions. Similar multilayer spectral- domain/imaging approach also leads to an analytical model of a slot on the PPDW ground plane using which circuit- model parameters can be extracted. (1)Coaxial-to- PPDW-to-coaxial transitions, (2)PPDW-to-microstrip interlayer couplers using slot-coupling, and (3)PPDW slot-coupled microstrip patch antennas, have been successfully built and tested. Theoretical and experimental results are compared. Important fundamental characteristics and practical considerations are addressed.

  7. Time-dependent conductive heat transfer in rarefied polyatomic gases confined between parallel plates

    NASA Astrophysics Data System (ADS)

    Tsimpoukis, A.; Tantos, C.; Valougeorgis, D.

    2017-01-01

    The transient conductive heat transfer through a rarefied gas confined between two infinite parallel plates due to a sudden jump in the temperature of one of the plates is investigated in the whole range of the Knudsen number via kinetic theory. More specifically, the time-dependent heat transfer flow is modelled by the Holway kinetic model subject to diffuse boundary conditions. The governing integro-differential equation is numerically solved using the discrete velocity method in the molecular velocity space and typical finite control volume schemes in time and physical spaces. The time evolution of the density and temperature distributions as well as of the translational and rotational heat fluxes in terms of the two parameters characterizing the heat flow, namely the Knudsen number and the imposed temperature ratio between the plates is provided. The investigation is focused on the effect of the rotational degrees of freedom and a comparison between monatomic and polyatomic gases is performed. It is found that the time needed to reach the steady-state conditions varies between monatomic and polyatomic gases. In all cases the total time to recover the stationary solution in terms of the rarefaction parameter exhibits a minimum close to the well-known Knudsen minimum.

  8. Parallel-plate and spherical capacitors in Born-Infeld electrostatics: An analytical study

    NASA Astrophysics Data System (ADS)

    Moayedi, S. K.; Shafabakhsh, M.

    2016-03-01

    In 1934, Max Born and Leopold Infeld suggested and developed a nonlinear modification of Maxwell electrodynamics, in which the electrostatic self-energy of an electron was a finite value. In this paper, after a brief introduction to Lagrangian formulation of Born-Infeld electrodynamics with an external source, the explicit forms of Gauss's law and the electrostatic energy density in Born-Infeld theory are obtained. The capacitance and the stored electrostatic energy for a parallel-plate and spherical capacitors are computed in the framework of Born-Infeld electrostatics. We show that the usual relations U=1/2C_{Maxwell}(triangle φ)2 and U=q2/2C_{Maxwell} are not valid for a capacitor in Born-Infeld electrostatics. Numerical estimations in this research show that the nonlinear corrections to the capacitance and the stored electrostatic energy for a capacitor in Born-Infeld electrostatics are considerable when the potential difference between the plates of a capacitor is very large.

  9. A transient analysis of frost formation on a parallel plate evaporator

    SciTech Connect

    Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.

    1996-12-31

    This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for air and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.

  10. Pooled human immunoglobulins reduce adhesion of Pseudomonas aeruginosa in a parallel plate flow chamber.

    PubMed

    Poelstra, K A; van der Mei, H C; Gottenbos, B; Grainger, D W; van Horn, J R; Busscher, H J

    2000-08-01

    The influence of pooled polyclonal immunoglobulin (IgG) interactions with both bacteria and model substrates in altering Pseudomonas aeruginosa surface adhesion is reported. Opsonization of this pathogen by polyclonal human IgG and preadsorption of IgG to glass surfaces both effectively reduce initial deposition rates and surface growth of P. aeruginosa IFO3455 from dilute nutrient broth in a parallel plate flow chamber. Polyclonal IgG depleted of P. aeruginosa-specific antibodies reduces the initial deposition rate or surface growth to levels intermediate between exposed and nonexposed IgG conditions. Bacterial surface properties are changed in the presence of opsonizing IgG. Plateau contact angle analysis via sessile drop technique shows a drop in P. aeruginosa surface hydrophobicity after IgG exposure consistent with a more hydrophilic IgG surface coat. Zeta potential values for opsonized versus nonopsonized bacteria exhibit little change. X-ray photoelectron spectroscopy measurements provide surface compositional evidence for IgG attachment to bacterial surfaces. Surface elemental ratios attributed to IgG protein signals versus those attributed primarily to bacterial polysaccharide surface or lipid membrane change with IgG opsonization. Direct evidence for antibody-modified P. aeruginosa surface properties correlates both with reduction of bacterial adhesion to glass surfaces under flow in nutrient medium reported and previous reports of IgG efficacy against P. aeruginosa motility in vitro and infection in vivo.

  11. Dynamic responses of series parallel-plate mesoscopic capacitors to time-dependent external voltage

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Quan, Jun

    2015-11-01

    We investigate the dynamic responses of the series parallel-plate mesoscopic capacitors to a time-dependent external voltage. The results indicate that the quantum coherence between two capacitors strongly depends on the frequency of the external voltage and the distance between the two capacitors (c-c distance). The behaviors of the series capacitance incompletely follow the Kirchhoff’s laws; only in the low frequency case or the limit of the c-c distance, the capacitance approaches to the classical series capacitance. In addition, the real part of the frequency-dependent capacitance shows a maximum and a minimum, which appear around the peak of the imaginary part. These phenomena may be associated with the plasmon excitation in the mesoscopic capacitors. Project supported by the National Natural Science Foundation of China (Grant No. 11304276), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030307035), the Cultivation of Innovative Talents in Colleges and Universities of Guangdong Province, China (Grant No. LYM10098), and the Doctor Subject Foundation of Lingnan Normal University of China (Grant No. ZL1004).

  12. Effects of biofilm growth on flow and transport through a glass parallel plate fracture.

    PubMed

    Hill, David D; Sleep, Brent E

    2002-06-01

    The effects of biofilm growth on flow and solute transport through a sandblasted glass parallel plate fracture was investigated. The fracture was inoculated using soil microorganisms. Glucose, oxygen and other nutrients were supplied to support growth. The biomass initially formed discrete clusters attached to the glass surfaces, but over time formed a continuous biofilm. From dye tracer tests conducted during biofilm growth, it was observed that channels and low-permeability zones dominated transport. The hydraulic conductivity of the fracture showed a sigmoidal decrease with time. The hydraulic conductivity was reduced by a factor of 0.033, from 18 to 0.6 cm/s, corresponding to a 72% decrease in the hydraulic aperture, from 500 to 140 microm. In contrast, the mass balance aperture, determined from fluoride tracer tests, remained relatively constant, indicating that the impact of biomass growth on effective fracture porosity was much less than the effect on hydraulic conductivity. Analyses of pre-biofilm tracer tests revealed that both Taylor dispersion and macrodispersion were influencing transport. During biofilm growth, only macrodispersion was dominant. The macrodispersion coefficient alpha(macro) was found to increase logarithmically with hydraulic conductivity reduction.

  13. Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications

    PubMed Central

    Hsiao, C.-T.; Choi, J.-K.; Singh, S.; Chahine, G. L.; Hay, T. A.; Ilinskii, Yu. A.; Zabolotskaya, E. A.; Hamilton, M. F.; Sankin, G.; Yuan, F.; Zhong, P.

    2013-01-01

    Carefully timed tandem microbubbles have been shown to produce directional and targeted membrane poration of individual cells in microfluidic systems, which could be of use in ultrasound-mediated drug and gene delivery. This study aims at contributing to the understanding of the mechanisms at play in such an interaction. The dynamics of single and tandem microbubbles between two parallel plates is studied numerically and analytically. Comparisons are then made between the numerical results and the available experimental results. Numerically, assuming a potential flow, a three-dimensional boundary element method (BEM) is used to describe complex bubble deformations, jet formation, and bubble splitting. Analytically, compressibility and viscous boundary layer effects along the channel walls, neglected in the BEM model, are considered while shape of the bubble is not considered. Comparisons show that energy losses modify the bubble dynamics when the two approaches use identical initial conditions. The initial conditions in the boundary element method can be adjusted to recover the bubble period and maximum bubble volume when in an infinite medium. Using the same conditions enables the method to recover the full dynamics of single and tandem bubbles, including large deformations and fast re-entering jet formation. This method can be used as a design tool for future tandem-bubble sonoporation experiments. PMID:24293683

  14. Deposition and disinfection of Escherichia coli O157:H7 on naturally occurring photoactive materials in a parallel plate chamber†

    PubMed Central

    Taylor, Alicia A.; Chowdhury, Indranil; Gong, Amy S.; Cwiertny, David M.; Walker, Sharon L.

    2014-01-01

    Dissolved organic matter in combination with iron oxides has been shown to facilitate photochemical disinfection through the production of reactive oxygen species (ROS) under UV and visible light. However, due to the extremely short lifetime of these radicals, the disinfection effciency is limited by the successful transport of ROS to bacterial surfaces. This study was designed to quantitatively investigate three collector surfaces with various potentials to produce ROS [bare quartz, hematite (α-Fe2O3) coated quartz, and Suwannee River humic acid (SRHA)] and the effects of extracellular polymeric substance (EPS) (full or partial coating) and solution chemistry (ionic strength, IS) on the interactions between bacteria and the ROS-producing substrates. With few exceptions, bacterial deposition studies in a parallel plate (PP) flow chamber have revealed increasing cell adhesion with IS. Furthermore, interactions between collector surfaces and cells can be explained by electrostatic forces, with negatively charged SRHA reducing and positively charged α-Fe2O3 enhancing bacterial deposition significantly. Increased deposition was also observed with full EPS content, indicating the ability of EPS to facilitate interaction between cells and surfaces in the aquatic environment. In complementary disinfection studies conducted with simulated light, viability loss was observed for cells fully coated with EPS when attached to α-Fe2O3 under all IS conditions. Based upon our prior study in which EPS was found to not inhibit hydroxyl radical activity toward bacteria, we proposed that EPS might therefore promote disinfection by facilitating cell attachment to ROS-producing surfaces where higher concentrations of ROS are expected at closer proximities to reactive substrates (e.g., SRHA and α-Fe2O3). Our findings on the mechanism and controlling factors of cell interactions with photoactive substrates provide insight as to the role of ionic strength in photochemical disinfection

  15. SU-E-T-350: Effective Point of Measurement and Total Perturbation Correction P for Parallel-Plate Ion Chambers in High-Energy Photon Beams

    SciTech Connect

    Langner, N; Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2015-06-15

    Purpose: This paper aims to determine the effective point of measurement and the total perturbation correction p of parallel-plate chambers for clinical photon dosimetry. Methods: The effective point of measurement (EPOM) was calculated using the EGSnrc Monte Carlo code system with the EGSnrc user code egs- chamber. Depth dose curves of the ionization chambers were calculated in a water phantom for several high energy photon spectra (4, 6, 10, 15, 18 MV-X). Different normalization criterions (normalization to the maximum of the depth dose curve and normalization to the value in 10 cm depth) have been applied. The EPOM was determined by shifting the normalized depth dose curve of a small water voxel against the depth ionization curve until the disagreement (calculated by the root mean square deviation) reaches a minimum. In addition, the total perturbation correction p was calculated by the ratio of the dose to water and the product of the dose determined in the chamber and the water to air stopping power ratio. Results: The EPOM varied slightly depending on the chosen normalization criterion. For all chambers the necessary shift of the EPOM decreased linearly with increasing beam quality specifier TPR{sub 20/10}. For the Roos and NACP chamber, the results were positive suggesting that the chambers need to be shifted towards the focus. For the Markus chamber, the required shift was negative and for the Advanced Markus chamber partly negative and partly positive. The total perturbation correction p was almost independent of the depth. Only for regions below 1 cm the perturbation correction deviated significantly from unity. Conclusion: In the present study, the effective point of measurement and the total perturbation correction p was determined for four parallel-plate ionization chambers and five clinical relevant photon spectra. Applying the calculated EPOM, the residual perturbation correction p was mostly depth independent.

  16. Linear and Non-Linear Forecasts of Solar Activity

    NASA Astrophysics Data System (ADS)

    Warren, H.

    2016-12-01

    Variations in thermospheric density play a major role in perturbing the orbits of objects in low Earth orbit. These variations are strongly influenced by changes in the solar irradiance at extreme ultraviolet (EUV) wavelengths that are ultimately driven by changing levels of solar magnetic activity. Thus predicting the conjunction of operational satellites with orbital debris requires accurate forecasts of solar activity. Current operational models rely on forecasts of proxies for solar activity based on simple linear extrapolation methods. In this poster we present a systematic study of these methods applied to the 10.7 cm solar radio flux, a composite Mg core-to-wing ratio, the total unsigned solar magnetic flux, and the He II 304 irradiance observed by the EVE instrument on the Solar Dynamics Observatory. We find that although RMS errors in these forecasts appear to be small, the corresponding errors in very simple models, such as the persistence of the last measurement, are also small, and the formal skill scores are relatively modest. The use of these proxies and measurements in non-linear methods, such Gaussian process regression and recurrent neural networks, will also be discussed.

  17. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  18. Irreversible Electroporation of the Pancreas Using Parallel Plate Electrodes in a Porcine Model: A Feasibility Study

    PubMed Central

    Rombouts, Steffi J. E.; Nijkamp, Maarten W.; van Dijck, Willemijn P. M.; Brosens, Lodewijk A. A.; Konings, Maurits; van Hillegersberg, R.; Borel Rinkes, Inne H. M.; Hagendoorn, Jeroen; Wittkampf, Fred H.; Molenaar, I. Quintus

    2017-01-01

    Background Irreversible electroporation (IRE) with needle electrodes is being explored as treatment option in locally advanced pancreatic cancer. Several studies have shown promising results with IRE needles, positioned around the tumor to achieve tumor ablation. Disadvantages are the technical difficulties for needle placement, the time needed to achieve tumor ablation, the risk of needle track seeding and most important the possible occurrence of postoperative pancreatic fistula via the needle tracks. The aim of this experimental study was to evaluate the feasibility of a new IRE-technique using two parallel plate electrodes, in a porcine model. Methods Twelve healthy pigs underwent laparotomy. The pancreas was mobilized to enable positioning of the paddles. A standard monophasic external cardiac defibrillator was used to perform an ablation in 3 separate parts of the pancreas; either a single application of 50 or 100J or a serial application of 4x50J. After 6 hours, pancreatectomy was performed for histology and pigs were terminated. Results Histology showed necrosis of pancreatic parenchyma with neutrophil influx in 5/12, 11/12 and 12/12 of the ablated areas at 50, 100, and 4x50J respectively. The electric current density threshold to achieve necrosis was 4.3, 5.1 and 3.4 A/cm2 respectively. The ablation threshold was significantly lower for the serial compared to the single applications (p = 0.003). The content of the ablated areas differed between the applications: areas treated with a single application of 50 J often contained vital areas without obvious necrosis, whereas half of the sections treated with 100 J showed small islands of normal looking cells surrounded by necrosis, while all sections receiving 4x 50 J showed a homogeneous necrotic lesion. Conclusion Pancreatic tissue can be successfully ablated using two parallel paddles around the tissue. A serial application of 4x50J was most effective in creating a homogeneous necrotic lesion. PMID:28052102

  19. The breakdown process in an atmospheric pressure nanosecond parallel-plate helium/argon mixture discharge

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2016-02-01

    The breakdown process in an atmospheric pressure nanosecond helium/argon mixture discharge with parallel-plate electrodes is investigated by temporally and spatially resolved optical emission spectroscopy (OES). The spatially resolved electric field is obtained from the Stark splitting of the He i 492.1 nm line. Using the emissions from the He ii 468.6 nm, He i 667.8 nm, and Ar i 750.4 nm lines and a collisional-radiative model, the spatially resolved T e, high and T e, low (representing the effective T e in the high energy and low energy part of the EEDF, respectively) are obtained. It is found that, compared with the average electric field provided by the external pulser, the electric field is greatly enhanced at certain location and is significantly weakened at other places. This observation shows the effect of the ionization wave propagation, as predicted in [1, 2]. The value of T e, high is much larger than that of T e, low, which indicates that an elevated high energy tail in the EEDF is built up under the influence of strong electric field during the breakdown process. Initially, the spatial distribution of the T e, low and the T e, high generally follows that of the electric field. However, at the end of the breakdown period, the location of the highest T e, low and T e, high is shifted away from the cathode sheath, where the electric field is strongest. This indicates the existence of a non-local effect and is supported by the result from a simple Monte-Carlo simulation.

  20. Quantum effects in active linear and non-linear plasmonics

    NASA Astrophysics Data System (ADS)

    Aguirregabiria, Garikoitz; Aizpurua, Javier; Kazansky, Andrey K.; Echenique, Pedro Miguel; Zapata, Mario; Nordlander, Peter; Marinica, Dana Codruta; Borissov, Andrei G.

    The unique properties of localized surface plasmons have turned plasmonic nanoparticles into a suitable platform for novel and more efficient optoelectronic processes. Therefore, the development of practical approaches to actively control the plasmon excitations is a major fundamental and practical challenge. Using Time Dependent Density Functional Theory we explore the possibility of all electrical control of the optical properties of different plasmonic systems such as isolated nanoparticles as well as nanoparticle dimers, and core-shell nanoparticles with sub nm gaps. We demonstrate that for plasmonic systems with narrow gaps, the quantum regime owing to the electron tunneling offers the possibility of fast and reversible control of the plasmon resonances, by application of an external dc bias. Along with all-electrical control of the linear response, we also show that the external polarizing DC field can be used to actively control high-harmonic generation from plasmonic nanoparticles.

  1. Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers

    DOE PAGES

    Wang, L.; Li, Y.

    2015-02-03

    This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.

  2. Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin

    Space-charge limited flow is a topic of much interest and varied application. We extend existing understanding of space-charge limits by simulations, and develop new tools and techniques for doing these simulations along the way. The Child-Langmuir limit is a simple analytic solution for space-charge limited current density in a one-dimensional diode. It has been previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of finite radius r and outer drift tube R > r and gap length L, we further examine the space charge limit in two dimensions. We simulate a two-dimensional axisymmetric parallel plate diode of various aspect ratios (r/L), and develop a scaling law for the measured two-dimensional space-charge limit (2DSCL) relative to the Child-Langmuir limit as a function of the aspect ratio of the diode. These simulations are done with a large (100T) longitudinal magnetic field to restrict electron motion to 1D, with the two-dimensional particle-in-cell simulation code OOPIC. We find a scaling law that is a monotonically decreasing function of this aspect ratio, and the one-dimensional result is recovered in the limit as r >> L. The result is in good agreement with prior results in planar geometry, where the emission area is proportional to the cathode width. We find a weak contribution from the effects of the drift tube for current at the beam edge, and a strong contribution of high current-density "wings" at the outer-edge of the beam, with a very large relative contribution when the beam is narrow. Mechanisms for enhancing current beyond the Child-Langmuir limit remain a matter of great importance. We analyze the enhancement effects of upstream ion injection on the transmitted current in a one-dimensional parallel plate diode. Electrons are field-emitted at the cathode, and ions are injected at a controlled current from the anode. An analytic

  3. Influence of interference fringes of equal inclination on the reflection of laser beams from plane parallel plates.

    PubMed

    Hillenkamp, F

    1969-02-01

    The coefficient of reflection of plane parallel plate beam splitters is very often taken as twice that of a single surface reflection. It is shown that this introduces appreciable errors in the majority of cases, because of the interference fringes of equal inclination. Formulas are derived for the angular dependence of the coefficient of reflection as well as for its average value. The angular distance between adjacent fringes has been evaluated and represented graphically. It is finally demonstrated that the influence of incomplete interference due to the lateral displacement of the reflected beam can be neglected if the beam splitter is followed by an integrating sphere or a similar element.

  4. Subtractive two-frame three-beam phase-stepping interferometry for testing surface shape of quasi-parallel plates.

    PubMed

    Sunderland, Zofia; Patorski, Krzysztof; Trusiak, Maciej

    2016-12-26

    We present an effective method of testing the surface shape of quasi-parallel plates which requires only two phase-shifted three-beam interferograms. We derive a general formula for difference of two three-beam interferograms as a function of the phase shift value. The phase shift does not have to be precisely determined and uniform in the image domain. We show and compare results of extracting the fringe set and corresponding phase distribution related to the plate front surface shape using the two dimensional continuous wavelet transform, Hilbert-Huang transform and Fourier transform methods. Simulated and experimental data is used to verify the algorithm performance and robustness.

  5. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  6. Casimir Effect for Two Parallel Plates Through a Gupta-Bleuler Type Quantization on the Static Domain Wall Background

    NASA Astrophysics Data System (ADS)

    Rahbardehghan, S.

    2017-09-01

    In this paper, Casimir energy-momentum tensor for a conformally coupled scalar field in the presence of two parallel plates with Dirichlet boundary condition on background of planar domain wall is investigated. We show that by utilizing a Gupta-Bleuler type quantization approach, one can obtain finite result for the vacuum expectation values of the energy-momentum tensor. In addition, we calculate the pressures on the plates and energy density between two plates and show that they satisfy the standard thermodynamical relations.

  7. Dispersion characteristics of THz surface plasmons in nonlinear graphene-based parallel-plate waveguide with Kerr-type core dielectric

    NASA Astrophysics Data System (ADS)

    Yarmoghaddam, Elahe; Rakheja, Shaloo

    2017-08-01

    We theoretically model the dispersion characteristics of surface plasmons in a graphene-based parallel-plate waveguide geometry using nonlinear Kerr-type core (inter-plate) dielectric. The optical nonlinearity of graphene in the terahertz band under high light intensity is specifically included in the analysis. By solving Maxwell's equations and applying appropriate boundary conditions, we show that the waveguide supports four guided plasmon modes, each of which can be categorized as either symmetric or anti-symmetric based on the electric field distribution in the structure. Of the four guided modes, two modes are similar in characteristics to the modes obtained in the structure with linear graphene coating, while the two new modes have distinct characteristics as a result of the nonlinearity of graphene. We note that the group velocity of one of the plasmon modes acquires a negative value under high light intensity. Additionally, the optical nonlinearity of the core dielectric leads to a significant enhancement in the localization length of various plasmon modes. The description of the intra-band optical conductivity of graphene incorporates effects of carrier scatterings due to charged impurities, resonant scatterers, and acoustic phonons at 300 K. The proposed structure offers flexibility to tune the waveguide characteristics and the mode index by changing light intensity and electrochemical potential in graphene for reconfigurable plasmonic devices.

  8. Extraction of depth-dependent perturbation factors for parallel-plate chambers in electron beams using a plastic scintillation detector

    SciTech Connect

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Cojocaru, Claudiu; Gingras, Luc; Beddar, A. Sam; Beaulieu, Luc

    2010-08-15

    Purpose: This work presents the experimental extraction of the overall perturbation factor P{sub Q} in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R{sub 50} of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.

  9. Noncontact gears. I. Next-to-leading order contribution to the lateral Casimir force between corrugated parallel plates

    SciTech Connect

    Cavero-Pelaez, Ines; Milton, Kimball A.; Parashar, Prachi; Shajesh, K. V.

    2008-09-15

    We calculate the lateral Casimir force between corrugated parallel plates, described by {delta}-function potentials, interacting through a scalar field, using the multiple scattering formalism. The contributions to the Casimir energy due to uncorrugated parallel plates is treated as a background from the outset. We derive the leading- and next-to-leading-order contribution to the lateral Casimir force for the case when the corrugation amplitudes are small in comparison to corrugation wavelengths. We present explicit results in terms of finite integrals for the case of the Dirichlet limit, and exact results for the weak-coupling limit, for the leading- and next-to-leading-orders. The correction due to the next-to-leading contribution is significant. In the weak coupling limit we calculate the lateral Casimir force exactly in terms of a single integral which we evaluate numerically. Exact results for the case of the weak limit allows us to estimate the error in the perturbative results. We show that the error in the lateral Casimir force, in the weak coupling limit, when the next-to-leading order contribution is included is remarkably low when the corrugation amplitudes are small in comparison to corrugation wavelengths. We expect similar conclusions to hold for the Dirichlet case. The analogous calculation for the electromagnetic case should reduce the theoretical error sufficiently for comparison with the experiments.

  10. A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed

    2017-04-01

    This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.

  11. Extraction of depth-dependent perturbation factors for parallel-plate chambers in electron beams using a plastic scintillation detector

    PubMed Central

    Lacroix, Frédéric; Guillot, Mathieu; McEwen, Malcolm; Cojocaru, Claudiu; Gingras, Luc; Beddar, A. Sam; Beaulieu, Luc

    2010-01-01

    Purpose: This work presents the experimental extraction of the overall perturbation factor PQ in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R50 of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV. PMID:20879593

  12. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators.

    PubMed

    Akgul, Mehmet; Wu, Lingqi; Ren, Zeying; Nguyen, Clark T-C

    2014-05-01

    A small-signal equivalent circuit for parallel-plate capacitive-gap-transduced micromechanical resonators is introduced that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates circuit analysis, that better elucidates the mechanisms behind certain potentially puzzling measured phenomena, and that inspires circuit topologies that maximize performance in specific applications. For this work, a micromechanical disk resonator serves as the vehicle with which to derive the equivalent circuits for both radial-contour and wine-glass modes, which are then used in circuit simulations (via simulation) to match measurements on actual fabricated devices. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive- gap-transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for applications that must be stable against environmental perturbations, such as acceleration or power supply variations. Measurements on fabricated devices confirm predictions by the new model of up to 4× improvement in frequency stability against dc-bias voltage variations for contour- mode disk resonators as the resistance loading their ports increases. By enhancing circuit visualization, this circuit model makes more obvious the circuit design procedures and topologies most beneficial for certain mechanical circuits, e.g., filters and oscillators.

  13. Influence of Damping on the Dynamical Behavior of the Electrostatic Parallel-plate and Torsional Actuators with Intermolecular Forces

    PubMed Central

    Lin, Wen-Hui; Zhao, Ya-Pu

    2007-01-01

    The influence of damping on the dynamical behavior of the electrostatic parallel-plate and torsional actuators with the van der Waals (vdW) or Casimir force (torque) is presented. The values of the pull-in parameters and the number of the equilibrium points do not change whether there is damping or not. The ability of equilibrium points is varied with the appearance of damping. One equilibrium point is an unstable saddle with a different damping coefficient, the other equilibrium point is a stable node when the damping coefficient is greater than some critical value, and otherwise it is a stable focus. Then there are two heteroclinic orbits passing from the unstable saddle point to the stable node or focus.

  14. A parallel-plate electrochemical reactor model for the destruction of nitrate and nitrite in alkaline waste solutions

    SciTech Connect

    Coleman, D.H.; White, R.E.; Hobbs, D.T.

    1995-04-01

    The electrochemical treatment of nuclear waste is the subject of much current interest. After radioactive decontamination, the liquid waste from nuclear fuel processing still contains many hazardous substances, among them nitrate and nitrite. A parallel-plate electrochemical reactor model with multiple reactions at both electrodes and anolyte and catholyte recirculation tanks was modeled for the electrochemical destruction of nitrate and nitrite species in an alkaline solution. The model can be used to predict electrochemical reaction current efficiencies and outlet concentrations of species from the reactor, given inlet feed conditions and cell operating conditions. Also, predictions are made for off-gas composition and liquid-phase composition in the recirculation tanks. The results of case studies at different applied potentials are shown here. At lower applied potentials, the model predictions show that the destruction process is more energy efficient, but the time required to destroy a given amount of waste is increased.

  15. Comprehensive Analysis of Convective Heat Transfer in Parallel Plate Microchannel with Viscous Dissipation and Constant Heat Flux Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kushwaha, Hari Mohan; Sahu, Santosh Kumar

    2017-10-01

    This paper reports the hydrodynamically and thermally fully developed, laminar, incompressible, forced convective heat transfer characteristics of gaseous flows through a parallel plate microchannel with different constant heat flux boundary conditions. The first order velocity slip and viscous dissipation effects are considered in the analysis. Here, three different thermal boundary conditions such as: both plates kept at different constant heat fluxes, both plates kept at equal constant heat fluxes and one plate kept at constant heat flux and other one insulated are considered for the analysis. The deviation in Nusselt number between the model that considers both first order velocity slip and temperature jump and the one that considers only velocity slip is reported. Also, the effect of various heat flux ratios on the Nusselt number is reported in this analysis. In addition, the deviation in Nusselt number between first and second order slip model is discussed in this study.

  16. Numerical modeling of the effect of the level of nitrogen impurities in a helium parallel plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Lazarou, C.; Koukounis, D.; Chiper, A. S.; Costin, C.; Topala, I.; Georghiou, G. E.

    2015-06-01

    In this paper a validated 2D axisymmetric plasma fluid model was used to study the influence of the level of nitrogen impurities on the processes that occur in a helium parallel plate dielectric barrier discharge. The level of nitrogen impurities was varied in the range 0.1-500 ppm. It was observed that the nitrogen impurities significantly affect the dominant ion species at breakdown and the discharge characteristics. Specifically, three different dominant ions were found, which are strongly dependent on the level of nitrogen impurities. These are: \\text{He}2+ (0.1-35 ppm), \\text{N}2+ (35-150 ppm) and \\text{N}4+ (150-500 ppm). In addition, the results show that the discharge characteristics are dependent on the dominant ion species at breakdown.

  17. Study of the parallel-plate EMP simulator and the simulator-obstacle interaction. Final technical report

    SciTech Connect

    Gedney, S.D.

    1990-12-01

    The Parallel-Plate Bounded-Wave EMP Simulator is typically used to test the vulnerability of electronic systems to the electromagnetic pulse (EMP) produced by a high altitude nuclear burst by subjecting the systems to a simulated EMP environment. However, when large test objects are placed within the simulator for investigation, the desired EMP environment may be affected by the interaction between the simulator and the test object. This simulator/obstacle interaction can be attributed to the following phenomena: (1) mutual coupling between the test object and the simulator, (2) fringing effects due to the finite width of the conducting plates of the simulator, and (3) multiple reflections between the object and the simulator's tapered end-sections. When the interaction is significant, the measurement of currents coupled into the system may not accurately represent those induced by an actual EMP. To better understand the problem of simulator/obstacle interaction, a dynamic analysis of the fields within the parallel-plate simulator is presented. The fields are computed using a moment method solution based on a wire mesh approximation of the conducting surfaces of the simulator. The fields within an empty simulator are found to be predominately transversse electromagnetic (TEM) for frequencies within the simulator's bandwidth, properly simulating the properties of the EMP propagating in free space. However, when a large test object is placed within the simulator, it is found that the currents induced on the object can be quite different from those on an object situated in free space. A comprehensive study of the mechanisms contributing to this deviation is presented.

  18. Linear and non-linear fluorescence imaging of neuronal activity

    NASA Astrophysics Data System (ADS)

    Fisher, Jonathan A. N.

    Optical imaging of neuronal activity offers new possibilities for understanding brain physiology. The predominant methods in neuroscience for measuring electrical activity require electrodes inserted into the tissue. Such methods, however, provide limited spatial information and are invasive. Optical methods are less physically invasive and offer the possibility for simultaneously imaging the activity of many neurons. In this thesis one- and two-photon fluorescence microscopy techniques were applied to several in vivo and in vitro mammalian preparations. Using one-photon absorption fluorescence microscopy and gradient index (GRIN) lens optics, cortical electrical activity in response to electric stimulation was resolved in three-dimensions at high-speed in the primary somatosensory cortex of the mouse in vivo using voltage-sensitive dyes. Imaging at depths up to 150 mum below the cortex surface, it was possible to resolve depth-dependent patterns of neuronal activity in response to cortical and thalamic electric stimulation. The patterns of activity were consistent with known cortical cellular architecture. In a qualitatively different set of experiments, one-photon fluorescence microscopy via voltage-sensitive dyes was successfully employed to image an in vitro preparation of the perfused rat brainstem during the process of respiratory rhythmogenesis. Imaging results yielded insights into the spatial organization of the central respiratory rhythm generation region in the ventrolateral medulla. A multifocal two-photon scanning microscope was constructed, and design and operation principles are described. Utilizing the novel device, anatomical and functional two-photon imaging via potentiometric dyes and calcium dyes is described, and the results of in vivo versus in vitro imaging are compared. Anatomical imaging results used either functional probe background fluorescence or green fluorescent protein (GFP) expression. Spectroscopic experiments measuring the two

  19. Electrokinetic flows through a parallel-plate channel with slipping stripes on walls

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-On; Chu, Henry C. W.

    2011-10-01

    Longitudinal and transverse electrohydrodynamic flows through a plane channel, of which the walls are micropatterned with a periodic array of stripes, are considered. One unit of wall pattern consists of a slipping stripe and a non-slipping stripe, each with a distinct zeta potential. The problems are solved by a semi-analytical method, where the basic solutions satisfying the electrohydrodynamic equations are expressed by eigenfunction expansions, and the coefficients are determined numerically by point collocation satisfying the mixed stick-slip boundary conditions. In the regime of linear response, the Onsager relations for the fluid and current fluxes are deduced as linear functions of the hydrodynamic and electric forcings. The phenomenological coefficients are explicitly expressed as functions of the channel height, the Debye parameter, the slipping area fraction of the wall, the intrinsic slip length, and the zeta potentials. Attention is paid to some particular kinds of patterns, with a view to revisit and to generalize the theoretical limits made in previous studies on electrokinetic flow over an inhomogeneously slipping surface. One should be cautious when applying the theoretical limits. We show that when a surface is not 100% uniformly slipping but has a small fraction of area being covered by no-slip slots, the electro-osmotic enhancement can be appreciably reduced. We also show that when the electric double layer is only moderately thin, slipping-uncharged regions on a surface will have finite inhibition effect on the electro-osmotic flow.

  20. Numerical investigation of the effect of boundary conditions on hydroelastic stability of two parallel plates interacting with a layer of ideal flowing fluid

    NASA Astrophysics Data System (ADS)

    Bochkarev, S. A.; Lekomtsev, S. V.

    2016-12-01

    The paper studies the hydroelastic stability of two parallel identical rectangular plates interacting with a flowing fluid confined between them. General equations describing the behavior of ideal compressible liquid in the case of small perturbations are written in terms of the perturbation velocity potential and transformed using the Bubnov-Galerkin method. The small deformations of elastic plates are defined using the first-order shear deformation plate theory. A mathematical formulation of the dynamic problem for elastic structures is developed using the variational principle of virtual displacements, which takes into account the work done by the inertial forces and hydrodynamic pressure. The numerical solution of the problem is carried out in three-dimensional formulation by means of the finite element method. A stability criterion is based on the analysis of complex eigenvalues of the coupled system of equations obtained for different values of flow velocity. The existence of different types of instability has been shown depending on the combinations of the kinematic boundary conditions defined at the edges of both plates. We considered both the symmetric and asymmetric types of clamping. It has been found that the dependence of the lowest eigenfrequency of two parallel plates on the height of quiescent fluid is nonmonotonic with a pronounced peak. At the same time, critical velocities of instability change insignificantly if the distance between plates is greater than half of the maximum linear dimensions of the structure. It should be noted that the critical velocities of divergence increase monotonically with growth of the height of the fluid layer, but critical velocities for the onset of flutter instability have sharp jumps. The cause of these jumps is a change in the mode shapes at which the system loses stability.

