Sample records for linear paul trap

  1. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, K.; Che, H.; Ge, Y. P.

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  2. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  3. Use of a Linear Paul Trap to Study Random Noise-Induced Beam Degradation in High-Intensity Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.

    2009-04-10

    A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of themore » noise.« less

  4. Charged particle capturing in air flow by linear Paul trap

    NASA Astrophysics Data System (ADS)

    Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.

    2018-01-01

    The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.

  5. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    NASA Astrophysics Data System (ADS)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  6. Production of Ar{sup q+} ions with a tandem linear Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higaki, H., E-mail: hhigaki@hiroshima-u.ac.jp; Nagayasu, K.; Iwai, T.

    A tandem linear Paul trap was used to create highly charged Argon ions by electron impact ionizations. By improving the operation scheme, the production of Ar{sup 4+} ions was confirmed. Possible improvements for the future experiments with laser cooled Ca{sup +} ions are suggested.

  7. Ion-neutral-atom sympathetic cooling in a hybrid linear rf Paul and magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Goodman, D. S.; Sivarajah, I.; Wells, J. E.; Narducci, F. A.; Smith, W. W.

    2012-09-01

    Long-range polarization forces between ions and neutral atoms result in large elastic scattering cross sections (e.g., ˜106a.u. for Na-Na+ or Na-Ca+ at cold and ultracold temperatures). This suggests that a hybrid ion-neutral trap should offer a general means for significant sympathetic cooling of atomic or molecular ions. We present simion 7.0 simulation results concerning the advantages and limitations of sympathetic cooling within a hybrid trap apparatus consisting of a linear rf Paul trap concentric with a Na magneto-optical trap (MOT). This paper explores the impact of various heating mechanisms on the hybrid system and how parameters related to the MOT, Paul trap, number of ions, and ion species affect the efficiency of the sympathetic cooling.

  8. A Long DNA Segment in a Linear Nanoscale Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Sony nmn; Guan, Weihau; Reed, Mark A

    2009-01-01

    We study the dynamics of a linearly distributed line charge such as single stranded DNA (ssDNA) in a nanoscale, linear 2D Paul trap in vacuum. Using molecular dynamics simulations we show that a line charge can be trapped effectively in the trap for a well defined range of stability parameters. We investigated (i) a flexible bonded string of charged beads and (ii) a ssDNA polymer of variable length, for various trap parameters. A line charge undergoes oscillations or rotations as it moves, depending on its initial angle, the position of the center of mass and the velocity. The stability regionmore » for a strongly bonded line of charged beads is similar to that of a single ion with the same charge to mass ratio. Single stranded DNA as long as 40 nm does not fold or curl in the Paul trap, but could undergo rotations about the center of mass. However, we show that a stretching field in the axial direction can effectively prevent the rotations and increase the confinement stability.« less

  9. Measurement of isotope ratio of Ca{sup +} ions in a linear Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Y.; Minamino, K.; Nagamoto, D.

    2009-03-17

    Measurement of isotope ratios of Calcium is very useful in many fields. So we demonstrated the measurement of isotope ratios of {sup 40}Ca{sup +}(abundance 96.4%) to {sup 44}Ca{sup +}(2.09%) ions in a linear Paul trap with several laser lights tuning to the isotope shifts. And we found that the experimental parameters had large influences on the measurement of the isotope ratios.

  10. Ion Trap Quantum Computing

    DTIC Science & Technology

    2011-12-01

    quantum computer architecture schemes, but there are several problems that will be discussed later. 15 IV. ION TRAPS Wolfgang Paul was the first...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic-parabolic...Although it does not apply to linear traps, it is useful to understand the interaction between the Coulomb force and the repulsive quantum-mechanical Pauli

  11. Nonlinear resonances in linear segmented Paul trap of short central segment.

    PubMed

    Kłosowski, Łukasz; Piwiński, Mariusz; Pleskacz, Katarzyna; Wójtewicz, Szymon; Lisak, Daniel

    2018-03-23

    Linear segmented Paul trap system has been prepared for ion mass spectroscopy experiments. A non-standard approach to stability of trapped ions is applied to explain some effects observed with ensembles of calcium ions. Trap's stability diagram is extended to 3-dimensional one using additional ∆a besides standard q and a stability parameters. Nonlinear resonances in (q,∆a) diagrams are observed and described with a proposed model. The resonance lines have been identified using simple simulations and comparing the numerical and experimental results. The phenomenon can be applied in electron-impact ionization experiments for mass-identification of obtained ions or purification of their ensembles. This article is protected by copyright. All rights reserved.

  12. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trapmore » and with the amplitude of the off-resonance external ac field.« less

  13. Intrinsic anharmonic effects on the phonon frequencies and effective spin-spin interactions in a quantum simulator made from trapped ions in a linear Paul trap

    NASA Astrophysics Data System (ADS)

    McAneny, M.; Freericks, J. K.

    2014-11-01

    The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.

  14. Dynamics and control of fast ion crystal splitting in segmented Paul traps (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2014-07-09

    operations, in addition to laser - or microwave-driven logic gates. Essential shuttling operations are splitting and merging of linear ion crystals. It is...from stray charges, laser induced charging of the trap [19], trap geometry imperfections or residual ponderomotive forces along the trap axis. The...transfer expressed as the mean phonon number Δ ω¯ = n E / f . We distinguish several regimes of laser –ion interaction: (i) if the vibrational

  15. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method.more » Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.« less

  16. Rotational dynamics of a diatomic molecular ion in a Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemloo, A.; Dion, C. M., E-mail: claude.dion@umu.se

    We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical and the other where the center-of-mass motion is treated classically, while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion and that it departs from the Mathieu equation solution found for atomic ions. For themore » case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.« less

  17. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.

    PubMed

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-13

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0].

  18. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less

  19. Generalized Dicke Nonequilibrium Dynamics in Trapped Ions

    NASA Astrophysics Data System (ADS)

    Genway, Sam; Li, Weibin; Ates, Cenap; Lanyon, Benjamin P.; Lesanovsky, Igor

    2014-01-01

    We explore trapped ions as a setting to investigate nonequilibrium phases in a generalized Dicke model of dissipative spins coupled to phonon modes. We find a rich dynamical phase diagram including superradiantlike regimes, dynamical phase coexistence, and phonon-lasing behavior. A particular advantage of trapped ions is that these phases and transitions among them can be probed in situ through fluorescence. We demonstrate that the main physical insights are captured by a minimal model and consider an experimental realization with Ca+ ions trapped in a linear Paul trap with a dressing scheme to create effective two-level systems with a tunable dissipation rate.

  20. Measuring the charge density of a tapered optical fiber using trapped microparticles.

    PubMed

    Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji

    2016-03-07

    We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.

  1. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodesmore » were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.« less

  2. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  3. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  4. Ion-trajectory analysis for micromotion minimization and the measurement of small forces

    NASA Astrophysics Data System (ADS)

    Gloger, Timm F.; Kaufmann, Peter; Kaufmann, Delia; Baig, M. Tanveer; Collath, Thomas; Johanning, Michael; Wunderlich, Christof

    2015-10-01

    For experiments with ions confined in a Paul trap, minimization of micromotion is often essential. In order to diagnose and compensate micromotion we have implemented a method that allows for finding the position of the radio-frequency (rf) null reliably and efficiently, in principle, without any variation of direct current (dc) voltages. We apply a trap modulation technique and focus-scanning imaging to extract three-dimensional ion positions for various rf drive powers and analyze the power dependence of the equilibrium position of the trapped ion. In contrast to commonly used methods, the search algorithm directly makes use of a physical effect as opposed to efficient numerical minimization in a high-dimensional parameter space. Using this method we achieve a compensation of the residual electric field that causes excess micromotion in the radial plane of a linear Paul trap down to 0.09 Vm-1 . Additionally, the precise position determination of a single harmonically trapped ion employed here can also be utilized for the detection of small forces. This is demonstrated by determining light pressure forces with a precision of 135 yN. As the method is based on imaging only, it can be applied to several ions simultaneously and is independent of laser direction and thus well suited to be used with, for example, surface-electrode traps.

  5. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2013-07-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  6. System and method for trapping and measuring a charged particle in a liquid

    DOEpatents

    Reed, Mark A; Krstic, Predrag S; Guan, Weihua; Zhao, Xiongce

    2012-10-23

    A system and method for trapping a charged particle is disclosed. A time-varying periodic multipole electric potential is generated in a trapping volume. A charged particle under the influence of the multipole electric field is confined to the trapping volume. A three electrode configuration giving rise to a 3D Paul trap and a four planar electrode configuration giving rise to a 2D Paul trap are disclosed.

  7. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  8. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandstätter, B., E-mail: birgit.brandstaetter@uibk.ac.at; Schüppert, K.; Casabone, B.

    2013-12-15

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvaturemore » and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.« less

  9. Surface-electrode point Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tony Hyun; Herskind, Peter F.; Chuang, Isaac L.

    2010-10-15

    We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single {sup 88}Sr{sup +} ions over an ion height range of 200-1000 {mu}m for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model.

  10. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  11. Asymptotic solution of Fokker-Planck equation for plasma in Paul traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kushal

    2010-05-15

    An exact analytic solution of the Vlasov equation for the plasma distribution in a Paul trap is known to be a Maxwellian and thus, immune to collisions under the assumption of infinitely fast relaxation [K. Shah and H. S. Ramachandran, Phys. Plasmas 15, 062303 (2008)]. In this paper, it is shown that even for a more realistic situation of finite time relaxation, solutions of the Fokker-Planck equation lead to an equilibrium solution of the form of a Maxwellian with oscillatory temperature. This shows that the rf heating observed in Paul traps cannot be caused due to collisional effects alone.

  12. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    NASA Astrophysics Data System (ADS)

    Delord, T.; Nicolas, L.; Schwab, L.; Hétet, G.

    2017-03-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects.

  13. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  14. Demonstrating the Principle of an rf Paul Ion Trap

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Rabchuk, James

    2008-03-01

    An rf ion trap uses a time-varying electric field to trap charged ions. This is useful in applications related to quantum computing and mass spectroscopy. There are several mechanical devices described in the literature which have attempted to provide illustrative demonstrations of the principle of rf ion traps, including a mechanically-rotating ``saddle trap'' and the vertically-driven, inverted pendulum^1,2. Neither demonstration, however, successfully demonstrates BOTH the sinusoidal variation in the electric potential of the rf trap AND the parametric stability of the ions in the trap described by Mathieu's equation. We have modified a design of a one-dimensional ponderomotive trap^3 so that it satisfies both criteria for demonstrating the principle of an rf Paul trap. Our studies indicate that trapping stability is highly sensitive to fluxuations in the driving frequency. Results from the demonstration apparatus constructed by the authors will be presented. ^1 Rueckner, W., et al., ``Rotating saddle Paul trap,'' Am. J. Phys., 63 (2), February 1995. ^2 Friedman, M.H., et al., ``The inverted pendulum: A mechanical analogue of a quadrupole mass filter,'' Am. J. Phys., 50 (10), October 1982. ^3 Johnson, A.K. and Rabchuk, J.A., ``A One-Dimensional Ponderomotive Trap,'' ISAAPT 2007 spring meeting, WIU, March 30, 2007.

  15. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less

  16. Control of Screening of a Charged Particle in Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun nmn; Krstic, Predrag S

    2011-01-01

    Individual charged particles could be trapped and confined in the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different affects at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening effect and reinstating the electrophoretic confinement.« less

  17. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyun; Krstic, Predrag S.

    2011-06-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at muchmore » heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement.« less

  18. Paul trapping of charged particles in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Weihau; Reed, Mark A; Joseph, Sony nmn

    2011-01-01

    We experimentally demonstrate the feasibility of an aqueous Paul trap using a proof-of-principle planar device. Radio frequency voltages are used to generate an alternating focusing/defocusing potential well in two orthogonal directions. Individual charged particles are dynamically confined into nanometer scale in space. Compared with conventional Paul traps working in frictionless vacuum, the aqueous environment associated with damping forces and thermally induced fluctuations (Brownian noise) exerts a fundamental influence on the underlying physics. We investigate the impact of these two effects on the confining dynamics, with the aim to reduce the rms value of the positional fluctuations. We find that themore » rms fluctuations can be modulated by adjusting the voltages and frequencies. This technique provides an alternative for the localization and control of charged particles in an aqueous environment.« less

  19. Efficient Raman sideband cooling of trapped ions to their motional ground state

    NASA Astrophysics Data System (ADS)

    Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.

    2017-07-01

    Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.

  20. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  1. Cavity Cooling a Single Charged Levitated Nanosphere

    NASA Astrophysics Data System (ADS)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  2. A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiongce; Krstic, Predrag S

    2008-01-01

    We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and in aqueous environment when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with the amplitude dependent on the parameters of the system and applied voltage. Successful trapping of the ion within nanoseconds requires electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment,more » but polarization of the water molecules requires application of the higher voltage biases to reach the improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening a possibility of studying DNA and other biological molecules using embedded probes while achieving a full control of their translocation and localization in the trap.« less

  3. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less

  4. Designing of a Quadrupole Paul Ion Trap

    NASA Astrophysics Data System (ADS)

    Kiyani, Abouzar; Abdollahzadeh, M.; Sadat Kiai, S. M.; Zirak, A. R.

    2011-08-01

    The ion motion equation in a Paul ion trap known as Mathieu differential equation has been solved for the first time by using Runge-Kutta methods with 4th, 6th, and 8th orders. The first stability regions in az - qz plane and the corresponding qmax values were determined and compared. Also, the first stability regions of , , , ions in the Vdc - Vac plane were drown, and the threshold voltages for the ion separation was investigated.

  5. Dipole Excitation With A Paul Ion Trap Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A.

    Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion withmore » numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.« less

  6. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2013-08-15

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complexmore » linear focusing channels.« less

  7. Paul Ion Trap as a Diagnostic for Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.

    2010-02-01

    The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.

  8. Dynamics of charged particles in a Paul radio-frequency quadrupole trap

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Williams, A.; Maleki, L.; Djomehri, M. J.; Harabetian, E.

    1991-01-01

    A molecular-dynamics simulation of hundreds of ions confined in a Paul trap has been performed. The simulation includes the trapped particles' micromotion and interparticle Coulomb interactions. A random walk in velocity was implemented to bring the secular motion to a given temperature which was numerically measured. When the coupling Gamma is large the ions from concentric shells which undergo a quadrupole oscillation at the RF frequency, while the ions within a shell form a 2D hexagonal lattice. Ion clouds at 5 mK show no RF heating for q(z) less than about 0.6, whereas rapid heating is seen for qz = 0.8.

  9. Exploring the Effects of Demographic, Economic, and Social Factors on China’s Economy

    DTIC Science & Technology

    2012-12-14

    bleached mushrooms and dyed raspberries and hormone- injected milk,” many foreigners chose to leave China, an option not available to Chinese...elasticity-pessimism-and-the-renminbi-wonkish/ (accessed 27 August 2012); Paul Krugman, “How Much of the World is in a Liquidity Trap?” New 32...York Times, 17 March 2010, http://krugman.blogs.nytimes.com/2010/03/17/how-much- of-the-world-is-in-a- liquidity -trap/ (accessed 27 August 2012); Paul

  10. Paul Trapping of Radioactive {sup 6}He{sup +} Ions and Direct Observation of Their {beta} Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flechard, X.; Lienard, E.; Mery, A.