  1. Pixelated parallel-plate avalanche counter for the γ-ray energy tracking arrays

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Cline, D.; Hayes, A. B.; Lee, I. Y.

    2010-11-01

    We plan to improve the CHICO position resolution to match that of GRETINA by adopting the pixelated boards with spherical coordinate θ and φ sensing. This allows very fine corrections of the Doppler shift of observed γ rays and achieving the γ-ray energy resolution to nearly the intrinsic resolution of Ge detector. An eight-layer pixelated board was designed and successfully fabricated. The board has a total of 961 pixels and each one has a dimension of 1.6 x 1.6 mm with a gap of 0.4 mm between them. The position is not determined by the individual pixel instead by taking the time difference between both ends of delay lines, where connections are made by interconnecting pixels with a checker-board pattern. The initial tests have demonstrated the feasibility of this technique that a highly uniform and linear-dependent position spectrum with a resolution better than 2 mm is achieved. Additional tests are in the planning stage to address issues related to the pulse height dependence with respect to the lateral distance and pixel size. We will report the results of the latest tests and discuss the science opportunities related to this upgrade. This work is supported by DOE, LLNL Contract DE-AC52-07NA27344 and LBNL Contract DE-AC02-05CH11231 as well as the NSF.

  2. Nondestructive measurement of moisture content of different types of wheat using a single calibration with a parallel-plate capacitance sensor

    USDA-ARS?s Scientific Manuscript database

    A simple, low cost instrument that measures impedance and phase angle was used along with a parallel-plate capacitance system to estimate the moisture content (MC) of six types of wheat. Moisture content of grain is important and is measured at various stages of their processing and storage. A sampl...

  3. A dynamic analysis of the parallel-plate EMP (electromagnetic pulse) simulator using a wire mesh approximation and the numerical electromagnetics code

    NASA Astrophysics Data System (ADS)

    Gedney, Stephen D.

    1987-09-01

    The Electromagnetic Pulse (EMP) produced by a high-altitude nuclear blast presents a severe threat to electronic systems due to its extreme characteristics. To test the vulnerability of large systems, such as airplanes, missiles, or satellites, they must be subjected to a simulated EMP environment. One type of simulator that has been used to approximate the EMP environment is the Large Parallel-Plate Bounded-Wave Simulator. It is a guided wave simulator which has properties of transmission line and supports a single TEM model at sufficiently low frequencies. This type of simulator consists of finite-width parallel-plate waveguides, which are excited by a wave launcher and terminated by a wave receptor. This study addresses the field distribution within a finite-width parallel-plate waveguide that is matched to a conical tapered waveguide at either end. Characteristics of a parallel-plate bounded-wave EMP simulator were developed using scattering theory, thin-wire mesh approximation of the conducting surfaces, and the Numerical Electronics Code (NEC). Background is provided for readers to use the NEC as a tool in solving thin wire scattering problems.

  4. General collection efficiency for liquid isooctane and tetramethylsilane used as sensitive media in a parallel-plate ionization chamber.

    PubMed

    Johansson, B; Wickman, G

    1997-01-01

    The general collection efficiency has been measured in liquid isooctane (C8H18) and tetramethylsilane (Si(CH3)4) used as the sensitive media in a parallel-plate ionization chamber, with an electrode distance of 1 mm, intended for photon and electron dosimetry applications. The liquid ionization chamber was irradiated at different dose rates by 140 keV photons from the decay of radioactive 99mTc. The measurements were made at potential differences of 50, 100, 200 and 500 V. Measurements were performed for each liquid and electric field strength, with the decay rate of 99mTc used as the dose-rate reference. The maximum dose rate was about 150 mGy min-1 in each experiment. When the measured general collection efficiency values are compared with the theoretical predictions for collection efficiency in gases, it is found that the latter also describe the general collection efficiency in the two liquids within 1% of the saturation current for collection efficiencies down to 60% when using experimentally determined recombination rate constants and on mobilities characteristic of each of the liquids.

  5. Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Na; Li, Feng-Chen; Li, Xiao-Bin; Li, Dong-Yang; Cai, Wei-Hua; Yu, Bo

    2016-09-01

    Direct numerical simulations (DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional (3D) parallel plate channel were carried out, by which numerical databases were established. Based on the numerical databases, the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns, the wall effect on the turbulent kinetic energy spectrum, and the local relationship between the flow motion and the microstructures’ behavior. Moreover, to address the underlying physical mechanism of elastic turbulence, its generation was presented in terms of the global energy budget. The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length, and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched. In addition, the patterns of microstructures’ elongation behave like a filament. From the results of the turbulent kinetic energy budget, it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status. Project supported by the National Natural Science Foundation of China (Grant Nos. 51276046 and 51506037), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421063), the China Postdoctoral Science Foundation (Grant No. 2016M591526), the Heilongjiang Postdoctoral Fund, China (Grant No. LBH-Z15063), and the China Postdoctoral International Exchange Program.

  6. Fluid oscillations and enhanced heat transfer in a parallel plate channel bounded by end reservoirs maintained at different temperature

    NASA Astrophysics Data System (ADS)

    Zhao, Alex Xiaoxin

    Existing analytic and experimental studies have shown that sinusoidal oscillations of a viscous fluid within open ended conduits connected to reservoirs can enhance the thermal diffusivity between the hot fluid and cold fluid in the opposite end reservoirs by some four orders of magnitude in excess of that possible in the absence of oscillation. The heat transfer coefficients achieved can be very high and can readily exceed those possible via heat pipes, yet involve no net convective mass exchange. A numerical study is presented of laminar oscillating flows of incompressible viscous fluid and the associated enhanced heat transfer in a 2-D parallel plate channel bounded by rectangular end reservoirs which have sinusoidally oscillating piston boundaries and are maintained at different temperatures. A change of the widely used SIMPLE algorithm, termed SIMPLE-TP (Time Periodic), was developed to take time periodicity and boundary movements into account. Two different models of heat supply and removal, conduction through the reservoir walls and convection by cross flow, were considered. The numerical results obtained were compared with analytic solutions where such comparisons were possible.

  7. Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; Demichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.

    2009-03-01

    We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, and total hemoglobin concentration as well as blood oxygen saturation and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and magnetic resonance imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a twofold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than 1 week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT.

  8. Axial light emission and Ar metastable densities in a parallel plate dc microdischarge in the steady state and transient regimes

    NASA Astrophysics Data System (ADS)

    Kuschel, T.; Niermann, B.; Stefanović, I.; Böke, M.; Škoro, N.; Marić, D.; Petrović, Z. Lj; Winter, J.

    2011-12-01

    Axial emission profiles in a parallel plate dc microdischarge (feedgas: argon; discharge gap d = 1 mm; pressure p = 10 Torr) were studied by means of time-resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A) characteristics were recorded and Ar* metastable densities were measured by tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in the steady-state regime are similar to corresponding profiles in standard size discharges (d ≈ 1 cm, p ≈ 1 Torr). For some discharge conditions relaxation oscillations are present when the microdischarge switches periodically between the low current Townsend-like mode and the normal glow. At the same time the axial emission profile shows transient behavior, starting with peak distribution at the anode, which gradually moves toward the cathode during the normal glow. The development of argon metastable densities highly correlates with the oscillating discharge current. Gas temperatures in the low current Townsend-like mode (Tg = 320-400 K) and the high current glow mode (Tg = 469-526 K) were determined by the broadening of the recorded spectral profiles as a function of the discharge current.

  9. Comparison of lead zirconate titanate thin films for microelectromechanical energy harvester with interdigitated and parallel plate electrodes.

    PubMed

    Chidambaram, Nachiappan; Mazzalai, Andrea; Balma, Davide; Muralt, Paul

    2013-08-01

    Lead zirconate titanate (PZT) thin films on insulator- buffered silicon substrates with interdigitated electrodes (IDEs) have the potential to harvest more energy than parallel plate electrode (PPE) structures because the former exploit the longitudinal piezoelectric effect, which is about twice as high as the transverse piezoelectric effect used by PPE structures. In this work, both options are compared with respect to dielectric, ferroelectric, and piezoelectric properties, leakage currents, and figure of merit (FOM) for energy harvesting. The test samples were silicon beams with {100} PZT thin films in the case of the PPE geometry, and random PZT thin films for the IDE geometry. Both films were obtained by an identical sol-gel route. Almost the same dielectric constants were derived when the conformal mapping method was applied for the IDE capacitor to correct for the IDE geometry. The dielectric loss was smaller in the IDE case. The ferroelectric loops showed a higher saturation polarization, a higher coercive field, and less back-switching for the IDE case. The leakage current density of the IDE structure was measured to be about 4 orders of magnitude lower than that of the PPE structure. The best FOM of the IDE structures was 20% superior to that of the PPE structures while also having a voltage response that was ten times higher (12.9 mV/μ strain).

  10. Flows between two parallel plates of couple stress fluids with time-fractional Caputo and Caputo-Fabrizio derivatives

    NASA Astrophysics Data System (ADS)

    Akhtar, Shehraz

    2016-11-01

    The present work provides a comparative study of the unsteady flows between two parallel plates of a couple stress fluid with two different time-fractional derivatives, namely, Caputo time-fractional derivative (derivative with singular kernel) and Caputo-Fabrizio time-fractional derivative (derivative without singular kernel). The solutions to flows of the ordinary couple stress fluid are obtained as limiting cases, using the properties of the time-fractional derivatives. The analysis result shows that it is more advantageous to use the time-fractional derivatives without singular kernel. Advantages consist both in simpler calculations, and, especially, in the final expressions of solutions which are more appropriate for numerical computations. The solutions of the studied problems are obtained by means of the Laplace transform with respect to the time variable t and the finite Fourier transform with respect to the y-variable. It should be noted that by convenient manipulations of the inverse integral transforms, fluid velocity expressions are written as the sum between the steady-state solution (post-transient solution) and the transient solution. Some numerical calculations are carried out in order to study the influence of the time-fractional derivative order on the fluid velocity, shear stresses and couple stress. Also, the critical time at which the steady flow is obtained was numerically determined. Numerical results are illustrated graphically.

  11. Studies on a non-thermal pulsed corona plasma between two parallel-plate electrodes in water

    NASA Astrophysics Data System (ADS)

    Sein, M. M.; Nasir, Z. Bin; Telgheder, U.; Schmidt, T. C.

    2012-06-01

    A non-thermal plasma generated between two parallel-plate electrodes submerged in water was studied in this work. The surface of one of the stainless-steel electrodes (the cathode) was coated with a ceramic layer of Al2O3. This reactor cell was connected to a water cycle and the discharge was carried out in a closed loop and therefore an equilibrium was established during discharge. The dependence of hydrogen peroxide formation as an indicator for the generation of most important oxidative species OH radicals on the pulse repetition rate, the solution conductivity and the pH of the solution was investigated. The highest yield of H2O2 (3.5 mg L-1) was obtained at 20 pps in a NaCl solution with a conductivity of 400 µS cm-1 and pH 7 in 90 min. The maximum energy efficiency of ˜0.1 g kWh-1 H2O2 was obtained. The surface of the coated electrodes, before and after applying of electrical discharges, was analysed by scanning electron microscopy. During the discharge process, the coating was destroyed and the formation of H2O2 decreased to 10% after discharging of nearly 35 h.

  12. Relating the Stored Magnetic Energy of a Parallel-Plate Inductor to the Work of External Forces

    NASA Astrophysics Data System (ADS)

    Gauthier, N.

    2007-11-01

    Idealized models are often used in introductory physics courses. For one, such models involve simple mathematics, which is a definite plus since complex mathematical manipulations quickly become an obstacle rather than a tool for a beginner. Idealized models facilitate a student's understanding and grasp of a given physical phenomenon, yet they convey the essential elements of a sometimes intricate and abstract physical concept. It is thus worthwhile to use available models, or to develop new ones, for use in the introductory classroom. Early discussions of electric energy storage within the framework of the infinite parallel-plate capacitor model are an excellent case in point. In this case one can show, through relatively simple mathematical manipulations, that the work done by an external agent in order to increase the separation between the plates is equal to the corresponding change in the electrical energy of the system. The purpose of this paper is to show that a similar model can also be used to discuss magnetic energy storage based on a calculation of the work done by the external forces that act on the system, a subject that is greatly neglected at the introductory level. We examine this system next.

  13. A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops

    NASA Astrophysics Data System (ADS)

    Janssen, P. J. A.; Anderson, P. D.

    2008-10-01

    A boundary-integral method is presented for drop deformation between two parallel walls for non-unit viscosity ratio systems. To account for the effect of the walls the Green's functions are modified and all terms for the double-layer potential are derived. The full three-dimensional implementation is validated, and the model is shown to be accurate and consistent. The method is applied to study drop deformation in shear flow. An excellent match with small-deformation theory is found at low capillary numbers, and our results match with other BIM simulations for pressure-driven flows. For shear flow with moderate capillary numbers, we see that the behavior of a low-viscosity drop is similar to that of drop with a viscosity ratio of unity. High-viscosity drops, on the other hand, are prevented from rotating in shear flow, which results in a larger deformation, but less overshoot in the drop axes is observed. In contrast with unconfined flow, high-viscosity drops can be broken in shear flow between parallel plates; for low-viscosity drops the critical capillary number is higher in confined situations.

  14. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line.

  15. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams

    SciTech Connect

    Zink, K.; Wulff, J.

    2011-02-15

    Purpose: In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p{sub wall} and p{sub cav}) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount {Delta}z. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift {Delta}z for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. Methods: The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps {Delta}z around the depth of measurement. The optimal shift {Delta}z is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation

  16. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.

    PubMed

    Zink, K; Czarnecki, D; Looe, H K; von Voigts-Rhetz, P; Harder, D

    2014-11-01

    The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known "inscattering effect," whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in-out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in-out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the first time. The influences of both the

  17. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    SciTech Connect

    Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known “inscattering effect,” whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in–out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in–out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the

  18. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber.

    PubMed

    Chin, Mervyn Y H; Busscher, Henk J; Evans, Robert; Noar, Joseph; Pratten, Jonathan

    2006-02-01

    Decalcification is a commonly recognized complication of orthodontic treatment with fixed appliances. A technology, based on a parallel plate flow chamber, was developed to investigate early biofilm formation of a strain of Streptococcus sanguis on the surface of four orthodontic bonding materials: glass ionomer cement (Ketac Cem), resin-modified glass ionomer cement (Fuji Ortho LC), chemically-cured composite resin (Concise) and light-cured composite resin (Transbond XT). S. sanguis was used as it is one of the primary colonizers of dental hard surfaces. Artificial saliva was supplied as a source of nutrients for the biofilms. The effects of two commercially available mouthrinses (i.e. a fluoride containing rinse and chlorhexidine) were evaluated. Initial colonization of the bacterium was assessed after 6 hours of growth by the percentage surface coverage (PSC) of the biofilm on the disc surfaces. There were statistically significant differences in bacterial accumulation between different bonding materials (P < 0.05), Concise being the least colonized and Transbond XT being the most colonized by S. sanguis biofilms. All materials pre-treated with 0.05 per cent sodium fluoride mouthrinse showed more than 50 per cent reduction in biofilm formation. The 0.2 per cent chlorhexidine gluconate mouthrinse caused significant reduction of biofilm formation on all materials except Ketac Cem. This in vitro study showed that the use of a chemically-cured composite resin (Concise) reduced early S. sanguis biofilm formation. Also, fluoride had a greater effect in reducing the PSC by S. sanguis biofilms than chlorhexidine. Rinsing with 0.05 per cent sodium fluoride prior to placement of orthodontic appliances is effective in reducing early biofilm formation.

  19. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  20. Nondestructive method to estimate moisture content in single nuts and grain from RF impedance measurements with a parallel-plate sensor

    NASA Astrophysics Data System (ADS)

    Kandala, C. V.; Butts, C. L.

    2005-05-01

    A method to determine the moisture content from the complex impedance measurements of a parallel-plate capacitor with a single shelled or in-shell peanut between the plates, at two frequencies 1 and 5 MHz, is described here. Capacitance (C), phase angle (θ) and dissipation factor (D) of the parallel-plate system at the two frequencies were measured. Using these values in a derived empirical equation, the moisture content (mc) of the peanuts was estimated to an accuracy of within 1% of the standard air-oven value. The moisture range of the peanuts tested was between 5 and 20%. The method is rapid and nondestructive and was found earlier to be applicable in certain types of grain such as corn. The study establishes a basis for the development of a practical instrument that could be useful in the grain and peanut industry.

  1. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  2. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  3. Welding of aluminum with linear ribbon explosives.

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1971-01-01

    A small-scale simplified, parallel plate process of welding aluminum with very small quantities of lead-sheathed linear ribbon RDX explosive is described. The results of the welding of five different alloys, obtained by using this technique, show that the weld strengths are up to 90% of the parent metal tensile strength.

  4. Neural Network Hydrological Modelling: Linear Output Activation Functions?

    NASA Astrophysics Data System (ADS)

    Abrahart, R. J.; Dawson, C. W.

    2005-12-01

    The power to represent non-linear hydrological processes is of paramount importance in neural network hydrological modelling operations. The accepted wisdom requires non-polynomial activation functions to be incorporated in the hidden units such that a single tier of hidden units can thereafter be used to provide a 'universal approximation' to whatever particular hydrological mechanism or function is of interest to the modeller. The user can select from a set of default activation functions, or in certain software packages, is able to define their own function - the most popular options being logistic, sigmoid and hyperbolic tangent. If a unit does not transform its inputs it is said to possess a 'linear activation function' and a combination of linear activation functions will produce a linear solution; whereas the use of non-linear activation functions will produce non-linear solutions in which the principle of superposition does not hold. For hidden units, speed of learning and network complexities are important issues. For the output units, it is desirable to select an activation function that is suited to the distribution of the target values: e.g. binary targets (logistic); categorical targets (softmax); continuous-valued targets with a bounded range (logistic / tanh); positive target values with no known upper bound (exponential; but beware of overflow); continuous-valued targets with no known bounds (linear). It is also standard practice in most hydrological applications to use the default software settings and to insert a set of identical non-linear activation functions in the hidden layer and output layer processing units. Mixed combinations have nevertheless been reported in several hydrological modelling papers and the full ramifications of such activities requires further investigation and assessment i.e. non-linear activation functions in the hidden units connected to linear or clipped-linear activation functions in the output unit. There are two

  5. Application of the Legendre wavelets method to the parallel plate flow of a third grade fluid and forced convection in a porous duct

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ullah, Mati; Sajid, M.; Khan, S. U.

    2017-03-01

    A method based on Legendre wavelets is presented in this paper to discuss the flow of a third grade fluid between parallel plates and the forced convection in a porous duct. The flow problems are modeled in terms of integral equations which are then solved by the Legendre wavelets method. The comparison between present results and the existing solutions shows that the Legendre wavelets method is a powerful tool for solving nonlinear boundary value problems. We hope this method can be used for solving many interesting problems arising in non-Newtonian fluids.

  6. An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe

    NASA Astrophysics Data System (ADS)

    Avramenko, A. A.; Tyrinov, A. I.; Shevchuk, I. V.

    2015-04-01

    The paper presents results of an investigation of the response of an incompressible fluid in a circular micropipe and a parallel-plate microchannel to a sudden time-independent pressure drop. Solutions of the problem were obtained analytically using the Laplace transform technique and numerically using the lattice Boltzmann method. The unsteady velocity profiles in the pipe and in the channel were obtained with the help of the infinite series solutions validated against numerical simulations. In line with the expectations, the flow asymptotically tends to the fully developed pattern, which is attained quicker for smaller Knudsen numbers. The solution enabled also obtaining relations to estimate the hydraulic resistance coefficient.

  7. CORRIGENDUM: Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.

    2010-03-01

    Figures 1, 2 and 5 of this paper are reprinted from the authors' previous paper, Zhang X-Y, Wang P, Sheng S, Xu F and Ong C K 2008 Ferroelectric BaxSr1 - xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications J. Appl. Phys. 104 124110, copyright 2008, with permission from the American Institute of Physics.

  8. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    NASA Astrophysics Data System (ADS)

    Sharifi, B.; Zamani Zeinali, H.; Soltani, J.; Negarestani, A.; Shahvar, A.

    2015-01-01

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  9. Evaluation of optical parameters of quasi-parallel plates with single-frame interferogram analysis methods and eliminating the influence of camera parasitic fringes

    NASA Astrophysics Data System (ADS)

    Sunderland, Zofia; Patorski, Krzysztof; Wielgus, Maciek; Pokorski, Krzysztof

    2014-12-01

    The surface flatness of transparent plates is frequently tested in Fizeau and Twyman-Green interferometers. In case of quasi-parallel plates, however, a common problem is the additional reflection from the plate rear surface and the occurence of three-beam interference. Conventional methods of interferogram analysis such as temporal phase shifting or Fourier transform fail when the three overlapping fringe sets are present in the image. Our method of deriving optical parameters of the plate requires recording two interferograms: a two-beam interferogram without a reference beam and the three-beam interference one. The images are processed using single-frame techniques only and information about shape of both surfaces and optical thickness variations of the plate is retrieved. Unwanted parasitic fringes introduced by the glass plate protecting the CCD matrix in the camera are also handled using recently developed special smoothing technique. The proposed method is based on algorithmic solution and does not require modification of a sample or the optical setup. The measurement procedure and the detailed image processing path will be presented on the example of quasi-parallel plate interferograms recorded in the Twyman-Green setup.

  10. SU-E-T-448: On the Perturbation Factor P-cav of the Markus Parallel Plate Ion Chambers in Clinical Electron Beams, Monte Carlo Based Reintegration of An Historical Experiment

    SciTech Connect

    Voigts-Rhetz, P von; Zink, K

    2014-06-01

    Purpose: All present dosimetry protocols recommend well-guarded parallel-plate ion chambers for electron dosimetry. For the guard-less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-free”. Aim of the present study is a Monte Carlo based reiteration of this experiment. Methods: Detailed models of four parallel-plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E{sub 0}=6-21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth. Results: The calculated dose ratio D{sub NACP}/D{sub Markus}, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths. Conclusion: The simulations principally confirm the energy dependence of the dose ratio D{sub NACP}/D{sub Markus} as published by van der Plaetsen. But, as shown by our simulations of the ratio D{sub W}/D{sub Markus}, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well-guarded chambers the guard-less Markus chamber reveals the smallest overall perturbation correction and

  11. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor

    PubMed Central

    Sánchez-De la Torre, Fernando; De la Rosa, Javier Rivera; Kharisov, Boris I.; Lucio-Ortiz, Carlos J.

    2013-01-01

    Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N2 physisorption isotherms were also determined. The Ni/Al2O3 sample reveled agglomerated (1 μm) of nanoparticles of Ni (30–80 nm) however, NiO particles were also identified, probably for the low temperature during the H2 reduction treatment (350 °C), the Cu/Al2O3 sample presented agglomerates (1–1.5 μm) of nanoparticles (70–150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH3ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption. PMID:28788334

  12. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor.

    PubMed

    Sánchez-De la Torre, Fernando; De la Rosa, Javier Rivera; Kharisov, Boris I; Lucio-Ortiz, Carlos J

    2013-09-30

    Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N₂ physisorption isotherms were also determined. The Ni/Al₂O₃ sample reveled agglomerated (1 μm) of nanoparticles of Ni (30-80 nm) however, NiO particles were also identified, probably for the low temperature during the H2 reduction treatment (350 °C), the Cu/Al₂O₃ sample presented agglomerates (1-1.5 μm) of nanoparticles (70-150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH₃ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption.

  13. Cable theory in neurons with active, linearized membranes.

    PubMed

    Koch, C

    1984-01-01

    This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency fmax. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (delta-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Parallel-plate wet denuder coupled ion chromatograph for near-real-time detection of trace acidic gases in clean room air.

    PubMed

    Takeuchi, Masaki; Tsunoda, Hiromichi; Tanaka, Hideji; Shiramizu, Yoshimi

    2011-01-01

    This paper describes the performance of our automated acidic (CH(3)COOH, HCOOH, HCl, HNO(2), SO(2), and HNO(3)) gases monitor utilizing a parallel-plate wet denuder (PPWD). The PPWD quantitatively collects gaseous contaminants at a high sample flow rate (∼8 dm(3) min(-1)) compared to the conventional methods used in a clean room. Rapid response to any variability in the sample concentration enables near-real-time monitoring. In the developed monitor, the analyte collected with the PPWD is pumped into one of two preconcentration columns for 15 min, and determined by means of ion chromatography. While one preconcentration column is used for chromatographic separation, the other is used for loading the sample solution. The system allows continuous monitoring of the common acidic gases in an advanced semiconductor manufacturing clean room. 2011 © The Japan Society for Analytical Chemistry

  15. Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides.

    PubMed

    Lee, Eui Su; Lee, Sun-Goo; Kee, Chul-Sik; Jeon, Tae-In

    2011-08-01

    We present a tunable notch filter having a wide terahertz (THz) frequency range and a low-pass filter (LPF) having a 0.78 THz cutoff frequency. Single slit and multiple slits are positioned at the center of air gaps in tapered parallel-plate waveguides (TPPWG) to obtain the notch filter and LPF, respectively. The notch filter has a dispersion-free and low-loss transverse magnetic (TM) mode. The Q factor was proved to be 138, and the resonant frequency is easily tunable by adjusting the air gaps between TPPWG. On the other hand, the cut off frequency of the LPF was determined using a Bragg stop band, which depends on slit period. The LPF has a transition width of 68 GHz at the cutoff frequency and a dynamic range of 35 dB at stop bands. In addition, the characteristics of such filters were analyzed using finite-difference time-domain (FDTD) simulations.

  16. Measuring tryptophan concentrations of aqueous solutions for cancer research using terahertz time-domain spectroscopy with metal parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Giertzuch, Peter-Lasse; Khodaei, Yashar; Schubert, Maik-Hendrik; Hens, Korbinian; Sprenger, Thorsten; Opitz, Christiane; Beigang, René

    2017-02-01

    Recently the essential amino acid tryptophan has attracted attention in cancer research, as its metabolism regulates antitumor immune responses and tumor-intrinisic properties. Measurement techniques to determine tryptophan concentrations of aqueous solutions are therefore vastly important for ongoing research in this field. Recently, Terahertz spectroscopy has illustrated its high potential to be utilized for the characterization of bio-crystals and bio-molecules. We have developed a method to detect and quantify tryptophan based on the parallel-plate waveguide (PPWG) technology together with a commercially available terahertz time domain spectroscopy (TDS) system called "T-SPECTRALYZER F" providing a spectral bandwidth from 0.1 THz to 5 THz. As Terahertz waves are strongly absorbed by water, a measurement of aqueous solutions is a challenging task. In our setup, parallel-plate waveguides are used to detect low tryptophan concentrations, in principle, in solution. Drop-casting the solution into the waveguide forms a dry homogeneous film after evaporation of the solvent. A spectroscopic analysis of the transmission spectrum of the waveguide allows for a determination of the tryptophan concentration as the detection limit is drastically improved by the use of waveguides. In order to increase the detection sensitivity of this measurement technique the terahertz setup was encapsulated in a dry air box to reduce water vapor effects. Here we introduce the working mechanism of "TSPECTRALYZER F" and present the spectral evaluation procedures applied. Finally, we show the improvement of the detection sensitivity using a terahertz time-domain spectroscopy system together with PPWG technology.

  17. Active Control of Linear Periodic System with Two Unstable Modes.

    DTIC Science & Technology

    1982-12-01

    tV;;;.~II.~9 - B ~ZV ~- p1 . ,,~ >. ~ ACTIVE CONTROL OF LINEAR PERIODIC SYSTEM WITH TWO UNSTABLE MODES THESIS by Gregory E. Myers, B.S.E. 2nd Lt...PERIODIC SYSTEM WITH TWO UNSTABLE MODES THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University...December 1982 Approved for public release; distribution unlimited -ow PREFACE This thesis is a continuation of the work done by Yeakel in the control of

  18. Linear topology confers in vivo gene transfer activity to polyethylenimines.

    PubMed

    Brissault, B; Leborgne, C; Guis, C; Danos, O; Cheradame, H; Kichler, A

    2006-01-01

    Although polyethylenimines (PEIs) are frequently used transfection agents, it is still unclear which of their properties are required for efficient gene delivery. This is even more striking when working in vivo since some PEIs are able to generate significant gene expression, whereas others are not. To facilitate a rational development of compounds with improved transfection activities, studies aimed at identifying the properties involved in the transfection process seem indispensable. In the present work, we investigated how transfection with linear PEI of 22 kDa allows for high reporter gene expression in lungs after intravenous injection, whereas the branched PEI of 25 kDa does not. To this end, we synthesized L-PEI derivatives that are intermediates between linear and branched PEIs. Our results show that the topology plays a crucial role in obtaining in vivo reporter gene expression, whereas the content of primary, secondary, and tertiary amines is only of minor importance.

  19. Characteristics of induced activity from medical linear accelerators

    SciTech Connect

    Wang Yizhen; Evans, Michael D.C.; Podgorsak, Ervin B.

    2005-09-15

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a 'dose rate' of 400 MU/min. A 'dose' of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible.

  20. Evaluating linear response in active systems with no perturbing field

    NASA Astrophysics Data System (ADS)

    Szamel, Grzegorz

    2017-03-01

    We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed by Warren and Allen (Phys. Rev. Lett., 109 (2012) 250601) for out-of-equilibrium systems of passive Brownian particles. We illustrate our method by evaluating two linear response functions for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of many active particles interacting via a screened Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size.

  1. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  2. Spatial frequency multiplier with active linearly tapered slot antenna array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  3. Activation of Dosimeters Used in qa of Medical Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej

    2017-09-01

    This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.

  4. Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber.

    PubMed

    Roosjen, Astrid; Boks, Niels P; van der Mei, Henny C; Busscher, Henk J; Norde, Willem

    2005-11-25

    Microbial adhesion to surfaces often occurs despite high wall shear rates acting on the adhering microorganisms. In this paper, we compare the wall shear rates needed to prevent microbial adhesion to bare glass and poly(ethylene oxide) (PEO)-brush coated glass in a parallel plate flow chamber. Initial microbial deposition rates were determined for different wall shear rates between 4 and 1600 s(-1) on the top and bottom plates of the flow chamber. Deposition efficiencies alpha(SL), based on the Smoluchowski-Levich approach, for Pseudomonas aeruginosa D1, Escherichia coli O2K2 and Candida tropicalis GB 9/9 decreased with increasing wall shear rates and were lower for PEO-brush coated glass than for bare glass. Characteristic shear rates preventing adhesion to the bottom plate were around 10 and 1.0 s(-1) for the bacteria on glass and the PEO-brush and 36 and 3.4s(-1) for the yeast strain on glass and the PEO-brush, respectively. This demonstrates that the adhesive forces between microorganisms and a PEO-brush are comparatively weak, although some strains may have the ability to adhere to a PEO-brush under low shear conditions. Microbial deposition efficiencies alpha(SL) were much larger, however, than unity for bottom plate deposition, but could be reduced to realistic values by averaging the deposition rates found for the top (negative contribution of sedimentation) and bottom (positive contribution of sedimentation) plates.

  5. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  6. Exact solution for chameleon field, self-coupled through the Ratra-Peebles potential with n =1 and confined between two parallel plates

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Cronenberg, G.; Höllwieser, R.; Jenke, T.; Pitschmann, M.; Wellenzohn, M.; Abele, H.

    2016-10-01

    We calculate the chameleon field profile, confined between two parallel plates, filled with air at pressure P =10-4 mbar and room temperature and separated by the distance L , in the chameleon field theory with Ratra-Peebles self-interaction potential with index n =1 . We give the exact analytical solution in terms of Jacobian elliptic functions, depending on the mass density of the ambient matter. The obtained analytical solution can be used in qBounce experiments, measuring transition frequencies between quantum gravitational states of ultracold neutrons and also for the calculation of the chameleon field induced Casimir force for the CANNEX experiment. We show that the chameleon-matter interactions with coupling constants β ≤1 04 can be probed by qBounce experiments with sensitivities Δ E ≤10-18 eV . At L =30.1 μ m we reproduce the result β <5.8 ×1 08 , obtained by Jenke et al. [Phys. Rev. Lett. 112, 151105 (2014)] at sensitivity Δ E ˜10-14 eV . In the vicinity of one of the plates our solution coincides with the solution, obtained by Brax and Pignol [Phys. Rev. Lett. 107, 111301 (2011)] [see also Ivanov et al. Phys. Rev. D 87, 105013 (2013)] above a plate at zero density of the ambient matter.

  7. Deposition of Oral Bacteria and Polystyrene Particles to Quartz and Dental Enamel in a Parallel Plate and Stagnation Point Flow Chamber.

    PubMed

    Yang; Bos; Belder; Engel; Busscher

    1999-12-15

    The aim of this paper is to determine to what extent (i) deposition of oral bacteria and polystyrene particles, (ii) onto quartz and dental enamel with and without a salivary conditioning film, (iii) in a parallel plate (PP) and stagnation point (SP) flow chamber and at common Peclet numbers are comparable. All three bacterial strains showed different adhesion behaviors, and even Streptococcus mitis BMS, possessing a similar cell surface hydrophobicity as polystyrene particles, did not mimic polystyrene particles in its adhesion behavior, possibly as a result of the more negative zeta potentials of the polystyrene particles. The stationary endpoint adhesion of all strains, including polystyrene particles, was lower in the presence of a salivary conditioning film, while also desorption probabilities under flow were higher in the presence of a conditioning film than in its absence. Deposition onto quartz and enamel surfaces was different, but without a consistent trend valid for all strains and polystyrene particles. It is concluded that differences in experimental results exist, and the process of bacterial deposition to enamel surfaces cannot be modeled by using polystyrene particles and quartz collector surfaces. Copyright 1999 Academic Press.

  8. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    NASA Astrophysics Data System (ADS)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  9. Unsteady MHD convective flow of Second grade fluid through a porous medium in a Rotating parallel plate channel with temperature dependent source

    NASA Astrophysics Data System (ADS)

    VeeraKrishna, M.; Subba Reddy, G.

    2016-09-01

    In this paper, we make an initial vale investigation of hydromagnetic convective flow of a viscous electrically conducting second grade fluid through a porous medium in a rotating parallel plate channel in the presence of a temperature dependent heat source. The perturbations in the flow are created by a constant pressure gradient along the plates in addition to non-torsional oscillations of the lower plate. The exact solutions of the velocity and the temperature fields consist of the steady state and the transient components using Laplace transform technique. The time required for the transient effects to decay is discussed in detail and the ultimate steady state consists of boundary layers on the plates and an interior. Attention is focused on the physical nature of the solutions, and the structure of the various kinds of boundary layers formed on the plates. The final steady state velocity and temperature fields are numerically discussed for different values of the governing parameters. The shear stresses and the Nusselt number are tabulated. Particular case when both the plates are at rest has also been computed and analyzed.

  10. The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data.

    PubMed

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-21

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within +/-0.2% over 2-3 years. It is also shown that check source measurements can be repeated within +/-0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  11. Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor.

    PubMed

    Zamalloa, Carlos; Boon, Nico; Verstraete, Willy

    2013-02-01

    In this lab-scale study, domestic wastewater is subjected to a chemical biological adsorption (A-stage), followed by treatment in an innovative roof installed parallel plate microalgae biofilm reactor for nutrient immobilization (I-stage). The A-stage process was operated at a hydraulic retention time (HRT) of 1h and a solid retention time of 1day (FeSO(4) as flocculant). The I-stage, which consequently received the effluent of the A-stage process, was operated at an HRT of 1day and exposed to natural light. The overall system removed on average 74% of the total chemical oxygen demand, 82% of the total suspended solids, 67% of the total nitrogen and 96% of the total phosphorous in the wastewater. The design involves a relatively low capital and operating cost which is in the order of 0.5€/m(3) wastewater treated. These aspects suggest that the A/I process can be used as a decentralized domestic wastewater treatment system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. NOTE: The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data

    NASA Astrophysics Data System (ADS)

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-01

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within ±0.2% over 2-3 years. It is also shown that check source measurements can be repeated within ±0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  13. Measurements of secondary scintillation in low-pressure CF4 with a SiPM, from a parallel-plate avalanche geometry

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Yurkon, J.; Stolz, A.

    2016-04-01

    In this work we report and discuss the characterization of the secondary scintillation light emitted by low-pressure tetrafluoromethane (CF4) during avalanche gas processes. The experimental setup consists of a Parallel Plate Avalanche Counter (PPAC) irradiated by 5.5 MeV alpha particles from a collimated 241-Am source. The PPAC is operated in CF4 at pressures ranging from 5 to 50 torr. The electroluminescence light is readout by a VUV-sensitive Multi-Pixel Photon Counter (MPPC, Hamamatsu), placed along the PPAC axial direction. The secondary scintillation yield at different operational pressures was computed from the correlation between avalanche charge and electroluminesce light, recorded on an event-by-event basis; it was found to be in the range of 0.01-0.15 photons/electron depending on the reduced field applied between the PPAC electrodes. The role of the quencher impurities is also briefly discussed. In addition, the coincidence resolving times (CRT) for 5.5 MeV α -particles crossing the PPAC has been measured; time resolutions of 600 picosecond were achieved at different pressures.

  14. A numerical analysis of plasma non-uniformity in the parallel plate VHF-CCP and the comparison among various model

    NASA Astrophysics Data System (ADS)

    Sawada, Ikuo

    2012-10-01

    We measured the radial distribution of electron density in a 200 mm parallel plate CCP and compared it with results from numerical simulations. The experiments were conducted with pure Ar gas with pressures ranging from 15 to 100 mTorr and 60 MHz applied at the top electrode with powers from 500 to 2000W. The measured electron profile is peaked in the center, and the relative non-uniformity is higher at 100 mTorr than at 15 mTorr. We compare the experimental results with simulations with both HPEM and Monte-Carlo/PIC codes. In HPEM simulations, we used either fluid or electron Monte-Carlo module, and the Poisson or the Electromagnetic solver. None of the models were able to duplicate the experimental results quantitatively. However, HPEM with the electron Monte-Carlo module and PIC qualitatively matched the experimental results. We will discuss the results from these models and how they illuminate the mechanism of enhanced electron central peak.[4pt] [1] T. Oshita, M. Matsukuma, S.Y. Kang, I. Sawada: The effect of non-uniform RF voltage in a CCP discharge, The 57^th JSAP Spring Meeting 2010[4pt] [2] I. Sawada, K. Matsuzaki, S.Y. Kang, T. Ohshita, M. Kawakami, S. Segawa: 1-st IC-PLANTS, 2008

  15. A linearly and circularly polarized active integrated antenna

    NASA Astrophysics Data System (ADS)

    Khoshniat, Ali

    This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so it can be conveniently mass-produced and designed to have circular polarization, which is preferred in many applications such as satellite communications. The antenna simulations were performed using Ansoft High Frequency System Simulator (HFSS) and all amplifier design steps were simulated by Advanced Design System (ADS). The final prototypes of the linearly polarized active integrated antenna and the circularly polarized active integrated antenna were fabricated using a circuit board milling machine. The antenna radiation pattern was measured inside Utah State University's anechoic chamber and the results were satisfactory. Power measurements for the amplifiers' performance were carried out inside the chamber and calculated by using the Friis transmission equation. It is seen that a significant improvement in the efficiency is achieved compared to the reference antenna without harmonic suppression. Based on the success in the single element active antenna design, the thesis also presents a feasibility of applying the active integrated antenna in array configuration, in particular, in scanning array design to yield a low-profile, low-cost alternative to the parabolic antenna transmitter of satellite communication systems.

  16. Parallel plate radiofrequency ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1982-01-01

    An 8-cm-diam. argon ion thruster is described. It is operated by applying 100 to 160 Mhz rf power across a thin plasma volume in a strongly divergent static magnetic field. No cathode or electron emitter is required to sustain a continuous wave plasma discharge over a broad range of propellant gas flow. Preliminary results indicate that a large fraction of the incident power is being reflected by impedance mismatching in the coupling structure. Resonance effects due to plasma thickness, magnetic field strength, and distribution are presented. Typical discharge losses obtained to date are 500 to 600 W per beam ampere at extracted beam currents up to 60 mA.

  17. Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies.

    PubMed

    Tailor, R C; Hanson, W F

    2002-07-01

    show the TG51/TG21 dose ratios decreasing with energy, whereas electrons exhibit the opposite trend. The dose ratio for photons is near 1.00 at 18 mV increasing to near 1.01 at 4 mV while the dose ratio for electrons is near 1.02 at 20 MeV decreasing only 0.5% to near 1.015 at 6 MeV. For parallel-plate chambers, the situation is complicated by the two possible methods of obtaining calibration factors: through an ADCL or through a cross-comparison with a cylindrical chamber in a high-energy electron beam. For some chambers, the two methods lead to significantly different calibration factors, which in turn lead to significantly different TG51/TG21 results for the same chamber. Data show that if both N60Co(D,w) and Nx are obtained from the same source, namely an ADCL or a cross comparison, the TG51/TG21 results for parallel-plate chambers are similar to those for cylindrical chambers. However, an inconsistent set of calibration factors, i.e., using N60Co(D,w) x k(ecal) from an ADCL but Ngas from a cross comparison or vice versa, can introduce an additional uncertainty up to 2.5% in the TG51/TG21 dose ratios.

  18. A high frequency analysis of electromagnetic plane wave scattering by perfectly-conducting semi-infinite parallel plate and rectangular waveguides with absorber coated inner walls

    NASA Technical Reports Server (NTRS)

    Noh, H. M.; Pathak, P. H.

    1986-01-01

    An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.

  19. Clinico-radiological Outcome Analysis of Parallel Plating with Perpendicular Plating in Distal Humeral Intra-articular Fractures: Prospective Randomised Study

    PubMed Central

    Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar

    2017-01-01

    Introduction The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. Aim To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. Materials and Methods A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. Results In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Conclusion Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques. PMID:28384948

  20. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions.

    PubMed

    Bakker, Dewi P; Busscher, Henk J; van der Mei, Henny C

    2002-02-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanisms. The three strains had different cell surface hydrophobicities, with water contact angles on bacterial lawns ranging from 18 to 85 degrees. Bacterial zeta potentials in artificial seawater were essentially zero. The three strains showed different adhesion kinetics and the hydrophilic bacterium H. pacifica had the greatest affinity for hydrophilic glass. On average, initial deposition rates were two- to threefold higher in the SP than in the PP flow chamber, possibly due to the convective fluid flow toward the substratum surface in the SP flow chamber causing more intimate contact between a substratum and a bacterial cell surface than the gentle collisions in the PP flow chamber. The ratios between the experimental deposition rates and theoretically calculated deposition rates based on mass transport equations not only differed among the strains, but were also different for the two flow chambers, indicating different mechanisms under the two modes of mass transport. The efficiencies of deposition were higher in the SP flow chamber than in the PP flow chamber: 62+/-4 and 114+/-28% respectively. Experiments in the SP flow chamber were more reproducible than those in the PP flow chamber, with standard deviations over triplicate runs of 8% in the SP and 23% in the PP flow chamber. This is probably due to better-controlled convective mass transport in the SP flow chamber, as compared with the diffusion-controlled mass transport in the PP flow chamber. In conclusion, this study shows that bacterial adhesion mechanisms depend on the prevailing mass transport conditions in the experimental set-up used, which makes it essential in the design of experiments that a methodology is

  1. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants.

    PubMed

    Temmink, H; Klapwijk, Bram

    2004-02-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.

  2. Activation processes in a medical linear accelerator and spatial distribution of activation products.

    PubMed

    Fischer, Helmut W; Tabot, Ben E; Poppe, Björn

    2006-12-21

    Activation products have been identified by in situ gamma spectroscopy at the isocentre of a medical linear accelerator shortly after termination of a high energy photon beam irradiation with 15 x 15 cm field size. Spectra have been recorded either with an open or with a closed collimator. Whilst some activation products disappear from the spectrum with closed collimator or exhibit reduced count rates, others remain with identical intensity. The former isotopes are neutron-deficient and mostly decay by positron emission or electron capture; the latter have neutron excess and decay by beta(-) emission. This new finding is consistent with the assumption that photons in the primary beam produce activation products by (gamma, n) reactions in the treatment head and subsequently the neutrons created in these processes undergo (n, gamma) reactions creating activation products in a much larger area. These findings are expected to be generally applicable to all medical high energy linear accelerators.

  3. [Evaluating photonuclear activation for clearance of decommissioned medical linear accelerators].

    PubMed

    Shida, Koichi; Isobe, Tomonori; Takada, Kenta; Kobayashi, Daisuke; Tadano, Kiichi; Takahashi, Hideki; Seki, Masashi; Yokota, Hiroshi; Sakurai, Hideyuki; Sakae, Takeji

    2011-01-01

    In a linear accelerator (linac) that operates at greater than an accelerating energy of 10 MV, neutrons are generated by a photonuclear reaction and the head section of the linac becomes radioactive. The purpose of this research is to obtain data for ensuring the safety of linac decommissioning and upgrading. The decommissioned linac investigated in this study was a Clinac 2100 C/D (Varian) installed in April 1999. Its total time of use was 2757.7 h (equivalent to 496,386 Gy). The dosage for its last three months of use was 7213.67 Gy. After being allowed to sit for a 7-day cooling period, the apparatus was disassembled and the parts of the gantry head portion were removed. The ambient dose equivalent rates, H*(10), (microSv/h) from the removed parts were measured in air, at a location with low background, by using a gamma ray scintillation survey meter. The target was also analyzed with an HP-Ge semiconductor detector, in order to identify the nuclides responsible for the observed radiation. On day 7 after the last use of the linac, the ambient dose equivalent rates, H*(10), (microSv/h) in air at the surface of all parts, except the target and the beryllium window, were within the limit of normal background radiation. The measured value (microSv/h) for the beryllium window decreased to within the background limit on day 10. The measured value (microSv/h) of the target decreased to about 1.5 times the background on day 19. At a distance of 10 cm, all the parts were within the background limit after the initial 7-day cooling period. In the analysis of the target with the HP-Ge semiconductor detector, peaks at 125, 333, 352, 356, 426, 511, 583, 609, 689, 811, 835, 911, 969, 1091, 1099, 1120, 1173, 1238, 1292, 1333, 1461 and 1764keV were detected on day 23. Seven months after the linac was last used, peaks were detected at 352, 511, 583, 609, 835, 911, 969, 1120, 1173, 1238, 1333, 1461 and 1764 keV. From these results, the natural radioactive nuclides can be assigned

  4. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    NASA Astrophysics Data System (ADS)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  5. Measurement of activity distribution using photostimulable phosphor imaging plates in decommissioned 10 MV medical linear accelerator.

    PubMed

    Fujibuchi, Toshioh; Yonai, Shunsuke; Yoshida, Masahiro; Sakae, Takeji; Watanabe, Hiroshi; Abe, Yoshihisa; Itami, Jun

    2014-08-01

    Photonuclear reactions generate neutrons in the head of the linear accelerator. Therefore, some parts of the linear accelerator can become activated. Such activated materials must be handled as radioactive waste. The authors attempted to investigate the distribution of induced radioactivity using photostimulable phosphor imaging plates. Autoradiographs were produced from some parts of the linear accelerator (the target, upper jaw, multileaf collimator and shielding). The levels of induced radioactivity were confirmed to be non-uniform within each part from the autoradiographs. The method was a simple and highly sensitive approach to evaluating the relative degree of activation of the linear accelerators, so that appropriate materials management procedures can be carried out.

  6. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.

  7. A new numerical method for investigation of thermophoresis and Brownian motion effects on MHD nanofluid flow and heat transfer between parallel plates partially filled with a porous medium

    NASA Astrophysics Data System (ADS)

    Sayehvand, Habib-Olah; Basiri Parsa, Amir

    Numerical investigation the problem of nanofluid heat and mass transfer in a channel partially filled with a porous medium in the presence of uniform magnetic field is carried out by a new computational iterative approach known as the spectral local linearization method (SLLM). The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved by SLLM and validity of our solutions is verified by the numerical results (fourth-order Runge-Kutta scheme with the shooting method). In modeling the flow in the channel, the effects of flow inertia, Brinkman friction, nanoparticles concentration and thickness of the porous region are taken into account. The results are obtained for velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number. Also, effects of active parameters such as viscosity parameter, Hartmann number, Darcy number, Prandtl number, Schmidt number, Eckert number, Brownian motion parameter, thermophoresis parameter and the thickness of porous region on the hydrodynamics, heat and mass transfer behaviors are investigated.

  8. Search for the return of activity in active asteroid 176P/LINEAR

    SciTech Connect

    Hsieh, Henry H.; Denneau, Larry; Jedicke, Robert; Kaluna, Heather M.; Keane, Jacqueline V.; Kleyna, Jan; MacLennan, Eric M.; Meech, Karen J.; Riesen, Timm; Schunova, Eva; Urban, Laurie; Vereš, Peter; Wainscoat, Richard J.; Fitzsimmons, Alan; Lacerda, Pedro; Hainaut, Olivier R.; Ishiguro, Masateru; Moskovitz, Nick A.; Snodgrass, Colin; Trujillo, Chadwick A.; and others

    2014-04-01

    We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.

  9. Using multiple linear regression model to estimate thunderstorm activity

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Putro, W. S.

    2017-03-01

    This paper is aimed to develop a numerical model with the use of a nonlinear model to estimate the thunderstorm activity. Meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), cloud (C), Precipitable Water Vapor (PWV), and precipitation on a daily basis were used in the proposed method. The model was constructed with six configurations of input and one target output. The output tested in this work is the thunderstorm event when one-year data is used. Results showed that the model works well in estimating thunderstorm activities with the maximum epoch reaching 1000 iterations and the percent error was found below 50%. The model also found that the thunderstorm activities in May and October are detected higher than the other months due to the inter-monsoon season.

  10. Biomagnetic activity and non linear analysis in obstetrics and gynecology in a Greek population.

    PubMed

    Anninos, P; Anastasiadis, P; Adamopoulos, A; Kotini, A

    2016-01-01

    This article reports the application of non-linear analysis to biomagnetic signals recorded from fetal growth restriction, fetal brain activity, ovarian lesions, breast lesions, umbilical arteries, uterine myomas, and uterine arteries in a Greek population. The results were correlated with clinical findings. The biomagnetic measurements and the application of non-linear analysis are promising procedures in Obstetrics and Gynecology.

  11. Activation of Bone Remodeling after Fatigue: Differential Response to Linear Microcracks and Diffuse Damage

    PubMed Central

    Herman, B.C.; Cardoso, L.; Majeska, R.J.; Jepsen, K.J.; Schaffler, M.B

    2010-01-01

    Recent experiments point to two predominant forms of fatigue microdamage in bone: linear microcracks (tens to a few hundreds microns in length) and “diffuse damage” (patches of diffuse stain uptake in fatigued bone comprised of clusters of sublamellar-sized cracks). The physiological relevance of diffuse damage in activating bone remodeling is not known. In this study microdamage amount and type were varied to assess whether linear or diffuse microdamage have similar effects on the activation of intracortical resorption. Activation of resorption was correlated to the number of linear microcracks (Cr.Dn) in the bone (R2=0.60, p<0.01). In contrast, there was no activation of resorption in response to diffuse microdamage alone. Furthermore, there was no significant change in osteocyte viability in response to diffuse microdamage, suggesting that osteocyte apoptosis, which is know to activate remodeling at typical linear microcracks in bone, does not result from sublamellar damage. These findings indicate that inability of diffuse microdamage to activate resorption may be due to lack of a focal injury response. Finally, we found that duration of loading does not affect the remodeling response. In conclusion, our data indicate that osteocytes activate resorption in response to linear microcracks but not diffuse microdamage, perhaps due to lack of a focal injury-induced apoptotic response. PMID:20633708

  12. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  13. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum.

    PubMed

    Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A

    2014-07-01

    An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented.

  14. Globus pallidus internus neuronal activity: a comparative study of linear and non-linear features in patients with dystonia or Parkinson's disease.

    PubMed

    Alam, M; Sanghera, M K; Schwabe, K; Lütjens, G; Jin, X; Song, J; von Wrangel, C; Stewart, R M; Jankovic, J; Grossman, R G; Darbin, O; Krauss, Joachim K

    2016-03-01

    Movement disorders such as Parkinson's disease (PD) and dystonia are associated with alterations of basal ganglia motor circuits and abnormal neuronal activity in the output nucleus, the globus pallidus internus (GPi). This study aims to compare the electrophysiological hallmarks for PD and dystonia in the linear and non-linear time stamp domains in patients who underwent microelectrode recordings during functional stereotactic surgery for deep brain stimulation (DBS) or pallidotomy. We analyzed single-unit neuronal activity in the posteroventral lateral region of the GPi in awake patients prior to pallidotomy or the implantation of DBS electrodes in 29 patients with PD (N = 83 neurons) and 13 patients with dystonia (N = 41 neurons) under comparable conditions. The discharge rate and the instantaneous frequency of the GPi in dystonia patients were significantly lower than in PD patients (P < 0.001), while the total number of bursts, the percentage of spikes in bursts and the mean duration of bursts were higher (P < 0.001). Further, non-linear analysis revealed higher irregularity or entropy in the data streams of GPi neurons of PD patients compared to the dystonia patients group (P < 0.001). This study indicates that both linear and non-linear features of neuronal activity in the human GPi differ between PD and dystonia. Our results may serve as the basis for future studies on linear and non-linear analysis of neuronal firing patterns in various movement disorders.

  15. Non-linear dynamic modeling of an automobile hydraulic active suspension system

    NASA Astrophysics Data System (ADS)

    Mrad, R. Ben; Levitt, J. A.; Fassois, S. D.

    1994-09-01

    Motived by the strong need for realistically describing the dynamical behaviour of automotive systems through adequate mathematical models, a computer-stimulation-suitable non-linear quarter-car model of a hydraulic active suspension system is developed. Unlike previously available linear models characterised by idealised actuator and component behaviour, the developed model accounts for the dynamics of the main system components, including the suspension bushing, pump, accumulator, power and bypass valves, and hydraulic actuator, while also incorporating preliminary versions of the system controllers. Significant system characteristics, such as non-linear pressure-flow relationships, fluid compressibility, pump and valve non-linearities, leakages, as well as Coulomb friction, are also explicitly accounted for, and the underpinning assumptions are discussed. Simulation results obtained by exercising the model provide insight into the system behavior, illustrate the importance of the actuator/component dynamics and their associated non-linearities and reveal the inadequacy of the idealised linear models in capturing the system behaviour, demonstrate specific effects of valve leakage and fluid bulk modulus, are in qualitative agreement with experimental measurements, and stress the need for proper control law design and tuning. The developed model is particularly suitable for analysis, design, control law optimisation, and diagnostic strategies development.

  16. Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool

    ERIC Educational Resources Information Center

    Bligh, Brett; Coyle, Do

    2013-01-01

    This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…

  17. Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool

    ERIC Educational Resources Information Center

    Bligh, Brett; Coyle, Do

    2013-01-01

    This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…

  18. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  19. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.

    PubMed

    Michaelides, Angelos; Liu, Z-P; Zhang, C J; Alavi, Ali; King, David A; Hu, P

    2003-04-02

    The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

  20. Non-linear changes of electrocortical activity after antenatal betamethasone treatment in fetal sheep

    PubMed Central

    Schwab, Matthias; Schmidt, Karin; Roedel, Marcus; Mueller, Thomas; Schubert, Harald; Anwar, M Akthar; Nathanielsz, Peter W

    2001-01-01

    We determined the effects of betamethasone on the fetal sheep electrocorticogram (ECoG) using linear (power spectral) and non-linear analysis. For non-linear analysis we used an algorithm based on the Wolf algorithm for the estimation of the leading Lyapunov exponent which calculates a prediction error based on the course of the time series in the phase space. A high prediction error stands for low predictibility or low regularity and vice versa. After 48 h of baseline recordings, vehicle (n = 6) or betamethasone (n = 7) at 10 μg h−1 was infused over 48 h to the sheep fetus at 128 days gestational age (0.87 of gestation). ECoG spectral analysis revealed no difference in power spectrum between vehicle- and betamethasone-treated fetuses. The prediction error of the ECoG during REM sleep was higher than during non-REM or quiet sleep in both groups (P < 0.0001) revealing lower causality of brain activity during REM sleep. During REM sleep, prediction error significantly decreased 18-24 h after onset of betamethasone treatment (P < 0.05) and returned to baseline values within the following 24 h of continued betamethasone treatment. No ECoG changes were found during quiet sleep. Non-linear ECoG changes during metabolically active REM sleep accompanied the previously described decrease in cerebral blood flow. These results suggest that betamethasone in doses used in perinatal medicine acutely alters complex neuronal activity. PMID:11230525

  1. On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients

    SciTech Connect

    Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.

    2011-04-15

    The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.

  2. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing.

    PubMed

    Yang, Yuanyuan; Wang, Lei; Tan, Jiubin; Zhao, Bo

    2016-05-20

    This paper presents an induced voltage linear extraction method for disturbing force self-sensing in the application of giant magnetostrictive actuators (GMAs). In this method, a Kelvin bridge combined with an active device is constructed instead of a conventional Wheatstone bridge for extraction of the induced voltage, and an additional GMA is adopted as a reference actuator in the self-sensing circuit in order to balance the circuit bridge. The linear fitting of the measurement data is done according to the linear relationship between the disturbing forces and the integral of the induced voltage. The experimental results confirm the good performance of the proposed method, and the self-sensitivity of the disturbing forces is better than 2.0 (mV·s)/N.

  3. Treatment of pretreated coking wastewater by flocculation, alkali out, air stripping, and three-dimensional electrocatalytic oxidation with parallel plate electrodes.

    PubMed

    Wen-wu, Liu; Xiu-ping, Wang; Xue-yan, Tu; Chang-yong, Wang

    2014-10-01

    The coking wastewater generally comprises highly concentrated, recalcitrant, and toxic organic pollutants, so its treatment has been of great importance to prevent living beings and their environment from these hazardous contaminations. The treatment of pretreated coking wastewater by flocculation-coagulation, alkali out, air stripping, and three-dimensional (3-D) electrocatalytic oxidation was performed (gap between the used β-PbO2/Ti anode and titanium cathode, 12 mm; mass ratio of Cu-Mn/granular activated carbon (GAC) to effluent, 1:4; cell voltage, 7 V). The results showed that the pH adjusting from 3.7 to 6.1 was necessary for coagulants; alkali out played an important role because it brought up precipitation containing higher fatty acids as well as other contaminants to decrease the chemical oxygen demand (COD) in the effluent, and it had also forced the reduction of ammonia nitrogen (NH3-N) by incorporating with air stripping; for 3-D electrocatalytic oxidation with a bleaching liquid assisting, the initial pH 8.5 of effluent was suitable for Cu-Mn/GAC; moreover, it was considered that its Cu component was dedicated to the decrease of COD and NH3-N, while the Mn component specialized in the decay of NH3-N. The residual COD and NH3-N values in the final effluent with pH 6.5 were 95.8 and 8.8 mg/L, respectively, demonstrating that the whole processes applied were feasible and low in cost.

  4. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain

    PubMed Central

    Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain. PMID:19703776

  5. Independent component feature-based human activity recognition via Linear Discriminant Analysis and Hidden Markov Model.

    PubMed

    Uddin, Md; Lee, J J; Kim, T S

    2008-01-01

    In proactive computing, human activity recognition from image sequences is an active research area. This paper presents a novel approach of human activity recognition based on Linear Discriminant Analysis (LDA) of Independent Component (IC) features from shape information. With extracted features, Hidden Markov Model (HMM) is applied for training and recognition. The recognition performance using LDA of IC features has been compared to other approaches including Principle Component Analysis (PCA), LDA of PC, and ICA. The preliminary results show much improved performance in the recognition rate with our proposed method.

  6. Linear forecasting of the F10.7 proxy for solar activity

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Emmert, John T.; Crump, Nicholas A.

    2017-08-01

    The ability to accurately forecast variations in the solar extreme ultraviolet irradiance is important to many aspects of operational space weather. For example, variations in the Sun's radiative output at these wavelengths drive changes in thermospheric density, which perturbs the trajectories of objects in low Earth orbit. Thus, predicting the conjunction of an operational satellite with orbital debris requires accurate forecasts of solar activity. In this paper we present a simple linear forecasting model for the 10.7 cm radio flux (F10.7), a commonly used proxy for solar activity. Comparisons with simple reference models indicate that this linear model has positive skill for all forecast days that we have considered. We also examine the impact of the F10.7 forecast skill on empirical model predictions of thermospheric density and ionospheric total electron content.

  7. Starspots and active regions on IN Com: UBVRI photometry and linear polarization

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.

    2014-06-01

    The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.

  8. Shigella flexneri suppresses NF-kB activation by inhibiting linear ubiquitin chain ligation

    PubMed Central

    de Jong, Maarten F.; Liu, Zixu; Chen, Didi; Alto, Neal M.

    2016-01-01

    The Linear Ubiquitin chain Assembly Complex (LUBAC) is a multimeric E3 ligase that catalyzes M1- or linear ubiquitination of activated immune receptor signaling complexes (RSCs). While mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri Type III Secretion System (T3SS) effector E3 ligases IpaH1.4 and IpaH2.5 that directly interact with LUBAC subunit HOIL-1L (RBCK1) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIP (RNF31). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to TNF, IL-1β, and pathogen associated molecular patterns (PAMPs). Loss of function studies in mammalian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination, and reveals the critical importance of LUBAC in host defense against pathogens. PMID:27572974

  9. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  10. Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates

    PubMed Central

    Baillod, Charles R.; Boyle, W. C.

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474

  11. Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis

    PubMed Central

    Siddiqi, Muhammad Hameed; Ali, Rahman; Rana, Md. Sohel; Hong, Een-Kee; Kim, Eun Soo; Lee, Sungyoung

    2014-01-01

    Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n–fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods. PMID:24714390

  12. Extensions of the Ferry shear wave model for active linear and nonlinear microrheology

    PubMed Central

    Mitran, Sorin M.; Forest, M. Gregory; Yao, Lingxing; Lindley, Brandon; Hill, David B.

    2009-01-01

    The classical oscillatory shear wave model of Ferry et al. [J. Polym. Sci. 2:593-611, (1947)] is extended for active linear and nonlinear microrheology. In the Ferry protocol, oscillation and attenuation lengths of the shear wave measured from strobe photographs determine storage and loss moduli at each frequency of plate oscillation. The microliter volumes typical in biology require modifications of experimental method and theory. Microbead tracking replaces strobe photographs. Reflection from the top boundary yields counterpropagating modes which are modeled here for linear and nonlinear viscoelastic constitutive laws. Furthermore, bulk imposed strain is easily controlled, and we explore the onset of normal stress generation and shear thinning using nonlinear viscoelastic models. For this paper, we present the theory, exact linear and nonlinear solutions where possible, and simulation tools more generally. We then illustrate errors in inverse characterization by application of the Ferry formulas, due to both suppression of wave reflection and nonlinearity, even if there were no experimental error. This shear wave method presents an active and nonlinear analog of the two-point microrheology of Crocker et al. [Phys. Rev. Lett. 85: 888 - 891 (2000)]. Nonlocal (spatially extended) deformations and stresses are propagated through a small volume sample, on wavelengths long relative to bead size. The setup is ideal for exploration of nonlinear threshold behavior. PMID:20011614

  13. Preparation of linear maltodextrins using a hyperthermophilic amylopullulanase with cyclodextrin- and starch-hydrolysing activities.

    PubMed

    Li, Xiaolei; Li, Dan

    2015-03-30

    A novel method for the preparation of linear maltodextrins from cyclodextrins and starch was proposed. To accomplish this process, an amylopullulanase from hyperthermophilic archaeon Caldivirga maquilingensis (CMApu) was characterized and used. CMApu with an estimated molecular mass of 62.7 kDa by SDS-PAGE had a maximal pullulan-hydrolysing activity at 100°C and pH 5.0. It could also hydrolyse amylopectin (AP), starch, β-CD and amylose (AM), in a decreasing order of relative activities from 88.96% to 57.17%. TLC and HPAEC analysis revealed that CMApu catalyzed the debranching and degrading reactions to produce linear malto-oligosaccharides (≤ G8-G1) from G8-β-CD and/or normal CDs, amylodextrins (DP6-96) from AM, and amylodextrins (DP1-76) from AP and potato starch. Our results showed that CMApu had a great potential for the industrial preparation of linear maltodextrins from normal starch instead of waxy starch, malto-oligosaccharides or sucrose. And the high optimal temperature of CMApu facilitated the simultaneous gelatinization and hydrolysis of cereal starch.

  14. Mechanochemical activation of vincamine mediated by linear polymers: assessment of some "critical" steps.

    PubMed

    Hasa, Dritan; Perissutti, Beatrice; Grassi, Mario; Chierotti, Michele R; Gobetto, Roberto; Ferrario, Valerio; Lenaz, Davide; Voinovich, Dario

    2013-09-27

    The aim of the research was to investigate three "critical steps" that deserve particular attention during the mechanochemical activation of vincamine. The first step consisted in the selection of the best polymeric carrier/most affine stabiliser between linear PVP and NaCMC by using the GRID and the GRID based AutoDock software packages which permit to calculate their surface features and interactions. Moreover, the calculation of the partial and total solubility parameters supported the results obtained by GRID and AutoDock software. Then, after the selection of linear PVP-K30 as the suitable carrier, the influence of process and formulation variables on the amorphisation degree and solubility enhancement was studied, to select the most suitable process conditions and formulation parameters. Subsequently, the best performing samples were widely characterised using XRPD, TEM and SSNMR (including the proton relaxation ((1)H T1 NMR) time) techniques. These studies highlighted that all the coground samples were nanocrystalline solid dispersions indicating a dramatic difference between the amorphisation capacities of linear PVP-K30 and cross-linked PVP, used in previous analogous experiences. In particular, (13)C, (15)N and (1)H T1 NMR data point to a description of the system as a dispersion of nanocrystals in the polymer. In these dispersions vincamine is in a disordered crystalline state due to extensive interactions and contacts with PVP-K30 but the main hydrogen bonding motif characterising its packing remains. Again, differently from cross-linked PVP, dissolution studies revealed that linear PVP-K30 was able to promote a complete in vitro solubilisation of vincamine in some coground samples. What is more important, by using a linear polymer, drug-to-polymer and milling time variables appeared less influent on the solid state and in vitro properties of the composites. Finally, stability studies conducted for a period of 1year highlighted the high physical

  15. Energy expenditure, metabolic power and high speed activity during linear and multi-directional running.

    PubMed

    Oxendale, Chelsea L; Highton, Jamie; Twist, Craig

    2017-10-01

    The purpose of the study was to compare measures of energy expenditure derived from indirect calorimetry and micro-technology, as well as high power and high speed activity during linear and multi-directional running. Repeated measures. Twelve university standard team sport players completed a linear and multi-directional running condition. Estimated energy expenditure, as well as time at high speed (>14.4kmh(-1)) and high power (>20Wkg(-1)) were quantified using a 10Hz micro-technology device and compared with energy expenditure derived from indirect calorimetry. Measured energy expenditure was higher during the multi-directional condition (9.0±2.0 cf. 5.9±1.4kcalmin(-1)), whereas estimated energy expenditure was higher during the linear condition (8.7±2.1 cf. 6.5±1.5kcalmin(-1)). Whilst measures of energy expenditure were strongly related (r>0.89, p<0.001), metabolic power underestimated energy expenditure by 52% (95% LoA: 20-93%) and 34% (95% LoA: 12-59%) during the multi-directional and linear condition, respectively. Time at high power was 41% (95% LoA: 4-92%) greater than time at high speed during the multi-directional condition, whereas time at high power was 5% (95% LoA: -17-9%) lower than time at high speed during the linear condition. Estimated energy expenditure and time at high metabolic power can reflect changes in internal load. However, micro-technology cannot be used to determine the energy cost of intermittent running. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity.

    PubMed

    Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza

    2015-05-01

    HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice.

  17. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  18. Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Huang, Congzhi; Sira-Ramírez, Hebertt

    2015-12-01

    A flatness-based active disturbance rejection control approach is proposed to deal with the linear systems with unknown time-varying coefficients and external disturbances. By selecting appropriate nominal values for the parameters of the system, all the deviation between the nominal and actual dynamics of the controlled process, as well as all the external disturbances can be viewed as a total disturbance. Based on the accurately estimated total disturbance with the aid of the proposed extended state observer, a linear proportional derivative feedback control law taking into account the derivatives of the desired output is designed to eliminate the effect of the total disturbance on the system performance. Finally, the load frequency control problem of a single-area power system with non-reheated unit is employed as an illustrative example to demonstrate the effectiveness of the proposed approach.