    2008-11-21

    We demonstrate that abundant quantities of short-lived {beta} unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy {sup 6}He{sup +} (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10{sup 8} ions have been stored over a measuring period of six days, and about 10{sup 5} decay coincidences between the beta particles and the {sup 6}Li{sup ++} recoiling ions have been recorded. The technique can be extendedmore » to other short-lived species, opening new possibilities for trap assisted decay experiments.« less

  11. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less

  12. A low-drift, low-noise, multichannel dc voltage source for segmented-electrode Paul traps

    NASA Astrophysics Data System (ADS)

    Beev, Nikolai; Fenske, Julia-Aileen; Hannig, Stephan; Schmidt, Piet O.

    2017-05-01

    We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz-100 kHz, with spectral density lower than 3 nV Hz-1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.

  13. Preliminary Tests of a Paul ion Trap as an Ion Source

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Zirak, A. R.; Elahi, M.; Adlparvar, S.; Mortazavi, B. N.; Safarien, A.; Farhangi, S.; Sheibani, S.; Alhooie, S.; Khalaj, M. M. A.; Dabirzadeh, A. A.; Ruzbehani, M.; Zahedi, F.

    2010-10-01

    The paper reports on the design and construction of a Paul ion trap as an ion source by using an impact electron ionization technique. Ions are produced in the trap and confined for the specific time which is then extracted and detected by a Faraday cup. Especial electronic configurations are employed between the end caps, ring electrodes, electron gun and a negative voltage for the detector. This configuration allows a constant low level of pure ion source between the pulsed confined ion sources. The present experimental results are based on the production and confinement of Argon ions with good stability and repeatability, but in principle, the technique can be used for various Argon like ions.

  14. A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov; Yee, R.M.; Department of Nuclear Engineering, University of California, Berkeley, CA 94720

    A new approach to β-delayed neutron spectroscopy has been demonstrated that circumvents the many limitations associated with neutron detection by instead inferring the decay branching ratios and energy spectra of the emitted neutrons by studying the nuclear recoil. Using the Beta-decay Paul Trap, fission-product ions were trapped and confined to within a 1-mm{sup 3} volume under vacuum using only electric fields. Results from recent measurements of {sup 137}I{sup +} and plans for development of a dedicated ion trap for future experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratorymore » are summarized. The improved nuclear data that can be collected is needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship.« less

  15. Differentiation of the Stereochemistry and Anomeric Configuration for 1-3 Linked Disaccharides Via Tandem Mass Spectrometry and 18O-labeling

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2012-02-01

    Collision-induced dissociation (CID) of deprotonated hexose-containing disaccharides ( m/z 341) with 1-2, 1-4, and 1-6 linkages yields product ions at m/z 221, which have been identified as glycosyl-glycolaldehyde anions. From disaccharides with these linkages, CID of m/z 221 ions produces distinct fragmentation patterns that enable the stereochemistries and anomeric configurations of the non-reducing sugar units to be determined. However, only trace quantities of m/z 221 ions can be generated for 1-3 linkages in Paul or linear ion traps, preventing further CID analysis. Here we demonstrate that high intensities of m/z 221 ions can be built up in the linear ion trap (Q3) from beam-type CID of a series of 1-3 linked disaccharides conducted on a triple quadrupole/linear ion trap mass spectrometer. 18O-labeling at the carbonyl position of the reducing sugar allowed mass-discrimination of the "sidedness" of dissociation events to either side of the glycosidic linkage. Under relatively low energy beam-type CID and ion trap CID, an m/z 223 product ion containing 18O predominated. It was a structural isomer that fragmented quite differently than the glycosyl-glycolaldehydes and did not provide structural information about the non-reducing sugar. Under higher collision energy beam-type CID conditions, the formation of m/z 221 ions, which have the glycosyl-glycolaldehyde structures, were favored. Characteristic fragmentation patterns were observed for each m/z 221 ion from higher energy beam-type CID of 1-3 linked disaccharides and the stereochemistry of the non-reducing sugar, together with the anomeric configuration, were successfully identified both with and without 18O-labeling of the reducing sugar carbonyl group.

  16. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  17. Paul trap simulator experiment to model intense-beam propagation in alternating-gradient transport systems.

    PubMed

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip C; Majeski, Richard

    2004-04-16

    The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)

  18. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  19. Quantum simulations of the Ising model with trapped ions: Devil's staircase and arbitrary lattice proposal

    NASA Astrophysics Data System (ADS)

    Korenblit, Simcha

    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. We trap linear chains of 171Yb+ ions in a Paul trap, and constrain the occupation of energy levels to the ground hyperne clock-states, creating a qubit or pseudo-spin 1/2 system. We proceed to implement spin-spin couplings between two ions using the far detuned Molmer-Sorenson scheme and perform adiabatic quantum simulations of Ising Hamiltonians with long-range couplings. We then demonstrate our ability to control the sign and relative strength of the interaction between three ions. Using this control, we simulate a frustrated triangular lattice, and for the first time establish an experimental connection between frustration and quantum entanglement. We then scale up our simulation to show phase transitions from paramagnetism to ferromagnetism for nine ions, and to anti-ferromagnetism for sixteen ions. The experimental work culminates with our most complicated Hamiltonian---a long range anti-ferromagnetic Ising interaction between 10 ions with a biasing axial field. Theoretical work presented in this thesis shows how the approach to quantum simulation utilized in this thesis can be further extended and improved. It is shown how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable.

  20. Entanglement-Based dc Magnetometry with Separated Ions*

    NASA Astrophysics Data System (ADS)

    Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-07-01

    We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.

  1. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  2. Active stabilization of ion trap radiofrequency potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  3. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Gilson, Erik

    2013-01-01

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complex linearmore » focusing channels.« less

  4. Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

    NASA Astrophysics Data System (ADS)

    Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias

    2018-03-01

    We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.

  5. Observation of a Discrete Time Crystal

    NASA Astrophysics Data System (ADS)

    Kyprianidis, A.; Zhang, J.; Hess, P.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potter, A.; Vishwanath, A.; Potirniche, I.-D.; Yao, N.; Monroe, C.

    2017-04-01

    Spontaneous symmetry breaking is a key concept in the understanding of many physical phenomena, such as the formation of spatial crystals and the phase transition from paramagnetism to magnetic order. While the breaking of time translation symmetry is forbidden in equilibrium systems, it is possible for non-equilibrium Floquet driven systems to break a discrete time translation symmetry, and we present clear signatures of the formation of such a discrete time crystal. We apply a time periodic Hamiltonian to a chain of interacting spins under many-body localization conditions and observe the system's sub-harmonic response at twice that period. This spontaneous doubling of the periodicity is robust to external perturbations. We represent the spins with a linear chain of trapped 171Yb+ ions in an rf Paul trap, generate spin-spin interactions through spin-dependent optical dipole forces, and measure each spin using state-dependent fluorescence. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  6. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsh, T. Y.; Perez Galvan, A.; Burkey, M.

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  7. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    NASA Astrophysics Data System (ADS)

    Hirsh, T. Y.; Pérez Gálvan, A.; Burkey, M. T.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J. A.; Gallant, A. T.; Heckmaier, E.; Levand, A. F.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Savard, G.; Scielzo, N. D.; Segel, R.; Sharma, K. S.; Siegl, K.; Wang, B. S.

    2018-04-01

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from α sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  8. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    DTIC Science & Technology

    2017-06-10

    necessarily reflect the views of the Department of Defense. Abstract- A scalable trapped-ion-based quantum - computing architecture requires the... Quantum Computing Dave Kharas, Cheryl Sorace-Agaskar, Suraj Bramhavar, William Loh, Jeremy M. Sage, Paul W. Juodawlkis, and John...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  9. Stability of an aqueous quadrupole micro-trap

    DOE PAGES

    Park, Jae Hyun; Krstić, Predrag S.

    2012-03-30

    Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less

  10. Thermometry of levitated nanoparticles in a hybrid electro-optical trap

    NASA Astrophysics Data System (ADS)

    Aranas, E. B.; Fonseca, P. Z. G.; Barker, P. F.; Monteiro, T. S.

    2017-03-01

    There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ≃ 100{--}1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical ‘split-sideband’ structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N≳ 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple ‘fast-cavity’ model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.

  11. Efficient and robust photo-ionization loading of beryllium ions

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand

    2018-02-01

    We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.

  12. Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps

    NASA Astrophysics Data System (ADS)

    Mihalcea, Bogdan M.

    2018-01-01

    Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.

  13. Rydberg Excitation of a Single Trapped Ion.

    PubMed

    Feldker, T; Bachor, P; Stappel, M; Kolbe, D; Gerritsma, R; Walz, J; Schmidt-Kaler, F

    2015-10-23

    We demonstrate excitation of a single trapped cold (40)Ca(+) ion to Rydberg levels by laser radiation in the vacuum ultraviolet at a wavelength of 122 nm. Observed resonances are identified as 3d(2)D(3/2) to 51F, 52F and 3d(2)D(5/2) to 64F. We model the line shape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

  14. Recoil ions from the β decay of 134Sb confined in a Paul trap

    NASA Astrophysics Data System (ADS)

    Siegl, K.; Scielzo, N. D.; Czeszumska, A.; Clark, J. A.; Savard, G.; Aprahamian, A.; Caldwell, S. A.; Alan, B. S.; Burkey, M. T.; Chiara, C. J.; Greene, J. P.; Harker, J.; Marley, S. T.; Morgan, G. E.; Munson, J. M.; Norman, E. B.; Orford, R.; Padgett, S.; Galván, A. Perez; Sharma, K. S.; Strauss, S. Y.

    2018-03-01

    The low-energy recoiling ions from the β decay of 134Sb were studied by using the Beta-decay Paul Trap. Using this apparatus, singly charged ions were suspended in vacuum at the center of a detector array used to detect emitted β particles, γ rays, and recoil ions in coincidence. The recoil ions emerge from the trap with negligible scattering, allowing β -decay properties and the charge-state distribution of the daughter ions to be determined from the β -ion coincidences. First-forbidden β -decay theory predicts a β -ν correlation coefficient of nearly unity for the 0- to 0+ transition from the ground state of 134Sb to the ground state of 134Te. Although this transition was expected to have a nearly 100% branching ratio, an additional 17.2(52)% of the β -decay strength must populate high-lying excited states to obtain an angular correlation consistent with unity. The extracted charge-state distribution of the recoiling ions was compared with existing β -decay results and the average charge state was found to be consistent with the results from lighter nuclei.

  15. Effect of Electrode Loss on the Dynamic Range of Linearized Directional Coupler Modulators

    DTIC Science & Technology

    2006-02-01

    Coupler Modulators George A. Brost , Richard Michalak, Paul Payson, and Kevin Magde Abstract—Numerical simulations were used to study the effect of...RANGE OF LINEARIZED DIRECTIONAL COUPLER MODULATORS In-House N/A 62204F LINKI SN 01 George A. Brost , Richard Michalak, Paul Payson and Kevin Magde AFRL...Fazio Nash BROST et al.: EFFECT OF ELECTRODE LOSS ON THE DYNAMIC RANGE OF LINEARIZED DCMs 515 Fig. 1. Frequency dependence of SFDR for the 1 2 DCM (s

  16. Proceedings of the 2009 Antenna Applications Symposium held in Monticello, Illinois on 22-24 September 2009. Volume 1

    DTIC Science & Technology

    2009-12-12

    Circuit Design, Theory and Applications. Prentice-Hall, 1 ed., 2000. 39 MEASUREMENT OF ELECTRICALLY SMALL ANTENNAS Suhail Barot, Paul E. Mayes, Paul ...2] “Ansoft HFSS, Version 9.2.1,” Ansoft Corporation, Pittsburgh, PA. 50 REDUCED-SIZE LINEAR ANTENNA ELEMENTS Paul E. Mayes, Paul W. Klock and...structures," IRE Internation convention, vol. 5, pp. 119-129, Mar 1957. [2] K. M. P. Aghdam, R. Faraji- Dana , and J. Rashed-Mohassel, "Compact dual

  17. Nuclear data for r-process models from ion trap measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason, E-mail: jclark@anl.gov

    2016-06-21

    To truly understand how elements are created in the universe via the astrophysical r process, accurate nuclear data are required. Historically, the isotopes involved in the r process have been difficult to access for study, but the development of new facilities and measurement techniques have put many of the r-process isotopes within reach. This paper will discuss the new CARIBU facility at Argonne National Laboratory and two pieces of experimental equipment, the Beta-decay Paul Trap and the Canadian Penning Trap, that will dramatically increase the nuclear data available for models of the astrophysical r process.

  18. Electrofluidics in Micro/Nanofluidic Systems

    NASA Astrophysics Data System (ADS)

    Guan, Weihua

    This work presents the efforts to study the electrofluidics, with a focus on the electric field - matter interactions in microfluidic and nanofluidic systems for lab-on-a-chip applications. The field of electrofluidics integrates the multidisciplinary knowledge in silicon technology, solid and soft condensed matter physics, fluidics, electrochemistry, and electronics. The fundamental understanding of electrofluidics in engineered micro and nano structures opens up wide opportunities for biomedical sensing and actuation devices integrated on a single chip. Using spatial and temporal properties of electric fields in top-down engineered micro/nana structures, we successfully demonstrated the precise control over a single macro-ion and a collective group of ions in aqueous solutions. In the manipulation of a single macro-ion, we revisited the long-time overlooked AC electrophoretic (ACEP) phenomena. We proved that the widely held notion of vanishing electrophoretic (EP) effects in AC fields does not apply to spatially non-uniform electric fields. In contrast to dielectrophoretic (DEP) traps, ACEP traps favor the downscaling of the particle size if it is sufficiently charged. We experimentally demonstrated the predicted ACEP trap by recognizing that the ACEP dynamics is equivalent to that of Paul traps working in an aqueous solution. Since all Paul traps realized so far have only been operated in vacuum or gaseous phase, our experimental effort represents the world's first aqueous Paul trap device. In the manipulation of a collective group of ions, we demonstrated that the ion transport in nanochannels can be directly gated by DC electric fields, an impossible property in microscale geometries. Successful fabrication techniques were developed to create the nanochannel structures with gating ability. Using the gated nanochannel structures, we demonstrated a field effect reconfigurable nanofluidic diode, whose forward/reverse direction as well as the rectification degree can be significantly modulated. We also demonstrated a solid-state protocell, whose ion selectivity and membrane potential can be modulated by external electric field. Moreover, by recognizing the key role played by the surface charge density in electrofluidic gating of nanochannels, a low-cost, off-chip extended gate field effect transistor (FET) structure to measure the surface charges at the dielectric-electrolyte interface is demonstrated. This technique simplifies and accelerates the process of dielectric selection for effective electrofluidic gating.