  19. Preliminary Determination of Activation Products for a Varian Truebeam Linear Accelerator.

    PubMed

    Waller, Edward; Ram, Rohan; Steadman, Ian

    2017-09-01

    Medical linear accelerators used to treat various forms of cancers are operated at a number of different energies. A by-product of the high-energy photons produced by accelerators is activation of components within the machine itself and its surrounding bunker. The activation products pose radiological and regulatory challenges during the operation of the accelerator as well as when it is time for final decommissioning. The Varian TrueBeam is a new state-of-the-art linear accelerator now operating in the Canadian market. There is currently limited information on the production of its activation products and the resulting impacts on operation and decommissioning. In this paper, activation products in the Varian TrueBeam accelerator are experimentally determined by performing gamma spectroscopy using a portable high purity germanium detector. A total of 10 isotopes are identified for the conditions tested, which include Na, Al, Mn, Ni, Cu, Cu, Br, Sb, Sb, W. The half-lives of these isotopes range from 2.3 min to 60.2 d. These preliminary results indicate that a decommissioning case similar to other radiotherapy accelerators can be made.

  20. A priori complete active space self consistent field localized orbitals: an application on linear polyenes

    NASA Astrophysics Data System (ADS)

    Angeli, Celestino; Sparta, Manuel; Cimiraglia, Renzo

    2006-03-01

    A recently proposed a priori localization technique is used to exploit the possibility to reduce the number of active orbitals in a Complete Active Space Self Consistent Field calculation. The work relies on the fact that the new approach allows a strict control on the nature of the active orbitals and therefore makes it possible to include in the active space only the relevant orbitals. The idea is tested on the calculation of the energy barrier for rigid rotation of linear polyenes. In order to obtain a relevant set of data, a number of possible rotations around double bonds have been considered in the ethylene, butadiene, hexatriene, octatetraene, decapentaene, dodecahexaene molecules. The possibility to reduce the dimension of the active space has been investigated, considering for each possible rotation different active spaces ranging from the minimal dimension of 2 electrons in 2 π orbitals to the π-complete space. The results show that the rigid isomerization in the polyene molecules can be described with a negligible loss in accuracy with active spaces no larger than ten orbitals and ten electrons. In the special case of the rotation around the terminal double bond, the space can be further reduced to six orbitals and six electrons with a large decrease of the computational cost. An interesting summation rule has been found and verified for the stabilization of the energy barriers as a function of the dimension of the conjugated lateral chains and of the dimension of the active space.

  1. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  2. Experimental validation of neutron activation simulation of a varian medical linear accelerator.

    PubMed

    Morato, S; Juste, B; Miro, R; Verdu, G; Diez, S

    2016-08-01

    This work presents a Monte Carlo simulation using the last version of MCNP, v. 6.1.1, of a Varian CLinAc emitting a 15MeV photon beam. The main objective of the work is to estimate the photoneutron production and activated products inside the medical linear accelerator head. To that, the Varian LinAc head was modelled in detail using the manufacturer information, and the model was generated with a CAD software and exported as a mesh to be included in the particle transport simulation. The model includes the transport of photoneutrons generated by primary photons and the (n, γ) reactions which can result in activation products. The validation of this study was done using experimental measures. Activation products have been identified by in situ gamma spectroscopy placed at the jaws exit of the LinAc shortly after termination of a high energy photon beam irradiation. Comparison between experimental and simulation results shows good agreement.

  3. Health Physics Aspects of Neutron Activated Components in a Linear Accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate β or β particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the γ spectra from the activated therapy accessories. The residual radioisotopes found in the 15° wedge and 30° wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45° and 60° wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  4. Health physics aspects of neutron activated components in a linear accelerator.

    PubMed

    Guo, Shuntong; Ziemer, Paul L

    2004-05-01

    The purpose of this study was to investigate the residual radioactivity in the therapy accessories of a medical x ray linear accelerator. The residual radioactivity mainly originated from nuclear activation reactions by neutrons, which are present as a contamination radiation in the x-ray beam. The radiation used in this study was the 25 MV x-ray beam produced by a CGR Saturne III linear accelerator. The five treatment aids include four wedges of various angles and one cerrobend block. The decrease in dose rates with time was followed for 60 min for each of the five treatment aids immediately after 999 monitor units of irradiation. The integral doses from the surface of each of four activated therapy accessories following three different radiation doses were measured by using thermoluminescent dosimeters (CaF2). In the TLD measurement, polyethylene filters were used to differentiate beta or beta particles from the mixed decay radiation. A high-purity germanium detection system was utilized to collect and to analyze the gamma spectra from the activated therapy accessories. The residual radioisotopes found in the 15 degree wedge and 30 degree wedge included V, Cr, Cr, Mn, Fe, Co, and Ni. In the 45 degree and 60 degree wedges, the radionuclides identified were Co, Ni, Cu, and W. The principal nuclides identified in the irradiated cerrobend block were In, Sn, Cd, Pb. The corresponding nuclear reactions from which the residual radionuclides produced were confirmed by consulting the current literature.

  5. Antiproliferative and apoptotic activities of linear furocoumarins from Notopterygium incisum on cancer cell lines.

    PubMed

    Wu, Shi-Biao; Pang, Fei; Wen, Ying; Zhang, Hong-Feng; Zhao, Zheng; Hu, Jin-Feng

    2010-01-01

    Bioassay-guided fractionation of the antiproliferative chloroform extract of the traditional Chinese medicine Qiang-Huo (Notopterygium incisum) led to the isolation of nine linear furocoumarins (1- 9). All the isolates were tested against two human cancer cell lines (HepG-2 and MCF-7) and a rat cancer cell line (C6) using the MTT assay method. Among them, notopol (1), notopterol (2), 5-[(2 E,5 Z)-7-hydroxy-3,7-dimethyl-2,5-octadienoxy]psoralene (3), and 5-[(2,5)-epoxy-3-hydroxy-3,7-dimethyl-6-octenoxy]psoralene (4) showed significant antiproliferative activity against the HepG-2 and C6 cancer cell lines, with IC(50) values of 7.7-24.8 microg/mL (5-FU: ca. 5 microg/mL). Compounds 1- 3 also showed moderate cytotoxicity against the MCF-7 cancer cell line, with IC(50) values of 39.4-61.3 microg/mL (5-FU: 17.3 microg/mL). The cell cycle-specific inhibition and apoptosis induced by compounds 1 and 2 were determined using flow cytometry. The structure-activity relationship (SAR) is briefly discussed herein. It was found that the presence of a free hydroxy at the lipophilic side chain linked to C-5 of the linear furocoumarins was essential for their in vitro antiproliferative activity. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  6. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer.

    PubMed

    Shin, Jun-Hwan; Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Kyung Hyun

    2015-08-07

    An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators.

  7. Translation of structure-activity relationships from cyclic mixed efficacy opioid peptides to linear analogues.

    PubMed

    Anand, Jessica P; Porter-Barrus, Vanessa R; Waldschmidt, Helen V; Yeomans, Larisa; Pogozheva, Irina D; Traynor, John R; Mosberg, Henry I

    2014-01-01

    Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe(4) with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.

  8. Differential diagnosis of breast lesions by use of biomagnetic activity and non-linear analysis.

    PubMed

    Anninos, P A; Kotini, A; Koutlaki, N; Adamopoulos, A; Galazios, G; Anastasiadis, P

    2000-01-01

    Breast cancer mortality rates have not changed during the past 60 years despite significant advances in screening methods. It is tempting therefore to use novel technology in order to better understand breast oncology. In this study we investigated the biomagnetic activity obtained in benign and malignant breast lesions using a single channel biomagnetometer SQUID (Superconducting Quantum Interference Device) in order to assess the method's efficacy in the differential diagnosis of these two types of lesions and its establishment as a screening technique. Magnetic recordings were obtained from 21 patients with palpable breast lumps. Of these 11 were invasive carcinomas and 10 were benign breast lesions. We used non-linear analysis to investigate whether there is any biological differentiation in the dynamics in these two types of lesions. High amplitudes characterized the waveform of a malignant breast lesion whereas in benign breast lesions the corresponding amplitudes were low. Using the application of non-linear analysis we observed a clear saturation value for the dimension of malignant breast lesions and no saturation for benign ones. Biomagnetic measurements with the SQUID and the application of non-linear analysis are promising procedures in assessing and differentiating breast tumors.

  9. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  10. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    PubMed

    Shao, Xingling; Wang, Honglun

    2015-01-01

    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy.

  11. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  12. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    NASA Astrophysics Data System (ADS)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  13. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  14. Dynamical Behaviors of Multiple Equilibria in Competitive Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2016-03-01

    This paper addresses the problem of coexistence and dynamical behaviors of multiple equilibria for competitive neural networks. First, a general class of discontinuous nonmonotonic piecewise linear activation functions is introduced for competitive neural networks. Then based on the fixed point theorem and theory of strict diagonal dominance matrix, it is shown that under some conditions, such n -neuron competitive neural networks can have 5(n) equilibria, among which 3(n) equilibria are locally stable and the others are unstable. More importantly, it is revealed that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibria and locally stable equilibria than the ones with other activation functions, such as the continuous Mexican-hat-type activation function and discontinuous two-level activation function. Furthermore, the 3(n) locally stable equilibria given in this paper are located in not only saturated regions, but also unsaturated regions, which is different from the existing results on multistability of neural networks with multiple level activation functions. A simulation example is provided to illustrate and validate the theoretical findings.

  15. Prediction of aromatase inhibitory activity using the efficient linear method (ELM).

    PubMed

    Shoombuatong, Watshara; Prachayasittikul, Veda; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Aromatase inhibition is an effective treatment strategy for breast cancer. Currently, several in silico methods have been developed for the prediction of aromatase inhibitors (AIs) using artificial neural network (ANN) or support vector machine (SVM). In spite of this, there are ample opportunities for further improvements by developing a simple and interpretable quantitative structure-activity relationship (QSAR) method. Herein, an efficient linear method (ELM) is proposed for constructing a highly predictive QSAR model containing a spontaneous feature importance estimator. Briefly, ELM is a linear-based model with optimal parameters derived from genetic algorithm. Results showed that the simple ELM method displayed robust performance with 10-fold cross-validation MCC values of 0.64 and 0.56 for steroidal and non-steroidal AIs, respectively. Comparative analyses with other machine learning methods (i.e. ANN, SVM and decision tree) were also performed. A thorough analysis of informative molecular descriptors for both steroidal and non-steroidal AIs provided insights into the mechanism of action of compounds. Our findings suggest that the shape and polarizability of compounds may govern the inhibitory activity of both steroidal and non-steroidal types whereas the terminal primary C(sp3) functional group and electronegativity may be required for non-steroidal AIs. The R code of the ELM method is available at http://dx.doi.org/10.6084/m9.figshare.1274030.

  16. Prediction of aromatase inhibitory activity using the efficient linear method (ELM)

    PubMed Central

    Shoombuatong, Watshara; Prachayasittikul, Veda; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Aromatase inhibition is an effective treatment strategy for breast cancer. Currently, several in silico methods have been developed for the prediction of aromatase inhibitors (AIs) using artificial neural network (ANN) or support vector machine (SVM). In spite of this, there are ample opportunities for further improvements by developing a simple and interpretable quantitative structure-activity relationship (QSAR) method. Herein, an efficient linear method (ELM) is proposed for constructing a highly predictive QSAR model containing a spontaneous feature importance estimator. Briefly, ELM is a linear-based model with optimal parameters derived from genetic algorithm. Results showed that the simple ELM method displayed robust performance with 10-fold cross-validation MCC values of 0.64 and 0.56 for steroidal and non-steroidal AIs, respectively. Comparative analyses with other machine learning methods (i.e. ANN, SVM and decision tree) were also performed. A thorough analysis of informative molecular descriptors for both steroidal and non-steroidal AIs provided insights into the mechanism of action of compounds. Our findings suggest that the shape and polarizability of compounds may govern the inhibitory activity of both steroidal and non-steroidal types whereas the terminal primary C(sp3) functional group and electronegativity may be required for non-steroidal AIs. The R code of the ELM method is available at http://dx.doi.org/10.6084/m9.figshare.1274030. PMID:26535037

  17. The Extremely Low Activity Comet 209P/LINEAR During Its Extraordinary Close Approach in 2014

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; knight, Matthew m.

    2016-10-01

    We present results from our observing campaign of Comet 209P/LINEAR during its exceptionally close approach to Earth during 2014 May, the third smallest perigee of any comet in two centuries. These circumstances permitted us to pursue several studies of this intrinsically faint object, including measurements of gas and dust production rates, searching for coma morphology, and direct detection of the nucleus to measure its properties. Indeed, we successfully measured the lowest water production rates of an intact comet in over 35 years and a corresponding smallest active area, ∼0.007 km2. When combined with the nucleus size found from radar, this also yields the smallest active fraction for any comet, ∼0.024%. In all, this strongly suggests that 209P/LINEAR is on its way to becoming an inert object. The nucleus was detected but could not easily be disentangled from the inner coma due to seeing variations and changing spatial scales. Even so, we were able to measure a double-peaked lightcurve consistent with the shorter of two viable rotational periods found by Hergenrother. Radial profiles of the dust coma are quite steep, similar to that observed for some other very anemic comets, and suggest that vaporizing icy grains are present.

  18. Surface properties of pillared acid-activated bentonite as catalyst for selective production of linear alkylbenzene

    NASA Astrophysics Data System (ADS)

    Faghihian, Hossein; Mohammadi, Mohammad Hadi

    2013-01-01

    Acid-activated and pillared montmorillonite were prepared as novel catalysts for alkylation of benzene with 1-decene for production of linear alkylbenzene. The catalysts were characterized by X-ray diffraction, FT-IR spectroscopy, N2 adsorption isotherms, temperature programmed desorption of NH3, scanning electron microscopy and elemental and thermal analysis techniques. It was found that acid-activation of clays prior to pillaring increased the porosity, total specific surface area, total pore volume and surface acidity of the catalysts. Optimization of the reaction conditions was performed by varying catalyst concentration (0.25-1.75 wt%), reactants ratio (benzene to 1-decene of 8.75, 12 and 15) and temperature (115-145 °C) in a batch slurry reactor. Under optimized conditions more than 98% conversion of 1-decene, and complete selectivity for monoalkylbenzenes were achieved.

  19. Space shuttle active-pogo-suppressor control design using linear quadratic regulator techniques

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Lorenz, C. F.

    1979-01-01

    Two methods of active pogo suppression (stabilization) for the space shuttle vehicle were studied analytically. The basis for both approaches was the linear quadratic regulator, state space technique. The first approach minimized root-mean-square pump inlet pressure by using either fullstate feedback, partial-state feedback, or output feedback with a Kalman filter. The second approach increased the modal damping associated with the critical structural modes by using either full-state feedback or reconstructed state feedback. A number of implementable controls were found by both approaches. The designs were analyzed with respect to sensitivity, complexity, and controller energy requirements, as well as controller performance. Practical controllers resulting from the two design approaches tended to use pressure and flow as feedback variables for the minimum-rms method and structural accelerations or velocities for the modal control method. Both approaches are suitable for the design of active pogo-suppression controllers.

  20. Consequences of Laughter Upon Trunk Compression and Cortical Activation: Linear and Polynomial Relations

    PubMed Central

    Svebak, Sven

    2016-01-01

    Results from two studies of biological consequences of laughter are reported. A proposed inhibitory brain mechanism was tested in Study 1. It aims to protect against trunk compression that can cause health hazards during vigorous laughter. Compression may be maximal during moderate durations and, for protective reasons, moderate in enduring vigorous laughs. Twenty-five university students volunteered to see a candid camera film. Laughter responses (LR) and the superimposed ha-responses were operationally assessed by mercury-filled strain gauges strapped around the trunk. On average, the thorax compression amplitudes exceeded those of the abdomen, and greater amplitudes were seen in the males than in the females after correction for resting trunk circumference. Regression analyses supported polynomial relations because medium LR durations were associated with particularly high thorax amplitudes. In Study 2, power changes were computed in the beta and alpha EEG frequency bands of the parietal cortex from before to after exposure to the comedy “Dinner for one” in 56 university students. Highly significant linear relations were calculated between the number of laughs and post-exposure cortical activation (increase of beta, decrease of alpha) due to high activation after frequent laughter. The results from Study 1 supported the hypothesis of a protective brain mechanism that is activated during long LRs to reduce the risk of harm to vital organs in the trunk cavity. The results in Study 2 supported a linear cortical activation and, thus, provided evidence for a biological correlate to the subjective experience of mental refreshment after laughter. PMID:27547260

  1. Muscle activation sequencing of leg muscles during linear glide shot putting.

    PubMed

    Howard, Róisín M; Conway, Richard; Harrison, Andrew J

    2017-11-01

    In the shot put, the athlete's muscles are responsible for generating the impulses to move the athlete and project the shot into the air. Information on phasic muscle activity is lacking for the glide shot put event and therefore important technical information for coaches is not currently available. This study provides an electromyography (EMG) analysis of the muscle activity of the legs during shot put. Fifteen right-handed Irish national level shot putters performed six maximum effort throws using the glide shot put technique. EMG records of eight bilateral lower limb muscles (rectus femoris, biceps femoris, medial- and lateral-gastrocnemius) were obtained during trials. Analysis using smooth EMG linear envelopes revealed patterns of muscle activity across the phases of the throw and compare men and women performers. The results showed that the preferred leg rectus femoris, the preferred leg biceps femoris and the non-preferred leg biceps femoris play important roles in the glide technique, with the total duration of high volumes of activity between 34 and 53% of the throw cycle. A comprehensive understanding of movement and muscle activation patterns for coaches could be helpful to facilitate optimal technique throughout each of the key phases of the event.

  2. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions.

    PubMed

    Kumar, K Vasanth; Porkodi, K; Rocha, F

    2008-03-01

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r2), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.

  3. Intelligibility in noise of three LPC (Linear Predictive Coders) voice channels with active noise reduction headsets

    NASA Astrophysics Data System (ADS)

    Nixon, Charles W.; McKinley, Richard L.

    1988-11-01

    Voice communications processed by Linear Predictive Coders (LPC) are vulnerable to degradation by noise. An earlier study demonstrated that the major effect occurs at the listener. Possible mechanisms for this effect range from poor LPC speech quality to the apparent ease of masking LPC speech by noise. The intelligibility of analog systems is increased with improved signal-to-noise ratios at the ear of the listener. The previous study used state-of-the-art communications headsets with passive sound attenuation. The amount of attenuation provided by these headsets has reached a practical limit, consequently the speech-to-noise ratio cannot be increased for wearable devices. Improvements in speech intelligibility provided by the enhanced and high quality LPC vocoders have not eliminated the problem. A prototype Active Noise Reduction (ANR) headset used with the LPC vocoder systems provided active sound attenuation in addition to the passive attenuation of the headset and resulted in reduced noise at the ear. This reduction improved the speech-to-noise ratio which led to improved intelligibility. Current versions of active noise reduction systems have a high potential for markedly reducing the noise masking problem with the vocoders. State-of-the-art active noise reduction has been proven in laboratory and flight tests. This technology should be applied to these vocoder systems and verified in flight demonstrations in the future.

  4. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  5. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon.

    PubMed

    Kumar, K Vasanth; Porkodi, K; Rocha, F

    2008-01-15

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.

  6. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence

    PubMed Central

    Aschenbrenner, Anna-Katharina; Horakh, Silke; Spring, Otmar

    2013-01-01

    Capitate glandular trichomes of sunflower are well investigated, but detailed studies are lacking for the linear glandular trichomes (LGT), a second type of physiologically active plant hair present on the surface of sunflowers. Light, fluorescence and scanning electron microscopy as well as histochemical staining were used to investigate the structure and metabolite deposition of LGT. Consisting of 6–11 linearly arranged cells, LGT were found on the surface of most plant organs of Helianthus annuus. They were associated with the leaf vascular system, and also occurred along petioles, stems and the abaxial surface of chaffy bracts, ray and disc florets. The highest density was found on the abaxial surface of phyllaries. Phenotypically similar LGT were common in all species of the genus, but also occurred in most other genera of the Helianthinae so far screened. Brownish and fluorescent metabolites of an as yet unknown chemical structure, together with terpenoids, were produced and stored in apical cells of LGT. The deposition of compounds gradually progressed from the tip cell to the basal cells of older trichomes. This process was accompanied by nucleus degradation in metabolite-accumulating cells. The localization of these trichomes on prominent plant parts of the apical bud and the capitulum combined with the accumulation of terpenoids and other as yet unknown compounds suggests a chemo-ecological function of the LGT in plant–insect or plant–herbivore interaction.

  7. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.

    PubMed

    Chang, Chin-Chun; Lin, Po-Yi

    2015-03-01

    The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations

    NASA Astrophysics Data System (ADS)

    Poisson, Mariano; López Fuentes, Marcelo; Mandrini, Cristina H.; Démoulin, Pascal

    2015-11-01

    The main aim of this study is to compare the amount of twist present in emerging active regions (ARs) from photospheric and coronal data. We use linear force-free field models of the observed coronal structure of ARs to determine the global twist. The coronal twist is derived, on one hand, from the force-free parameter [α] of the model and, on the other, from the computed coronal magnetic helicity normalized by the magnetic flux squared. We compare our results, for the same set of ARs, with those of Poisson et al. ( Solar Phys. 290, 727, 2015), in which the twist was estimated using the so-called magnetic tongues observed in line-of-sight magnetograms during AR emergence. We corroborate the agreement between the photospheric and coronal twist-sign and the presence of magnetic tongues as an early proxy of the AR non-potentiality. We find a globally linear relationship between the coronal twist and the one previously deduced for the emerging AR flux rope at the photospheric level. The coronal-twist value is typically lower by a factor of six than the one deduced for the emerging flux rope. We interpret this result as due to the partial emergence of the flux rope that forms the region.

  9. Comparisons between linear and nonlinear methods for decoding motor cortical activities of monkey.

    PubMed

    Xu, Kai; Wang, Yueming; Zhang, Shaomin; Zhao, Ting; Wang, Yiwen; Chen, Weidong; Zheng, Xiaoxiang

    2011-01-01

    Brain Machine Interfaces (BMI) aim at building a direct communication link between the neural system and external devices. The decoding of neuronal signals is one of the important steps in BMI systems. Existing decoding methods commonly fall into two categories, i.e., linear methods and nonlinear methods. This paper compares the performance between the two kinds of methods in the decoding of motor cortical activities of a monkey. Kalman filter (KF) is chosen as an example of linear methods, and General Regression Neural Network (GRNN) and Support Vector Regression (SVR) are two nonlinear approaches evaluated in our work. The experiments are conducted to reconstruct 2D trajectories in a center-out task. The correlation coefficient (CC) and the root mean square error (RMSE) are used to assess the performance. The experimental results show that GRNN and SVR achieve better performance than Kalman filter with average improvements of about 30% in CC and 40% in RMSE. This demonstrates that nonlinear models can better encode the relationship between the neuronal signals and response. In addition, GRNN and SVR are more effective than Kalman filter on noisy data.

  10. Origin of the effective mobility in non-linear active micro-rheology

    NASA Astrophysics Data System (ADS)

    Santamaría-Holek, I.; Pérez-Madrid, A.

    2016-10-01

    The distinction between the damping coefficient and the effective non-linear mobility of driven particles in active micro-rheology of supercooled liquids is explained in terms of individual and collective dynamics. The effective mobility arises as a collective effect which gives insight into the energy landscape of the system. On the other hand, the damping coefficient is a constant that modulates the effect of external forces over the thermal energy which particles have at their disposition to perform Brownian motion. For long times, these thermal fluctuations become characterized in terms of an effective temperature that is a consequence of the dynamic coupling between kinetic and configurational degrees of freedom induced by the presence of the strong external force. The interplay between collective mobility and effective temperature allows to formulate a generalized Stokes-Einstein relation that may be used to determine the collective diffusion coefficient. The explicit relations we deduce reproduce simulation data remarkably well.

  11. WATER-ICE-DRIVEN ACTIVITY ON MAIN-BELT COMET P/2010 A2 (LINEAR)?

    SciTech Connect

    Moreno, F.; Ortiz, J. L.; Cabrera-Lavers, A.; Augusteijn, T.; Liimets, T.; Lindberg, J. E.; Pursimo, T.; RodrIguez-Gil, P.; Vaduvescu, O.

    2010-08-01

    The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with several telescopes at the Observatorio del Roque de los Muchachos on La Palma, Spain. Application of an inverse dust tail Monte Carlo method to the images of the dust ejecta from the object indicates that a sustained, likely water-ice-driven, activity over some eight months is the mechanism responsible for the formation of the observed tail. The total amount of the dust released is estimated to be 5 x 10{sup 7} kg, which represents about 0.3% of the nucleus mass. While the event could have been triggered by a collision, this cannot be determined from the currently available data.

  12. Direct air activation measurements at a 15-MV medical linear accelerator.

    PubMed

    Saeed, M K; Poppe, B; Fischer, H W

    2015-02-01

    Direct radiometric determination of (14)N (γ, n) (13)N air activation was achieved at a 15-MV medical linear accelerator operating in a high-energy photon mode. (13)N was identified by irradiating a gas-tight Marinelli beaker filled with nitrogen gas and later observing the 10-min half-life of the 511-keV positron-electron annihilation line using high-resolution gamma spectroscopy. Quantitative evaluation of the spectral signal yielded a (13)N production rate of 836.8 ± 32 Bq Gy(-1) in air per 40 × 40 cm(2) field cross section at 100 cm source-surface distance. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Kathryn E.; Rhodes, Edward J.; Magee, John W.; Barrows, Timothy T.

    2007-10-01

    Linear dunes occupy more than one-third of the Australian continent, but the timing of their formation is poorly understood. In this study, we collected 82 samples from 26 sites across the Strzelecki and Tirari Deserts in the driest part of central Australia to provide an optically stimulated luminescence chronology for these dunefields. The dunes preserve up to four stratigraphic horizons, bounded by palaeosols, which represent evidence for multiple periods of reactivation punctuated by episodes of increased environmental stability. Dune activity took place in episodes around 73-66, 35-32, 22-18 and 14-10 ka. Intermittent partial mobilisation persisted at other times throughout the last 75 ka and dune activity appears to have intensified during the late Holocene. Dune construction occurred when sediment was available for aeolian transport; in the Strzelecki and Tirari Deserts, this coincided with cold, arid conditions during Marine Isotope Stage (MIS) 4, late MIS 3 and MIS 2, and the warm, dry climates of the late Pleistocene-Holocene transition period and late Holocene. Localised influxes of sediment on active floodplains and lake floors during the relatively more humid periods of MIS 5 also resulted in dune formation. The timing of widespread dune reactivation coincided with glaciation in southeastern Australia, along with cooler temperatures in the adjacent oceans and Antarctica.

  14. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    PubMed Central

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  15. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    PubMed

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications.

  16. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo

    PubMed Central

    Baëza, Manon; Viala, Séverine; Heim, Marjorie; Dard, Amélie; Hudry, Bruno; Duffraisse, Marilyne; Rogulja-Ortmann, Ana; Brun, Christine; Merabet, Samir

    2015-01-01

    Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI: http://dx.doi.org/10.7554/eLife.06034.001 PMID:25869471

  17. Fate of free and linear alcohol-ethoxylate-derived fatty alcohols in activated sludge.

    PubMed

    Federle, Thomas W; Itrich, Nina R

    2006-05-01

    Pure homologues of [1-14C] C12, C14, and C16 alcohols and the linear alcohol ethoxylates, AE [1-14C alkyl] C13E9 and C16E9 were tested in a batch-activated sludge die-away system to assess their biodegradation kinetics and to predict levels of free alcohol derived from AE biodegradation in treated effluent. First-order rates for primary biodegradation were similar for all alcohols (86-113 h(-1)) and were used to predict removal under typical treatment conditions. Predicted removals of fatty alcohols ranged from 99.76% to 99.85%, consistent with published field data. During the biodegradation of the AE homologues, lower than expected levels of fatty alcohol based upon the assumption that biodegradation occurs through central fission were observed. Rather than fatty alcohols, the major metabolites were polar materials resulting from omega oxidation of the alkyl chain prior to or concurrent with central cleavage. The amounts of free fatty alcohols that were formed from AEs in influent and escape into effluent were negligible due both to their rapid degradation and to the finding that formation of free alcohol through central cleavage is only a minor degradation pathway in activated sludge.

  18. In Vitro and In Vivo Activities of Sulfur-Containing Linear Bisphosphonates against Apicomplexan Parasites.

    PubMed

    Szajnman, Sergio H; Galaka, Tamila; Li, Zhu-Hong; Li, Catherine; Howell, Nathan M; Chao, María N; Striepen, Boris; Muralidharan, Vasant; Moreno, Silvia N J; Rodriguez, Juan B

    2017-02-01

    We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfone-containing compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 μM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 μM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 μM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites.

  19. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives fromPeucedanum (Apiaceae: Apioideae).

    PubMed

    Hadaček, F; Müller, C; Werner, A; Greger, H; Proksch, P

    1994-08-01

    Peucedanum arenarium Waldst. & Kit.,P. austriacum (Jacq.) Koch,P. coriaceum Reichenb.,P. longifolium Waldst. & Kit,P. officinale L.,P. oreoselinum (L.) Moench,P. ostruthium L., andP. palustre (L.) Moench accumulate different structural types of coumarins including simple coumarins, linear furanocoumarins, linear dihydropyranocoumarins, angular dihydrofuranocoumarins and angular dihydropyranocoumarins. Linear furanocoumarins, known for various biological activities, include some well-known antifeedants, such as bergapten, isopimpinellin, and xanthotoxin. The aim of this investigation was to screen the diverse coumarins fromPeucedanum for insecticidal activity. LC was used to analyze and isolate coumarins for the bioassays. A growth inhibition bioassay with 17 derivatives, comprising all structural types fromPeucedanum, carried out withSpodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) as test organism, indicated the majority of the linear furanocoumarins and the angular dihydrofuranocoumarin athamantin as active compounds. Oxygenation of the prenyl residue of linear furanocoumarins decreased activity. Further formation of an ester with angelic acid even resulted in complete inactivity. Five active linear furanocoumarins, bergapten, isopimpinellin, xanthotoxin, isoimperatorin, and imperatorin, and two linear furanocoumarins with a substituted furan ring, peucedanin and 8-methoxypeucedanin, were compared in a dietary utilization bioassay. Relative growth rate (RGR) and relative consumption rate (RCR) divided the tested coumarins in three groups of similar activity. Isopimpinellin and peucedanin slightly decreased RGR and RCR of the treated larvae, and xanthotoxin, isoimperatorin, and 8-methoxypeucedanin heavily decreased RGR and RCR. Bergapten and imperatorin differed by the lowest RGR values and rather high RCR values. The effects caused by these two coumarins indicate specific postingestive toxicity. The results obtained in this study add to the reputation

  20. Calculation of natural oscillations of a resonator with a doppler-broadened active medium linear with respect to the field

    SciTech Connect

    Glushchenko, Y.V.; Radina, T.V.; Radin, A.M.

    1995-02-01

    A linear self-consistent model of laser generation in an anisotropic active medium is constructed. The nonreciprocal character of field distributions of waves circulating in a ring resonator in counter directions, which is caused by an active medium, is found and analyzed. Corrections to mode frequencies and threshold gain are determined. 3 refs.

  1. Packet marking function of active queue management mechanism: should it be linear, concave, or convex?

    NASA Astrophysics Data System (ADS)

    Ohsaki, Hiroyuki; Murata, Masayuki

    2004-09-01

    Recently, several gateway-based congestion control mechanisms have been proposed to support the end-to-end congestion control mechanism of TCP (Transmission Control Protocol). In this paper, we focus on RED (Random Early Detection), which is a promising gateway-based congestion control mechanism. RED randomly drops an arriving packet with a probability proportional to its average queue length (i.e., the number of packets in the buffer). However, it is still unclear whether the packet marking function of RED is optimal or not. In this paper, we investigate what type of packet marking function, which determines the packet marking probability from the average queue length, is suitable from the viewpoint of both steady state and transient state performances. Presenting several numerical examples, we investigate the advantages and disadvantages of three packet marking functions: linear, concave, and convex. We show that, although the average queue length in the steady state becomes larger, use of a concave function improves the transient behavior of RED and also realizes robustness against network status changes such as variation in the number of active TCP connections.

  2. Methanogenic activity inhibition by increasing the linear alkylbenzene sulfonate (LAS) concentration.

    PubMed

    Souza, Luiza F C; Florencio, Lourdinha; Gavazza, Savia; Kato, Mario T

    2016-07-02

    The effect of the initial concentration of linear alkylbenzene sulfonate (LAS) on specific methanogenic activity (SMA) was investigated in this work. Six anaerobic flasks reactors with 1 L of total volume were inoculated with anaerobic sludge (2 g VSS L(-1)). The reactors were assayed for 42 days, and fed with volatile fatty acids, nutrients, and LAS. The initial LAS concentrations were 0, 10, 30, 50, 75, and 100 mg L(-1) for the treatment flasks T1 (control), T2, T3, T4, T5, and T6, respectively. When compared with T1, T2 exhibited a 30% reduction in maximum SMA and total methane production (TMP). In treatment T3 through T6, the reductions were 44-97% (T3-T6) for SMA, and 30-90% (T3-T6) for TMP. Total LAS removal increased following the increase in the initial LAS concentration (from 36% at T1 to 76% at T6), primarily due to the high degree of sludge adsorption. LAS biodegradation also occurred (32% in all treatments), although this was most likely associated with the formation of non-methane intermediates. Greater removal by adsorption was observed in long-chain homologues, when compared to short-chain homologues (C13 > C10), whereas the opposite occurred for biodegradation (C10 > C13). The C13 homologue was adsorbed to a great extent (in mass) in T4, T5 and T6, and may also have inhibited methane formation in these treatments.

  3. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    PubMed

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h(-0.61). The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains

    SciTech Connect

    Jeong, Cheol; Douglas, Jack F.

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  5. Slow relaxation of the magnetization in non-linear optical active layered mixed metal oxalate chains.