  19. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps

    PubMed Central

    Hong, Seokjun; Lee, Minjae; Kwon, Yeong-Dae; Cho, Dong-il "Dan"; Kim, Taehyun

    2017-01-01

    Ions trapped in a quadrupole Paul trap have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion traps have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion traps using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for trapping ytterbium (Yb) ions of isotope 174 (174Yb+) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the trapping of Yb ions of isotope 171 (171Yb+) and to the manipulation of qubits. PMID:28872137

  20. New perspectives in laser analytics: Resonance-enhanced multiphoton ionization in a Paul ion trap combined with a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald

    1995-04-01

    A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.

  1. Protein and peptide cross sections and mass spectra in an electrostatic ion beam trap

    NASA Astrophysics Data System (ADS)

    Fradkin, Z.; Strasser, D.; Heber, O.; Rappaport, M. L.; Sharon, M.; Thomson, B. A.; Rahinov, I.; Toker, Y.; Zajfman, D.

    2017-05-01

    Among the advantages of an electrostatic ion beam trap (EIBT), which is based on purely electrostatic fields, are mass-unlimited trapping and ease of operation. We have developed a new system that couples an electrospray ion source to an EIBT. Between the source and EIBT there is a Paul trap in which the ions are accumulated before being extracted and accelerated. After the ion bunch has entered the EIBT, the ions are trapped by rapidly raising the voltages on the entrance mirror. The oscillations of the bunch are detected by amplifying the charge induced on a pickup ring in the center of the trap, the ion mass being directly proportional to the square of the oscillation period. The trapping of biomolecules in the RF-bunching mode of the EIBT is used for measurement of mass spectra and collision cross sections. Coalescence of bunches of ions of nearby mass in the self-bunching mode is also demonstrated.

  2. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  3. Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle

    NASA Astrophysics Data System (ADS)

    Bullier, Nathanaël. P.; Pontin, Antonio; Barker, Peter F.

    2017-08-01

    Cavity optomechanics has been used to cool the center-of-mass motion of levitated nanospheres to millikelvin temperatures. Trapping the particle in the cavity field enables high mechanical frequencies bringing the system close to the resolved-sideband regime. Here we describe a Paul trap constructed from a printed circuit board that is small enough to fit inside the optical cavity and which should enable an accurate positioning of the particle inside the cavity field. This will increase the optical damping and therefore reduce the final temperature by at least one order of magnitude. Simulations of the potential inside the trap enable us to estimate the charge- to-mass ratio of trapped particles by measuring the secular frequencies as a function of the trap parameters. Lastly, we show the importance of reducing laser noise to reach lower temperatures and higher sensitivity in the phase-sensitive readout.

  4. The Trapped Radiation Handbook. Change 4,

    DTIC Science & Technology

    1977-01-04

    DLSE ATT!t Technical Library CommanderAD) COBI /KPD Dat. 1, 12W5 ATTN: Hqs. 14th Aerospace Force (EVN) Space Forecasting Section ATTN: Paul Hason...ATTN: R. P. Caren, D/52-20 ATTNi Hans Wolfhard ATTNI D. C. Fisher, U/52-14 ATTNt Joel Bengston ATTN, Richard G. Johnson, Dept. 52-12 ATTN: Ernest Buer

  5. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  6. Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grosshans, Peter B.; Chen, Ruidan; Limbach, Patrick A.; Marshall, Alan G.

    1994-11-01

    We present the first Fourier transform ion cyclotron resonance (FT-ICR) ion trap designed to produce both a linear spatial variation of the excitation electric potential field and a linear response of the detection circuit to the motion of the confined ions. With this trap, the magnitude of the detected signal at a given ion cyclotron frequency varies linearly with both the number of ions of given mass-to-charge ratio and also with the magnitude-mode excitation signal at the ion cyclotron orbital frequency; the proportionality constant is mass independent. Interestingly, this linearization may be achieved with any ion trap geometry. The excitation/detection design consists of an array of capacitively coupled electrodes which provide a voltage-divider network that produces a nearly spatially homogeneous excitation electric field throughout the linearized trap; resistive coupling to the electrodes isolates the a.c. excitation (or detection) circuit from the d.c. (trapping) potential. The design is based on analytical expressions for the potential associated with each electrode, from which we are able to compute the deviation from linearity for a trap with a finite number of elements. Based on direct experimental comparisons to an unmodified cubic trap, the linearized trap demonstrates the following performance advantages at the cost of some additional mechanical complexity: (a) signal response linearly proportional to excitation electric field amplitude; (b) vastly reduced axial excitation/ejection for significantly improved ion relative abundance accuracy; (c) elimination of harmonics and sidebands of the fundamental frequencies of ion motion. As a result, FT-ICR mass spectra are now more reproducible. Moreover, the linearized trap should facilitate the characterization of other fundamental aspects of ion behavior in an ICR ion trap, e.g. effects of space charge, non-quadrupolar electrostatic trapping field, etc. Furthermore, this novel design should improve significantly the precision of ion relative abundance and mass accuracy measurements, while removing spectral artifacts of the detection process. We discuss future modifications that linearize the spatial variation of the electrostatic trapping electric field as well, thereby completing the linearization of the entire FT-ICR mass spectrometric techniques. Suggested FT-ICR mass spectrometric applications for the linearized trap are discussed.

  7. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    PubMed

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  8. Experiments with trapped ions and ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Kale Gifford

    Since the dawn of quantum information science, laser-cooled trapped atomic ions have been one of the most compelling systems for the physical realization of a quantum computer. By applying qubit state dependent forces to the ions, their collective motional modes can be used as a bus to realize entangling quantum gates. Ultrafast state-dependent kicks [1] can provide a universal set of quantum logic operations, in conjunction with ultrafast single qubit rotations [2], which uses only ultrafast laser pulses. This may present a clearer route to scaling a trapped ion processor [3]. In addition to the role that spin-dependent kicks (SDKs) play in quantum computation, their utility in fundamental quantum mechanics research is also apparent. In this thesis, we present a set of experiments which demonstrate some of the principle properties of SDKs including ion motion independence (we demonstrate single ion thermometry from the ground state to near room temperature and the largest Schrodinger cat state ever created in an oscillator), high speed operations (compared with conventional atom-laser interactions), and multi-qubit entanglement operations with speed that is not fundamentally limited by the trap oscillation frequency. We also present a method to provide higher stability in the radial mode ion oscillation frequencies of a linear radiofrequency (rf) Paul trap-a crucial factor when performing operations on the rf-sensitive modes. Finally, we present the highest atomic position sensitivity measurement of an isolated atom to date of 0.5 nm Hz. (-1/2) with a minimum uncertaintyof 1.7 nm using a 0.6 numerical aperature (NA) lens system, along with a method to correct aberrations and a direct position measurement of ion micromotion (the inherent oscillations of an ion trapped in an oscillating rf field). This development could be used to directly image atom motion in the quantum regime, along with sensing forces at the yoctonewton [10. (-24) N)] scale forgravity sensing, and 3D imaging of atoms from static to higher frequency motion. These ultrafast atomic qubit manipulation tools demonstrate inherent advantages over conventional techniques, offering a fundamentally distinct regime of control and speed not previously achievable.

  9. Absolute Frequency Measurement of the {sup 40}Ca{sup +} 4s {sup 2}S{sub 1/2}-3d {sup 2}D{sub 5/2} Clock Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chwalla, M.; Kim, K.; Monz, T.

    2009-01-16

    We report on the first absolute transition frequency measurement at the 10{sup -15} level with a single, laser-cooled {sup 40}Ca{sup +} ion in a linear Paul trap. For this measurement, a frequency comb is referenced to the transportable Cs atomic fountain clock of LNE-SYRTE and is used to measure the {sup 40}Ca{sup +} 4s {sup 2}S{sub 1/2}-3d {sup 2}D{sub 5/2} electric-quadrupole transition frequency. After the correction of systematic shifts, the clock transition frequency {nu}{sub Ca{sup +}}=411 042 129 776 393.2(1.0) Hz is obtained, which corresponds to a fractional uncertainty within a factor of 3 of the Cs standard. In addition,more » we determine the Landeg factor of the 3d{sup 2}D{sub 5/2} level to be g{sub 5/2}=1.200 334 0(3)« less

  10. High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport

    NASA Astrophysics Data System (ADS)

    Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof

    2018-01-01

    A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a Yb171 + ion during ion transport in a microstructured Paul trap. Ramsey spectroscopy of the ion's internal state is interleaved with up to 4000 transport operations over a distance of 280 μ m each taking 12.8 μ s . We obtain a state fidelity of 99.9994 (-7+6) % per ion transport.

  11. Improved Linear-Ion-Trap Frequency Standard

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    Improved design concept for linear-ion-trap (LIT) frequency-standard apparatus proposed. Apparatus contains lengthened linear ion trap, and ions processed alternately in two regions: ions prepared in upper region of trap, then transported to lower region for exposure to microwave radiation, then returned to upper region for optical interrogation. Improved design intended to increase long-term frequency stability of apparatus while reducing size, mass, and cost.

  12. Micromotion-enabled improvement of quantum logic gates with trapped ions

    NASA Astrophysics Data System (ADS)

    Bermudez, Alejandro; Schindler, Philipp; Monz, Thomas; Blatt, Rainer; Müller, Markus

    2017-11-01

    The micromotion of ion crystals confined in Paul traps is usually considered an inconvenient nuisance, and is thus typically minimized in high-precision experiments such as high-fidelity quantum gates for quantum information processing (QIP). In this work, we introduce a particular scheme where this behavior can be reversed, making micromotion beneficial for QIP. We show that using laser-driven micromotion sidebands, it is possible to engineer state-dependent dipole forces with a reduced effect of off-resonant couplings to the carrier transition. This allows one, in a certain parameter regime, to devise entangling gate schemes based on geometric phase gates with both a higher speed and a lower error, which is attractive in light of current efforts towards fault-tolerant QIP. We discuss the prospects of reaching the parameters required to observe this micromotion-enabled improvement in experiments with current and future trap designs.

  13. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    PubMed

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  14. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

    PubMed Central

    Li, Jing; Wu, Xiaoping

    2011-01-01

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083

  15. Electron shakeoff following the β+ decay of +19Ne and +35Ar trapped ions

    NASA Astrophysics Data System (ADS)

    Fabian, X.; Fléchard, X.; Pons, B.; Liénard, E.; Ban, G.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Guillon, B.; Lemière, Y.; Mauger, F.; Méry, A.; Naviliat-Cuncic, O.; Porobic, T.; Quéméner, G.; Severijns, N.; Thomas, J.-C.

    2018-02-01

    The electron shakeoff of 19F and 35Cl atoms resulting from the β+ decay of +19Ne and +35Ar ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for 35Cl is not reproduced in 19F. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations.

  16. Study of In-Trap Ion Clouds by Ion Trajectory Simulations.

    PubMed

    Zhou, Xiaoyu; Liu, Xinwei; Cao, Wenbo; Wang, Xiao; Li, Ming; Qiao, Haoxue; Ouyang, Zheng

    2018-02-01

    Gaussian distribution has been utilized to describe the global number density distribution of ion cloud in the Paul trap, which is known as the thermal equilibrium theory and widely used in theoretical modeling of ion clouds in the ion traps. Using ion trajectory simulations, however, the ion clouds can now also be treated as a dynamic ion flow field and the location-dependent features could now be characterized. This study was carried out to better understand the in-trap ion cloud properties, such as the local particle velocity and temperature. The local ion number densities were found to be heterogeneously distributed in terms of mean and distribution width; the velocity and temperature of the ion flow varied with pressure depending on the flow type of the neutral molecules; and the "quasi-static" equilibrium status can only be achieved after a certain number of collisions, for which the time period is pressure-dependent. This work provides new insights of the ion clouds that are globally stable but subjected to local rf heating and collisional cooling. Graphical Abstract ᅟ.

  17. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum.

    PubMed

    Conangla, Gerard P; Schell, Andreas W; Rica, Raúl A; Quidant, Romain

    2018-05-24

    Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultrasensitive sensing schemes. While most efforts have focused so far on the optical trapping of low-absorption silica particles, further opportunities arise from levitating objects with internal degrees of freedom, such as color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge because most nano-objects, even with low-absorption materials, experience photodamage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step toward coupling internal and external degrees of freedom.

  18. Progress Report on the Improved Linear Ion Trap Physics Package

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    This article describes the first operational results from the extended linear ion trap frequency standard now being developed at JPL. This new design separates the state selection/interrogation region from the more critical microwave resonance region where the multiplied local oscillator (LO) signal is compared to the stable atomic transition. Hg+ ions have been trapped, shuttled back and forth between the resonance and state selection traps. In addition, microwave transitions between the Hg+ clock levels have been driven in the resonance trap and detected in the state selection trap.

  19. Stable structures of microparticles in the electrodynamic trap created by the corona discharge

    NASA Astrophysics Data System (ADS)

    Vladimirov, V. I.; Deputatova, L. V.; Filinov, V. S.; Lapitsky, D. S.; Pecherkin, V. Ya; Syrovatka, R. A.; Vasilyak, L. M.; Petrov, O. F.

    2018-01-01

    For the first time the stable structures of microparticles in a dynamic linear trap with corona electrodes have been obtained. The possibility for capturing and confining of microparticles in a linear electrodynamic trap with corona electrodes at atmospheric pressure has been studied experimentally. The corona discharge on the electrodes of the trap was generated by an alternating electric field.

  20. Scalable Multiplexed Ion Trap (SMIT) Program

    DTIC Science & Technology

    2010-12-08

    an integrated micromirror . The symmetric cross and the mirror trap had a number of complex design features. Both traps shaped the electrodes in...genetic algorithm. 6. Integrated micromirror . The Gen II linear trap (as well as the linear sections of the mirror and the cross) had a number of new...conventional imaging system constructed by off-the-shelf optical components and a micromirror located very close to the ion. A large fraction of photons

  1. Neutral gas sympathetic cooling of an ion in a Paul trap.

    PubMed

    Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-04-11

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

  2. Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap

    NASA Astrophysics Data System (ADS)

    Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-04-01

    A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives a complete description of the dynamics and steady-state properties of the ions. An extension of this model, using techniques employed in the mathematics of economics and finance, is used to explain the recent observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.

  3. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  4. Trapping, retention and laser cooling of Th3+ ions in a multisection linear quadrupole trap

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasil'ev, O. S.; Derevyashkin, S. P.; Kolachevsky, N. N.; Lebedinskii, Yu. Yu.; Poteshin, S. S.; Sysoev, A. A.; Tkalya, E. V.; Tregubov, D. O.; Troyan, V. I.; Khabarova, K. Yu.; Yudin, V. I.; Yakovlev, V. P.

    2017-06-01

    A multisection linear quadrupole trap for Th3+ ions is described. Multiply charged ions are obtained by the laser ablation method. The possibility of trapping and retention of ˜103 ions is demonstrated in macroscopic time scales of ˜30 s. Specific features of cooling Th3+ ions on the electron transitions with wavelengths of 1088, 690 and 984 nm in Th3+ ion are discussed; a principal scheme of a setup for laser cooling is presented.

  5. Linear excitation of the trapped waves by an incident wave

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.

    2016-04-01

    The excitation of the trapped waves by coastal events such as landslides has been extensively studied. The events in the open sea have in general larger magnitude. However the incident waves produced by these events in the open sea can only excite the the trapped waves through no linearity if the isobaths are straight lines that are in parallel with the coastline. We will show that the imperfections of the coastline can couple the incident and trapped waves using only linear processes. The Coriolis force is neglected in this work . Accordingly the trapped waves are consequence of uneven bathimetry. In the bathimetry we consider, the sea is divided into zones of constant depth and the boundaries between the zones are a family of hyperbolas. The boundary conditions between the zones will lead to an integral equation for the source distribution on the boundaries. The solution will contain both radiating and trapped waves. The trapped waves pose a serious threat for the coastal communities as they can travel long distances along the coastline without losing their energy through geometrical spreading.

  6. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent developmentmore » in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.« less

  7. New Steering Strategies for the USNO Master Clocks

    DTIC Science & Technology

    1999-12-01

    1992. P. Koppang and R. Leland , “Linear quadratic stochastic control of atomic hydrogen masers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr...vol. 46, pp. 517-522, May 1999. P. Koppang and R. Leland , “Steering of frequency standards by the use of linear quadratic gaussian control theory...3lst Annual Precise Time and Time Interval (PTTI) Meeting NEWSTEERINGSTRATEGIESFOR THEUSNOMASTERCLOCKS Paul A. Koppang Datum, Inc. Beverly, MA

  8. Imaging MS Methodology for More Chemical Information in Less Data Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdian, D. C.; Lee, Young Jin

    2010-11-15

    A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser.more » Using this approach, a high spatial resolution of 10 {micro}m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 {micro}m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MSn ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MSn, ion trap, and orbitrap images were all acquired in a single data acquisition.« less

  9. Study of Nonlinear Dynamics of Intense Charged Particle Beams in the Paul Trap Simulator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hua

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory device that simulates the nonlinear dynamics of intense charged particle beams propagating over a large distance in an alternating-gradient magnetic transport system. The radial quadrupole electric eld forces on the charged particles in the Paul Trap are analogous to the radial forces on the charged particles in the quadrupole magnetic transport system. The amplitude of oscillating voltage applied to the cylindrical electrodes in PTSX is equivalent to the quadrupole magnetic eld gradient in accelerators. The temporal periodicity in PTSX corresponds to the spatial periodicity in magnetic transport system. This thesismore » focuses on investigations of envelope instabilities and collective mode excitations, properties of high-intensity beams with significant space-charge effects, random noise-induced beam degradation and a laser-induced-fluorescence diagnostic. To better understand the nonlinear dynamics of the charged particle beams, it is critical to understand the collective processes of the charged particles. Charged particle beams support a variety of collective modes, among which the quadrupole mode and the dipole mode are of the greatest interest. We used quadrupole and dipole perturbations to excite the quadrupole and dipole mode respectively and study the effects of those collective modes on the charge bunch. The experimental and particle-in-cell (PIC) simulation results both show that when the frequency and the spatial structure of the external perturbation are matched with the corresponding collective mode, that mode will be excited to a large amplitude and resonates strongly with the external perturbation, usually causing expansion of the charge bunch and loss of particles. Machine imperfections are inevitable for accelerator systems, and we use random noise to simulate the effects of machine imperfection on the charged particle beams. The random noise can be Fourier decomposed into various frequency components and experimental results show that when the random noise has a large frequency component that matches a certain collective mode, the mode will also be excited and cause heating of the charge bunch. It is also noted that by rearranging the order of the random noise, the adverse effects of the random noise may be eliminated. As a non-destructive diagnostic method, a laser-induced- fluorescence (LIF) diagnostic is developed to study the transverse dynamics of the charged particle beams. The accompanying barium ion source and dye laser system are developed and tested.« less

  10. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less

  11. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2018-02-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes.

  12. Extended linear ion trap frequency standard apparatus

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor)

    1995-01-01

    A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.

  13. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    PubMed

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  14. Theory of bimolecular reactions in a solution with linear traps: Application to the problem of target search on DNA.

    PubMed

    Turkin, Alexander; van Oijen, Antoine M; Turkin, Anatoliy A

    2015-01-01

    One-dimensional sliding along DNA as a means to accelerate protein target search is a well-known phenomenon occurring in various biological systems. Using a biomimetic approach, we have recently demonstrated the practical use of DNA-sliding peptides to speed up bimolecular reactions more than an order of magnitude by allowing the reactants to associate not only in the solution by three-dimensional (3D) diffusion, but also on DNA via one-dimensional (1D) diffusion [A. Turkin et al., Chem. Sci. (2015)]. Here we present a mean-field kinetic model of a bimolecular reaction in a solution with linear extended sinks (e.g., DNA) that can intermittently trap molecules present in a solution. The model consists of chemical rate equations for mean concentrations of reacting species. Our model demonstrates that addition of linear traps to the solution can significantly accelerate reactant association. We show that at optimum concentrations of linear traps the 1D reaction pathway dominates in the kinetics of the bimolecular reaction; i.e., these 1D traps function as an assembly line of the reaction product. Moreover, we show that the association reaction on linear sinks between trapped reactants exhibits a nonclassical third-order behavior. Predictions of the model agree well with our experimental observations. Our model provides a general description of bimolecular reactions that are controlled by a combined 3D+1D mechanism and can be used to quantitatively describe both naturally occurring as well as biomimetic biochemical systems that reduce the dimensionality of search.

  15. Control of the conformations of ion Coulomb crystals in a Penning trap

    PubMed Central

    Mavadia, Sandeep; Goodwin, Joseph F.; Stutter, Graham; Bharadia, Shailen; Crick, Daniel R.; Segal, Daniel M.; Thompson, Richard C.

    2013-01-01

    Laser-cooled atomic ions form ordered structures in radiofrequency ion traps and in Penning traps. Here we demonstrate in a Penning trap the creation and manipulation of a wide variety of ion Coulomb crystals formed from small numbers of ions. The configuration can be changed from a linear string, through intermediate geometries, to a planar structure. The transition from a linear string to a zigzag geometry is observed for the first time in a Penning trap. The conformations of the crystals are set by the applied trap potential and the laser parameters, and agree with simulations. These simulations indicate that the rotation frequency of a small crystal is mainly determined by the laser parameters, independent of the number of ions and the axial confinement strength. This system has potential applications for quantum simulation, quantum information processing and tests of fundamental physics models from quantum field theory to cosmology. PMID:24096901

  16. Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations

    DOE PAGES

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2016-01-11

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  17. Quantum simulation of interacting spin models with trapped ions

    NASA Astrophysics Data System (ADS)

    Islam, Kazi Rajibul

    The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.

  18. Predictors of Adolescent Breakfast Consumption: Longitudinal Findings from Project EAT

    ERIC Educational Resources Information Center

    Bruening, Meg; Larson, Nicole; Story, Mary; Neumark-Sztainer, Dianne; Hannan, Peter

    2011-01-01

    Objective: To identify predictors of breakfast consumption among adolescents. Methods: Five-year longitudinal study Project EAT (Eating Among Teens). Baseline surveys were completed in Minneapolis-St. Paul schools and by mail at follow-up by youth (n = 800) transitioning from middle to high school. Linear regression models examined associations…

  19. BX-U linear trap for one-way production and confinement of Li+ and e- plasmas

    NASA Astrophysics Data System (ADS)

    Himura, Haruhiko

    2016-03-01

    A modified version of the Penning-Malmberg trap was developed wherein both positive and negative harmonic potential wells were created by using multi-ring electrodes. The sequence of particle injection, particle trapping, and plasma extraction from the potential wells was controlled by a set of switching circuits. All the guns launching charged particles were collected together in one side of the linear trap. Nevertheless, pure electron (e-) and lithium-ion (Li+) plasmas were not only separately produced on the machine axis but also confined simultaneously. Preliminary data show that for B ≈ 0.13 T the e- plasma lasted for 15 s and the Li+ plasma lasted for ~ 4 s.

  20. Nonlinear fishbone dynamics in spherical tokamaks

    DOE Data Explorer

    Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  1. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  2. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.

  3. Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte

    NASA Astrophysics Data System (ADS)

    Wunderlich, Christof

    2015-05-01

    Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.

  4. Studies of emittance growth and halo particle production in intense charged particle beams using the Paul Trap Simulator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilson, Erik P.; Davidson, Ronald C.; Dorf, Mikhail

    2010-05-15

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory experiment that places the physicist in the frame-of-reference of a long, charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in both systems are described by the same set of equations, including nonlinear space-charge effects. The time-dependent voltages applied to the PTSX quadrupole electrodes in the laboratory frame are equivalent to the spatially periodic magnetic fields applied in the AG system. The transverse emittance of the charge bunch, which is a measure of the area in the transverse phase space that the beammore » distribution occupies, is an important metric of beam quality. Maintaining low emittance is an important goal when defining AG system tolerances and when designing AG systems to perform beam manipulations such as transverse beam compression. Results are reviewed from experiments in which white noise and colored noise of various amplitudes and durations have been applied to the PTSX electrodes. This noise is observed to drive continuous emittance growth and increase in root-mean-square beam radius over hundreds of lattice periods. Additional results are reviewed from experiments that determine the conditions necessary to adiabatically reduce the charge bunch's transverse size and simultaneously maintain high beam quality. During adiabatic transitions, there is no change in the transverse emittance. The transverse compression can be achieved either by a gradual change in the PTSX voltage waveform amplitude or frequency. Results are presented from experiments in which low emittance is achieved by using focusing-off-defocusing-off waveforms.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tsung-Chi; Ibrahim, Yehia M.; Webb, Ian K.

    The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in a more reliable and cost-effective manner, while opening opportunities for much more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolationmore » and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. Lastly, we observed a linear increase in ion intensity with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.« less

  6. Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.

    PubMed

    Rubert, Josep; James, Kevin J; Mañes, Jordi; Soler, Carla

    2012-02-03

    Recent developments in mass spectrometers have created a paradoxical situation; different mass spectrometers are available, each of them with their specific strengths and drawbacks. Hybrid instruments try to unify several advantages in one instrument. In this study two of wide-used hybrid instruments were compared: hybrid quadrupole-linear ion trap-mass spectrometry (QTRAP®) and the hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap®). Both instruments were applied to detect the presence of 18 selected mycotoxins in baby food. Analytical parameters were validated according to 2002/657/CE. Limits of quantification (LOQs) obtained by QTRAP® instrument ranged from 0.45 to 45 μg kg⁻¹ while lower limits of quantification (LLOQs) values were obtained by LTQ-Orbitrap®: 7-70 μg kg⁻¹. The correlation coefficients (r) in both cases were upper than 0.989. These values highlighted that both instruments were complementary for the analysis of mycotoxin in baby food; while QTRAP® reached best sensitivity and selectivity, LTQ-Orbitrap® allowed the identification of non-target and unknowns compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Using Commercial-Off-The-Shelf Speech Recognition Software for Conning U.S. Warships

    DTIC Science & Technology

    2003-06-01

    Linear Regression , 2nd Edition, (John Wiley & Sons, St. Paul, Minnesota, 1985), pp. 267-269. 44 Current Projects About the Sigmoid Curve, Sigmoid Curve...Disabilities Conference, Conference Proceedings, [www.csun.edu/cod/conf/1998/proceedings/csun98_052.htm], as of June 2, 2003. 43 Weisberg, S., Applied

  8. Proof Theory for Authorization Logic and Its Application to a Practical File System

    DTIC Science & Technology

    2009-12-01

    Holland, 1969. [71] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987 . [72] Jean-Yves Girard, Paul Taylor, and Yves Lafont...2009. Online at http://ecommons.library.cornell.edu/handle/1813/13679. [133] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler , and

  9. Precision Test of the Isobaric Multiplet Mass Equation in the A = 32, T = 2 Quintet

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Kwiatkowski, A. A.; Bollen, G.; Campbell, C. M.; Folden, C. M., III; Lincoln, D.; Morrissey, D. J.; Pang, G. K.; Prinke, A.; Savory, J.; Schwarz, S.

    2008-10-01

    Masses of the radionuclides ^32,33Si and ^34P and of the stable nuclide ^32S have been measured with the Low Energy Beam and Ion Trap (LEBIT) Penning trap mass spectrometer. Relative mass uncertainties of 3 x 10-8 and better have been achieved. The measured mass value of ^32Si differs from the literature value [1,2] by four standard deviations. The precise mass determination of ^32Si and ^32S have been employed to test the isobaric multiplet mass equation for the A = 32, T= 2 isospin quintet. The experimental results indicate a significant deviation from the quadratic form. This work has been supported by Michigan State University, the NSF under contract number PHY- 0606007, and the DOE under the contract DE-FG02-00ER41144. References: 1. G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729 (2003) 337 2. A. Paul, S. R"ottger, A. Zimbal, and U. Keyser, Hyperfine Interact. 132 (2001) 189

  10. Relevance of GaAs(001) surface electronic structure for high frequency dispersion on n-type accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Pi, T. W.; Chen, W. S.; Lin, Y. H.; Cheng, Y. T.; Wei, G. J.; Lin, K. Y.; Cheng, C.-P.; Kwo, J.; Hong, M.

    2017-01-01

    This study investigates the origin of long-puzzled high frequency dispersion on the accumulation region of capacitance-voltage characteristics in an n-type GaAs-based metal-oxide-semiconductor. Probed adatoms with a high Pauling electronegativity, Ag and Au, unexpectedly donate charge to the contacted As/Ga atoms of as-grown α2 GaAs(001)-2 × 4 surfaces. The GaAs surface atoms behave as charge acceptors, and if not properly passivated, they would trap those electrons accumulated at the oxide and semiconductor interface under a positive bias. The exemplified core-level spectra of the Al2O3/n-GaAs(001)-2 × 4 and the Al2O3/n-GaAs(001)-4 × 6 interfaces exhibit remnant of pristine surface As emission, thereby causing high frequency dispersion in the accumulation region. For the p-type GaAs, electrons under a negatively biased condition are expelled from the interface, thereby avoiding becoming trapped.

  11. New ion trap for atomic frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Dick, G. J.; Maleki, L.

    1989-01-01

    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.

  12. Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Tian; Chen, Liu

    2018-05-01

    Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.