    PubMed

    Cariati, Elena; Ugo, Renato; Santoro, Giuseppe; Tordin, Elisa; Sorace, Lorenzo; Caneschi, Andrea; Sironi, Angelo; Macchi, Piero; Casati, Nicola

    2010-12-06

    New Co(II) members of the family of multifunctional materials of general formula [DAMS](4)[M(2)Co(C(2)O(4))(6)]·2DAMBA·2H(2)O (M(III) = Rh, Fe, Cr; DAMBA = para-dimethylaminobenzaldehyde and [DAMS(+)] = trans-4-(4-dimethylaminostyryl)-1-methylpyridinium) have been isolated and characterized. Such new hybrid mixed metal oxalates are isostructural with the previously investigated containing Zn(II), Mn(II), and Ni(II). This allows to preserve the exceptional second harmonic generation (SHG) activity, due to both the large molecular quadratic hyperpolarizability of [DAMS(+)] and the efficiency of the crystalline network which organizes [DAMS(+)] into head-to-tail arranged J-type aggregates, and to further tune the magnetic properties. In particular, the magnetic data of the Rh(III) derivative demonstrate that high spin octacoordinated Co(II) centers behave very similarly to the hexacoordinated Co(II) ones, being dominated by a large orbital contribution. The Cr(III) derivative is characterized by ferromagnetic Cr(III)-Co(II) interactions. Most relevantly, the Fe(III) compound is characterized by a moderate antiferromagnetic interaction between Fe(III) and Co(II), resulting in a ferrimagnetic like structure. Its low temperature dynamic magnetic properties were found to follow a thermally activated behavior (τ(0) = 8.6 × 10(-11) s and ΔE = 21.4 K) and make this a candidate for the second oxalate-based single chain magnet (SCM) reported up to date, a property which in this case is coupled to the second order non linear optical (NLO) ones.

  6. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains.

    PubMed

    Jeong, Cheol; Douglas, Jack F

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M(β), is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from -1.8 to -2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature Tg where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔHa and entropy ΔSa of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a "critical" chain length, n ≈ 17. A close examination of this phenomenon indicates that a "buckling transition" from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔSa ∝ ΔHa, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔHa and ΔSa with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  7. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

    PubMed Central

    Hoge, Richard D.; Atkinson, Jeff; Gill, Brad; Crelier, Gérard R.; Marrett, Sean; Pike, G. Bruce

    1999-01-01

    The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1 neurons. Primary visual cortex was delineated individually in each subject by using phase-encoded retinotopic mapping. Flow-sensitive alternating inversion recovery MRI, in conjunction with blood oxygenation-sensitive MRI and hypercapnic calibration, was used to monitor CBF and CMRO2. The stimuli used included (i) diffuse isoluminant chromatic displays; (ii) high spatial-frequency achromatic luminance gratings; and (iii) radial checkerboard patterns containing both color and luminance contrast modulated at different temporal rates. Perfusion responses to each pattern were graded by varying luminance and/or color modulation amplitudes. For all stimulus types, fractional changes in blood flow and oxygen uptake were found to be linearly coupled in a consistent ratio of approximately 2:1. The most potent stimulus produced CBF and CMRO2 increases of 48 ± 5% and 25 ± 4%, respectively, with no evidence of a plateau for oxygen consumption. Estimation of aerobic ATP yields from the observed CMRO2 increases and comparison with the maximum possible anaerobic ATP contribution indicate that elevated energy demands during brain activation are met largely through oxidative metabolism. PMID:10430955

  8. On the uniqueness of linear moving-average filters for the solar wind-auroral geomagnetic activity coupling

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.

    1995-01-01

    The relation between the solar wind input to the magetosphere, VB(sub South), and the auroral geomagnetic index AL is modeled with two linear moving-average filtering methods: linear prediction filters and a driven harmonic oscillator in the form of an electric circuit. Although the response of the three-parameter oscillator is simpler than the filter's, the methods yield similar linear timescales and values of the prediction-observation correlation and the prediction Chi(exp 2). Further the filter responses obtained by the two methods are similar in their long-term features. In these aspects the circuit model is equivalent to linear prediction filtering. This poses the question of uniqueness and proper interpretation of detailed features of the filters such as response peaks. Finally, the variation of timescales and filter responses with the AL activity level is discussed.

  9. When comets get old: A synthesis of comet and meteor observations of the low activity comet 209P/LINEAR

    NASA Astrophysics Data System (ADS)

    Ye (叶泉志), Quan-Zhi; Hui (许文韬), Man-To; Brown, Peter G.; Campbell-Brown, Margaret D.; Pokorný, Petr; Wiegert, Paul A.; Gao (高兴), Xing

    2016-01-01

    It is speculated that some weakly active comets may be transitional objects between active and dormant comets. These objects are at a unique stage of the evolution of cometary nuclei, as they are still identifiable as active comets, in contrast to inactive comets that are observationally indistinguishable from low albedo asteroids. In this paper, we present a synthesis of comet and meteor observations of Jupiter-family Comet 209P/LINEAR, one of the most weakly active comets recorded to-date. Images taken by the Xingming 0.35-m telescope and the Gemini Flamingo-2 camera are modeled by a Monte Carlo dust model, which yields a low dust ejection speed (1/10 of that of moderately active comets), dominance of large dust grains, and a low dust production of 0.4kgs-1 at 19 d after the 2014 perihelion passage. We also find a reddish nucleus of 209P/LINEAR that is similar to D-type asteroids and most Trojan asteroids. Meteor observations with the Canadian Meteor Orbit Radar (CMOR), coupled with meteoroid stream modeling, suggest a low dust production of the parent over the past few hundred orbits, although there are hints of a some temporary increase in activity in the 18th century. Dynamical simulations indicate 209P/LINEAR may have resided in a stable near-Earth orbit for ∼104 yr, which is significantly longer than typical JFCs. All these lines of evidence imply that 209P/LINEAR as an aging comet quietly exhausting its remaining near surface volatiles. We also compare 209P/LINEAR to other low activity comets, where evidence for a diversity of the origin of low activity is seen.

  10. Buildup region and skin-dose measurements for the Therac 6 Linear Accelerator for radiation therapy

    SciTech Connect

    Tannous, N.B.J.; Gagnon, W.F.; Almond, P.R.

    1981-05-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  11. Buildup region and skin-dose measurements for the Therac 6 linear accelerator for radiation therapy.

    PubMed

    Tannous, N B; Gagnon, W F; Almond, P R

    1981-01-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber.

  12. The application of structural nonlinearity in the development of linearly tunable MEMS capacitors

    NASA Astrophysics Data System (ADS)

    Shavezipur, M.; Khajepour, A.; Hashemi, S. M.

    2008-03-01

    Electrostatically actuated parallel-plate tunable capacitors are the most desired MEMS capacitors because of their smaller sizes and higher Q-factors. However, these capacitors suffer from low tunability and exhibit high sensitivity near the pull-in voltage which counters the concept of tunability. In this paper, a novel design for parallel-plate tunable capacitors with high tunability and linear capacitance-voltage (C-V) response is developed. The design uses nonlinear structural rigidities to relieve intrinsic electrostatic nonlinearity in MEMS capacitors. Based on the force-displacement characteristic of an ideally linear capacitor, a real beam-like nonlinear spring model is developed. The variable stiffness coefficients of such springs improve the linearity of the C-V curve. Moreover, because the structural stiffness increases with deformations, the pull-in is delayed and higher tunability is achieved. Finite element simulations reveal that capacitors with air gaps larger than 4 µm and supporting beams thinner than 1 µm can generate highly linear C-V responses and tunabilities over 120%. Experimental results for capacitors fabricated by PolyMUMPs verify the effect of weak nonlinear geometric stiffness on improving the tunability for designs with a small air gap and relatively thick structural layers.

  13. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  14. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  15. Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem.

    PubMed

    Liang, X B; Si, J

    2001-01-01

    This paper investigates the existence, uniqueness, and global exponential stability (GES) of the equilibrium point for a large class of neural networks with globally Lipschitz continuous activations including the widely used sigmoidal activations and the piecewise linear activations. The provided sufficient condition for GES is mild and some conditions easily examined in practice are also presented. The GES of neural networks in the case of locally Lipschitz continuous activations is also obtained under an appropriate condition. The analysis results given in the paper extend substantially the existing relevant stability results in the literature, and therefore expand significantly the application range of neural networks in solving optimization problems. As a demonstration, we apply the obtained analysis results to the design of a recurrent neural network (RNN) for solving the linear variational inequality problem (VIP) defined on any nonempty and closed box set, which includes the box constrained quadratic programming and the linear complementarity problem as the special cases. It can be inferred that the linear VIP has a unique solution for the class of Lyapunov diagonally stable matrices, and that the synthesized RNN is globally exponentially convergent to the unique solution. Some illustrative simulation examples are also given.

  16. A comparison of primary and proxy respondent reports of habitual physical activity, using kappa statistics and log-linear models.

    PubMed

    Graham, P; Jackson, R

    2000-01-01

    Many epidemiological studies rely in part on proxy informants. There is little published information on the reliability of proxy-respondent reports of physical activity. Self-reported data on vigorous and moderate physical activity, from a representative sub-sample of participants in a community-based case-control study of coronary heart disease, were compared with information collected from their next-of-kin. Relative to primary respondents, proxy respondents under-reported activity by approximately 10 percentage points, for both leisure and work-time activity. On a simple three point scale (inactivity/moderate activity/physical activity), 70% of primary-proxy pairs were in exact agreement with regard to leisure time activity and 67% of pairs were in exact agreement on work-time activity. The corresponding values for the weighted kappa statistic were 0.66 [95% confidence interval (CI) 0.59-0.72] and 0.62 (0.54-0.72). Log-linear modelling provided evidence for superior agreement on worktime activity when the proxy was not the primary respondent's spouse. Overall levels of primary-proxy respondent agreement on physical activity seem somewhat lower than has been reported for smoking and alcohol-drinking frequency. There seems little reason to prefer spouse proxies when endeavouring to elicit information on work-time physical activity. Log-linear modelling provides an efficient means of exploring covariate effects in observer-agreement studies.

  17. Application of phase-to-amplitude conversion technique to linear birefringence measurements.

    PubMed

    Teng, Hui-Kang; Chou, Chien; Chang, Chia-Nan; Wu, Hsieh-Ting

    2003-04-01

    A novel technique that measures the linear birefringence of crystal quartz within the configuration of a Soliel-Babinet compensator (SBC) is proposed. A characteristic of this technique is that phase retardation introduced by quartz is amplitude modulation (AM) instead of phase modulation (PM). The linear birefringence is measured regardless of the azimuth angle of the SBC and the orientation of the linear polarization laser beam. Compared with the single-wedge method, the SBC is similar to a parallel plate that allows for a wider range of refracttive index of the test material to be measured. This proposed method uses a conventional amplitude demodulation method in conjunction with an optical heterodyne technique and a bandpass filter to produce a better signal-to-noise ratio. Although the SBC configuration is more complex than a single element, the independence of azimuth angle and the orientation of the linear polarized laser beam can enhance the sensitivity of the linear birefringence measurement.

  18. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity.

    PubMed

    Sharma, Himanshu; Mathew, Basil; Nagaraj, Ramakrishnan

    2015-06-01

    Human β-defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N-terminus of HBD4. Our results show that l-arginine to d-arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l-arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d-arginine. Substitution of cysteine with the hydrophobic helix-promoting amino acid α-aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d-arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d-amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents.

  19. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    NASA Astrophysics Data System (ADS)

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-07-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.

  20. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    PubMed Central

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-01-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit. PMID:27406831

  1. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  2. The Use of Linear Models for Determining School Workload and Activity Level.

    ERIC Educational Resources Information Center

    Vicino, Frank L.

    This paper outlines the design and use of two linear models as decision-making tools in a school district. The problem to be solved was the allocation of resources for both clerical and custodial personnel. A solution was desired that could be quantified and documented and objectively serve the needs of the district. A clerical support model was…

  3. Antitumor activities and interaction with DNA of oxaliplatin-type platinum complexes with linear or branched alkoxyacetates as leaving groups.

    PubMed

    Yin, Runting; Gou, Shaohua; Liu, Xia; Lou, Liguang

    2011-08-01

    Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA of these compounds were highly related to the nature of leaving groups. Among these complexes, 5a, cis-(trans-1R, 2R-diaminocyclohexane) bis (2-tert-butoxyacetate) platinum(II), showed the highest antitumor activity and the lowest toxicity.

  4. Linear forms of plasmid DNA are superior to supercoiled structures as active templates for gene expression in plant protoplasts.

    PubMed

    Ballas, N; Zakai, N; Friedberg, D; Loyter, A

    1988-07-01

    Introduction of the plasmids pUC8CaMVCAT and pNOSCAT into plant protoplasts is known to result in transient expression of the chloramphenicol acetyl transferase (CAT) gene. Also, transfection with the plasmid pDO432 results in transient appearance of the luciferase enzyme. In the present work we have used these systems to study the effect of DNA topology on the expression of the above recombinant genes. Linear forms of the above plasmids exhibited much higher activity in supporting gene expression than their corresponding super-coiled structures. CAT activity in protoplasts transfected with the linear forms of pUC8CaMVCAT and pNOSCAT was up to ten-fold higher than that observed in protoplasts transfected by the supercoiled template of these plasmids. This effect was observed in protoplasts derived from two different lines of Petunia hybrida and from a Nicotiana tabacum cell line. Transfection with the relaxed form of pUC8CaMVCAT resulted in very low expression of the CAT gene.Northern blot analysis revealed that the amount of poly(A)(+) RNA extracted from protoplasts transformed with the linear forms of the DNA was about 10-fold higher than that found in protoplasts transformed with supercoiled DNA.Southern blot analysis revealed that about the same amounts of supercoiled and linear DNA molecules were present in nuclei of transfected protoplasts. No significant quantitative differences have been observed between the degradation rates of the various DNA templates used.

  5. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death.

    PubMed

    Lafont, Elodie; Kantari-Mimoun, Chahrazade; Draber, Peter; De Miguel, Diego; Hartwig, Torsten; Reichert, Matthias; Kupka, Sebastian; Shimizu, Yutaka; Taraborrelli, Lucia; Spit, Maureen; Sprick, Martin R; Walczak, Henning

    2017-03-03

    The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.

  6. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree.

    PubMed

    Cai, Junmeng; Chen, Siyu

    2009-10-01

    The conventional linear integral isoconversional methods may lead to important errors in the determination of the activation energy when the significant variation of the activation energy with the conversion degree occurs. Vyazovkin proposed an advanced nonlinear isoconversional method, which allows the activation energy to be accurately determined [Vyazovkin, J Comput Chem 2001, 22, 178]. However, the use of the Vyazovkin method raises the problem of the time-consuming minimization without derivatives. A new iterative linear integral isoconversional method for the determination of the activation energy as a function of the conversion degree has been proposed, which is capable of providing valid values of the activation energy even if the latter strongly varies with the conversion degree. Also, the new method leads to the correct values of the activation energy in much less time than the Vyazovkin method. The application of the new method is illustrated by processing of theoretically simulated data of a strongly varying activation energy process. Copyright 2009 Wiley Periodicals, Inc.

  7. Evaluation of topical Matricaria chamomilla extract activity on linear incisional wound healing in albino rats.

    PubMed

    Jarrahi, Morteza; Vafaei, Abbas Ali; Taherian, Abbas Ali; Miladi, Hossein; Rashidi Pour, Ali

    2010-05-01

    In this investigation, the effect of Matricaria chamomilla extract on linear incisional wound healing was studied. Thirty male Wistar rats were subjected to a linear 3 cm incision made over the skin of the back. The animals were randomly divided into three experimental groups, as control, olive oil, and treatment. Control group did not receive any drug or cold cream. Olive oil group received topical olive oil once a day from beginning of experiments to complete wound closure. Treatment group were treated topically by M. chamomilla extract dissolved in olive oil at the same time. For computing the percentage of wound healing, the area of the wound measured at the beginning of experiments and the next 2, 5, 8, 11, 14, 17, and 20 days. The percentage of wound healing was calculated by Walker formula after measurement of the wound area. Results showed that there were statistically significant differences between treatment and olive oil animals (p < 0.05) in most of the days. We conclude that the extract of M. chamomilla administered topically has wound healing potential in linear incisional wound model in rats.

  8. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion.

  9. Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells.

    PubMed

    Tomonaga, Masato; Hashimoto, Nobuyuki; Tokunaga, Fuminori; Onishi, Megumi; Myoui, Akira; Yoshikawa, Hideki; Iwai, Kazuhiro

    2012-02-01

    NF-κB is involved in the metastasis of malignant cells. We have shown that NF-κB activation is involved in the pulmonary metastasis of LM8 cells, a highly metastatic subclone of Dunn murine osteosarcoma cells. Recently, it was determined that a newly identified type of polyubiquitin chain, a linear polyubiquitin chain, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), plays a critical role in NF-κB activation. Here, we have evaluated the roles of LUBAC-mediated NF-κB activation in the development of lung metastasis of osteosarcoma cells. All three components of LUBAC (HOIL-1L, HOIP and SHARPIN) were highly expressed in LM8 cells compared to Dunn cells. Attenuation of LUBAC expression by stable knockdown of HOIL-1L in LM8 cells significantly suppressed NF-κB activity, invasiveness in vitro and lung metastasis. Induction of intracellular adhesion molecule-1 (ICAM-1) expression by LUBAC is involved in cell retention in the lungs after an intravenous inoculation of tumor cells. Moreover, we found that knockdown of LUBAC decreased not only the number but also the size of the metastatic nodules of LM8 cells in the lungs. These results indicate that LUBAC-mediated NF-κB activation plays crucial roles in several steps involved in metastasis, including extravasation and growth of osteosarcoma cells in the lung, and that suppression of LUBAC-mediated linear polyubiquitination activity may be a new approach to treat this life-threatening disease of young adolescents.

  10. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization

    NASA Astrophysics Data System (ADS)

    Andretta, Marina; Birgin, Ernesto; Martínez, J.

    2010-01-01

    A method for linearly constrained optimization which modifies and generalizes recent box-constraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithm. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango Project web page: http://www.ime.usp.br/˜egbirgin/tango/.

  11. Decision-Related Activity in Macaque V2 for Fine Disparity Discrimination Is Not Compatible with Optimal Linear Readout

    PubMed Central

    Clery, Stephane; Cumming, Bruce G.

    2017-01-01

    Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal “noise” correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. SIGNIFICANCE STATEMENT Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work

  12. Linearized Model of an Actively Controlled Cable for a Carlina Diluted Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Le Coroller, H.; Owner-Petersen, M.; Dejonghe, J.

    2014-04-01

    The Carlina thinned pupil telescope has a focal unit (``gondola'') suspended by cables over the primary mirror. To predict the structural behavior of the gondola system, a simulation building block of a single cable is needed. A preloaded cable is a strongly non-linear system and can be modeled either with partial differential equations or non-linear finite elements. Using the latter, we set up an iteration procedure for determination of the static cable form and we formulate the necessary second-order differential equations for such a model. We convert them to a set of first-order differential equations (an ``ABCD''-model). Symmetrical in-plane eigenmodes and ``axial'' eigenmodes are the only eigenmodes that play a role in practice for a taut cable. Using the model and a generic suspension, a parameter study is made to find the influence of various design parameters. We conclude that the cable should be as stiff and thick as practically possible with a fairly high preload. Steel or Aramid are suitable materials. Further, placing the cable winches on the gondola and not on the ground does not provide significant advantages. Finally, it seems that use of reaction-wheels and/or reaction-masses will make the way for more accurate control of the gondola position under wind load. An adaptive stage with tip/tilt/piston correction for subapertures together with a focus and guiding system for freezing the fringes must also be studied.

  13. A linear optical trap with active medium for experiments with high power laser pulses

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek; Andler, Guillermo; Schuch, Reinhold

    2015-02-01

    A linear optical trap for circulating high power laser pulses and tuning these pulses to high repetition frequency of several tens of MHz has been developed. A ns excimer pumped dye laser pulse has been injected with help of a Wollaston prism and a synchronized Pockels cell into an optical trap formed by two highly reflecting mirrors in a linear configuration. The test was done at λ = 580 nm, but the optical trap can be used without limitations in a broad band of optical wavelengths (400-700 nm). Power considerations give an increase of the efficiency of the optical trap of about 7 times compared to single passage of the laser pulse through the experimental section. The time structure of the trapped laser pulses can be controlled by changing the distance between the two high reflecting mirrors. The efficiency of the optical trap strongly depends upon optical losses. To compensate the optical losses, an amplifying cell was introduced, and the efficiency was about 60 times higher than that by single passage of the laser pulse through the experimental section.

  14. A linear optical trap with active medium for experiments with high power laser pulses.

    PubMed

    Mohamed, Tarek; Andler, Guillermo; Schuch, Reinhold

    2015-02-01

    A linear optical trap for circulating high power laser pulses and tuning these pulses to high repetition frequency of several tens of MHz has been developed. A ns excimer pumped dye laser pulse has been injected with help of a Wollaston prism and a synchronized Pockels cell into an optical trap formed by two highly reflecting mirrors in a linear configuration. The test was done at λ = 580 nm, but the optical trap can be used without limitations in a broad band of optical wavelengths (400-700 nm). Power considerations give an increase of the efficiency of the optical trap of about 7 times compared to single passage of the laser pulse through the experimental section. The time structure of the trapped laser pulses can be controlled by changing the distance between the two high reflecting mirrors. The efficiency of the optical trap strongly depends upon optical losses. To compensate the optical losses, an amplifying cell was introduced, and the efficiency was about 60 times higher than that by single passage of the laser pulse through the experimental section.

  15. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates.

    PubMed

    Wurm, Frederik; Dingels, Carsten; Frey, Holger; Klok, Harm-Anton

    2012-04-09

    Polymer-protein conjugates generated from side chain functional synthetic polymers are attractive because they can be easily further modified with, for example, labeling groups or targeting ligands. The residue specific modification of proteins with side chain functional synthetic polymers using the traditional coupling strategies may be compromised due to the nonorthogonality of the side-chain and chain-end functional groups of the synthetic polymer, which may lead to side reactions. This study explores the feasibility of the squaric acid diethyl ester mediated coupling as an amine selective, hydroxyl tolerant, and hydrolysis insensitive route for the preparation of side-chain functional, hydroxyl-containing, polymer-protein conjugates. The hydroxyl side chain functional polymers selected for this study are a library of amine end-functional, linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol (PG) copolymers. These synthetic polymers have been used to prepare a diverse library of BSA and lysozyme polymer conjugates. In addition to exploring the scope and limitations of the squaric acid diethylester-mediated coupling strategy, the use of the library of polyglycerol copolymers also allows to systematically study the influence of molecular weight and architecture of the synthetic polymer on the biological activity of the protein. Comparison of the activity of PG-lysozyme conjugates generated from relatively low molecular weight PG copolymers did not reveal any obvious structure-activity relationships. Evaluation of the activity of conjugates composed of PG copolymers with molecular weights of 10000 or 20000 g/mol, however, indicated significantly higher activities of conjugates prepared from midfunctional synthetic polymers as compared to linear polymers of similar molecular weight.

  16. Linear analysis of signal and noise characteristics of a nonlinear CMOS active-pixel detector for mammography

    NASA Astrophysics Data System (ADS)

    Yun, Seungman; Kim, Ho Kyung; Han, Jong Chul; Kam, Soohwa; Youn, Hanbean; Cunningham, Ian A.

    2017-03-01

    The imaging properties of a complementary metal-oxide-semiconductor (CMOS) active-pixel photodiode array coupled to a thin gadolinium-based granular phosphor screen with a fiber-optic faceplate are investigated. It is shown that this system has a nonlinear response at low detector exposure levels (<10 mR), resulting in an over-estimation of the detective quantum efficiency (DQE) by a factor of two in some cases. Errors in performance metrics on this scale make it difficult to compare new technologies with established systems and predict performance benchmarks that can be achieved in practice and help understand performance bottlenecks. It is shown the CMOS response is described by a power-law model that can be used to linearize image data. Linearization removed an unexpected dependence of the DQE on detector exposure level.

  17. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study.

    PubMed

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-10-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200-400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. © The Author 2014. Published by Oxford University Press.

  18. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study

    PubMed Central

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-01-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037

  19. Preliminary In Vitro and In Vivo Evaluation of Antidiabetic Activity of Ducrosia anethifolia Boiss. and Its Linear Furanocoumarins

    PubMed Central

    Shalaby, Nagwa M. M.; Abd-Alla, Howaida I.; Aly, Hanan F.; Albalawy, Marzougah A.; Shaker, Kamel H.; Bouajila, Jalloul

    2014-01-01

    Aim. Ducrosia anethifolia is used as flavoring additive. There have been little detailed phytochemical reports on this genus and the antidiabetic activity of this plant is not yet evaluated. Method. Structure of compounds was deduced by spectroscopic analyses. Preliminary in vitro evaluation of the antidiabetic activity of crude extract and its furanocoumarins was carried out (α-amylase, α-glucosidase, and β-galactosidase). The in vivo activity was investigated by measuring some oxidative stress markers. Biomarkers of liver injury and kidney were also determined. Results. Eight linear furanocoumarins, psoralen, 5-methoxypsoralen, 8-methoxypsoralen, imperatorin, isooxypeucedanin, pabulenol, oxypeucedanin methanolate, oxypeucedanin hydrate, and 3-O-glucopyranosyl-β-sitosterol, were isolated. All compounds were reported for the first time from the genus Ducrosia except pabulenol. The blood glucose level, liver function enzymes, total protein, lipid, and cholesterol levels were significantly normalized by extract treatment. The antioxidant markers, glucolytic, and gluconeogenic enzymes were significantly ameliorated and the elevated level of kidney biomarkers in the diabetic groups was restored. The compounds showed inhibitory activity in a concentration dependant manner. Imperatorin and 5-methoxypsoralen showed the most potent inhibiting power. Conclusion. D. anethifolia extract showed hypoglycemic, hypolipidemic, and antioxidant effect as well as ameliorating kidney function. This extract and some linear furanocoumarins exhibited carbohydrate metabolizing enzymes inhibitory effect. PMID:24800231

  20. Adsorption/desorption of linear alkylbenzenesulfonate (LAS) and azoproteins by/from activated sludge flocs.

    PubMed

    Conrad, A; Cadoret, A; Corteel, P; Leroy, P; Block, J-C

    2006-01-01

    Our study investigated the adsorption/desorption by/from activated sludge flocs, dispersed in river water or in diluted wastewater, of organic compounds (C(11)-LAS, azoalbumin and azocasein) at concentrations relevant to environmental conditions. Activated sludge flocs, used as a model of biological aggregates, are characterized by a very heterogeneous matrix able to sorb the three organic compounds tested at 4 degrees C. The adsorbed amount of C(11)-LAS by activated sludge flocs was higher than that of azocasein or azoalbumin, as shown by the Freundlich parameters (K(ads)=8.6+/-1.7, 1.6+/-0.3 and 0.3+/-0.1 micromol(1-1/n)g(-1)l(1/n) for C(11)-LAS, azocasein and azoalbumin, respectively; n=3 sludges). C(11)-LAS sorption from activated sludge appeared to be partially reversible in river water, while a marked hysteresis phenomenon was observed for azocasein and azoalbumin, implying a low degree of reversibility in their exchange between activated sludge and river water. It has also been displayed that the conductivity variation of bulk water (comprised between 214 and 838 microS cm(-1)) exerted no dramatic effect on the C(11)-LAS desorption from activated sludge flocs, while a little effect of it on azocasein desorption was observed. Thus, biological aggregates as activated sludge flocs can serve as an intermediate carrier for C(11)-LAS, while it represents a sink for proteins.

  1. Neutron activation processes simulation in an Elekta medical linear accelerator head.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2014-01-01

    Monte Carlo estimation of the giant-dipole-resonance (GRN) photoneutrons inside the Elekta Precise LINAC head (emitting a 15 MV photon beam) were performed using the MCNP6 (general-purpose Monte Carlo N-Particle code, version 6). Each component of LINAC head geometry and materials were modelled in detail using the given manufacturer information. Primary photons generate photoneutrons and its transport across the treatment head was simulated, including the (n, γ) reactions which undergo activation products. The MCNP6 was used to develop a method for quantifying the activation of accelerator components. The approach described in this paper is useful in quantifying the origin and the amount of nuclear activation.

  2. Linear Resonance Compressor for Stirling-Type Cryocoolers Activated by Piezoelectric Stack-Type Elements

    NASA Astrophysics Data System (ADS)

    Sobol, S.; Grossman, G.

    2015-12-01

    A novel type of a PZT- based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers was developed theoretically and built practically during this research. A resonance operation at relatively low frequency was achieved by incorporating the piezo ceramics into the moving part, and by reducing the effective piezo stiffness using hydraulic amplification. The detailed concept, analytical model and the test results of the preliminary prototype were reported earlier and presented at ICC17 [2]. A fine agreement between the simulations and experiments spurred development of the current actual compressor designed to drive a miniature Pulse Tube cryocooler, particularly our MTSa model, which operates at 103 Hz and requires an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. The paper concentrates on design aspects and optimization of the governing parameters. The small stroke to diameter ratio (about 1:10) allows for the use of a composite diaphragm instead of a clearance-seal piston. The motivation is to create an adequate separation between the working fluid and the buffer gas of the compressor, thus preventing possible contamination in the cryocooler. Providing efficiency and power density similar to those of conventional linear compressors, the piezo compressor may serve as a good alternative for cryogenic applications requiring extreme reliability and absence of magnetic field interference.

  3. Activation of the nuclear factor κB pathway by heavy ion beams of different linear energy transfer.

    PubMed

    Hellweg, Christine E; Baumstark-Khan, Christa; Schmitz, Claudia; Lau, Patrick; Meier, Matthias M; Testard, Isabelle; Berger, Thomas; Reitz, Günther

    2011-09-01

    Risk assessment of radiation exposure during long-term space missions requires the knowledge of the relative biological effectiveness (RBE) of space radiation components. Few data on gene transcription activation by different heavy ions are available, suggesting a dependence on linear energy transfer. The transcription factor Nuclear Factor κB (NF-κB) can be involved in cancerogenesis. Therefore, NF-κB activation by accelerated heavy ions of different linear energy transfer (LET) was correlated to survival. NF-κB-dependent gene induction after exposure to heavy ions was detected in stably transfected human embryonic kidney 293 cells (HEK-pNF-κB-d2EGFP/Neo cells carrying a neomycin resistance), using the destabilized Enhanced Green Fluorescent Protein (d2EGFP) as reporter. Argon (LET 272 keV/μm) and neon ions (LET 91 keV/μm) had the highest potential to activate NF-κB, resulting in a RBE of 8.9 in comparison to 150 kV X-rays. The RBE for survival also reached its maximum in this LET range, with a maximal value of 2. NF-κB might be involved in modulating survival responses of cells hit by heavy ions in the LET range of 91-272 keV/μm and could therefore become a factor to be considered for risk assessment of radiation exposure during space travel.

  4. Theoretical Study of an Actively Mode-Locked Fiber Laser Stabilized by an Intracavity Fabry-Perot Etalon: Linear Regime

    DTIC Science & Technology

    2007-07-01

    an actively mode-locked fiber laser stabilized by an intracavity Fabry–Perot etalon: linear regime Yurij Parkhomenko,1 Moshe Horowitz,1,* Curtis R... Menyuk ,2 and Thomas F. Carruthers3,4 1Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel 2Department of...Naval Research aboratory. C. R. Menyuk can be reached via e-mail at enyuk@umbc.edu, and T. F. Carruthers can be reached ia e-mail at tcarruth@nsf.gov

  5. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic.

    PubMed

    Tocmo, Restituto; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-04-15

    Garlic is rich in polysulfides, and some of them can be H2S donors. This study was conducted to explore the effect of cooking on garlic's organopolysulfides and H2S-releasing activity. Garlic bulbs were crushed and boiled for a period ranging from 3 to 30min and the solvent extracts were analyzed by GC-MS/FID and HPLC. A cell-based assay was used to measure the H2S-releasing activity of the extracts. Results showed that the amounts of allyl polysulfides increased in crushed garlic boiled for 6-10min; however, prolonging the thermal treatment to 20 or 30min decreased their concentrations. Data of the H2S-releasing activity, expressed as diallyl trisulfide equivalents (DATS-E), parallel this trend, being significantly higher at 6 and 10min boiling. Our results showed enhancement of H2S-releasing activity upon moderate boiling, suggesting that shorter cooking time may maximize its health benefits as a dietary source of natural H2S donors.

  6. Single-molecule imaging of telomerase activity via linear plasmon rulers.

    PubMed

    Qian, Guang-Sheng; Zhang, Ting-Ting; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-12

    Plasmon rulers (PRs) exploit the potential of plasmon coupling between individual pairs of noble metal nanoparticles in biological processes, especially single-molecule detection. Herein, for the first time, we report a strategy based on Ag PRs for in situ monitoring of the extension process of telomerase primer (TSP) activated by a single telomerase.

  7. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  8. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    SciTech Connect

    Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin; Jawahar, A.

    2015-06-24

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  9. Improving importance estimation in pool-based batch active learning for approximate linear regression.

    PubMed

    Kurihara, Nozomi; Sugiyama, Masashi

    2012-12-01

    Pool-based batch active learning is aimed at choosing training inputs from a 'pool' of test inputs so that the generalization error is minimized. P-ALICE (Pool-based Active Learning using Importance-weighted least-squares learning based on Conditional Expectation of the generalization error) is a state-of-the-art method that can cope with model misspecification by weighting training samples according to the importance (i.e., the ratio of test and training input densities). However, importance estimation in the original P-ALICE is based on the assumption that the number of training samples to gather is small, which is not always true in practice. In this paper, we propose an alternative scheme for importance estimation based on the inclusion probability, and show its validity through numerical experiments.

  10. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  11. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction.

    PubMed

    Beguerisse-Díaz, Mariano; Desikan, Radhika; Barahona, Mauricio

    2016-08-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction.

  12. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  13. The analog linear interpolation approach for Monte Carlo simulation of prompt gamma-ray neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Wenchao

    The Monte Carlo code (CEARPGA 1) was developed to generate the elemental library spectra required for implementing the Monte Carlo Library Least-Squares algorithm for prompt gamma-ray neutron activation analysis (PGNAA). The existing big weight problem in which a few histories yield very large weights with very large variance has been investigated thoroughly. It has been found that the expected value splitting technique, a powerful variance reduction technique used in the code is the primary cause of this problem. Two Monte Carlo simulation approaches have been investigated to eliminate the big weight problem while still maintaining high efficiency. They are (1) score importance map with batch tracking and (2) analog linear interpolation. Both approaches demonstrated to be feasible for solving the big weight problem. The analog linear interpolation approach was finally selected and implemented in the new CEARPGA Monte Carlo code (CEARPGA II). A comparison of the simulated results by CEARPGA I, CEARPGA II and MCNP with the experimentally measured data shows that the big weight problem has been successfully eliminated, the accuracy of the simulation has improved greatly, and the simulated results agree very well with the measured data. In addition, some other important improvements to this code to enhance its accuracy and efficiency have also been introduced, including: (1) adding the tracking of annihilation gamma rays outside of the detector, (2) using the improved detector response functions, (3) generating individual natural background libraries, (4) adding the neutron activation backgrounds, and (5) adopting a general geometry package etc.