  13. Cooling and heating of the quantum motion of trapped cadmium(+) ions

    NASA Astrophysics Data System (ADS)

    Deslauriers, Louis

    The quest for a quantum system best satisfying the stringent requirements of a quantum information processor has made tremendous progress in many fields of physics. In the last decade, trapped ions have been established as one of the most promising architectures to accomplish the task. Internal states of an ion which can have extremely long coherence time can be used to store a quantum bit, and therefore allow many gate operations before the coherence is lost. Entanglement between multiple ions can be established via Coulomb interactions mediated by appropriate laser fields. Entangling schemes usually require the ions to be initialized to near their motional ground state. The interaction of fluctuating electric fields with the motional state of the ion leads to heating and thus to decoherence for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped ion motion and suppression of motional heating are thus crucial to many applications of trapped ions in quantum information science. In this thesis, I describe the implementation and study of several components of a Cadmium-ion-based quantum information processor, with special emphasis on the control and decoherence of trapped ion motion. I first discuss the building and design of various ion traps that were used in this work. I also report on the use of ultrafast laser pulses to photoionize and load cadmium ions in a variety of rf Paul trap geometries. A detailed analysis of the photoionization scheme is presented, along with its dependence on controlled experimental parameters. I then describe the implementation of Raman sideband cooling on a single trapped 111Cd+ ion to the ground state of motion, where a ground state population of 97% was achieved. The efficacy of this cooling technique is discussed with respect to different initial motional state distributions and its sensitivity to the presence of motional heating. I also present an experiment where the motion of a single trapped 112Cd+ ion is sympathetically cooled by directly Doppler cooling a 114Cd+ ion in the same trap. The implications of this result are relevant to the scaling of a trapped ion quantum computer, where the unwanted motion of an ion crystal can be quenched while not affecting the internal states of the qubit ions. (Abstract shortened by UMI.)

  14. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    NASA Astrophysics Data System (ADS)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  15. A Single-Ion Reservoir as a High-Sensitive Sensor of Electric Signals.

    PubMed

    Domínguez, Francisco; Arrazola, Iñigo; Doménech, Jaime; Pedernales, Julen S; Lamata, Lucas; Solano, Enrique; Rodríguez, Daniel

    2017-08-21

    A single-ion reservoir has been tested, and characterized in order to be used as a highly sensitive optical detector of electric signals arriving at the trapping electrodes. Our system consists of a single laser-cooled 40 Ca + ion stored in a Paul trap with rotational symmetry. The performance is observed through the axial motion of the ion, which is equivalent to an underdamped and forced oscillator. Thus, the results can be projected also to Penning traps. We have found that, for an ion oscillator temperature T axial  ≲ 10 mK in the forced-frequency range ω z  = 2π × (80,200 kHz), the reservoir is sensitive to a time-varying electric field equivalent to an electric force of 5.3(2) neV/μm, for a measured quality factor Q = 3875(45), and a decay time constant γ z  = 88(2) s -1 . This method can be applied to measure optically the strength of an oscillating field or induced (driven) charge in this frequency range within times of tens of milliseconds. Furthermore the ion reservoir has been proven to be sensitive to electrostatic forces by measuring the ion displacement. Since the heating rate is below 0.3 μeV/s, this reservoir might be used as optical detector for any ion or bunch of charged particles stored in an adjacent trap.

  16. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  17. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules

    NASA Astrophysics Data System (ADS)

    Steer, Edward W.; Petralia, Lorenzo S.; Western, Colin M.; Heazlewood, Brianna R.; Softley, Timothy P.

    2017-02-01

    The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2 + 1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated - with respect to both the local field direction and a space-fixed axis - as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK =11 could be achieved with the application of a small bias voltage (17 V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.

  18. Optical Trapping of Ion Coulomb Crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  19. Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection

    NASA Astrophysics Data System (ADS)

    Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David

    2012-06-01

    Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Improved Miniaturized Linear Ion Trap Mass Spectrometer Using Lithographically Patterned Plates and Tapered Ejection Slit

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Bennett, Linsey; Li, Ailin; De la Cruz, Abraham; Andrews, Derek; Lammert, Stephen A.; Hawkins, Aaron R.; Austin, Daniel E.

    2018-02-01

    We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM).

  1. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    NASA Astrophysics Data System (ADS)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  2. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    PubMed

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  3. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations.

    DTIC Science & Technology

    1981-08-01

    With a third matrix-vector product, b(i) can be computed as i j ( ATAr i+l’pj)/ApjpApj), and the previous (Apj) need not be saved. Page 8 I OCR I Orthomin... Economics and Mathematical Systems, Volume 134, Springer-Verlag, Berlin, 1976. [51 Paul Concus, Gene H. Golub, and Dianne P. O’Leary. A generalized

  4. Particle trapping: A key requisite of structure formation and stability of Vlasov–Poisson plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schamel, Hans, E-mail: hans.schamel@uni-bayreuth.de

    2015-04-15

    Particle trapping is shown to control the existence of undamped coherent structures in Vlasov–Poisson plasmas and thereby affects the onset of plasma instability beyond the realm of linear Landau theory.

  5. Uv Spectroscopy on Gas Phase Cu(I)-BIPYRIDYL Complexes

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Christopher, Casey; Weber, J. Mathias

    2015-06-01

    Transition metal complexes with bipyridine ligands are of great interest in metal-organic chemistry, since they are prototypes for many applications in photochemistry and homogeneous catalysis. Under-coordinated bipyridyl complexes are elusive species in the condensed phase, and the ligand-induced changes in electronic structure are of fundamental interest. We present UV photodissociation spectra of mass-selected monocationic copper(I)-bipyridyl complexes [bpy-Cu-L]+ with different ligands (L = H2O, D2, N2, MeOH, Cl). Complexes were prepared via electrospray ionization of copper/bipyridine solutions followed by accumulation and buffer gas cooling in a cryogenic Paul trap. In addition, we show spectra of similar species based on copper oxide, [bpy-CuO-L]+.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepke, Mark

    Collaborative research between WVU and PPPL was carried out at WVU for the purpose of incorporating the sophisticated diagnostic technique known as laser-induced fluorescence (LIF) in the Paul-Trap Simulation Experiment (PTSX) at PPPL. WVU assembled a LIF system at WVU, transported it to PPPL, helped make LIF experiments on the PTSX device, participated in PTSX science, and trained PPPL staff in LIF techniques. In summary, WVU refurbished a non-operational LIF system being loaned from University of Maryland to PPPL and, by doing so, provided PPPL with additional diagnostic capability for its PTSX device and other General Plasma Science experiments. WVUmore » students, staff, and faculty will visit PPPL to collaborate on PTSX experiments in the future.« less

  7. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe2MnSi Heusler compound

    NASA Astrophysics Data System (ADS)

    Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.

    2015-01-01

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  8. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    ERIC Educational Resources Information Center

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  9. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  10. Nano-optical conveyor belt, part I: Theory.

    PubMed

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  11. Langmuir wave damping decreases slowly

    NASA Astrophysics Data System (ADS)

    Rose, Harvey

    2006-10-01

    The onset of stimulated Raman scatter in a single laser speckle occurs (D. S. Montgomery et al., Phys. Plasmas, 9, 2311 (2002)) at lower laser intensity, I, than predicted by linear theory based on classical Landau damping, νL, of the SRS daughter Langmuir wave. Does this imply that SRS onset in a speckled laser beam, propagating through long scale length plasma, is also at odds with linear theory? It has been shown (Harvey A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)) that linear convective gain in speckles with large fluctuations of I about the average, , leads to onset at a value of , Ic, small compared to that for onset in a uniform beam. While nonlinear electron trapping effects may occur in very intense speckles, whether or not these effects are sufficient to lower the onset value of below Ic depends on how strongly electrons must be trapped before there is significant reduction in νL. As the amplitude of an SRS daughter Langmuir wave increases, its νL decreases by the factor ν/φb, due to the competition between electron trapping, with electron bounce frequency, φb, and escape of these trapped electrons by advection out of a speckle's side, at rate ν. This result (Harvey A. Rose and David A. Russell, Phys. Plasmas, 8, 4784 (2001)) is valid for ν/φb 1. In this talk I present a nonlinear, transit time damping, calculation of νL and find that reduction by a factor of two does not occur until φb/ν 5. This slow turn on of trapping effects suggests that the linear calculation of Ic is NIF relevant.

  12. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  13. Developments on the Toroid Ion Trap Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, S.A.; Thompson, C.V.; Wise, M.B.

    1999-06-13

    Investigations into several areas of research have been undertaken to address the performance limitations of the toroid analyzer. The Simion 3D6 (2) ion optics simulation program was used to determine whether the potential well minimum of the toroid trapping field is in the physical center of the trap electrode structure. The results (Figures 1) indicate that the minimum of the potential well is shifted towards the inner ring electrode by an amount approximately equal to 10% of the r0 dimension. A simulation of the standard 3D ion trap under similar conditions was performed as a control. In this case, themore » ions settle to the minimum of the potential well at a point that is coincident with the physical center (both radial and axial) of the trapping electrodes. It is proposed that by using simulation programs, a set of new analyzer electrodes can be fashioned that will correct for the non- linear fields introduced by curving the substantially quadrupolar field about the toroid axis in order to provide a trapping field similar to the 3D ion trap cross- section. A new toroid electrode geometry has been devised to allow the use of channel- tron style detectors in place of the more expensive multichannel plate detector. Two different versions have been designed and constructed - one using the current ion trap cross- section (Figure 2) and another using the linear quedrupole cross- section design first reported by Bier and Syka (3).« less

  14. Hg(+) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  15. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.

    PubMed

    Theodorakis, Stavros

    2003-06-01

    We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.

  16. Back-focal-plane position detection with extended linear range for photonic force microscopy.

    PubMed

    Martínez, Ignacio A; Petrov, Dmitri

    2012-09-01

    In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

  17. Rapid Quantification of Four Anthocyanins in Red Grape Wine by Hydrophilic Interaction Liquid Chromatography/Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    PubMed

    Sun, Yongming; Xia, Biqi; Chen, Xiangzhun; Duanmu, Chuansong; Li, Denghao; Han, Chao

    2015-01-01

    The identification and quantification of four anthocyanins (cyanidin-3-O-glucoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside, and malvidin-3-O-glucoside) in red grape wine were carried out by hydrophilic interaction liquid chromatography/triple quadrupole linear ion trap MS (HILIC/QTrap-MS/MS). Samples were diluted directly and separated on a Merck ZIC HILIC column with 20 mM ammonium acetate solution-acetonitrile mobile phase. Quantitative data acquisition was carried out in the multiple reaction monitoring mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion mode of the linear ion trap. The LOQs were in the range 0.05-1.0 ng/mL. The average recoveries were in the range 94.6 to 104.5%. The HILIC/QTrap-MS/MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four anthocyanins in red grape wines and fulfills the quality criteria for routine laboratory application.

  18. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  19. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe{sub 2}MnSi Heusler compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedro, S. S., E-mail: sandrapedro@uerj.br; Caraballo Vivas, R. J.; Andrade, V. M.

    2015-01-07

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe{sub 2}MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system,more » but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.« less

  20. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    PubMed

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  1. Infrared Multiphoton Dissociation for Quantitative Shotgun Proteomics

    PubMed Central

    Ledvina, Aaron R.; Lee, M. Violet; McAlister, Graeme C.; Westphall, Michael S.; Coon, Joshua J.

    2012-01-01

    We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low pressure trap of a dual-cell quadrupole linear ion trap (dual cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly outperforms resonant excitation CAD for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT RF amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass-to-charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides. PMID:22480380

  2. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  3. A new tabanid trap applying a modified concept of the old flypaper: linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies.

    PubMed

    Egri, Ádám; Blahó, Miklós; Száz, Dénes; Barta, András; Kriska, György; Antoni, Györgyi; Horváth, Gábor

    2013-06-01

    Trapping flies with sticky paper sheets is an ancient method. The classic flypaper has four typical characteristics: (i) its sticky paper is bright (chamois, light yellow or white), (ii) it is strip-shaped, (iii) it hangs vertically, and (iv) it is positioned high (several metres) above ground level. Such flypapers, however, do not trap horseflies (tabanids). There is a great need to kill horseflies with efficient traps because they are vectors of dangerous diseases, and due to their continuous annoyance livestock cannot graze, horses cannot be ridden, and meat and milk production from cattle is drastically reduced. Based on earlier findings on the positive polarotaxis (attraction to linearly polarised light) in tabanid flies and modifying the concept of the old flypaper, we constructed a new horsefly trap called "horseflypaper". In four field experiments we showed that the ideal horseflypaper (i) is shiny black, (ii) has an appropriately large (75×75 cm(2)) surface area, (iii) has sticky black vertical and horizontal surfaces in an L-shaped arrangement, and (iv) its horizontal surface should be at ground level for maximum effectiveness. Using imaging polarimetry, we measured the reflection-polarisation characteristics of this new polarisation tabanid trap. The ideal optical and geometrical characteristics of this trap revealed in field experiments are also explained. The horizontal part of the trap captures water-seeking male and female tabanids, while the vertical part catches host-seeking female tabanids. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  4. Measurement of macrophage adhesion using optical tweezers with backward-scattered detection

    NASA Astrophysics Data System (ADS)

    Wei, Sung-Yang; Su, Yi-Jr; Shih, Po-Chen; Yang, Shih-Mo; Hsu, Long

    2010-08-01

    Macrophages are members of the leukocyte family. Tissue damage causes inflammation and release of vasoactive and chemotactic factors, which trigger a local increase in blood flow and capillary permeability. Then, leukocytes accumulate quickly to the infection site. The leukocyte extravasation process takes place according to a sequence of events that involve tethering, activation by a chemoattractant stimulus, adhesion by integrin binding, and migrating to the infection site. The leukocyte extravasation process reveals that adhesion is an important part of the immune system. Optical tweezers have become a useful tool with broad applications in biology and physics. In force measurement, the trapped bead as a probe usually uses a polystyrene bead of 1 μm diameter to measure adhesive force between the trapped beads and cell by optical tweezers. In this paper, using the ray-optics model calculated trapping stiffness and defined the linear displacement ranges. By the theoretical values of stiffness and linear displacement ranges, this study attempted to obtain a proper trapped particle size in measuring adhesive force. Finally, this work investigates real-time adhesion force measurements between human macrophages and trapped beads coated with lipopolysaccharides using optical tweezers with backscattered detection.

  5. Paul Fleming | NREL

    Science.gov Websites

    Paul Fleming Photo of Paul Fleming Paul Fleming Researcher IV-Control Engineering Paul.Fleming analysis of control systems for wind energy. Paul co-designed the control system used for field testing of advanced control systems on the CARTs, located at the NWTC. Since joining NREL, he has researched topics

  6. Paul Veers | NREL

    Science.gov Websites

    Veers Photo of Paul Veers Paul Veers Group Research Manager III-Mechanical Engineering Paul.Veers @nrel.gov | 303-384-7197 Paul Veers is the Chief Engineer at the NWTC and represents NREL on DOE's Staff at Sandia National Laboratories. Paul has authored over 70 articles, papers, book chapters, and

  7. Paul Denholm | NREL

    Science.gov Websites

    Denholm Photo of Paul Denholm Paul Denholm Principal Energy Analyst Paul.Denholm@nrel.gov | 303-384 -7488 Paul Denholm is a member of the Grid Systems Analysis Group in the Strategic Energy Analysis Center. Paul is a leading researcher in grid applications for energy storage and solar energy. He

  8. Linear Ion Traps in Space: The Mars Organic Molecule Analyzer (MOMA) Instrument and Beyond

    NASA Astrophysics Data System (ADS)

    Arevalo, Ricardo; Brinckerhoff, William; Mahaffy, Paul; van Amerom, Friso; Danell, Ryan; Pinnick, Veronica; Li, Xiang; Hovmand, Lars; Getty, Stephanie; Grubisic, Andrej; Goesmann, Fred; Cottin, Hervé

    2015-11-01

    Historically, quadrupole mass spectrometer (QMS) instruments have been used to explore a wide survey of planetary targets in our solar system, from Venus (Pioneer Venus) to Saturn (Cassini-Huygens). However, linear ion trap (LIT) mass spectrometers have found a niche as smaller, versatile alternatives to traditional quadrupole analyzers.The core astrobiological experiment of ESA’s ExoMars Program is the Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars 2018 rover. The MOMA instrument is centered on a linear (or 2-D) ion trap mass spectrometer. As opposed to 3-D traps, LIT-based instruments accommodate two symmetrical ion injection pathways, enabling two complementary ion sources to be used. In the case of MOMA, these two analytical approaches are laser desorption mass spectrometry (LDMS) at Mars ambient pressures, and traditional gas chromatography mass spectrometry (GCMS). The LIT analyzer employed by MOMA also offers: higher ion capacity compared to a 3-D trap of the same volume; redundant detection subassemblies for extended lifetime; and, a link to heritage QMS designs and assembly logistics. The MOMA engineering test unit (ETU) has demonstrated the detection of organics in the presence of wt.%-levels of perchlorate, effective ion enhancement via stored waveform inverse Fourier transform (SWIFT), and derivation of structural information through tandem mass spectrometry (MS/MS).A more progressive linear ion trap mass spectrometer (LITMS), funded by the NASA ROSES MatISSE Program, is being developed at NASA GSFC and promises to augment the capabilities of the MOMA instrument by way of: an expanded mass range (i.e., 20 - 2000 Da); detection of both positive and negative ions; spatially resolved (<1 mm) characterization of individual rock core layers; and, evolved gas analysis and GCMS with pyrolysis up to 1300° C (enabling breakdown of refractory phases). The Advanced Resolution Organic Molecule Analyzer (AROMA) instrument, being developed through NASA PICASSO and ESA Research and Development Programs, combines a highly capable LIT front end (a la LITMS) with a high-resolution OrbitrapTM (a la CosmOrbitrap) mass analyzer to enable disambiguation of complex molecular signals in organic-rich targets.

  9. Air trapping and airflow obstruction in newborn cystic fibrosis piglets.

    PubMed

    Adam, Ryan J; Michalski, Andrew S; Bauer, Christian; Abou Alaiwa, Mahmoud H; Gross, Thomas J; Awadalla, Maged S; Bouzek, Drake C; Gansemer, Nicholas D; Taft, Peter J; Hoegger, Mark J; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M; Hoffman, Eric A; Beichel, Reinhard R; Meyerholz, David K; Stoltz, David A

    2013-12-15

    Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.

  10. Linear study of the precessional fishbone instability

    NASA Astrophysics Data System (ADS)

    Idouakass, M.; Faganello, M.; Berk, H. L.; Garbet, X.; Benkadda, S.

    2016-10-01

    The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particle energy while it is decreased by continuum damping.

  11. Implementation of Precursor and Neutral Loss Scans on a Miniature Ion Trap Mass Spectrometer and Performance Comparison to a Benchtop Linear Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 miniature rectilinear ion trap mass spectrometer is described, and performance is compared to that of a commercial Thermo linear trap quadropole (LTQ) linear ion trap. The ac frequency scan version of the technique at constant rf voltage is used here because it is operationally much simpler to implement. Remarkably, the Mini 12 shows up to two orders of magnitude higher sensitivity compared to that of the LTQ. Resolution on the LTQ is better than unit at scan speeds of 400 Th/s, whereas peak widths on the Mini 12, on average, range from 0.5 to 2.0 Th full width at half maximum and depend heavily on the precursor ion Mathieu q parameter as well as the pump down time that precedes the mass scan. Both sensitivity and resolution are maximized under higher pressure conditions (short pump down time) on the Mini 12. The effective mass range of the product ion ejection waveform was found to be 5.8 Th on the Mini 12 in the precursor ion scan mode vs. that of 3.9 Th on the LTQ. In the neutral loss scan mode, the product ion selectivity was between 8 and 11 Th on the Mini 12 and between 7 and 8 Th on the LTQ. The effects of nonlinear resonance lines on the Mini 12 were also explored. [Figure not available: see fulltext.

  12. Design and Application of a High-Temperature Linear Ion Trap Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2018-01-01

    A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.

  13. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.

  14. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  15. The new ClusterTrap setup

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Marx, G.; Schweikhard, L.; Vass, A.; Ziegler, F.

    2011-07-01

    ClusterTrap has been designed to investigate properties of atomic clusters in the gas phase with particular emphasis on the dependence on the cluster size and charge state. The combination of cluster source, Penning trap and time-of-flight mass spectrometry allows a variety of experimental schemes including collision-induced dissociation, photo-dissociation, further ionization by electron impact, and electron attachment. Due to the storage capability of the trap extended-delay reaction experiments can be performed. Several recent modifications have resulted in an improved setup. In particular, an electrostatic quadrupole deflector allows the coupling of several sources or detectors to the Penning trap. Furthermore, a linear radio-frequency quadrupole trap has been added for accumulation and ion bunching and by switching the potential of a drift tube the kinetic energy of the cluster ions can be adjusted on their way towards or from the Penning trap. Recently, experiments on multiply negatively charged clusters have been resumed.

  16. Ferroelectric nanotraps for polar molecules

    NASA Astrophysics Data System (ADS)

    Dutta, Omjyoti; Giedke, G.

    2018-02-01

    We propose and analyze an electrostatic-optical nanoscale trap for cold diatomic polar molecules. The main ingredient of our proposal is a square array of ferroelectric nanorods with alternating polarization. We show that, in contrast to electrostatic traps using the linear Stark effect, a quadratic Stark potential supports long-lived trapped states. The molecules are kept at a fixed height from the nanorods by a standing-wave optical dipole trap. For the molecules and materials considered, we find nanotraps with trap frequency up to 1 MHz, ground-state width ˜20 nm with lattice periodicity of ˜200 nm . Analyzing the loss mechanisms due to nonadiabaticity, surface-induced radiative transitions, and laser-induced transitions, we show the existence of trapped states with lifetime ˜1 s , competitive with current traps created via optical mechanisms. As an application we extend our discussion to a one-dimensional (1D) array of nanotraps to simulate a long-range spin Hamiltonian in our structure.

  17. Quadrupole ion traps and trap arrays: geometry, material, scale, performance.

    PubMed

    Ouyang, Z; Gao, L; Fico, M; Chappell, W J; Noll, R J; Cooks, R G

    2007-01-01

    Quadrupole ion traps are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion traps (LITs) and the simplified rectilinear ion trap (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-traps. The performance of instruments containing individual traps as well as arrays of traps of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, trap arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual traps acts collectively as a composite trap to increase trapping capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.

  18. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    NASA Astrophysics Data System (ADS)

    Prathap Reddy, K.

    2016-11-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.

  19. Induced-charge electroosmotic trapping of particles.

    PubMed

    Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan

    2015-05-21

    Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.

  20. 76 FR 37194 - Surety Companies Acceptable on Federal Bonds; Change in State of Incorportation, Business Address...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... State of Incorportation, Business Address and Phone; St. Paul Fire and Marine Insurance Company; St. Paul Guardian Insurance Company; St. Paul Mercury Insurance Company AGENCY: Financial Management... that St. Paul Fire and Marine Insurance Company (24767), St. Paul Guardian Insurance Company (24775...

  1. Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay

    NASA Astrophysics Data System (ADS)

    Grinyer, G. F.; Thomas, J. C.; Blank, B.; Bouzomita, H.; Austin, R. A. E.; Ball, G. C.; Bucaille, F.; Delahaye, P.; Finlay, P.; Frémont, G.; Gibelin, J.; Giovinazzo, J.; Grinyer, J.; Kurtukian-Nieto, T.; Laffoley, A. T.; Leach, K. G.; Lefèvre, A.; Legruel, F.; Lescalié, G.; Perez-Loureiro, D.

    2014-03-01

    The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β-ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β+ decays 14 O and 17F are presented.

  2. Scalable Creation of Long-Lived Multipartite Entanglement

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-10-01

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  3. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    PubMed

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  4. Planning and Problem Solving

    DTIC Science & Technology

    1982-10-01

    Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

  5. RF Photonic Link Test Bed

    DTIC Science & Technology

    2004-09-01

    TEST BED 6. AUTHOR(S) 1Lt Charles Ware, Paul Payson, Richard Michalak and George Brost 5 . FUNDING NUMBERS C - N/A PE - 62204F...modulator [ 5 ]. As can be deduced from the above equation, biasing the modulator at Vπ/2, or quadrature, allows the device to operate in the most linear...is desirable to have access to the secure surveillance facility added to your 5 RRS badge, since room F-251 is in this area. This allows unescorted

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  7. Trapping force and optical lifting under focused evanescent wave illumination.

    PubMed

    Ganic, Djenan; Gan, Xiaosong; Gu, Min

    2004-11-01

    A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.

  8. Symmetry breaking in linear multipole traps

    NASA Astrophysics Data System (ADS)

    Pedregosa-Gutierrez, J.; Champenois, C.; Kamsap, M. R.; Hagel, G.; Houssin, M.; Knoop, M.

    2018-03-01

    Radiofrequency multipole traps have been used for some decades in cold collision experiments and are gaining interest for precision spectroscopy due to their low micromotion contribution and the predicted unusual cold-ion structures. However, the experimental realisation is not yet fully controlled, and open questions in the operation of these devices remain. We present experimental observations of symmetry breaking of the trapping potential in a macroscopic octupole trap with laser-cooled ions. Numerical simulations have been performed in order to explain the appearance of additional local potential minima and be able to control them in a next step. We characterise these additional potential minima, in particular with respect to their position, their potential depth and their probability of population as a function of the radial and angular displacement of the trapping rods.

  9. An improved linear ion trap physics package

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.

    1993-01-01

    This article describes an improvement in the architecture of the physics package used in the Linear Ion Trap (LIT)-based frequency standard recently developed at JPL. This new design is based on the observation that ions can be moved along the axis of an LIT by applied dc voltages. The state selection and interrogation region can be separated from the more critical microwave resonance region where the multiplied local oscillator signal is compared with the stable atomic transition. This separation relaxes many of the design constraints of the present units. Improvements include increased frequency stability and a substantial reduction in size, mass, and cost of the final frequency standard.

  10. Rapid separation and characterization of diterpenoid alkaloids in processed roots of Aconitum carmichaeli using ultra high performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap tandem mass spectrometry.

    PubMed

    Xu, Wen; Zhang, Jing; Zhu, Dayuan; Huang, Juan; Huang, Zhihai; Bai, Junqi; Qiu, Xiaohui

    2014-10-01

    The lateral root of Aconitum carmichaeli, a popular traditional Chinese medicine, has been widely used to treat rheumatic diseases. For decades, diterpenoid alkaloids have dominated the phytochemical and biomedical research on this plant. In this study, a rapid and sensitive method based on ultra high performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry was developed to characterize the diterpenoid alkaloids in Aconitum carmichaeli. Based on an optimized chromatographic condition, more than 120 diterpenoid alkaloids were separated with good resolution. Using a systematic strategy that combines high resolution separation, highly accurate mass measurements and a good understanding of the diagnostic fragment-based fragmentation patterns, these diterpenoid alkaloids were identified or tentatively identified. The identification of these chemicals provided essential data for further phytochemical studies and toxicity research of Aconitum carmichaeli. Moreover, the ultra high performance liquid chromatography with linear ion trap-Orbitrap mass spectrometry platform was an effective and accurate tool for rapid qualitative analysis of secondary metabolite productions from natural resources. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Building a linear equation-of-state for trapped gravitons from finite size effects and the Schwarzschild black hole case

    NASA Astrophysics Data System (ADS)

    Viaggiu, Stefano

    In this paper, we continue the investigations present in [S. Viaggiu, Physica A 473 (2017) 412; 488 (2017) 72.] concerning the spectrum of trapped gravitons in a spherical box, and in particular, inside a Schwarzschild black hole (BH). We explore the possibility that, due to finite size effects, the frequency of the radiation made of trapped gravitons can be modified in such a way that a linear equation-of-state PV = γU for the pressure P and the internal energy U arises. Firstly, we study the case with U ˜ R, where only fluids with γ > ‑1 3 are possible. If corrections ˜ 1/R are added to U, for γ ∈ [0, 1 3], we found no limitation on the allowed value for the areal radius of the trapped sphere R. Moreover, for γ > 1 3, we have a minimum allowed value for R of the order of the Planck length LP. Conversely, a fluid with P < 0 can be obtained but with a maximum allowed value for R. With the added term looking like ˜ 1/R to the BH internal energy U, the well-known logarithmic corrections to the BH entropy naturally emerge for any linear equation-of-state. The results of this paper suggest that finite size effects could modify the structure of graviton’s radiation inside, showing a possible mechanism to transform radiation into dark energy.

  12. Electronegativity Equalization with Pauling Units.

    ERIC Educational Resources Information Center

    Bratsch, Steven G.

    1984-01-01

    Discusses electronegativity equalization using Pauling units. Although Pauling has qualitatively defined electronegativity as the power of an atom in a molecule to attract electrons to itself, Pauling electronegativities are treated in this paper as prebonded, isolated-atom quantities. (JN)

  13. North American Jumelage ’Type Systems’

    DTIC Science & Technology

    1993-10-20

    Brian Howard bhoward~saul.cis.upenn.edu Doug Howe howegcs.cornell.edu Paul Jackson jacksongcs.cornell.edu Radhakrishnan Jagadeesan rj2Gdoc.imperial.ac.uk...Curry and Howard . They have shown that there exists an ’’isomorphism’’ between the terms of typed lambda calculus and the natural deduction proofs of...linear logic for computer science 3:05-3:30 Break 3:30-4:00 G. Bellin , Oxford University: Proof-nets without boxes and graphs with orientations 4:05-4:25 H

  14. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia

    PubMed Central

    Masi, Elisa; Ciszak, Marzena; Colzi, Ilaria; Adamec, Lubomir; Mancuso, Stefano

    2016-01-01

    In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed. PMID:27117956

  15. Traffic-related air pollution and alveolar nitric oxide in southern California children.

    PubMed

    Eckel, Sandrah P; Zhang, Zilu; Habre, Rima; Rappaport, Edward B; Linn, William S; Berhane, Kiros; Zhang, Yue; Bastain, Theresa M; Gilliland, Frank D

    2016-05-01

    Mechanisms for the adverse respiratory effects of traffic-related air pollution (TRAP) have yet to be established. We evaluated the acute effects of TRAP exposure on proximal and distal airway inflammation by relating indoor nitric oxide (NO), a marker of TRAP exposure in the indoor microenvironment, to airway and alveolar sources of exhaled nitric oxide (FeNO).FeNO was collected online at four flow rates in 1635 schoolchildren (aged 12-15 years) in southern California (USA) breathing NO-free air. Indoor NO was sampled hourly and linearly interpolated to the time of the FeNO test. Estimated parameters quantifying airway wall diffusivity (DawNO) and flux (J'awNO) and alveolar concentration (CANO) sources of FeNO were related to exposure using linear regression to adjust for potential confounders.We found that TRAP exposure indoors was associated with elevated alveolar NO. A 10 ppb higher indoor NO concentration at the time of the FeNO test was associated with 0.10 ppb higher average CANO (95% CI 0.04-0.16) (equivalent to a 7.1% increase from the mean), 4.0% higher J'awNO (95% CI -2.8-11.3) and 0.2% lower DawNO (95% CI -4.8-4.6).These findings are consistent with an airway response to TRAP exposure that was most marked in the distal airways. Copyright ©ERS 2016.