  14. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  15. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  16. Instrumental photon activation analysis using the linear accelerator at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.

    1982-10-01

    Charcoal, charcoal residue, potting soil, aluminum foil, bismuth germanate, and petroleum samples have been investigated using instrumental photon activation analysis (i.e., no radiochemistry). The major and minor elements routinely observed by this nondestructive method were: C, C1, Ca, Fe, Mg, Si, and K. A comprehensive review of the principles of IPAA was also included in the study. The principles were applied to a theoretical analysis of an oil sample in which the trace element concentrations were known. It was concluded that IPAA is a highly sensitive technique which could be used to fingerprint oils.

  17. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    SciTech Connect

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  18. Modeling spiking activity of in vitro neuronal networks through non linear methods.

    PubMed

    Maffezzoli, A; Signorini, M G; Gullo, F; Wanke, E

    2008-01-01

    Neuroscience research is even more exploiting technologies developed for electronic engineering use: this is the case of Micro-Electrode Array (MEA) technology, an instrumentation which is able to acquire in vitro neuron spiking activity from a finite number of channels. In this work we present three models of synaptic neuronal network connections, called 'Full-Connected', 'Hierarchical' and 'Closed-Path'. Related to each one we implemented an index giving quantitative measures of similarity and of statistical dependence among neuron activities recorded in different MEA channels. They are based on Information Theory techniques as Mutual and Multi Information: the last one extending the pair-wise information to higher-order connections on the entire MEA neuronal network. We calculated indexes for each model in order to test the presence of self-synchronization among neurons evolving in time, in response to external stimuli such as the application of chemical neuron-inhibitors. The availability of such different models helps us to investigate also how much the synaptic connections are spatially sparse or hierarchically structured and finally how much of the information exchanged on the neuronal network is regulated by higher-order correlations.

  19. Mosquito larvicidal activity of linear alkane hydrocarbons from Excoecaria agallocha L. against Culex quinquefasciatus Say.

    PubMed

    Satyan, R S; Sakthivadivel, M; Shankar, S; Dinesh, M G

    2012-01-01

    Excoecaria agallocha Linn. the blinding mangrove tree of historical significance, is well known for its curative properties. In this investigation, crude hexane extract from the dried roots of E. agallocha inhibited 50% of the growth of third instar larvae of Culex quinquefasciatus Say. within 24 h (LC(50): 315 ppm). SiO(2) (60-120) column chromatography purification of the extract yielded four fractions, of which fractions 3 (LC(50): 61.2 ppm) and 4 (LC(50): 74.5 ppm) exhibited 100% larvicidal activity within 18-24 h. Bioactive fraction 3 contained sub-fractions R1 and R2. R1 was characterised by (1)H-NMR, (13)C-NMR and FAB mass spectrometry techniques as the acyclic hydrocarbon n-triacontane (C(30)H(62)).

  20. High-speed linear optics quantum computing using active feed-forward.

    PubMed

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  1. Down-regulation of linear and activation of cyclic electron transport during drought.

    PubMed

    Golding, Alison J; Johnson, Giles N

    2003-11-01

    The effects of short-term drought on the regulation of electron transport through photosystems I and II (PSI and PSII) have been studied in Hordeum vulgare L. cv. Chariot. Fluorescence measurements demonstrated that electron flow through PSII decreased in response to both drought and CO2 limitation. This was due to regulation, as opposed to photoinhibition. We demonstrate that this regulation occurs between the two photosystems--in contrast to PSII, PSI became more oxidised and the rate constant for P700 re-reduction decreased under these conditions. Thus, when carbon fixation is inhibited, electron transport is down-regulated to match the reduced requirement for electrons and minimise reactive oxygen production. At the same time non-photochemical quenching (NPQ) increases, alleviating the excitation pressure placed on PSII. We observe an increase in the proportion of PSI centres that are 'active' (i.e. can be oxidised with a saturating flash and then rapidly re-reduced) under the conditions when NPQ is increased. We suggest that these additional centres are primarily involved in cyclic electron transport, which generates the DeltapH to support NPQ and protect PSII.

  2. Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition–Strain–Activity Relationship

    PubMed Central

    2016-01-01

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt–alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt–Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt–Pt bond length (RPt–Pt). The RPt–Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt–Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs. PMID:25559440

  3. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.

    PubMed

    Jia, Qingying; Liang, Wentao; Bates, Michael K; Mani, Prasanna; Lee, Wendy; Mukerjee, Sanjeev

    2015-01-27

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt-alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt-Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt-Pt bond length (RPt-Pt). The RPt-Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt-Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs.

  4. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  5. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy

    PubMed Central

    2010-01-01

    Background Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique that recently has been developed to measure the changes of cerebral blood oxygenation associated with brain activities. To date, for functional brain mapping applications, there is no standard on-line method for analysing NIRS data. Methods In this paper, a novel on-line NIRS data analysis framework taking advantages of both the general linear model (GLM) and the Kalman estimator is devised. The Kalman estimator is used to update the GLM coefficients recursively, and one critical coefficient regarding brain activities is then passed to a t-statistical test. The t-statistical test result is used to update a topographic brain activation map. Meanwhile, a set of high-pass filters is plugged into the GLM to prevent very low-frequency noises, and an autoregressive (AR) model is used to prevent the temporal correlation caused by physiological noises in NIRS time series. A set of data recorded in finger tapping experiments is studied using the proposed framework. Results The obtained results suggest that the method can effectively track the task related brain activation areas, and prevent the noise distortion in the estimation while the experiment is running. Thereby, the potential of the proposed method for real-time NIRS-based brain imaging was demonstrated. Conclusions This paper presents a novel on-line approach for analysing NIRS data for functional brain mapping applications. This approach demonstrates the potential of a real-time-updating topographic brain activation map. PMID:21138595

  7. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis

    PubMed Central

    Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana

    2015-01-01

    We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved. PMID:25852534

  8. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis.

    PubMed

    Gajic, Dragoljub; Djurovic, Zeljko; Gligorijevic, Jovan; Di Gennaro, Stefano; Savic-Gajic, Ivana

    2015-01-01

    We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved.

  9. Rheology of the Active Cell Cortex in Mitosis.

    PubMed

    Fischer-Friedrich, Elisabeth; Toyoda, Yusuke; Cattin, Cedric J; Müller, Daniel J; Hyman, Anthony A; Jülicher, Frank

    2016-08-09

    The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  11. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  12. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  13. Dust tail of the active distant Comet C/2003 WT42 (LINEAR) studied with photometric and spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Korsun, Pavlo P.; Kulyk, Irina V.; Ivanova, Oleksandra V.; Afanasiev, Viktor L.; Kugel, Francois; Rinner, Claudine; Ivashchenko, Yuriy M.

    2010-12-01

    We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg's interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20

  14. The Force Singularity for Partially Immersed Parallel Plates

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Rajat; Finn, Robert

    2016-12-01

    In earlier work, we provided a general description of the forces of attraction and repulsion, encountered by two parallel vertical plates of infinite extent and of possibly differing materials, when partially immersed in an infinite liquid bath and subject to surface tension forces. In the present study, we examine some unusual details of the exotic behavior that can occur at the singular configuration separating infinite rise from infinite descent of the fluid between the plates, as the plates approach each other. In connection with this singular behavior, we present also some new estimates on meniscus height details.

  15. Reactive Ion Etching in a VHF Parallel Plate Reactor

    NASA Technical Reports Server (NTRS)

    Dahi, H.; Murnick, D. E.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    VHF (very high frequency) capacitive plasma reactors may allow development of new RIE (reactive ion etching) systems with high etch rates, excellent uniformity and anisotropy and low damage. High ion and radical fluxes can be obtained by raising the RF (radio frequency) frequency which increases plasma density dramatically at a fixed voltage. The effects of variation in frequency (25-120 MHz), pressure (10-250 mTorr), and flow rate (1-100 sccm) in a CF4 discharge have been investigated. The RF current versus voltage characteristics and spatially resolved optical emission are used as diagnostics. Experiments on etch rates, etch uniformity and anisotropy in silicon, silicon dioxide and silicon nitride will be discussed. Results of fluid model simulations are used to interpret the experimental data.

  16. Radiant Heat Transfer Between Nongray Parallel Plates of Tungsten

    NASA Technical Reports Server (NTRS)

    Branstetter, J. Robert

    1961-01-01

    Net radiant heat flow between two infinite, parallel, tungsten plates was computed by summing the monochromatic energy exchange; the results are graphically presented as a function of the temperatures of the two surfaces. In general these fluxes range from approximately a to 25 percent greater than the results of gray-body computations based on the same emissivity data. The selection of spectral emissivity data and the computational procedure are discussed. The present analytical procedure is so arranged that, as spectral emissivity data for a material become available, these data can be readily introduced into the NASA data-reduction equipment, which has been programmed to compute the net heat flux for the particular geometry and basic assumptions cited in the text. Nongray-body computational techniques for determining radiant heat flux appear practical provided the combination of select spectral emissivity data and the proper mechanized data-reduction equipment are brought to bear on the problem.

  17. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  18. Linear polarization of the radiation from active galactic nuclei and the redshift dependence of their main parameters

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Piotrovich, M. Yu.; Gnedin, Yu. N.; Natsvlishvili, T. M.

    2010-11-01

    We consider the observed continuum linear polarization of extragalactic objects with various redshifts z, most of which have degrees of polarization p ≤ 10%. We propose that this polarization is due to multiple scattering of the radiation in magnetized accretion disks around the Active Galactic Nuclei (AGN; the Milne problem in an optically thick atmosphere). The structure of the accretion disks and the polarization of the emergent radiation depend on the main parameters of the AGN—the mass of the central body M BH , accretion rate dot M , magnetic field at the black-hole event horizon B H , angular momentum a *, and the explicit form of the magnetic-field distribution in the accretion disk. Theoretical expressions for the degree of polarization are averaged over all angles of the disks to the line of sight, and the resulting formula compared with the mean observed polarizations in redshift intervals Δ z = 0.25. The dependence of the observed degree of polarization and the main parameters on the redshift z is derived. The degrees of polarization of 305 objects from the catalog of Hutsemekers et al. with redshifts from zero to z = 2.25 are used for the analysis.

  19. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity.

    PubMed

    Stebbins, Nicholas D; Yu, Weiling; Uhrich, Kathryn E

    2015-11-09

    Sugar alcohols, such as mannitol and xylitol, are biocompatible polyols that have been used to make highly cross-linked polyester elastomers and dendrimers for tissue engineering and drug delivery. However, research that utilizes the secondary hydroxyl groups as sites for pendant bioactive attachment and subsequent polymerization is limited. This work is the first report of a linear, completely biodegradable polymer with a sugar alcohol backbone and chemically incorporated pendant bioactives that exhibits sustained bioactive release and high bioactive loading (∼70%). With four pendant esters per repeat unit, this poly(anhydride-ester) has high loading and biodegrades into three biocompatible products: bioactive, sugar alcohol, and alkyl-based diacid. Ibuprofen serves as a representative bioactive, whereas mannitol is a representative polyol. Polymerization was achieved through reaction with (trimethylsilyl)ethoxyacetylene. Drug release via polymer degradation was quantified by high performance liquid chromatography. Additionally, a cytocompatibility study with fibroblast cells was performed to elucidate the polymer's suitability for in vivo use and a cyclooxygenase-2 (COX-2) assay was performed on the degradation media to ensure that released ibuprofen retained its anti-inflammatory activity. This work enables the future development of novel, biodegradable polymers exhibiting two key features: (i) polymer backbones with easily modified pendant groups, such as targeting moieties, and (ii) high drug loading using a multitude of bioactive classes.

  20. Active fault detection and isolation of discrete-time linear time-varying systems: a set-membership approach

    NASA Astrophysics Data System (ADS)

    Mojtaba Tabatabaeipour, Seyed

    2015-08-01

    Active fault detection and isolation (AFDI) is used for detection and isolation of faults that are hidden in the normal operation because of a low excitation signal or due to the regulatory actions of the controller. In this paper, a new AFDI method based on set-membership approaches is proposed. In set-membership approaches, instead of a point-wise estimation of the states, a set-valued estimation of them is computed. If this set becomes empty the given model of the system is not consistent with the measurements. Therefore, the model is falsified. When more than one model of the system remains un-falsified, the AFDI method is used to generate an auxiliary signal that is injected into the system for detection and isolation of faults that remain otherwise hidden or non-isolated using passive FDI (PFDI) methods. Having the set-valued estimation of the states for each model, the proposed AFDI method finds an optimal input signal that guarantees FDI in a finite time horizon. The input signal is updated at each iteration in a decreasing receding horizon manner based on the set-valued estimation of the current states and un-falsified models at the current sample time. The problem is solved by a number of linear and quadratic programming problems, which result in a computationally efficient algorithm. The method is tested on a numerical example as well as on the pitch actuator of a benchmark wind turbine.

  1. Does a physical activity program in the nursing home impact on depressive symptoms? A generalized linear mixed-model approach.

    PubMed

    Diegelmann, Mona; Jansen, Carl-Philipp; Wahl, Hans-Werner; Schilling, Oliver K; Schnabel, Eva-Luisa; Hauer, Klaus

    2017-04-18

    Physical activity (PA) may counteract depressive symptoms in nursing home (NH) residents considering biological, psychological, and person-environment transactional pathways. Empirical results, however, have remained inconsistent. Addressing potential shortcomings of previous research, we examined the effect of a whole-ecology PA intervention program on NH residents' depressive symptoms using generalized linear mixed-models (GLMMs). We used longitudinal data from residents of two German NHs who were included without any pre-selection regarding physical and mental functioning (n = 163, Mage = 83.1, 53-100 years; 72% female) and assessed on four occasions each three months apart. Residents willing to participate received a 12-week PA training program. Afterwards, the training was implemented in weekly activity schedules by NH staff. We ran GLMMs to account for the highly skewed depressive symptoms outcome measure (12-item Geriatric Depression Scale-Residential) by using gamma distribution. Exercising (n = 78) and non-exercising residents (n = 85) showed a comparable level of depressive symptoms at pretest. For exercising residents, depressive symptoms stabilized between pre-, posttest, and at follow-up, whereas an increase was observed for non-exercising residents. The intervention group's stabilization in depressive symptoms was maintained at follow-up, but increased further for non-exercising residents. Implementing an innovative PA intervention appears to be a promising approach to prevent the increase of NH residents' depressive symptoms. At the data-analytical level, GLMMs seem to be a promising tool for intervention research at large, because all longitudinally available data points and non-normality of outcome data can be considered.

  2. Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex.

    PubMed

    Jing, Huiyuan; Fang, Liurong; Ding, Zhen; Wang, Dang; Hao, Wenqi; Gao, Li; Ke, Wenting; Chen, Huanchun; Xiao, Shaobo

    2017-02-01

    Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV.

  3. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.

    1995-01-01

    A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals:  log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term:  log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.

  4. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations.

  5. Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face- and body-evoked activity patterns

    PubMed Central

    Kaiser, Daniel; Strnad, Lukas; Seidl, Katharina N.; Kastner, Sabine

    2013-01-01

    Visual cues from the face and the body provide information about another's identity, emotional state, and intentions. Previous neuroimaging studies that investigated neural responses to (bodiless) faces and (headless) bodies have reported overlapping face- and body-selective brain regions in right fusiform gyrus (FG). In daily life, however, faces and bodies are typically perceived together and are effortlessly integrated into the percept of a whole person, raising the possibility that neural responses to whole persons are qualitatively different than responses to isolated faces and bodies. The present study used fMRI to examine how FG activity in response to a whole person relates to activity in response to the same face and body but presented in isolation. Using multivoxel pattern analysis, we modeled person-evoked response patterns in right FG through a linear combination of face- and body-evoked response patterns. We found that these synthetic patterns were able to accurately approximate the response patterns to whole persons, with face and body patterns each adding unique information to the response patterns evoked by whole person stimuli. These results suggest that whole person responses in FG primarily arise from the coactivation of independent face- and body-selective neural populations. PMID:24108794

  6. Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure-activity relationship study.

    PubMed

    Lau, Qiu Ying; Ng, Fui Mee; Cheong, Jin Wei Darryl; Yap, Yi Yong Alvin; Tan, Yoke Yan Fion; Jureen, Roland; Hill, Jeffrey; Chia, Cheng San Brian

    2015-11-13

    The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus.

    PubMed

    van Dam, Evelyne A; Dams, Susanne D; Peters, Gerrit W M; Rutten, Marcel C M; Schurink, Geert Willem H; Buth, Jaap; van de Vosse, Frans N

    2006-01-01

    The objective of this study is to determine whether the linear viscoelastic properties of an abdominal aortic aneurysm thrombus can be determined by rheometry. Although large strains occur in the in vivo situation, in this work only linear behavior is studied to show the applicability of the described methods. A thrombus exists of several layers that vary in composition, structure and mechanical properties. Two types of thrombus are described. In discrete transition thrombi the layers are not or at most weakly attached to each other and the structure of each layer is different. Continuous transition thrombi consist of strongly attached layers whose structure changes gradually throughout the thickness of the thrombus. Shear experiments are performed on samples from both types of thrombus on a rotational rheometer using a parallel plate geometry. In the discrete type the storage modulus G' cannot be assumed equal for the different layers. In the continuous thrombus, G', changes gradually throughout the layered structure. In both types the loss modulus, G'', does not vary throughout the thrombus. Furthermore, it was found that Time-Temperature Superposition is applicable to thrombus tissue. Since results were reproducible it can be concluded that the method we used to determine the viscoelastic properties is applicable to thrombus tissue.

  8. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  9. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  10. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    PubMed Central

    Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen

    2017-01-01

    Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908

  11. A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores.

    PubMed

    Allore, Heather; Tinetti, Mary E; Araujo, Katy L B; Hardy, Susan; Peduzzi, Peter

    2005-02-01

    Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists. We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation. The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach. Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone.

  12. Linear ubiquitination in immunity.

    PubMed

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types.

  13. A fast iterative scheme for the linearized Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  14. Radiation parameters of 6 to 20 MeV scanning electron beams from the Saturne linear accelerator.

    PubMed

    Pfalzner, P M; Clarke, H C

    1982-01-01

    Depth doses of the scanning electron beams from the Saturne Therac-20 linear accelerator at nominal energies of 6,9,13,17, and 20 MeV were measured in polystyrene using a thin window parallel plate ionization chamber. Central axis depth dose curves are derived and are analyzed according to the method of Brahme and Svensson. For each of the five electron energies, values are obtained for the most probable energy at the absorber surface Ep,0, the practical range Rp, the 50% range R50, the therapeutic range R85, the electron dose gradients, total collision energy losses, and other radiation parameters, and these are compared to corresponding values for electron beams from a 22 MeV medical microtron and a 20 MeV betatron.

  15. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species

    PubMed Central

    Hoyos, Mauricio; Moore, Lee; Williams, P. Stephen; Zborowski, Maciej

    2011-01-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest. PMID:21399709

  16. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species.

    PubMed

    Hoyos, Mauricio; Moore, Lee; Williams, P Stephen; Zborowski, Maciej

    2011-05-01

    The Quadrupole Magnetic Sorter (QMS), employing an annular flow channel concentric with the aperture of a quadrupole magnet, is well established for cell and particle separations. Here we propose a magnetic particle separator comprising a linear array of cylindrical magnets, analogous to the array proposed by Klaus Halbach, mated to a substantially improved form of parallel-plate SPLITT channel, known as the step-SPLITT channel. While the magnetic force and throughput are generally lower than for the QMS, the new separator has advantages in ease of fabrication and the ability to vary the magnetic force to suit the separands. Preliminary experiments yield results consistent with prediction and show promise regarding future separations of cells of biomedical interest.

  17. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.

    PubMed

    Ghosh, Nirmalya; Wood, Michael F G; Vitkin, I Alex

    2008-01-01

    Linear birefringence and optical activity are two common optical polarization effects present in biological tissue, and determination of these properties has useful biomedical applications. However, measurement and unique interpretation of these parameters in tissue is hindered by strong multiple scattering effects and by the fact that these and other polarization effects are often present simultaneously. We have investigated the efficacy of a Mueller matrix decomposition methodology to extract the individual intrinsic polarimetry characteristics (linear retardance delta and optical rotation psi, in particular) from a multiply scattering medium exhibiting simultaneous linear birefringence and optical activity. In the experimental studies, a photoelastic modulation polarimeter was used to record Mueller matrices from polyacrylamide phantoms having strain-induced birefringence, sucrose-induced optical activity, and polystyrene microspheres-induced scattering. Decomposition of the Mueller matrices recorded in the forward detection geometry from these phantoms with controlled polarization properties yielded reasonable estimates for delta and psi parameters. The confounding effects of scattering, the propagation path of multiple scattered photons, and detection geometry on the estimated values for delta and psi were further investigated using polarization-sensitive Monte Carlo simulations. The results show that in the forward detection geometry, the effects of scattering induced linear retardance and diattenuation are weak, and the decomposition of the Mueller matrix can retrieve the intrinsic values for delta and psi with reasonable accuracy. The ability of this approach to extract the individual intrinsic polarimetry characteristics should prove valuable in diagnostic photomedicine, for example, in quantifying the small optical rotations due to the presence of glucose in tissue and for monitoring changes in tissue birefringence as a signature of tissue abnormality.

  18. Synthesis of linear and angular aryl-morpholino-naphth-oxazines, their DNA-PK, PI3K, PDE3A and antiplatelet activity.

    PubMed

    Morrison, Rick; Zheng, Zhaohua; Jennings, Ian G; Thompson, Philip E; Al-Rawi, Jasim M A

    2016-11-15

    To continue our study of 2-morpholino-benzoxazine based compounds, which show useful activity against PI3K family enzymes or antiplatelet activity, we designed and synthesized a series of linear 6.7-fused, 5,6-angular fused and 7,8-angular fused-aryl-morpholino-naphth-oxazines. The compounds were prepared from substituted 2-hydroxynaphthoic acid to give the corresponding thioxo analogues 8, 9, 15 and 19. The thioxo products were then converted to the morpholino substituted analogue. The aryl group was introduced by Suzuki coupling of bromo precursors. The products were evaluated for activity at PI3K family enzymes and as platelet aggregation inhibitors and compared to reported unsubstituted analogues. The linear 6.7-fused product 13a and 13b were moderated potent but selective PI3Kδ isoform inhibitors (IC50=7.7 and 5.61μM). Good antiplatelet activity was noticed for the angular 7,8-fused compounds 22a, b, k and l with IC50=3.0,14.0, 2.0 and 5.0μM respectively. The antiplatelet activity is independent of PDE3. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Linear and nonlinear analyses of multi-channel mechanomyographic recordings reveal heterogeneous activation of wrist extensors in presence of delayed onset muscle soreness.

    PubMed

    Madeleine, Pascal; Hansen, Ernst A; Samani, Afshin

    2014-12-01

    In this study, we applied multi-channel mechanomyographic (MMG) recordings in combination with linear and nonlinear analyses to investigate muscular and musculotendinous effects of high intensity eccentric exercise. Twelve accelerometers arranged in a 3 × 4 matrix over the dominant elbow muscles were used to detect MMG activity in 12 healthy participants. Delayed onset muscle soreness was induced by repetitive high intensity eccentric contractions of the wrist extensor muscles. Average rectified values (ARV) as well as percentage of recurrence (%REC) and percentage of determinism (%DET) extracted from recurrence quantification analysis were computed from data obtained during static-dynamic contractions performed before exercise, immediately after exercise, and in presence of muscle soreness. A linear mixed model was used for the statistical analysis. The ARV, %REC, and %DET maps revealed heterogeneous MMG activity over the wrist extensor muscles before, immediately after, and in presence of muscle soreness (P<0.01). The ARVs were higher while the %REC and %DET were lower in presence of muscle soreness compared with before exercise (P<0.05). The study provides new key information on linear and nonlinear analyses of multi-channel MMG recordings of the wrist extensor muscles following eccentric exercise that results in muscle soreness. Recurrence quantification analysis can be suggested as a tool for detection of MMG changes in presence of muscle soreness.

  20. Development of a compact precision linear actuator for the active surface upgrade of the Delingha 13.7-m radio telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Guohua; Li, Aihua; Yang, Dehua; Zhang, Zhenchao; Li, Guoping

    2012-09-01

    The Delingha 13.7-m radio telescope is to be upgraded with an active surface for multi-beam observation at 3 mm wavelength. Its primary reflector is paved with 72 aluminum panels which are originally supported by 480 fixtures. One of the critical tasks associated with the upgrade program is development of precision linear displacement actuators to replace the panel fixtures hence to Listed first in the upgrade program is actively drive and position the panels. The linear actuator is required to fit the existing positions, dimensions and connections of the panels and the backup structure, also implicitly required to be as compact and lightweighted as possible. This paper is to report in detail the development and experiment of the compact, folded, precision linear actuator according to given technique requirements and constraints, including the description of the flexible adaption of the fixture of the actuators and the special design of the connecting mechanism with the panels. The experiment system is established with one of the spare panels of the telescope, and six sets of actuator and control electronics are included for driving the panel. This paper will present the test results measured on a single actuator prototype as well as the actuators working together in the spare panel experiment. The test results prove that the actuator manifests positioning accuracy of microns and load capacity of 12 kg. The related connection and electronics design of the actuator also meets the requirements of the update program of the telescope.

  1. Activation of macrophages by linear (1right-arrow3)-beta-D-glucans. Impliations for the recognition of fungi by innate immunity.

    PubMed

    Kataoka, Keiko; Muta, Tatsushi; Yamazaki, Soh; Takeshige, Koichiro

    2002-09-27

    Although (1-->3)-beta-d-glucans, which are one of major fungal cell wall components, are known to activate invertebrate innate immune systems, their activities on mammalian cells remain elusive. Here, we report their activities on mouse macrophages. Among the various (1-->3)-beta-d-glucans, curdlan, a linear (1-->3)-beta-d-glucan, although not branched beta-glucans, exhibits significant activity to stimulate nuclear factor-kappaB in macrophages. The activity of curdlan is dramatically enhanced by pretreatment with sodium hydroxide or dimethyl sulfoxide, which disrupts multiple-stranded helices of (1-->3)-beta-d-glucans, and is dose-dependently inhibited by a (1-->3)-beta-d-glucan-binding protein and by laminarioligosaccharides with (1-->3)-beta-d-glucosidic linkages. Intriguingly, the activity of curdlan is also augmented by incubation with zymolyase, which releases (1-->3)-beta-d-glucans with a single helical structure from the glucan-networks assembled by multiple-stranded helices. The activation of macrophages culminates in the production of inducible nitric-oxide synthase, tumor necrosis factor-alpha, and macrophage inflammatory protein-2. Furthermore, a dominant-negative mutant of MyD88, an adaptor protein mediating signaling through the Toll-like receptor/inerleukin-1 receptor-like (TIR) domain, inhibits the activation of macrophages by curdlan. These results strongly suggest that macrophages respond to linear (1-->3)-beta-d-glucans, possibly released from fungal cell walls, via a receptor(s) harboring the TIR domain, such as a Toll-like receptor, to induce inflammatory reactions.

  2. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  3. The cost of linearization

    NASA Astrophysics Data System (ADS)

    Morel, Danielle; Levy, William B.

    2006-03-01

    Information processing in the brain is metabolically expensive and energy usage by the different components of the nervous system is not well understood. In a continuing effort to explore the costs and constraints of information processing at the single neuron level, dendritic processes are being studied. More specifically, the role of various ion channel conductances is explored in terms of integrating dendritic excitatory synaptic input. Biophysical simulations of dendritic behavior show that the complexity of voltage-dependent, non-linear dendritic conductances can produce simplicity in the form of linear synaptic integration. Over increasing levels of synaptic activity, it is shown that two types of voltage-dependent conductances produce linearization over a limited range. This range is determined by the parameters defining the ion channel and the 'passive' properties of the dendrite. A persistent sodium and a transient A-type potassium channel were considered at steady-state transmembrane potentials in the vicinity of and hyperpolarized to the threshold for action potential initiation. The persistent sodium is seen to amplify and linearize the synaptic input over a short range of low synaptic activity. In contrast, the A-type potassium channel has a broader linearization range but tends to operate at higher levels of synaptic bombardment. Given equivalent 'passive' dendritic properties, the persistent sodium is found to be less costly than the A-type potassium in linearizing synaptic input.

  4. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5(n) equilibrium points located in ℜ(n), and 3(n) of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux

    PubMed Central

    Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M

    2007-01-01

    Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182

  7. [Constancy check of system linearity for dose calibrators. Effect of molybdenum impurities at high start activities of 99mTc].

    PubMed

    Schütze, Christian; Knoop, Bernd O; Vehrenkamp, Iris; Rudolf, Frank; Geworski, Lilli

    2016-08-05

    Dose calibrators are one of the most important and most frequently used instruments for the determination of activities in nuclear medicine. For guaranteeing a constant quality of the dose calibrators' measurements, constancy checks including the examination of the system linearity have to be performed regularly, usually measured using 99mTc. The 99mTc eluate extracted from a 99Mo/99mTc generator is contaminated with molybdenum. Not accounting for the molybdenum impurity might lead to an exceed of the tolerance limit of 5% deviation to the reference value for this constancy check. The reason for this effect is the contamination of the 99mTc eluate with 99Mo, whose impact depends on both the amount of the impurity and on the total measurement time (high start activities). In this work, the influence of the molybdenum impurity on the results of the constancy check of the system linearity was investigated and maximum start activities for certain impurities were determined providing that the deviation to the reference values is below 5%. Provided that certain boundary conditions are observed, a correction of the results with respect to the molybdenum contamination is not necessary.

  8. Quantitative structure-property relationship (QSPR) for the adsorption of organic compounds onto activated carbon cloth: Comparison between multiple linear regression and neural network

    SciTech Connect

    Brasquet, C.; Bourges, B.; Le Cloirec, P.

    1999-12-01

    The adsorption of 55 organic compounds is carried out onto a recently discovered adsorbent, activated carbon cloth. Isotherms are modeled using the Freundlich classical model, and the large database generated allows qualitative assumptions about the adsorption mechanism. However, to confirm these assumptions, a quantitative structure-property relationship methodology is used to assess the correlations between an adsorbability parameter (expressed using the Freundlich parameter K) and topological indices related to the compounds molecular structure (molecular connectivity indices, MCI). This correlation is set up by mean of two different statistical tools, multiple linear regression (MLR) and neural network (NN). A principal component analysis is carried out to generate new and uncorrelated variables. It enables the relations between the MCI to be analyzed, but the multiple linear regression assessed using the principal components (PCs) has a poor statistical quality and introduces high order PCs, too inaccurate for an explanation of the adsorption mechanism. The correlations are thus set up using the original variables (MCI), and both statistical tools, multiple linear regression and neutral network, are compared from a descriptive and predictive point of view. To compare the predictive ability of both methods, a test database of 10 organic compounds is used.

  9. Different Structural Origins of the Enantioselectivity of Haloalkane Dehalogenases toward Linear β-Haloalkanes: Open-Solvated versus Occluded-Desolvated Active Sites.

    PubMed

    Liskova, Veronika; Stepankova, Veronika; Bednar, David; Brezovsky, Jan; Prokop, Zbynek; Chaloupkova, Radka; Damborsky, Jiri

    2017-04-18

    The enzymatic enantiodiscrimination of linear β-haloalkanes is difficult because the simple structures of the substrates prevent directional interactions. Herein we describe two distinct molecular mechanisms for the enantiodiscrimination of the β-haloalkane 2-bromopentane by haloalkane dehalogenases. Highly enantioselective DbjA has an open, solvent-accessible active site, whereas the engineered enzyme DhaA31 has an occluded and less solvated cavity but shows similar enantioselectivity. The enantioselectivity of DhaA31 arises from steric hindrance imposed by two specific substitutions rather than hydration as in DbjA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of a compact high-load PZT-ceramic long-travel linear actuator with picometer resolution for active optical alignment applications

    NASA Astrophysics Data System (ADS)

    Marth, H.; Lula, B.

    2006-06-01

    This paper describes a high-force PZT-ceramic based linear actuator for long-travel, high resolution applications. Different modes of operation offer high bandwidth dither, step and constant velocity slew motion. The drive is self-locking and does not expend energy to hold a position. This development was originally undertaken for applications in the semiconductor industry and mature serial production actuators are now embedded in machinery to actively collimate heavy optic assemblies weighing 10's of kg in multiple axes with nanometer resolution.

  11. Estrogen Signaling via a Linear Pathway Involving Insulin-Like Growth Factor I Receptor, Matrix Metalloproteinases, and Epidermal Growth Factor Receptor to Activate Mitogen-Activated Protein Kinase in MCF-7 Breast Cancer Cells

    PubMed Central

    Song, Robert X.-D.; Zhang, Zhenguo; Chen, Yucai; Bao, Yongde; Santen, Richard J.

    2009-01-01

    We present an integrated model of an extranuclear, estrogen receptor-α (ERα)-mediated, rapid MAPK activation pathway in breast cancer cells. In noncancer cells, IGF-I initiates a linear process involving activation of the IGF-I receptor (IGF-IR) and matrix metalloproteinases (MMP), release of heparin-binding epidermal growth factor (HB-EGF), and activation of EGF receptor (EGFR)-dependent MAPK. 17β-Estradiol (E2) rapidly activates IGF-IR in breast cancer cells. We hypothesize that E2 induces a similar linear pathway involving IGF-IR, MMP, HB-EGF, EGFR, and MAPK. Using MCF-7 breast cancer cells, we for the first time demonstrated that a sequential activation of IGF-IR, MMP, and EGFR existed in E2 and IGF-I actions, which was supported by evidence that the selective inhibitors of IGF-IR and MMP or knockdown of IGF-IR all inhibited E2- or IGF-I-induced EGFR phosphorylation. Using the inhibitors and small inhibitoryRNA strategies,we also demonstrated that the same sequential activation of the receptors occurred in E2-, IGF-I-, but not EGF-induced MAPK phosphorylation. Additionally, a HB-EGF neutralizing antibody significantly blocked E2-induced MAPK activation, further supporting our hypothesis. The biological effects of sequential activation of IGF-IR and EGFR on E2 stimulation of cell proliferation were also investigated. Knockdown or blockade of IGF-IR significantly inhibited E2- or IGF-I-stimulated but not EGF-induced cell growth. Knockdown or blockade of EGFR abrogated cell growth induced by E2, IGF-I, and EGF, indicating that EGFR is a downstream molecule of IGF-IR in E2 and IGF-I action. Together, our data support the novel view that E2 can activate a linear pathway involving the sequential activation of IGF-IR, MMP, HB-EGF, EGFR, and MAPK. PMID:17525128

  12. A novel amphipathic linear peptide with both insect toxicity and antimicrobial activity from the venom of the scorpion Isometrus maculatus.