  16. Towards Quantum Simulations Using a Chip Ion Trap

    NASA Astrophysics Data System (ADS)

    Cao, Chenglin; Wright, Ken; Brennan, Daniel; Ji, Geoffrey; Monroe, Christopher

    2013-05-01

    We report our current experimental progress towards using chip ion traps for quantum simulation. Current progress is being made using a micro-fabricated symmetric trap from GTRI. This trap implements a novel two level design that combines the benefits of both surface traps and linear four-rod traps. The trap has 50 electrodes which allow for the fine control of the DC potential needed to create large anharmonic potentials, to join and split ion chains and to shuttle ions along the trapping axis similar to many surface traps. However this trap also has a much deeper trapping depth than conventional surface traps and improved optical access via an angled slot through the chip wide enough to accommodate higher power laser light which could cause surface charging or damage in a traditional chip trap. These advantages should allow trapping of long ion chains. We hope to use these features as the next step in increasing the size of current quantum simulations being done at Univ of Maryland, which are aimed at exploring quantum phenomena in spin systems in a regime inaccessible to classical simulation. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI. We acknowledge the GTRI team of J. Amini, K. Brown, A. Harter, F. Shaikh, R. Slusher, and C. Volin for the fabrication of the trap.

  17. Excitation and trapping of lower hybrid waves in striations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, N.; Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation; Honary, F.

    2008-12-15

    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionosphericmore » modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges.« less

  18. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    NASA Astrophysics Data System (ADS)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  19. Scalable Creation of Long-Lived Multipartite Entanglement.

    PubMed

    Kaufmann, H; Ruster, T; Schmiegelow, C T; Luda, M A; Kaushal, V; Schulz, J; von Lindenfels, D; Schmidt-Kaler, F; Poschinger, U G

    2017-10-13

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in ^{40}Ca^{+}, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ⟩=(1/sqrt[2])(|0000⟩+|1111⟩), and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  20. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers

    NASA Astrophysics Data System (ADS)

    Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan

    2018-04-01

    Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.

  1. Space Flyable Hg(sup +) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute

    1994-01-01

    We discuss a design for a space based atomic frequency standard (AFS) based on Hg(sup +) ions confined in a linear ion trap. This newly developed AFS should be well suited for space borne applications because it can supply the ultra-high stability of a H-maser but its total mass is comparable to that of a NAVSTAR/GPS cesium clock, i.e., about 11kg. This paper will compare the proposed Hg(sup +) AFS to the present day GPS cesium standards to arrive at the 11 kg mass estimate. The proposed space borne Hg(sup +) standard is based upon the recently developed extended linear ion trap architecture which has reduced the size of existing trapped Hg(sup +) standards to a physics package which is comparable in size to a cesium beam tube. The demonstrated frequency stability to below 10(sup -15) of existing Hg(sup +) standards should be maintained or even improved upon in this new architecture. This clock would deliver far more frequency stability per kilogram than any current day space qualified standard.

  2. 40 CFR 81.27 - Minneapolis-St. Paul Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Minneapolis-St. Paul Intrastate Air... Air Quality Control Regions § 81.27 Minneapolis-St. Paul Intrastate Air Quality Control Region. The Minneapolis-St. Paul Intrastate Air Quality Control Region (Minnesota) consists of the territorial area...

  3. 75 FR 27494 - Proposed Amendment of Class E Airspace; Pauls Valley, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... 0182; Airspace Docket No. 10-ASW-4] Proposed Amendment of Class E Airspace; Pauls Valley, OK AGENCY... action proposes to amend Class E airspace at Pauls Valley, OK. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Pauls Valley Municipal...

  4. Free-electron maser with high-selectivity Bragg resonator using coupled propagating and trapped modes

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.

    2010-10-01

    A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.

  5. Use of Early Ripening Cultivars to Avoid Infestation and Mass Trapping to Manage Drosophila suzukii (Diptera: Drosophilidae) in Vaccinium corymbosum (Ericales: Ericaceae).

    PubMed

    Hampton, Emily; Koski, Carissa; Barsoian, Olivia; Faubert, Heather; Cowles, Richard S; Alm, Steven R

    2014-10-01

    Use of early ripening highbush blueberry cultivars to avoid infestation and mass trapping were evaluated for managing spotted wing drosophila, Drosophila suzukii (Matsumura). Fourteen highbush blueberry cultivars were sampled for spotted wing drosophila infestation. Most 'Earliblue', 'Bluetta', and 'Collins' fruit were harvested before spotted wing drosophila oviposition commenced, and so escaped injury. Most fruit from 'Bluejay', 'Blueray', and 'Bluehaven' were also harvested before the first week of August, after which spotted wing drosophila activity led to high levels of blueberry infestation. In a separate experiment, damage to cultivars was related to the week in which fruit were harvested, with greater damage to fruit observed as the season progressed. Attractant traps placed within blueberry bushes increased nearby berry infestation by 5%, irrespective of cultivar and harvest date. The significant linear reduction in infestation with increasing distance from the attractant trap suggests that traps are influencing fly behavior to at least 5.5 m. Insecticides applied to the exterior of traps, compared with untreated traps, revealed that only 10-30% of flies visiting traps enter the traps and drown. Low trap efficiency may jeopardize surrounding fruits by increasing local spotted wing drosophila activity. To protect crops, traps for mass trapping should be placed in a perimeter outside fruit fields and insecticides need to be applied to the surface of traps or on nearby fruit to function as an attract-and-kill strategy. © 2014 Entomological Society of America.

  6. An adaptive strategy for reducing Feral Cat predation on endangered hawaiian birds

    USGS Publications Warehouse

    Hess, S.C.; Banko, P.C.; Hansen, H.

    2009-01-01

    Despite the long history of Feral Cats Felis catus in Hawai'i, there has been little research to provide strategies to improve control programmes and reduce depredation on endangered species. Our objective Was to develop a predictive model to determine how landscape features on Mauna Kea, such as habitat, elevation, and proximity to roads, may affect the number of Feral Cats captured at each trap. We used log-link generalized linear models and QAIC c model ranking criteria to determine the effect of these factors. We found that The number of cats captured per trap Was related to effort, habitat type, and Whether traps Were located on The West or North Slope of Mauna Kea. We recommend an adaptive management strategy to minimize trapping interference by non-target Small Indian Mongoose Herpestes auropunctatus with toxicants, to focus trapping efforts in M??mane Sophora chrysophylla habitat on the West slope of Mauna Kea, and to cluster traps near others that have previously captured multiple cats.

  7. Meandering Musings by Linus Pauling: "American Scientists and the Spirit of the Frontier".

    PubMed

    Bause, George S

    2016-04-01

    Hoping to raise funds in 1975 for his namesake institute, Linus Pauling submitted to Esquire magazine a 32-page handwritten manuscript, "American Scientists and the Spirit of the Frontier." Angered when his submission for publication was declined, Pauling eventually gifted the original manuscript in 1986 to his friend, Linus Pauling Institute fundraiser Stephen Maddox, who would sell it in 2004 to the Wood Library-Museum of Anesthesiology. Published accurately here for the first time, the manuscript captures not only Pauling's sweeping metaphor of scientists as frontiersmen but also the creative process by which Pauling formulated his hydrate microcrystal theory of general anesthesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Studies of lipid vesicle mechanics using an optical fiber dual-beam trap

    NASA Astrophysics Data System (ADS)

    Pinon, Tessa M.; Hirst, Linda S.; Sharping, Jay E.

    2011-03-01

    Fiber-based optical traps can be used for manipulating micron-sized dielectric particles such as microspheres and biological cells. Here we study the mechanics of giant unilamellar vesicles (GUVs) which are held and stretched by light forces in a fiber-based dual-beam optical trap. Our GUVs are suspended in a buffer solution and encapsulate various concentrations and molecular weights of poly(ethylene glycol) (PEG) polymer yielding a range of refractive index contrasts and trapping conditions. We find that we can trap GUVs in solution with index contrasts of less than 0.01. We explore the mechanical response of the GUV membrane to a range of forces which are proportional to laser power and refractive index contrast. Our trapping system is a compact and inexpensive platform and trapping is viewed in real time under a microscope. We hypothesize that forces within the high-tension regime will induce a linear response in vesicle surface area. This project sets the stage for membrane mechanics and lipid phase change studies. Grant: NSF award #DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol in the Cell Membrane.''

  9. "Between the Heavens and the Earth": Narrating the Execution of Moses Paul

    ERIC Educational Resources Information Center

    Salyer, Matt

    2012-01-01

    The 1772 execution of the Mohegan sailor Moses Paul served as the occasion for Samson Occom's popular "Sermon," reprinted in numerous editions. Recent work by Ava Chamberlain seeks to recover Paul's version of events from contemporary court records. This article argues that Paul's "firsthand" account of the case and autobiographical narrative…

  10. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  11. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature,more » and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.« less

  12. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, Aditya K.; Ganesh, R., E-mail: ganesh@ipr.res.in; Brunner, S.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instabilitymore » is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.« less

  13. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  14. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Steinvurzel, Paul; Crozier, Kenneth B

    2011-09-13

    Although optical tweezers based on far-fields have proven highly successful for manipulating objects larger than the wavelength of light, they face difficulties at the nanoscale because of the diffraction-limited focused spot size. This has motivated interest in trapping particles with plasmonic nanostructures, as they enable intense fields confined to sub-wavelength dimensions. A fundamental issue with plasmonics, however, is Ohmic loss, which results in the water, in which the trapping is performed, being heated and to thermal convection. Here we demonstrate the trapping and rotation of nanoparticles using a template-stripped plasmonic nanopillar incorporating a heat sink. Our simulations predict an ~100-fold reduction in heating compared with previous designs. We further demonstrate the stable trapping of polystyrene particles, as small as 110 nm in diameter, which can be rotated around the nanopillar actively, by manual rotation of the incident linear polarization, or passively, using circularly polarized illumination.

  15. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba

    2009-01-01

    We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.

  16. Geometrical effects on the electron residence time in semiconductor nano-particles.

    PubMed

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  17. 75 FR 67303 - Determinations of Attainment by the Applicable Attainment Date for the Hayden, Nogales, Paul Spur...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... of Attainment by the Applicable Attainment Date for the Hayden, Nogales, Paul Spur/Douglas PM 10... proposes to determine that the Hayden, Nogales, and Paul Spur/Douglas nonattainment areas in Arizona... Hayden, Nogales and Paul Spur/Douglas nonattainment areas are not currently attaining the PM 10 standard...

  18. 77 FR 41168 - Marine Mammals; Subsistence Taking of Northern Fur Seals; St. Paul Island

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Mammals; Subsistence Taking of Northern Fur Seals; St. Paul Island AGENCY: National Marine Fisheries... taking of northern fur seals on St. Paul Island. St. Paul's petition requests that NMFS revise the... seals; take a total of up to 3,000 fur seals annually compared to 2,000 currently allowed, including up...

  19. 78 FR 46938 - St. Paul Park Refining Co. LLC v. Enbridge Pipelines (North Dakota) LLC; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR13-28-000] St. Paul Park..., 2013, St. Paul Park Refining Co. LLC (Complainant) filed a formal complaint against Enbridge Pipelines... regulatory basis. St. Paul Park Refining Co. LLC certifies that copies of the complaint were served on the...

  20. 75 FR 34097 - Expansion of Foreign-Trade Zone 119; Minneapolis-St. Paul Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1684] Expansion of Foreign-Trade Zone 119; Minneapolis-St. Paul Area Pursuant to its authority under the Foreign-Trade Zones Act of June 18... Sites 7 and 8 in the Minneapolis-St. Paul area, adjacent to the Minneapolis-St. Paul Customs and Border...

  1. "Dancing Cannot Start Too Soon": Spiritual Education in the Thought of Jean Paul Friedrich Richter

    ERIC Educational Resources Information Center

    Pridmore, John

    2004-01-01

    Johann Paul Friedrich Richter (1763-1825) adopted the pen-name "Jean Paul" in honour of Jean Jaques Rousseau. His "Levana or the doctrine of education" ("Levana oder Erziehlehre") was once a standard text and required reading in teacher education. Outside Germany the name of Jean Paul is now little known and the…

  2. Electronegativity determination of individual surface atoms by atomic force microscopy.

    PubMed

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-04-26

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

  3. Electronegativity determination of individual surface atoms by atomic force microscopy

    PubMed Central

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-01-01

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645

  4. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers

    PubMed Central

    Sarshar, Mohammad; Wong, Winson T.; Anvari, Bahman

    2014-01-01

    Abstract. Optical tweezers have become an important instrument in force measurements associated with various physical, biological, and biophysical phenomena. Quantitative use of optical tweezers relies on accurate calibration of the stiffness of the optical trap. Using the same optical tweezers platform operating at 1064 nm and beads with two different diameters, we present a comparative study of viscous drag force, equipartition theorem, Boltzmann statistics, and power spectral density (PSD) as methods in calibrating the stiffness of a single beam gradient force optical trap at trapping laser powers in the range of 0.05 to 1.38 W at the focal plane. The equipartition theorem and Boltzmann statistic methods demonstrate a linear stiffness with trapping laser powers up to 355 mW, when used in conjunction with video position sensing means. The PSD of a trapped particle’s Brownian motion or measurements of the particle displacement against known viscous drag forces can be reliably used for stiffness calibration of an optical trap over a greater range of trapping laser powers. Viscous drag stiffness calibration method produces results relevant to applications where trapped particle undergoes large displacements, and at a given position sensing resolution, can be used for stiffness calibration at higher trapping laser powers than the PSD method. PMID:25375348

  5. Progress in understanding heavy-ion stopping

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  6. 76 FR 43958 - Safety Zone; Rotary Club of Fort Lauderdale New River Raft Race, New River, Fort Lauderdale, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... have questions on this proposed rule, call or e-mail Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A.Steiner@uscg.mil . If you have... Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A...