    PubMed

    Miyashita, Masahiro; Sakai, Atsushi; Matsushita, Nobuto; Hanai, Yosuke; Nakagawa, Yoshiaki; Miyagawa, Hisashi

    2010-01-01

    Scorpion venoms are composed of a number of peptides, many of which show neurotoxicity. In addition to these neurotoxins, several antimicrobial peptides have also been isolated from the venoms. The scorpion Isometrus maculatus, belonging to the Buthidae family, is found in many tropical regions including Japan, but little attention has been paid to its biological activity and chemical composition. In this study, we isolated a novel insect toxin, Im-1, by bioassay-guided fractionation of the venom of I. maculatus. Rapid and reversible paralysis was observed after injection of Im-1 into crickets. Im-1 consists of 56 amino acids, and is predicted to form an amphipathic alpha-helix. Since Im-1 shares sequence similarity to an antimicrobial peptide, parabutoporin, we evaluated its effects on several bacterial strains and found that it showed an antimicrobial activity profile similar to parabutoporin. This suggests that Im-1 and parabutoporin exert their antimicrobial effects through similar mechanisms.

  13. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  14. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  15. Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators.

    PubMed

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  16. Reasoning with Linear Orders: Differential Parietal Cortex Activation in Sub-Clinical Depression. An fMRI Investigation in Sub-Clinical Depression and Controls

    PubMed Central

    Hinton, Elanor C.; Wise, Richard G.; Singh, Krish D.; von Hecker, Ulrich

    2015-01-01

    The capacity to learn new information and manipulate it for efficient retrieval has long been studied through reasoning paradigms, which also has applicability to the study of social behavior. Humans can learn about the linear order within groups using reasoning, and the success of such reasoning may vary according to affective state, such as depression. We investigated the neural basis of these latter findings using functional neuroimaging. Using BDI-II criteria, 14 non-depressed (ND) and 12 mildly depressed volunteers took part in a linear-order reasoning task during functional magnetic resonance imaging. The hippocampus, parietal, and prefrontal cortices were activated during the task, in accordance with previous studies. In the learning phase and in the test phase, greater activation of the parietal cortex was found in the depressed group, which may be a compensatory mechanism in order to reach the same behavioral performance as the ND group, or evidence for a different reasoning strategy in the depressed group. PMID:25646078

  17. Linear association between social anxiety symptoms and neural activations to angry faces: from subclinical to clinical levels.

    PubMed

    Carré, Arnaud; Gierski, Fabien; Lemogne, Cédric; Tran, Eric; Raucher-Chéné, Delphine; Béra-Potelle, Céline; Portefaix, Christophe; Kaladjian, Arthur; Pierot, Laurent; Besche-Richard, Chrystel; Limosin, Frédéric

    2014-06-01

    Social anxiety disorder (SAD), which is characterized by the fear of being rejected and negatively evaluated, involves altered brain activation during the processing of negative emotions in a social context. Although associated temperament traits, such as shyness or behavioral inhibition, have been studied, there is still insufficient knowledge to support the dimensional approach, which assumes a continuum from subclinical to clinical levels of social anxiety symptoms. This study used functional magnetic resonance imaging (fMRI) to examine the neural bases of individual differences in social anxiety. Our sample included participants with both healthy/subclinical as well as clinical levels of social anxiety. Forty-six participants with a wide range of social anxiety levels performed a gender decision task with emotional facial expressions during fMRI scanning. Activation in the left anterior insula and right lateral prefrontal cortex in response to angry faces was positively correlated with the level of social anxiety in a regression analysis. The results substantiate, with a dimensional approach, those obtained in previous studies that involved SAD patients or healthy and subclinical participants. It may help to refine further therapeutic strategies based on markers of social anxiety.

  18. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    PubMed

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion.

  19. Linear association between social anxiety symptoms and neural activations to angry faces: from subclinical to clinical levels

    PubMed Central

    Gierski, Fabien; Lemogne, Cédric; Tran, Eric; Raucher-Chéné, Delphine; Béra-Potelle, Céline; Portefaix, Christophe; Kaladjian, Arthur; Pierot, Laurent; Besche-Richard, Chrystel; Limosin, Frédéric

    2014-01-01

    Social anxiety disorder (SAD), which is characterized by the fear of being rejected and negatively evaluated, involves altered brain activation during the processing of negative emotions in a social context. Although associated temperament traits, such as shyness or behavioral inhibition, have been studied, there is still insufficient knowledge to support the dimensional approach, which assumes a continuum from subclinical to clinical levels of social anxiety symptoms. This study used functional magnetic resonance imaging (fMRI) to examine the neural bases of individual differences in social anxiety. Our sample included participants with both healthy/subclinical as well as clinical levels of social anxiety. Forty-six participants with a wide range of social anxiety levels performed a gender decision task with emotional facial expressions during fMRI scanning. Activation in the left anterior insula and right lateral prefrontal cortex in response to angry faces was positively correlated with the level of social anxiety in a regression analysis. The results substantiate, with a dimensional approach, those obtained in previous studies that involved SAD patients or healthy and subclinical participants. It may help to refine further therapeutic strategies based on markers of social anxiety. PMID:23651705

  20. Removal of toxic zinc from water/wastewater using eucalyptus seeds activated carbon: non-linear regression analysis.

    PubMed

    Senthil Kumar, Ponnusamy; Saravanan, Anbalagan; Anish Kumar, Kodyingil; Yashwanth, Ramesh; Visvesh, Sridharan

    2016-08-01

    In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo-second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.

  1. The radiation dose to overweighted patients undergoing myocardial perfusion SPECT can be significantly reduced: validation of a linear weight-adjusted activity administration protocol.

    PubMed

    Oddstig, Jenny; Hindorf, Cecilia; Hedeer, Fredrik; Jögi, Jonas; Arheden, Håkan; Hansson, Magnus J; Engblom, Henrik

    2016-08-09

    Large body size can cause a higher proportion of emitted photons being attenuated within the patient. Therefore, clinical myocardial perfusion SPECT (MPS) protocols often include unproportionally higher radioisotope activity to obese patients. The aim was to evaluate if a linear weight-adjusted low-dose protocol can be applied to obese patients and thereby decrease radiation exposure. Two hundred patients (>110 kg, BMI 18-41, [n = 69], ≤ 110 kg, BMI 31-58, [n = 131]) underwent (99m)Tc-tetrofosmin stress examination on a Cadmium Zinc Telluride or a conventional gamma camera using new generations of reconstruction algorithm (Resolution Recovery). Patients <110 kg were administered 2.5 MBq/kg, patients between 110 and 120 kg received 430 MBq and patients >120 kg received 570 MBq according to clinical routine. Patients >110 kg had 130% total number of counts in the images compared to patients <110 kg. Recalculating the counts to correspond to an administered activity of 2.5 MBq/kg resulted in similar number of counts across the groups. Image analyses in a subgroup with images corresponding to high activity and 2.5 MBq/kg showed no difference in image quality or ischemia quantification. Linear low-dose weight-adjusted protocol of 2.5 MBq/kg in MPS can be applied over a large weight span without loss of counts or image quality, resulting in a significant reduction in radiation exposure to obese patients.

  2. Negative feedback regulation is responsible for the non-linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment.

    PubMed

    Nedbal, Ladislav; Brezina, Vítezslav; Adamec, Frantisek; Stys, Dalibor; Oja, Vello; Laisk, Agu; Govindjee

    2003-10-17

    Photosynthetic organisms exposed to a dynamic light environment exhibit complex transients of photosynthetic activities that are strongly dependent on the temporal pattern of the incident irradiance. In a harmonically modulated light of intensity I approximately const.+sin(omegat), chlorophyll fluorescence response consists of a steady-state component, a component modulated with the angular frequency of the irradiance omega and several upper harmonic components (2omega, 3omega and higher). Our earlier reverse engineering analysis suggests that the non-linear response can be caused by a negative feedback regulation of photosynthesis. Here, we present experimental evidence that the negative feedback regulation of the energetic coupling between phycobilisome and Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC6803 indeed results in the appearance of upper harmonic modes in the chlorophyll fluorescence emission. Dynamic changes in the coupling of the phycobilisome to PSII are not accompanied by corresponding antiparallel changes in the Photosystem I (PSI) excitation, suggesting a regulation limited to PSII. Strong upper harmonic modes were also found in the kinetics of the non-photochemical quenching (NPQ) of chlorophyll fluorescence, of the P700 redox state and of the CO(2) assimilation in tobacco (Nicotiana tabaccum) exposed to harmonically modulated light. They are ascribed to negative feedback regulation of the reactions of the Calvin-Benson cycle limiting the photosynthetic electron transport. We propose that the observed non-linear response of photosynthesis may also be relevant in a natural light environment that is modulated, e.g., by ocean waves, moving canopy or by varying cloud cover. Under controlled laboratory conditions, the non-linear photosynthetic response provides a new insight into dynamics of the regulatory processes.

  3. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2015-11-01

    The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Active fault tolerant control based on interval type-2 fuzzy sliding mode controller and non linear adaptive observer for 3-DOF laboratory helicopter.

    PubMed

    Zeghlache, Samir; Benslimane, Tarak; Bouguerra, Abderrahmen

    2017-09-14

    In this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller. Exponential stability of the closed loop is guaranteed by using the Lyapunov method. The simulation results show that the AFTIT2FSMC can greatly alleviate the chattering effect, providing good tracking performance, even in presence of actuator and sensor faults. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives.

    PubMed

    Luco, J M; Ferretti, F H

    1997-01-01

    Quantitative structure-activity relationships have been developed for a set of 107 inhibitors of the HIV-1 reverse transcriptase, derivatives of a recently reported HIV-1 specific lead: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). The activity of these compounds was investigated by means of multiple linear regression (MLR) and PLS regression techniques and topological indexes as well as several tabulated physicochemical substituent constants were used as predictor variables. The results obtained indicate that the anti-HIV activity of the HEPT derivatives is strongly dependent on hydrophobic factors as expressed by the Hansch constant (sigma pi (R1+R2)), and especially dependent on the geometric factors mainly accounted for by the 1 chi N (R2) and 4 chi pN molecular connectivity indexes and also for the molecular volume (Vx), the Taft steric constant (Es(2R1)), and the Verloop parameter for the smallest width value (B1(3R1)). Besides, for this data set, comparison of the quality of MLR and PLS models show that PLS is a better approach to MLR for improving the interpretability of the data and also to exhibit models with a better predictive quality.

  6. Distant activity of Comet C/2002 VQ94 (LINEAR): Optical spectrophotometric monitoring between 8.4 and 16.8 au from the Sun

    NASA Astrophysics Data System (ADS)

    Korsun, Pavlo P.; Rousselot, Philippe; Kulyk, Irina V.; Afanasiev, Viktor L.; Ivanova, Oleksandra V.

    2014-04-01

    Spectrophotometric monitoring of distant Comet C/2002 VQ94 (LINEAR) was performed with the 6-m telescope of SAO RAS (Special Astrophysical Observatory of Russian Academy of Sciences) and with the 2.5-m Nordic Optical Telescope (Observatory del Roque de los Muchachos, Canarias, Spain) between 2008 and 2013. During this period the comet was on the outbound segment of its orbit, between heliocentric distances of 8.36 au and 16.84 au. Analysis of the spectra revealed the presence of the CO+ and N2+ emissions in the cometary coma at a distance of 8.36 au from the Sun. This distance is larger than ionic emissions have been detected in any previous objects. Only continuum, with no traces of emissions, was detected in the spectrum obtained in 2009 when the comet was at a distance of 9.86 au. From the spectra obtained in 2008, average column densities of 2.04 × 109 mol cm-2 for N2+ and 3.26 × 1010 mol cm-2 for CO+ were measured in the cometary coma. The derived values correspond to N2+/CO=0.06 within the projected slit. Images obtained through a red continuum filter in 2008 showed a bright, dust coma, indicating a high level of physical activity. A considerably lower level of activity was observed in 2009 and 2011 at distances of 9.86 au and 13.40 au respectively. No noticeable activity was detected in 2013 at a heliocentric distance of 16.84 au. The Afρ parameter, which is used as an indicator of cometary activity, was measured as 2000 cm in 2008, and 800 cm in 2009 and 2011. The Afρ values correspond to dust production rates between 10-20 kg s-1, 4-6 kg s-1 and 3-5 kg s-1 at 8.36, 9.86, and 13.40 au respectively. There is an obvious correlation between the decrease of the dust production rate of the nucleus and the disappearance of the emissions in the spectrum of C/2002 VQ94 (LINEAR) at heliocentric distances greater than 9 au. The colors and size of the nucleus of C/2002 VQ94 (LINEAR) were estimated from the images obtained during the late stage at a heliocentric

  7. Conjugation of 10 kDa Linear PEG onto Trastuzumab Fab' Is Sufficient to Significantly Enhance Lymphatic Exposure while Preserving in Vitro Biological Activity.

    PubMed

    Chan, Linda J; Ascher, David B; Yadav, Rajbharan; Bulitta, Jürgen B; Williams, Charlotte C; Porter, Christopher J H; Landersdorfer, Cornelia B; Kaminskas, Lisa M

    2016-04-04

    The lymphatic system is a major conduit by which many diseases spread and proliferate. There is therefore increasing interest in promoting better lymphatic drug targeting. Further, antibody fragments such as Fabs have several advantages over full length monoclonal antibodies but are subject to rapid plasma clearance, which can limit the lymphatic exposure and activity of Fabs against lymph-resident diseases. This study therefore explored ideal PEGylation strategies to maximize biological activity and lymphatic exposure using trastuzumab Fab' as a model. Specifically, the Fab' was conjugated with single linear 10 or 40 kDa PEG chains at the hinge region. PEGylation led to a 3-4-fold reduction in binding affinity to HER2, but antiproliferative activity against HER2-expressing BT474 cells was preserved. Lymphatic pharmacokinetics were then examined in thoracic lymph duct cannulated rats after intravenous and subcutaneous dosing at 2 mg/kg, and the data were evaluated via population pharmacokinetic modeling. The Fab' displayed limited lymphatic exposure, but conjugation of 10 kDa PEG improved exposure by approximately 11- and 5-fold after intravenous (15% dose collected in thoracic lymph over 30 h) and subcutaneous (9%) administration, respectively. Increasing the molecular weight of the PEG to 40 kDa, however, had no significant impact on lymphatic exposure after intravenous (14%) administration and only doubled lymphatic exposure after subcutaneous administration (18%) when compared to 10 kDa PEG-Fab'. The data therefore suggests that minimal PEGylation has the potential to enhance the exposure and activity of Fab's against lymph-resident diseases, while no significant benefit is achieved with very large PEGs.

  8. Mental rotation task specifically modulates functional connectivity strength of intrinsic brain activity in low frequency domains: A maximum uncertainty linear discriminant analysis.

    PubMed

    Gao, Mengxia; Zhang, Delong; Wang, Zengjian; Liang, Bishan; Cai, Yuxuan; Gao, Zhenni; Li, Junchao; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-03-01

    Neuroimaging studies have highlighted that intrinsic brain activity is modified to implement task demands. However, the relation between mental rotation and intrinsic brain activity remains unclear. To answer this question, we collected functional MRI (fMRI) data from 30 healthy participants in two mental rotation task periods (1st-task state, 2nd-task state) and two rest periods before (pre-task resting state) and after the task (post-task resting state) respectively. By combining the spatial independent component analysis (ICA) and voxel-wise functional connectivity strength (FCS), we identified FCS maps of 10 brain resting state networks (RSNs) within six different bands (i.e., 0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.25, and 0.01-0.08Hz) corresponding to the four states for each subject. The maximum uncertainty linear discriminant analysis (MLDA) method showed that the FCS within the low frequency bandwidth of 0.05-0.1Hz could effectively classify the mental rotation task state from pre-/post-task resting states but failed to discriminate the pre- and post-task resting states. Discriminative FCSs were observed in the cognitive executive-control network (central executive and attention) and the imagery-based internal mental manipulation network (default mode, primary sensorimotor, and primary visual). Imagery manipulation is a stable mental element of mental rotation, and the involvement of executive control is dependent on the degree of task familiarity. Together, the present study provides evidence that mental rotation task specifically modifies intrinsic brain activity to complement cognitive demands, which provides further insight into the neural basis of mental rotation manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Monitoring Daily QA 3 constancy for routine quality assurance on linear accelerators.

    PubMed

    Binny, Diana; Lancaster, Craig M; Kairn, Tanya; Trapp, Jamie V; Crowe, Scott B

    2016-11-01

    The purpose of this study was to evaluate the suitability of the Daily QA 3 (Sun Nuclear Corporation, Melbourne, USA) device as a safe quality assurance device for control of machine specific parameters, such as linear accelerator output, beam quality and beam flatness and symmetry. Measurements were performed using three Varian 2300iX linear accelerators. The suitability of Daily QA 3 as a device for quality control of linear accelerator parameters was investigated for both 6 and 10MV photons and 6, 9, 12, 15 and 18MeV electrons. Measurements of machine specific using the Daily QA 3 device were compared to corresponding measurements using a simpler constancy meter, Farmer chamber and plane parallel ionisation chamber in a water tank. The Daily QA 3 device showed a linear dose response making it a suitable device for detection of output variations during routine measurements. It was noted that over estimations of variations compared with Farmer chamber readings were seen if the Daily QA 3 wasn't calibrated for output and sensitivity on a regular eight to ten monthly basis. Temperature-pressure correction factors calculated by Daily QA 3 also contributed towards larger short term variations seen in output measurements. Energy, symmetry and flatness variations detected by Daily QA 3 were consistent with measurements performed in water tank using a parallel plate chamber. It was concluded that the Daily QA 3 device is suitable for routine daily and fortnightly quality assurance of linear accelerator beam parameters however a regular eight-ten monthly dose and detector array calibration will improve error detection capabilities of the device.

  10. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity

    PubMed Central

    Assadi, Artin; Najafabadi, Vahideh Sharifi; Shandiz, Seyed Ataollah Sadat; Boroujeni, Azadah Shayeq; Ashrafi, Sepehr; Vaziri, Ali Zaman; Ghoreishi, Seyedeh Masoumeh; Aghasadeghi, Mohammad Reza; Ebrahimi, Seyed Esmaeil Sadat; Pirali-Hamedani, Morteza; Ardestani, Mehdi Shafiee

    2016-01-01

    Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL) in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2). In the current study, the anticancer activity among three groups that include CBL, CBL–G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50) was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL–G2 dendrimer; P<0.05. In addition, CBL–G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL–G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and CBL alone (P<0.005). In vivo studies showed that tumor treatment by CBL–G2 dendrimer conjugate outstrips the efficacy of treatment compared with CBL alone. The evaluation was based on reduction in tumor volume and tumor growth inhibition of murine 4T1 mammary tumor cells. Tumor volume of 140%±8% was measured in the treatment with CBL–G2 dendrimer, whereas 152%±13.5% was calculated in the treatment with free CBL (P<0.05). However, there were no significant differences in histological assay among the three groups. In conclusion, tumor growth suppression potential of CBL–G2 dendrimer, which was assessed in both in vitro and in vivo

  11. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity.

    PubMed

    Assadi, Artin; Najafabadi, Vahideh Sharifi; Shandiz, Seyed Ataollah Sadat; Boroujeni, Azadah Shayeq; Ashrafi, Sepehr; Vaziri, Ali Zaman; Ghoreishi, Seyedeh Masoumeh; Aghasadeghi, Mohammad Reza; Ebrahimi, Seyed Esmaeil Sadat; Pirali-Hamedani, Morteza; Ardestani, Mehdi Shafiee

    2016-01-01

    Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL) in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2). In the current study, the anticancer activity among three groups that include CBL, CBL-G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50) was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL-G2 dendrimer; P<0.05. In addition, CBL-G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL-G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and CBL alone (P<0.005). In vivo studies showed that tumor treatment by CBL-G2 dendrimer conjugate outstrips the efficacy of treatment compared with CBL alone. The evaluation was based on reduction in tumor volume and tumor growth inhibition of murine 4T1 mammary tumor cells. Tumor volume of 140%±8% was measured in the treatment with CBL-G2 dendrimer, whereas 152%±13.5% was calculated in the treatment with free CBL (P<0.05). However, there were no significant differences in histological assay among the three groups. In conclusion, tumor growth suppression potential of CBL-G2 dendrimer, which was assessed in both in vitro and in vivo experiments

  12. Enhancement of Ion Activation and Collision-Induced Dissociation by Simultaneous Dipolar Excitation of Ions in x- and y-Directions in a Linear Ion Trap.

    PubMed

    Dang, Qiankun; Xu, Fuxing; Xie, Xiaodong; Xu, Chongsheng; Dai, Xinhua; Fang, Xiang; Ding, Li; Ding, Chuan-Fan

    2015-06-02

    Collision-induced dissociation (CID) in linear ion traps is usually performed by applying a dipolar alternating current (AC) signal to one pair of electrodes, which results in ion excitation mainly in one direction. In this paper, we report simulation and experimental studies of the ion excitation in two coordinate directions by applying identical dipolar AC signals to two pairs of electrodes simultaneously. Theoretical analysis and simulation results demonstrate that the ion kinetic energy is higher than that using the conventional CID method. Experimental results show that more activation energy (as determined by the intensity ratio of the a4/b4 fragments from the CID of protonated leucine enkephalin) can be deposited into parent ions in this method. The dissociation rate constant in this method was about 3.8 times higher than that in the conventional method under the same experimental condition, at the Mathieu parameter qu (where u = x, y) value of 0.25. The ion fragmentation efficiency is also significantly improved. Compared with the conventional method, the smaller qu value can be used in this method to obtain the same internal energy deposited into ions. Consequently, the "low mass cut-off" is redeemed and more fragment ions can be detected. This excitation method can be implemented easily without changing any experimental parameters.

  13. Impact of UV radiation on activity of linear furanocoumarins and Bacillus thuringiensis var. kurstaki against Spodoptera exigua: Implications for tritrophic interactions

    SciTech Connect

    Trumble, J.T.; Moar, W.J.; Brewer, M.J.; Carson, W.G. )

    1991-05-01

    Acidic fogs with a pH of 2.0 and duration of 2 hr did not reduce the efficacy of Bacillus thuringiensis var. kurstaki. Therefore, the impact of UV radiation was investigated on the interactions between (1) levels of the antibacterial linear furanocoumarins psoralen, bergapten, and xanthotoxin in Apium graveolens (L.) occurring following a 2.0 pH acidic fog episode, (2) the noctuid Spodoptera exigua, and (3) a sublethal dosage of the microbial pathogen B. thuringiensis var. kurstaki. Mean time to pupation in the absence of UV radiation was significantly extended by the addition of either psoralens or B. thuringiensis. Larvae developing on diets containing B. thuringiensis plus psoralens required nearly 40% longer to pupate than controls, but their effects were additive as the interaction was not significant. Mean time to mortality, a weighted average time of death, was not significantly affected by any of the treatments. In a 2 {times} 2 {times} 2 factorial analysis, all main effects reduced survival significantly, as did the three-way interaction. Thus, antagonistic interactions with psoralens that would reduce the effectiveness of B. thuringiensis in the field were not observed. When pairs of main effects were nested within the two levels of the third factor, several two-way interactions were found. Interestingly, the activity of B. thuringiensis and the psoralens, individually or in combination, was enhanced by exposure to UV radiation. Implications of this research are discussed for both natural and agricultural ecosystems.

  14. Effect of low- and high-linear energy transfer radiation on in vitro and orthotopic in vivo models of osteosarcoma by activation of caspase-3 and -9

    PubMed Central

    Kim, Eun Ho; Kim, Mi-Sook; Lee, Kyung-Hee; Sai, Sei; Jeong, Youn Kyoung; Koh, Jae-Soo; Kong, Chang-Bae

    2017-01-01

    Osteosarcoma (OS) is a malignant tumor of the bone derived from primitive transformed cells of the mesenchymal origin. Local low-linear energy transfer (LET) radiotherapy has limited benefits on OS owing to its radioresistance. Thus, this study aimed to investigate the effects of high-LET radiation on human OS. Therefore, the human OS cell lines, U2O2 and KHOS/NP, were examined in vitro, or an orthotopic mouse xenograft model was studied in vivo after treatment with low-LET (gamma-ray) and high-LET (neutron) radiation. Notably, OS cells were significantly more sensitive to high-LET radiation in vitro and in the orthotopic xenograft tumor model. Specifically, neutron radiation treatment increased the relative percentage of apoptotic sub-G1 phase cells via caspase-3/9 activation; increased intracellular reactive oxygen species, autophagy, and DNA damage; and decreased invasion and migration. Similarly, the mean size of gamma-irradiated (8 Gy) orthotopic KHOS/NP OS was 195 mm3 at 6 weeks after gamma-irradiation (8 Gy), but it was only 150 mm3 in mice treated with high-LET neutron radiotherapy. Significantly, our results provide a rationale for the use of high-LET radiotherapy to treat patients with OS. PMID:28849129

  15. UBE2L3 Polymorphism Amplifies NF-κB Activation and Promotes Plasma Cell Development, Linking Linear Ubiquitination to Multiple Autoimmune Diseases

    PubMed Central

    Lewis, Myles J.; Vyse, Simon; Shields, Adrian M.; Boeltz, Sebastian; Gordon, Patrick A.; Spector, Timothy D.; Lehner, Paul J.; Walczak, Henning; Vyse, Timothy J.

    2015-01-01

    UBE2L3 is associated with increased susceptibility to numerous autoimmune diseases, but the underlying mechanism is unexplained. By using data from a genome-wide association study of systemic lupus erythematosus (SLE), we observed a single risk haplotype spanning UBE2L3, consistently aligned across multiple autoimmune diseases, associated with increased UBE2L3 expression in B cells and monocytes. rs140490 in the UBE2L3 promoter region showed the strongest association. UBE2L3 is an E2 ubiquitin-conjugating enzyme, specially adapted to function with HECT and RING-in-between-RING (RBR) E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC). Our data demonstrate that UBE2L3 is the preferred E2 conjugating enzyme for LUBAC in vivo, and UBE2L3 is essential for LUBAC-mediated activation of NF-κB. By accurately quantifying NF-κB translocation in primary human cells from healthy individuals stratified by rs140490 genotype, we observed that the autoimmune disease risk UBE2L3 genotype was correlated with basal NF-κB activation in unstimulated B cells and monocytes and regulated the sensitivity of NF-κB to CD40 stimulation in B cells and TNF stimulation in monocytes. The UBE2L3 risk allele correlated with increased circulating plasmablast and plasma cell numbers in SLE individuals, consistent with substantially elevated UBE2L3 protein levels in plasmablasts and plasma cells. These results identify key immunological consequences of the UBE2L3 autoimmune risk haplotype and highlight an important role for UBE2L3 in plasmablast and plasma cell development. PMID:25640675

  16. Effect of Organic Loading Rates on biodegradation of linear alkyl benzene sulfonate, oil and grease in greywater by Integrated Fixed-film Activated Sludge (IFAS).

    PubMed

    Eslami, Hadi; Ehrampoush, Mohammad Hassan; Ghaneian, Mohammad Taghi; Mokhtari, Mehdi; Ebrahimi, Aliasghar

    2017-05-15

    In this study, performance of Integrated Fixed-film Activated Sludge (IFAS) system in treatment of Linear Alkylbenzene Sulfonate (LAS), and oil & grease in synthetic greywater and effect of Organic Loading Rates (OLRs) on removal efficiency within a period of 105 days were investigated. Present study was carried out in a pilot scale under such conditions as temperature of 30 ± 1 °C, dissolved oxygen of 2.32 ± 0.91 mg/l, pH of 8.01 ± 0.95 and OLRs of 0.11-1.3gCOD/L.d. Also, Scanning Electron Microscopy (SEM) images were employed to specify rate of the biofilm formed on the media inside the reactor IFAS. The best removal efficiency for COD, LAS and oil and grease were respectively obtained as 92.52%, 94.24% and 90.07% in OLR 0.44gCOD/L.d. The assessment of loading rate indicated that with increased OLR to 0.44gCOD/L.d, removal efficiency of COD, oil and grease was increased while with increased OLR, removal efficiency was decreased. In doing so, based on the statistical test ANOVA, such a difference between removal efficiencies in diverse OLRs was significant for COD (p = 0.003), oil and grease (p = 0.01). However, in terms of LAS, with increased value of OLR to 0.44gCOD/L.d, the removal efficiency was increased and then with higher OLRs, removal efficiency was slightly decreased that is insignificant (p = 0.35) based on the statistical test ANOVA. The SEM images also showed that the biofilm formed on the media inside IFAS reactor plays a considerable role in adsorption and biodegradation of LAS, and oil & grease in greywater. The linear relation between inlet COD values and rate of removed LAS indicated that the ratio of inlet COD (mg/L) to removed LAS (mg/L) was 0.4. Therefore, use of IFAS system for biodegradation of LAS, oil and grease in greywater can be an applicable option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Linear accelerator thalamotomy.

    PubMed

    Frighetto, Leonardo; De Salles, Antonio; Wallace, Robert; Ford, Judith; Selch, Michael; Cabatan-Awang, Cynthia; Solberg, Timothy

    2004-08-01

    The capability of performing functional radiosurgery lesions in the brain using a dedicated linear accelerator (LINAC) have not yet been demonstrated. This study evaluates modern LINAC technology for the creation of a sharp, small and functionally eloquent lesion in the thalamus. Three patients underwent thalamotomy using a dedicated linear accelerator to radiosurgery, 2 females and 1 male, ages were 52, 53, and 73 years. Two patients presented with unilateral poststroke central pain and 1 with unilateral upper extremity pain secondary to metastatic infiltration of the brachial plexus. Maximal doses varied from 150 to 200 Gy, delivered by a 5-mm diameter collimator and 5 to 8 noncoplanar arcs evenly distributed. All patients gained substantial relief of their pain. They were able to reduce their medications and improve their activity levels. The patient with end-stage metastatic disease died of his malignancy 2 weeks after the treatment. One patient presented with recurrence of the pain 4 months after the treatment. No clinical complications were noticed. A dedicated linear accelerator is able to perform a precise and circumscribed lesion in the thalamus for pain control. Moreover, it proved to be safe, because no complications were observed. For patients using chronic anticoagulant therapy or with severe disabilities caused by cardiac, pulmonary or malignant diseases, this technique represents an alternative of treatment to radiofrequency thalamotomy.

  18. Compressible or incompressible blend of interacting monodisperse linear polymers near a surface.

    PubMed

    Batman, Richard; Gujrati, P D

    2007-08-28

    We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse linear polymers of two species, A and B, with a third monomeric species C, which may be taken to represent free volume. The mixture is confined between two hard, parallel plates of variable separation whose interactions with A and C may be attractive, repulsive, or neutral, and may be different from each other. The interactions with A and C are all that are required to completely specify the effect of each surface on all three components. We numerically study various density profiles as we move away from the surface, by using the recursive method of Gujrati and Chhajer [J. Chem. Phys. 106, 5599 (1997)] that has already been previously applied to study polydisperse solutions and blends next to surfaces. The resulting density profiles show the oscillations that are seen in Monte Carlo simulations and the enrichment of the smaller species at a neutral surface. The method is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when Monte Carlo simulations are not feasible. The calculations of density profiles usually take less than 20 min on a PC.

  19. 2015 Indonesian fire activity and smoke pollution show persistent non-linear sensitivity to El Niño-induced drought

    NASA Astrophysics Data System (ADS)

    Field, R. D.; van der Werf, G.; Fanin, T.; Fetzer, E. J.; Fuller, R. A.; Jethva, H. T.; Levy, R. C.; Livesey, N. J.; Luo, M.; Torres, O.; Worden, H. M.

    2016-12-01

    The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for two months. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have non-linear sensitivity to dry conditions during prolonged periods with less than 4mm/day of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will re-occur during future droughts, usually associated with El Niño events. Characterization of this signifcant event was only possible with EOS data, from the A-train instruments especially.

  20. Chronic activation of plasma renin is log-linearly related to dietary sodium and eliminates natriuresis in response to a pulse change in total body sodium.

    PubMed

    Kjolby, Mads; Bie, Peter

    2008-01-01

    Responses to acute sodium loading depend on the load and on the level of chronic sodium intake. To test the hypothesis that an acute step increase in total body sodium (TBS) elicits a natriuretic response, which is dependent on the chronic level of TBS, we measured the effects of a bolus of NaCl during different low-sodium diets spanning a 25-fold change in sodium intake on elements of the renin-angiotensin-aldosterone system (RAAS) and on natriuresis. To custom-made, low-sodium chow (0.003%), NaCl was added to provide four levels of intake, 0.03-0.75 mmol.kg(-1).day(-1) for 7 days. Acute NaCl administration increased PV (+6.3-8.9%) and plasma sodium concentration (~2%) and decreased plasma protein concentration (-6.4-8.1%). Plasma ANG II and aldosterone concentrations decreased transiently. Potassium excretion increased substantially. Sodium excretion, arterial blood pressure, glomerular filtration rate, urine flow, plasma potassium, and plasma renin activity did not change. The results indicate that sodium excretion is controlled by neurohumoral mechanisms that are quite resistant to acute changes in plasma volume and colloid osmotic pressure and are not down-regulated within 2 h. With previous data, we demonstrate that RAAS variables are log-linearly related to sodium intake over a >250-fold range in sodium intake, defining dietary sodium function lines that are simple measures of the sodium sensitivity of the RAAS. The dietary function line for plasma ANG II concentration increases from theoretical zero at a daily sodium intake of 17 mmol Na/kg (intercept) with a slope of 16 pM increase per decade of decrease in dietary sodium intake.

  1. Linear stability of layered two-phase flows through parallel soft-gel-coated walls

    NASA Astrophysics Data System (ADS)

    Dinesh, B.; Pushpavanam, S.

    2017-07-01

    The linear stability of layered two-phase Poiseuille flows through soft-gel-coated parallel walls is studied in this work. The focus is on determining the effect of the elastohydrodynamic coupling between the fluids and the soft-gel layers on the different instabilities observed in flows between parallel plates. The fluids are assumed Newtonian and incompressible, while the soft gels are modeled as linear viscoelastic solids. A long-wave asymptotic analysis is used to obtain an analytical expression for the growth rate of the disturbances. A Chebyshev collocation method is used to numerically solve the general linearized equations. Three distinct instability modes are identified in the flow: (a) a liquid-liquid long-wave mode; (b) a liquid-liquid short-wave mode; (c) a gel-liquid short-wave mode. The effect of deformability of the soft gels on these three modes is analyzed. From the long-wave analysis of the liquid-liquid mode a stability map is obtained, in which four different regions are clearly demarcated. It is shown that introducing a gel layer near the more viscous fluid has a predominantly stabilizing effect on this mode seen in flows between rigid plates. For parameters where this mode is stable for flow between rigid plates, introducing a gel layer near the less viscous and thinner fluid has a predominantly destabilizing effect. The liquid-liquid short-wave mode is destabilized by the introduction of soft-gel layers. Additional instability modes at the gel-liquid interfaces induced by the deformability of the soft-gel layers are identified. We show that these can be controlled by varying the thickness of the gel layers. Insights into the physical mechanism driving different instabilities are obtained using an energy budget analysis.

  2. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

    PubMed

    Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-01-01

    Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively.

  3. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  4. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  5. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  6. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  7. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  8. Linear shaped charge

    DOEpatents

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  9. IR Linearity Monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2012-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.

  10. IR linearity monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2013-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.

  11. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  12. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2002-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to similar industrial uses. Advantageous features of the electrohydraulic linear actuators with respect to shortcomings of prior electrohydraulic linear actuators are described.

  13. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  14. Understanding Linear Functions and Their Representations

    ERIC Educational Resources Information Center

    Wells, Pamela J.

    2015-01-01

    Linear functions are an important part of the middle school mathematics curriculum. Students in the middle grades gain fluency by working with linear functions in a variety of representations (NCTM 2001). Presented in this article is an activity that was used with five eighth-grade classes at three different schools. The activity contains 15 cards…

  15. Understanding Linear Functions and Their Representations

    ERIC Educational Resources Information Center

    Wells, Pamela J.

    2015-01-01

    Linear functions are an important part of the middle school mathematics curriculum. Students in the middle grades gain fluency by working with linear functions in a variety of representations (NCTM 2001). Presented in this article is an activity that was used with five eighth-grade classes at three different schools. The activity contains 15 cards…

  16. Computational and experimental progress on laser-activated gas avalanche switches for broadband, high-power electromagnetic pulse generation

    SciTech Connect

    Mayhall, D.J.; Yee, J.H. ); Villa, F. )

    1990-09-01

    The gas avalanche switch, a high-voltage, picosecond-speed switch, has been proposed. The basic switch consists of pulse-charged electrodes, immersed in a high-pressure (7--800 atm) gas. An avalanche discharge is induced in the gas between the electrodes by ionization from a picosecond-scale laser pulse. The avalanching electrons move toward the anode, causing the applied voltage to collapse in picoseconds. This voltage collapse, if rapid enough, generates electromagnetic waves. A two-dimensional (2D), finite difference computer code solves Maxwell's equations for transverse magnetic modes for rectilinear electrodes between parallel plate conductors, along with electron conservation equations for continuity, momentum, and energy. Collision frequencies for ionization and momentum and energy transfer to neutral molecules are assumed to scale linearly with neutral pressure. Electrode charging and laser-driven electron deposition are assumed to be instantaneous. Code calculations are done for a pulse generator geometry, consisting of an 0.7 mm wide by 0.8 mm high, beveled, rectangular center electrode between grounded parallel plates at 2 mm spacing in air. 17 refs., 12 figs., 2 tabs.

  17. Linear Colliders: Achieving High Luminosity

    NASA Astrophysics Data System (ADS)

    Dugan, Gerald

    2002-04-01

    Four styles of linear collider are under active consideration by the high energy physics community as candidates for the next machine at the energy frontier. The four concepts (CLIC, the C-band linear collider, NLC/JLC and TESLA) differ widely in technology but share similar goals for energy and luminosity. The luminosity goal is more than three orders of magntiude larger than what has been acheived at the SLC. Nevertheless, as a result of many years of world-wide accelerator R&D efforts, feasible designs now exist for machines capable of reaching this goal. This talk will review the methods proposed by each linear collider concept to attain its luminosity goal. The most challenging issues facing each concept will be outlined and compared, and the areas requiring further R&D efforts will be noted.

  18. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  19. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  20. Characteristics of recursive backstepping algorithm and active damping of oscillations in feedback linearization for electromechanical system with extended stability analysis and perturbation rejection.

    PubMed

    Anand, V; Narendran, R

    2016-09-01

    In this paper, a technique for estimation of state variables and control of a class of electromechanical system is proposed. Initially, an attempt is made on rudimentary pole placement technique for the control of rotor position and angular velocity profiles of Permanent Magnet Stepper Motor. Later, an alternative approach is analyzed using feedback linearization method to reduce the error in tracking performances. A damping control scheme was additionally incorporated into the feedback linearization system in order to nullify the persistent oscillations present in the system. Furthermore, a robust backstepping controller with high efficacy is put forth to enhance the overall performance and to carry out disturbance rejection. The predominant advantage of this control technique is that it does not require the DQ Transformation of the motor dynamics. A Lyapunov candidate was employed to ensure global asymptotical stability criterion. Also, a nonlinear observer is presented to estimate the unknown states namely load torque and rotor angular velocity, even under load uncertainty conditions. Finally, the performances of all the aforementioned control schemes and estimation techniques are compared and analyzed extensively through simulation.

  1. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  2. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  3. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  4. Recombineering linear BACs.

    PubMed

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  5. Linear cochlear mechanics.

    PubMed

    Zweig, George

    2015-08-01

    An active, three-dimensional, short-wavelength model of cochlear mechanics is derived from an older, one-dimensional, long-wavelength model containing time-delay forces. Remarkably, the long-wavelength model with nonlocal temporal interactions behaves like a short-wavelength model with instantaneous interactions. The cochlear oscillators are driven both by the pressure and its time derivative, the latter presumably a proxy for forces contributed by outer hair cells. The admittance in the short-wavelength region is used to find an integral representation of the transfer function valid for all wavelengths. There are only two free parameters: the pole position in the complex frequency plane of the admittance, and the slope of the transfer-function phase at low frequencies. The new model predicts a dip in amplitude and a corresponding rapid drop in phase, past the peak of the traveling wave. Linear models may be compared by their wavelengths, and if they have the same dimension, by the singularity structure of their admittances.

  6. An Activity-Based Non-Linear Regression Model of Sopite Syndrome and its Effects on Crew Performance in High-Speed Vessel Operations

    DTIC Science & Technology

    2009-03-01

    the resulting performance degradation. Furthermore, wrist actigraphy - based activity measurement may be a good objective measure for Sopite syndrome...OF PAGES 101 14. SUBJECT TERMS Sopite syndrome, motion sickness, wrist actigraphy 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...Mendlowicz et al. (1999) investigation suggests that in a non-psychiatric sample daytime activity level, as assessed by wrist actigraphy , can be

  7. Linear Equations: Equivalence = Success

    ERIC Educational Resources Information Center

    Baratta, Wendy

    2011-01-01

    The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…

  8. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  9. Linearization of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Kreutz, Kenneth

    1987-01-01

    Four nonlinear control schemes equivalent. Report discusses theory of nonlinear feedback control of robot manipulator, emphasis on control schemes making manipulator input and output behave like decoupled linear system. Approach, called "exact external linearization," contributes efforts to control end-effector trajectories, positions, and orientations.

  10. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  11. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  12. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  13. Polysaccharides in fungi. XXXVII. Immunomodulating activities of carboxymethylated derivatives of linear (1-->3)-alpha-D-glucans extracted from the fruiting bodies of Agrocybe cylindracea and Amanita muscaria.

    PubMed

    Yoshida, I; Kiho, T; Usui, S; Sakushima, M; Ukai, S

    1996-01-01

    Immunomodulating activities of three carboxymethylated derivatives (AG-AL-CMS, AG-AL-CMI, and AM-APP-CM) of linear (1-->3)-alpha-D-glucans from Agrocybe cylindracea and Amanita muscaria were evaluated with murine peritoneal macrophages playing an important role in tumor immunity. The ratio of macrophages in peritoneal exudate cells increased more than 50% after the administration of three carboxymethylated (1-->3)-alpha-D-glucans. These carboxymethylated (1-->3)-alpha-D-glucans exhibited higher potentiating activities for macrophages than carboxymethylated linear (1-->3)-beta-D-glucan (CMPS) in the potency of reduction of nitro blue tetrazolium, products of nitric oxide and the soluble cytotoxic factor, the amount of glucose consumption, and the activation of acid phosphatase. AG-AL-CMS, AG-AL-CMI, and AM-APP-CM were found to induce the tumor regressing factor in mouse serum, although the ability of the induction of this factor was weaker than that of CMPS. The reticuloendothelial system-potentiating activation of three carboxymethylated alpha-D-glucans was similar to that of the carboxymethylated beta-D-glucan. AG-AL-CMS and AG-AL-CMI, but not AM-APP-CM, were suggested to possess a higher-order structure, resulting from the formation of a fluorescent complex with aniline blue.

  14. Examining Non-Linear Associations between Accelerometer-Measured Physical Activity, Sedentary Behavior, and All-Cause Mortality Using Segmented Cox Regression

    PubMed Central

    Lee, Paul H.

    2016-01-01

    Healthy adults are advised to perform at least 150 min of moderate-intensity physical activity weekly, but this advice is based on studies using self-reports of questionable validity. This study examined the dose-response relationship of accelerometer-measured physical activity and sedentary behaviors on all-cause mortality using segmented Cox regression to empirically determine the break-points of the dose-response relationship. Data from 7006 adult participants aged 18 or above in the National Health and Nutrition Examination Survey waves 2003–2004 and 2005–2006 were included in the analysis and linked with death certificate data using a probabilistic matching approach in the National Death Index through December 31, 2011. Physical activity and sedentary behavior were measured using ActiGraph model 7164 accelerometer over the right hip for 7 consecutive days. Each minute with accelerometer count <100; 1952–5724; and ≥5725 were classified as sedentary, moderate-intensity physical activity, and vigorous-intensity physical activity, respectively. Segmented Cox regression was used to estimate the hazard ratio (HR) of time spent in sedentary behaviors, moderate-intensity physical activity, and vigorous-intensity physical activity and all-cause mortality, adjusted for demographic characteristics, health behaviors, and health conditions. Data were analyzed in 2016. During 47,119 person-year of follow-up, 608 deaths occurred. Each additional hour per day of sedentary behaviors was associated with a HR of 1.15 (95% CI 1.01, 1.31) among participants who spend at least 10.9 h per day on sedentary behaviors, and each additional minute per day spent on moderate-intensity physical activity was associated with a HR of 0.94 (95% CI 0.91, 0.96) among participants with daily moderate-intensity physical activity ≤14.1 min. Associations of moderate physical activity and sedentary behaviors on all-cause mortality were independent of each other. To conclude, evidence from

  15. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  16. Theoretical and experimental investigation of heat transfer by laminar natural convection between parallel plates

    NASA Technical Reports Server (NTRS)

    Lietzke, A F

    1955-01-01

    Results are presented of a theoretical and experimental investigation of heat transfer involving laminar natural convection of fluids enclosed between parallel walls oriented in the direction of the body force, where one wall is heated uniformly, and the other is cooled uniformly. For the experimental work, parallel walls were simulated by using an annulus with an inner-to-outer diameter ratio near 1. The results of the theoretical investigation are presented in the form of equations for the velocity and temperature profiles and the ratio of actual temperature drop across the fluid to the temperature drop for pure conduction. No experimental measurements were made of the velocity and temperature profiles, but the experimental results are compared with theory on the basis of the ratio of the actual temperature drop to the temperature drop for pure conduction. Good agreement was obtained between theory and experiment for axial temperature gradients of 10 degrees F. per foot or larger.

  17. CHICO2, a two-dimensional pixelated parallel-plate avalanche counter

    DOE PAGES

    Wu, C. Y.; Cline, D.; Hayes, A.; ...

    2016-01-27

    CHICO2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and Φ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm2208Pb target at the sub-barrier energy, CHICO2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ and 2.47° in Φ. Thismore » achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm 2). The combined angular resolution of GRETINA/CHICO2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.« less

  18. CHICO2, a two-dimensional pixelated parallel-plate avalanche counter

    SciTech Connect

    Wu, C. Y.; Cline, D.; Hayes, A.; Flight, R. S.; Melchionna, A. M.; Zhou, C.; Lee, I. Y.; Swan, D.; Fox, R.; Anderson, J. T.

    2016-01-27

    CHICO2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and Φ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm2208Pb target at the sub-barrier energy, CHICO2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ and 2.47° in Φ. This achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm 2). The combined angular resolution of GRETINA/CHICO2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.

  19. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    SciTech Connect

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2012-03-15

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  20. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams.

    PubMed

    Muir, B R; McEwen, M R; Rogers, D W O

    2012-03-01

    To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k(Q) factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k(Q) factors. Systematic uncertainties in Monte Carlo calculated k(Q) factors are investigated by varying material properties and chamber dimensions. Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k(Q) factors were consistent on average within 0.17%. Chamber-to-chamber variations in k(Q) factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k(Q) factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k(Q) factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k(Q) factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  1. Specific heat critical amplitudes and the approach to bulk criticality in parallel plate geometries

    NASA Astrophysics Data System (ADS)

    Leite, M. M.; Nemirovsky, A. M.; Coutinho-Filho, M. D.

    1992-02-01

    We calculate the universal ration A+/ A- of the specific heat critical amplitudes of an Ising system confined in a layered geometry of thickness L in the regime L/ξ≥1, where ξ is the bulk critical correlation length. Using field-theoretic renormalization-group techniques we determine A+/ A- under various surface boundary conditions for the local field.

  2. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    SciTech Connect

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  3. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE PAGES

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  4. On squeezed flow of couple stress nanofluid between two parallel plates

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Sajjad, Rai; Alsaedi, Ahmed; Muhammad, Taseer; Ellahi, Rahmat

    The present communication provides an analytical treatment of magnetohydrodynamic (MHD) squeezing flow of couple stress nanomaterial between two parallel surfaces. Constitutive relations of couple stress fluid are used in the problem formulation. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Couple stress fluid is electrically conducted subject to time-dependent applied magnetic field. The governing partial differential system is converted into the set of nonlinear ordinary differential system through appropriate transformations. The resulting nonlinear systems have been computed through the homotopic approach. Behaviors of various sundry parameters on velocity, temperature and concentration fields are studied in detail. Further the skin friction and heat and mass transfer rates are also computed and analyzed.

  5. A new look at natural convection from isothermal vertical parallel plates

    SciTech Connect

    Li, H.H.; Chung, B.T.F.

    1996-12-31

    Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.

  6. Analysis of the Mutual Inductance between Two Parallel Plates for the Detection of Surface Flaws

    NASA Technical Reports Server (NTRS)

    Namking, M.; Clendenin, C. G.; Fulton, J. P.; Wincheski, B.

    1992-01-01

    There has recently been much effort behind the development of NDE methods applicable to the detection of surface/subsurface flaws in thin metallic structures with a rapid scan capability. One such method, an electromagnetic technique using a current-sheet parallel to the surface of a specimen in order to induce eddy current flow shows a high potential for satisfying the rapid scan requirement stated above. The technique is based on the detection of flaw-induced magnetic field components normal to the specimen surface by an appropriate detection mechanism positioned above the current-sheet as shown schematically in Fig. 1. As indicated in this figure, the current-sheet separates the source of the normal magnetic field components from the detector in such a way that the electric and magnetic properties of the current-sheet can be a major factor affecting the strength of the detected signals. The purpose of the present study is, therefore, to perform a detailed investigation on the effect of the material properties of the current-sheet on the detected signal strength and to establish a simple theoretical model for the detection mechanism.

  7. CHICO2, a two-dimensional pixelated parallel-plate avalanche counter

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Cline, D.; Hayes, A.; Flight, R. S.; Melchionna, A. M.; Zhou, C.; Lee, I. Y.; Swan, D.; Fox, R.; Anderson, J. T.

    2016-04-01

    CHICO2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and ϕ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm2208Pb target at the sub-barrier energy, CHICO2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ and 2.47° in ϕ. This achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm2). The combined angular resolution of GRETINA/CHICO2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.

  8. An instrument to control parallel plate separation for nanoscale flow control

    NASA Astrophysics Data System (ADS)

    White, J.; Ma, H.; Lang, J.; Slocum, A.

    2003-11-01

    The handling of extremely small samples of gases and liquids has long been a subject of research among biologists, chemists, and engineers. A few scientific instruments, notably the surface force apparatus, have been used extensively to investigate very short-range molecular phenomena. This article describes the design, fabrication, and characterization of an easily manufactured, gas and liquid flow control device called the Nanogate. The Nanogate controls liquid flows under very high planar confinement, wherein the liquid film is, in one dimension, on the scale of nanometers, but is on the scale of hundreds of microns in its other dimensions. The liquid film is confined between a silica (Pyrex) surface with a typical roughness of Ra≈6 nm and a gold-covered silicon surface with a typical roughness of Ra≈2 nm. During the manufacturing process, the Pyrex flows and conforms to the gold-covered silicon surface, improving the mating properties of the two surfaces. The fluid film thickness can be controlled within 2 Å, from sub-10 nm up to 1 μm. Control of helium gas flow rates in the 10-9 atm cm3/s range, and sub-nl/s flow rates of water and methanol have been predicted and experimentally verified.

  9. Parallel-Plate Transmission Line Type of EMP Simulators: Systematic Review and Recommendations.

    DTIC Science & Technology

    1980-05-01

    have condensed the available information on two types of pulsers (Van de Graaff and Marx ) with the view of providing a working knowledge of these EMP...Pulser equivalent circuit 20 11.3 Marx Generator 22 a) Equivalent circuit 25 III CONICAL-PLATE TRANSMISSION LINES 31 I11.1 Impedance 33 111.2 Fields 39...Graaff pulse generator (used, for instance, in the ARES facility) and the Marx pulse generator employed in the ATLAS I facility. This section furnishes

  10. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  11. The interaction energy between two parallel plates with constant surface charge density.

    PubMed

    Wang, Haoping; Hou, Chuangye; Jin, Jun

    2003-07-15

    On the basis of Langmuir's suggestion we simplify the Poisson-Boltzmann equation and derive the relation of surface potential, potential midway, and the plate distance. Thus we obtain the interaction force and energy equations between two dissimilar plates in the case of constant surface charge density. Agreement with the exact numerical values of the interaction of dissimilar plates is good. This method may not only apply to the cases of high constant potential but to the case of high constant charge density.

  12. Temperature-stable parallel-plate dielectric cell for broadband liquid impedance measurements

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Chandra, Satyan; Mellor, Brett L.; Arellano, Jesus

    2010-12-01

    A liquid impedance cell for broadband impedance measurements up to 110 MHz is presented. The design incorporates temperature control and minimizes parasitic capacitance and inductance. The cell is simple to fabricate and uses chemically resistant materials, stainless steel, and Teflon. This dielectric cell can be used in a variety of liquid measurements, particularly those related to impedance measurements of biological objects in solution. Temperature control is illustrated in measurements of the permittivity of deionized water from 5 to 55 °C. Numerical fitting procedures employed on the relaxation curves indicate good agreement with previous studies on beta-lactoglobulin and hen lysozyme. Titration capability is demonstrated through dielectric titration of hen lysozyme and beta-lactoglobulin.

  13. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  14. Lateral distribution of pulse height in a parallel-plate avalanche counter

    SciTech Connect

    Wu, C. Y.; Cline, D.; Kwan, E.; Chyzh, A.; Hayes, A.; Lee, I. Y.; Swan, D.

    2011-05-13

    The nuclear γ-ray spectroscopy enters a new era when the first engineering run of GRETINA [1], a new generation of γ-ray tracking arrays, was successfully carried out at LBNL in early April, 2011. A parallel effort has been setup to develop the auxiliary charged-particle detector arrays with a matching position resolution to fully exploit the potential of GRETINA. Improving the position resolution of the existing charged-particle detector array, CHICO [2], is a part of this coordinated effort. The proposal to upgrade CHICO was approved by DOE/SC at the end of FY10. The goal is to redesign the cathode board and amplifier to improve the resolution for both and coordinates to better than one degree to match that of GRETINA. This project is scheduled to complete by the summer of 2012.

  15. The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation.

    PubMed

    Hanrahan, Orla; Webb, Helena; O'Byrne, Robert; Brabazon, Elaine; Treumann, Achim; Sunter, Jack D; Carrington, Mark; Voorheis, H Paul

    2009-06-01

    Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.

  16. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.

    PubMed

    Li, Mei-Syue; Wang, Reuben; Fu Kuo, Dave Ta; Shih, Yang-Hsin

    2017-03-22

    Accurate prediction of the sorption coefficients of volatile organic compounds (VOCs) on carbon nanotubes (CNTs) is of major importance for developing an effective VOC removal process and risk assessment of released nanomaterial-carrying contaminants. The linear free energy relationship (LFER) approach was applied to investigate the adsorption mechanisms of VOCs on multiwalled CNTs (MWCNTs). The gas-solid partition coefficients (log Kd) of 17 VOCs were determined at 0%, 55%, and 90% relative humidity (RH). The cavity/dispersion interaction is generally the most influential adsorption mechanism for all RH cases. The hydrogen-accepting interactions declined but with constant hydrogen-donating interactions during the increase of RH, suggesting that the acidity of VOC was important in forming sorptive interaction with the MWCNT surface. Moreover, the comparison of log Kd of VOCs on MWCNTs and other sorbents revealed that the sorption performance of MWCNTs is much more stable over a wider range of RHs due to better site availability and site quality. Furthermore, for all 6 adsorbents in all RHs, the positive contribution of hydrogen bonding ability was found as compared to the negative one found for sorbents completely in water, indicating that the hydrogen-bond donor and acceptor on the sorbent surface contribute to the sorption in the gas phase. In conclusion, the LFER-derived coefficients can be useful in predicting the performance of VOC adsorption on adsorbents and in facilitating the design of efficient VOC removal systems.

  17. Piecewise Linear Slope Estimation.

    PubMed

    Ingle, A N; Sethares, W A; Varghese, T; Bucklew, J A

    2014-11-01

    This paper presents a method for directly estimating slope values in a noisy piecewise linear function. By imposing a Markov structure on the sequence of slopes, piecewise linear fitting is posed as a maximum a posteriori estimation problem. A dynamic program efficiently solves this by traversing a linearly growing trellis. The alternating maximization algorithm (a kind of pseudo-EM method) is used to estimate the model parameters from data and its convergence behavior is analyzed. Ultrasound shear wave imaging is presented as a primary application. The algorithm is general enough for applicability in other fields, as suggested by an application to the estimation of shifts in financial interest rate data.

  18. Piecewise Linear Slope Estimation

    PubMed Central

    Sethares, W. A.; Bucklew, J. A.

    2015-01-01

    This paper presents a method for directly estimating slope values in a noisy piecewise linear function. By imposing a Markov structure on the sequence of slopes, piecewise linear fitting is posed as a maximum a posteriori estimation problem. A dynamic program efficiently solves this by traversing a linearly growing trellis. The alternating maximization algorithm (a kind of pseudo-EM method) is used to estimate the model parameters from data and its convergence behavior is analyzed. Ultrasound shear wave imaging is presented as a primary application. The algorithm is general enough for applicability in other fields, as suggested by an application to the estimation of shifts in financial interest rate data. PMID:26229417

  19. Optimal Linear Control.

    DTIC Science & Technology

    1979-12-01

    OPTIMAL LINEAR CONTROL C.A. HARVEY M.G. SAFO NOV G. STEIN J.C. DOYLE HONEYWELL SYSTEMS & RESEARCH CENTER j 2600 RIDGWAY PARKWAY j [ MINNEAPOLIS...RECIPIENT’S CAT ALC-’ W.IMIJUff’? * J~’ CR2 15-238-4F TP P EI)ŕll * (~ Optimal Linear Control ~iOGRPR UBA m a M.G Lnar o Con_ _ _ _ _ _ R PORT__ _ _ I RE...Characterizations of optimal linear controls have been derived, from which guides for selecting the structure of the control system and the weights in

  20. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  1. Linear Boom Actuator

    NASA Technical Reports Server (NTRS)

    Koch, E. F.

    1985-01-01

    Actuator stabilizes spacecraft spin by varying length of support struts that hold spacecraft booms. Variation changes spin axis and controls wobble. Linear actuator controls spacecraft wobble applicable in rotating systems on Earth.

  2. Isolated linear blaschkoid psoriasis.

    PubMed

    Nasimi, M; Abedini, R; Azizpour, A; Nikoo, A

    2016-10-01

    Linear psoriasis (LPs) is considered a rare clinical presentation of psoriasis, which is characterized by linear erythematous and scaly lesions along the lines of Blaschko. We report the case of a 20-year-old man who presented with asymptomatic linear and S-shaped erythematous, scaly plaques on right side of his trunk. The plaques were arranged along the lines of Blaschko with a sharp demarcation at the midline. Histological examination of a skin biopsy confirmed the diagnosis of psoriasis. Topical calcipotriol and betamethasone dipropionate ointments were prescribed for 2 months. A good clinical improvement was achieved, with reduction in lesion thickness and scaling. In patients with linear erythematous and scaly plaques along the lines of Blaschko, the diagnosis of LPs should be kept in mind, especially in patients with asymptomatic lesions of late onset. © 2016 British Association of Dermatologists.

  3. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase.

    PubMed

    Foumani, Maryam; Vuong, Thu V; MacCormick, Benjamin; Master, Emma R

    2015-01-01

    The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30% and on insoluble crystalline as well as amorphous cellulose by over 50%.

  4. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase

    PubMed Central

    Foumani, Maryam; Vuong, Thu V.; MacCormick, Benjamin; Master, Emma R.

    2015-01-01

    The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %. PMID:25932926

  5. Linear Resonance Cooler.

    DTIC Science & Technology

    1985-04-01

    for a Stirling cycle cryocooler . 26 * .*o .. * COMPRESSOR MOTOR FORCE VERSUS ROTOR AXIAL POSITION COMPRESSOR P-V DIAGRAM *COMPRESSOR MOTOR COMPRESSOR...potential. However, the limited test program has demonstrated the application of linear motor drive technology to a Stirling cycle cryocooler design. L...Ace-ss Ion& For flTIC TAB - TABLE OF CONTENTS TITLE IPAGE - 2. DETAILED DESIGN OF LINEAR RESONANCE CRYOCOOLER ......... 3 2.2 Expander

  6. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  7. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  8. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  9. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells.

    PubMed

    Travaglia, Alessio; Pietropaolo, Adriana; Di Martino, Rossana; Nicoletti, Vincenzo G; La Mendola, Diego; Calissano, Pietro; Rizzarelli, Enrico

    2015-08-19

    Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.

  10. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    SciTech Connect

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfected cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin enhanced

  11. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  12. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James; Selinsky, T.

    2002-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to similar industrial uses. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The shortcomings are the following: They perform unreliably and inconsistently as positioning devices. Their capabilities for end-of-stroke buffering (that is, deceleration to gentle stops at designated stopping positions) range from unsatisfactory to nonexistent, with consequent potential for inducing catastrophic failures. It takes long times to modify standard actuators to meet specifications, and the costs of such modifications are high. In the cases of actuators equipped with fail-safe shutdown systems, the stroking times of these systems cannot be adjusted in the field.

  13. Linear resonance cooler

    NASA Astrophysics Data System (ADS)

    1985-04-01

    The contract requires the incorporation of linear drive technology into a cryocooler design meeting the Specification for the US Army 1/4 Watt Common Module Cooler as closely as possible. The Resonant Cryocooler employs a concept using magnetic forces to linearly move dual opposed pistons in the compressor thus eliminating the use of rotary motors, crankshaft, greases and bearings. While not a requirement of the contract, the expander also employs a linear motor to control displacer stroking. This allows for electronic end stopping to mitigate microphonics problems. In addition, the ability to vary the waveform of the displacer motion and its phasing with respect to the compressor pressure wave form in order to optimize performance offers the potential for extending the operational life of the cooler.

  14. Linear encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

  15. Multiple Linear Regression

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    This chapter deals with the multiple linear regression. That is we investigate the situation where the mean of a variable depends linearly on a set of covariables. The noise is supposed to be gaussian. We develop the least squared method to get the parameter estimators and estimates of their precisions. This leads to design confidence intervals, prediction intervals, global tests, individual tests and more generally tests of submodels defined by linear constraints. Methods for model's choice and variables selection, measures of the quality of the fit, residuals study, diagnostic methods are presented. Finally identification of departures from the model's assumptions and the way to deal with these problems are addressed. A real data set is used to illustrate the methodology with software R. Note that this chapter is intended to serve as a guide for other regression methods, like logistic regression or AFT models and Cox regression.

  16. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G.

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm-1) of CO s-cis and s-trans, CH in-plane and out of plane, CHdbnd CH out of plane, lbond2 Cdbnd Crbond2 out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied.

  17. Cryogenic submicron linear actuator

    NASA Astrophysics Data System (ADS)

    Serrano, Javier; Moreno Raso, Javier; González de María, David; Argelaguet Vilaseca, Heribert; Lamensans, Mikel; López Justo, David; Sanz Puig, Violeta

    2010-07-01

    The Cryogenic Submicron Linear Actuator (CSA) is a medium range (+/-5 mm) submicron resolution linear actuator suitable to be used at cryogenic temperature (12K). The unit has been developed for fine positioning use. The unit is based on classic motor-gear concept with nut and screw; different materials and lubrications have been tested for the same design configuration to compare performances. Load capability is above 20N. This paper describes main design features, results of different lubrications tested, tested performances, and main lessons learned.

  18. Hydroxyapatite catalyzed aldol condensation: synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones.

    PubMed

    Subramanian, M; Vanangamudi, G; Thirunarayanan, G

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm(-1)) of CO s-cis and s-trans, CH in-plane and out of plane, CH=CH out of plane, C=C out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Linear Collider Diagnostics

    SciTech Connect

    Ross, Marc

    2000-05-17

    Each major step toward higher energy particle accelerators relies on new technology. Linear colliders require beams of unprecedented brightness and stability. Instrumentation and control technology is the single most critical tool that enables linear colliders to extend the energy reach. In this paper the authors focus on the most challenging aspects of linear collider instrumentation systems. In the Next Linear Collider (NLC), high brightness multibunch e{sup +}/e{sup {minus}} beams, with I{sub {+-}} = 10{sup 12} particles/pulse and sigma{sub x,y} {approximately} 50 x 5 mu-m, originate in damping rings and are subsequently accelerated to several hundred GeV in 2 X-band 11,424 MHz linacs from which they emerge with typical sigma{sub x,y} {approximately} 7 x 1 mu-m. Following a high power collimation section the e{sup +}/e{sup {minus}} beams are focused to sigma{sub x,y} {approximately} 300 x 5 nm at the interaction point. In this paper they review the beam intensity, position and profile monitors (x,y,z), mechanical vibration sensing and stabilization systems, long baseline RF distribution systems and beam collimation hardware.

  20. Resistors Improve Ramp Linearity

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1982-01-01

    Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.

  1. On Solving Linear Recurrences

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  2. Piezoelectric linear actuator

    NASA Technical Reports Server (NTRS)

    Lehrer, S.

    1969-01-01

    Actuator exerts linear force that is controllable and reproducible to microinch tolerance. It is constructed for extremely accurate control of a valve but can also be used as a variable venturi meter, micropositioner, microthruster, and in fluidics and reaction-control systems.

  3. On Solving Linear Recurrences

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  4. Curiosity Front View, Linearized

    NASA Image and Video Library

    2012-08-06

    This is a version of one of the first images taken by a front Hazard-Avoidance camera on NASA Curiosity rover. It was taken through a fisheye wide-angle lens but has been linearized so that the horizon looks flat rather than curved.

  5. Optical linear discriminant functions

    NASA Technical Reports Server (NTRS)

    Casasent, David; Song, Jian-Zhong

    1989-01-01

    The use of computer generated holograms to implement feature extraction operations has been achieved. The optical realization and use of multiple linear discriminant functions on a high-dimensionality feature space for large class pattern recognition is described and initial experimental results are provided.

  6. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  7. METRIC GEOMETRY LINEAR MEASURE.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE (1) THE HISTORY AND MEANING OF LINEAR MEASURE, (2) FINDING THE…

  8. Linear motion valve

    NASA Technical Reports Server (NTRS)

    Chandler, J. A. (Inventor)

    1985-01-01

    The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.

  9. ADS Based on Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Pan, Weimin; Dai, Jianping

    An accelerator-driven system (ADS), which combines a particle accelerator with a subcritical core, is commonly regarded as a promising device for the transmutation of nuclear waste, as well as a potential scheme for thorium-based energy production. So far the predominant choice of the accelerator for ADS is a superconducting linear accelerator (linac). This article gives a brief overview of ADS based on linacs, including the motivation, principle, challenges and research activities around the world. The status and future plan of the Chinease ADS (C-ADS) project will be highlighted and discussed in depth as an example.

  10. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    PubMed Central

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-01-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159

  11. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling.

    PubMed

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L; Emelko, Monica B

    2015-12-11

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or "sag effect" was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  12. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  13. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  14. Relativistic linear restoring force

    NASA Astrophysics Data System (ADS)

    Clark, D.; Franklin, J.; Mann, N.

    2012-09-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke’s law to be the force appearing on the right-hand side of the relativistic expressions: dp/dt or dp/dτ. Either formulation recovers Hooke’s law in the non-relativistic limit. In addition to these two forces, we introduce a form of retardation appropriate for the description of a linear (in displacement) force arising from the interaction of a pair of particles with a relativistic field. The procedure is akin to replacing Coulomb’s law in electromagnetism with a retarded form (the first correction in the full relativistic case). This retardation leads to the expected oscillation, but with amplitude growth in both its relativistic and non-relativistic incarnations.

  15. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  16. Non-linear osmosis

    PubMed Central

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  17. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  18. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  19. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  20. Linear abdominal trauma.

    PubMed

    Danto, L A; Wolfman, E F

    1976-03-01

    Three cases of blunt abdominal trauma are presented to exemplify the mechanism of trauma and the problems of diagnosis associated with any linear blow to the abdomen. The mechanisms of visceral injury are reviewed, and special attention is directed to the abdominal wall injury that can be present in these patients. This injury has special implications in directing the operative approach and repair. An unusual aortic occlusion is described which is peculiar to this type of injury.