  7. Maniac Talk - Paul Newman

    NASA Image and Video Library

    2015-02-25

    Paul Newman Maniac Lecture, February 25, 2015 NASA climate scientist Dr. Paul Newman presented a Maniac Talk entitled "Some pretty good rules for a career: Newman's own lessons." Paul traced his journey from middle of Seattle, where he grew up, moved to rural Iowa for graduate school, and made his way to NASA/GSFC in 1984, and discussed lessons to be learned from the ozone depletion story.

  8. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  9. Critical behavior in trapped strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Taylor, E.

    2009-08-01

    We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.

  10. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    PubMed

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Paul Frampton

    NASA Astrophysics Data System (ADS)

    Williams, Heather A.

    2013-01-01

    I was astonished by an article that appeared on physicsworld.com in November about the physicist Paul Frampton and his imprisonment for attempted cocaine smuggling ("Paul Frampton hit by 56-month drugs sentence", 22 November 2012).

  12. Linus Pauling and sickle cell disease.

    PubMed

    Eaton, William A

    2003-01-01

    The 1949 paper by Linus Pauling et al. [Science 110 (1949) 543-548] describing the discovery of sickle cell anemia as the first molecular disease had a major impact on biology and medicine. Inspired by the scholarly works of John Edsall on the history of hemoglobin research, I present a brief retrospective analysis of Pauling's paper. This is followed by some personal recollections of Edsall and Pauling.

  13. Stick-slip nanofriction in cold-ion traps

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Tosatti, Erio

    2013-03-01

    Trapped cold ions are known to form linear or planar zigzag chains, helices or clusters depending on trapping conditions. They may be forced to slide over a laser induced corrugated potential, a mimick of sliding friction. We present MD simulations of an incommensurate 101 ions chain sliding subject to an external electric field. As expected with increasing corrugation, we observe the transition from a smooth-sliding, highly lubric regime to a strongly dissipative stick-slip regime. Owing to inhomogeneity the dynamics shows features reminiscent of macroscopic frictional behaviors. While the chain extremities are pinned, the incommensurate central part is initially free to slide. The onset of global sliding is preceded by precursor events consisting of partial slips of chain portions further from the center. We also look for frictional anomalies expected for the chain sliding across the linear-zigzag structural phase transition. Although the chain is too short for a proper critical behavior, the sliding friction displays a frank rise near the transition, due to opening of a new dissipative channel via excitations of transverse modes. Research partly sponsored by Sinergia Project CRSII2 136287/1.

  14. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  15. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  16. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.

    PubMed

    Tietjen, Gregory T; Kong, Yupeng; Parthasarathy, Raghuveer

    2008-07-07

    Interparticle interaction energies and other useful physical characteristics can be extracted from the statistical properties of the motion of particles confined by an optical line trap. In practice, however, the potential energy landscape, U(x), imposed by the line provides an extra, and in general unknown, influence on particle dynamics. We describe a new class of line traps in which both the optical gradient and scattering forces acting on a trapped particle are designed to be linear functions of the line coordinate and in which their magnitude can be counterbalanced to yield a flat U(x). These traps are formed using approximate solutions to general relations concerning non-conservative optical forces that have been the subject of recent investigations [Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602-4 (2008).]. We implement the lines using holographic optical trapping and measure the forces acting on silica microspheres, demonstrating the tunability of the confining potential energy landscape. Furthermore, we show that our approach efficiently directs available laser power to the trap, in contrast to other methods.

  17. [Rapid screening and confirmation of 205 pesticide residues in rice by QuEChERS and liquid chromatography-mass spectrometry].

    PubMed

    Chen, Xi; Cheng, Lei; Qu, Shichao; Huang, Daliang; Liu, Jiacheng; Cui, Han; Jia, Yanbo; Ji, Mingshan

    2015-10-01

    A method for rapid screening and confirmation of 205 pesticide residues in rice was developed by combining QuEChERS and high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (LC-Q-TRAP/MS). The rice samples were extracted with acetonitrile, and then cleaned up with primary secondary amine (PSA), anhydrous magnesium sulfate (MgSO4) and C18 adsorbent. Finally, the samples were detected by LC-Q-TRAP/MS in multiple reaction monitoring with information-dependent acquisition of enhanced product ion (MRM-IDA-EPI) mode followed with database searching. A total of 205 pesticide residues were confirmed by retention times, ion pairs and the database searching using EPI library, and quantified by external standard method. All the pesticides showed good linearities with linear correlation coefficients all above 0.995. The limits of quantification (LOQs) for the 205 pesticides were 0.5-10.0 μg/kg. The average recoveries of the 205 pesticides ranged from 62.4% to 127.1% with the relative standard deviations (RSDs) of 1.0% - 20.0% at spiked levels of 10 μg/kg and 50 μg/kg, and only 20 min were needed for the analysis of an actual rice sample. In brief, the method is fast, accurate and highly sensitive, and is suitable for the screening and confirmation of pesticide residues in rice.

  18. Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I

    2016-06-30

    The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Probing orientation and rotation of red blood cells in optical tweezers by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-03-01

    Interaction of red blood cells (RBC) with optical tweezers has been found to differ under varied physiological and pathological conditions as compared to its normal conditions. Earlier, we reported difference in rotation of trapped RBC in hypertonic conditions for detection of malaria infection. Disk-like RBC when trapped in optical tweezers get oriented in the vertical plane to maximize interaction with trapping beam. However, classical bright field, phase contrast or epifluorescence microscopy cannot confirm its orientation, thus leading to ambiguous conclusions such as folding of RBC during trapping by some researchers. Now, with use of digital holographic microscopy (DHM), we achieved high axial sensitivity that confirmed orientation of trapped red blood cell. Further, DHM enabled quantitative phase imaging of RBC under hypertonic condition. Dynamic changes of rotating RBC under optical tweezers at different trapping laser power were evaluated by the use of DHM. The deviation from linear dependence of rotation speed of RBC on laser power, was attributed towards deformation of RBC shape due to higher laser power (or speed).

  20. Improving the lifetime in optical microtraps by using elliptically polarized dipole light

    NASA Astrophysics Data System (ADS)

    Garcia, Sébastien; Reichel, Jakob; Long, Romain

    2018-02-01

    Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.

  1. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyarkin, Oleg V., E-mail: oleg.boiarkin@epfl.ch; Kopysov, Vladimir

    2014-03-15

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ∼150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrastmore » to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion–He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.« less

  2. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.

    PubMed

    Boyarkin, Oleg V; Kopysov, Vladimir

    2014-03-01

    We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.

  3. Evaluating Mass Analyzers as Candidates for Small, Portable, Rugged Single Point Mass Spectrometers for Analysis of Permanent Gases

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Ottens, Andrew K.; Diaz, Jorge A.; Griffin, Timothy P.; Follestein, Duke; Adams, Fredrick; Steinrock, T. (Technical Monitor)

    2001-01-01

    For Space Shuttle launch safety, there is a need to monitor the concentration Of H2, He, O2, and Ar around the launch vehicle. Currently a large mass spectrometry system performs this task, using long transport lines to draw in samples. There is great interest in replacing this stationary system with several miniature, portable, rugged mass spectrometers which act as point sensors which can be placed at the sampling point. Five commercial and two non-commercial analyzers are evaluated. The five commercial systems include the Leybold Inficon XPR-2 linear quadrupole, the Stanford Research (SRS-100) linear quadrupole, the Ferran linear quadrupole array, the ThermoQuest Polaris-Q quadrupole ion trap, and the IonWerks Time-of-Flight (TOF). The non-commercial systems include a compact double focusing sector (CDFMS) developed at the University of Minnesota, and a quadrupole ion trap (UF-IT) developed at the University of Florida.

  4. Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap.

    PubMed

    Woody, Michael S; Capitanio, Marco; Ostap, E Michael; Goldman, Yale E

    2018-04-30

    We characterized experimental artifacts arising from the non-linear response of acousto-optical deflectors (AODs) in an ultra-fast force-clamp optical trap and have shown that using electro-optical deflectors (EODs) instead eliminates these artifacts. We give an example of the effects of these artifacts in our ultra-fast force clamp studies of the interaction of myosin with actin filaments. The experimental setup, based on the concept of Capitanio et al. [Nat. Methods 9, 1013-1019 (2012)] utilizes a bead-actin-bead dumbbell held in two force-clamped optical traps which apply a load to the dumbbell to move it at a constant velocity. When myosin binds to actin, the filament motion stops quickly as the total force from the optical traps is transferred to the actomyosin attachment. We found that in our setup, AODs were unsuitable for beam steering due to non-linear variations in beam intensity and deflection angle as a function of driving frequency, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artifactual jumps in the trap position. We demonstrate that beam steering with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-focal-plane interferometry, and dual high-speed FPGA-based feedback loops, we apply precise and constant loads to study the dynamics of interactions between actin and myosin. The same concept applies to studies of other biomolecular interactions.

  5. Minneapolis-Saint Paul air cargo study

    DOT National Transportation Integrated Search

    2001-12-01

    The Minneapolis-Saint Paul Task Force commissioned this study. It was established to address the apparent decline in air cargo through Minneapolis-Saint Paul airport in recent years. Distribution services, especially international air cargo, are stra...

  6. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics

    PubMed Central

    Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.

    2015-01-01

    A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, while the faster scanning LTQ-Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design. PMID:25261218

  7. Prospects for Ultra-Stable Timekeeping with Sealed Vacuum Operation in Multi-Pole Linear Ion Trap Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, R. L.

    2007-01-01

    A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach

  8. A Miniaturized Linear Wire Ion Trap with Electron Ionization and Single Photon Ionization Sources

    NASA Astrophysics Data System (ADS)

    Wu, Qinghao; Tian, Yuan; Li, Ailin; Andrews, Derek; Hawkins, Aaron R.; Austin, Daniel E.

    2017-05-01

    A linear wire ion trap (LWIT) with both electron ionization (EI) and single photon ionization (SPI) sources was built. The SPI was provided by a vacuum ultraviolet (VUV) lamp with the ability to softly ionize organic compounds. The VUV lamp was driven by a pulse amplifier, which was controlled by a pulse generator, to avoid the detection of photons during ion detection. Sample gas was introduced through a leak valve, and the pressure in the system is shown to affect the signal-to-noise ratio and resolving power. Under optimized conditions, the limit of detection (LOD) for benzene was 80 ppbv using SPI, better than the LOD using EI (137 ppbv). System performance was demonstrated by distinguishing compounds in different classes from gasoline.

  9. Optical trapping using cascade conical refraction of light.

    PubMed

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  10. Current Voltage Characteristics and Excess Noise at the Trap Filling Transition in Polyacenes

    NASA Astrophysics Data System (ADS)

    Pousset, Jeremy; Alfinito, Eleonora; Carbone, Anna; Pennetta, Cecilia; Reggiani, Lino

    Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap-free space-charge-limited current) behaviors. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong superquadratic I-V characteristics. Here, we discuss the physical interpretation of these experiments in terms of an essential contribution from field-assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap-filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range 0.65÷35μm.

  11. The Effect of Organic Compounds on the Hygroscopic Properties of Inorganic Aerosol

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Zardini, A. A.; Marcolli, C.

    2006-12-01

    The hygroscopicity of the aerosols plays a major role for the direct and indirect effect on the climate. It is known that aerosols are often a mixture of inorganic and organic matter. A significant fraction of the organic matter is water soluble (WSOC) and affects light scattering, water uptake and phase transitions of multicomponent aerosols. Additionally, organic matter can act as a surfactant around an inorganic particle, affecting the evaporation-condensation time scale. This research project benefits from the combined measurements performed by two different instrumentations: the electrodynamic trap at IACETH, Zürich, Switzerland, and a Tandem Differential Mobility Analizer (TDMA) at the Paul Scherrer Institute, Switzerland. The Electrodynamic Trap consists of a chamber in which a levitated particle can experience all the atmospherically relevant conditions of temperature, pressure, and humidity. All these parameters can be continuously varied so that the hygroscopic curve of the aerosol particle can be measured. Additional tools help to better characterize the aerosol particle: 90 degrees angular scattering of lasers (for radius measurements) and intensity fluctuation of the scattered light with time (for phase changes detection). In this poster the results obtained through the electrodynamic balance technique will be shown and compared with the TDMA. In particular, bicomponent ammonium sulphate with adipic acid bicomponent particles are studied, with different mixing ratios. Particular emphasis is put on assessing the water uptake and the phase changes of the particles.

  12. 58. Photographic copy of original construction plan (St. Paul Engineer's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photographic copy of original construction plan (St. Paul Engineer's Office, Wabasha St. Bridge, Plan of Masonry, February 1899); south abutment - Wabasha Street Bridge, Spanning Mississippi River at Wabasha Street, Saint Paul, Ramsey County, MN

  13. 76 FR 73666 - Notice of Inventory Completion: Paul H. Karshner Memorial Museum, Puyallup, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ..., 2011. ADDRESSES: Brian Fox, Director of Instructional Leadership, Puyallup School District, Paul H... criteria in 43 CFR 10.11(c)(1) should contact Brian Fox, Director of Instructional Leadership, Paul H...

  14. The Modern Catholic Just War Tradition

    DTIC Science & Technology

    2012-04-15

    offered a positive solution to the problems facing humanity. In fact in an address to the Vatican Diplomatic Corps, January 13, 2003, Pope John Paul II...cii Pope John Paul II. “Address of His Holiness Pope John Paul II to the Diplomatice Corps.” Speech to the Vatican Diplomatic Corps Libreria...the Vatican Diplomatic Corps Libreria Editrice Vaticana, January 2003. 4 http://www.vatican.va/holy_father/john_paul_ii/speeches/2003/january

  15. Les instabilités antérieures de l’épaule:à propos de 73 cas

    PubMed Central

    Jamal, Louaste; Bousbaa, Hicham; Cherrad, Taoufik; Wahidi, Mohammed; Amhajji, Larbi; Rachid, Khalid

    2016-01-01

    Entre 2005 et 2014, 73patients (77 épaules) ont bénéficié d’une intervention de Latarjet pour instabilité antérieure de l’épaule. Nous avons, rétrospectivement, évalué les résultats cliniques et radiologiques de cette technique opératoire. L’intervention a été réalisée pour le traitement d’une luxation récidivante dans 69 cas, subluxation récidivante douloureuse dans 5 cas et 3 épaules douloureuses Tous les patients ont eu une évaluation radiographique avant l’intervention et lors du contrôle le plus récent. Selon le score de Rowe, 73 (94.8 %) des 77 épaules ont obtenu un résultat bon ou excellent. Au plus grand recul, 74 épaules étaient indemnes d’arthrose glénohumérale. PMID:27800066

  16. Treatment of nasal fractures by Paul of Aegina.

    PubMed

    Skoulakis, Charalampos E; Manios, Andreas G; Theos, Evangelos A; Papadakis, Chariton E; Stavroulaki, Pelagia S

    2008-03-01

    The most exact description of the management of nasal fractures given by any physician of ancient times belongs to Paul of Aegina (AD 625-690). The goal of this article is to describe the therapeutic methods and surgical techniques used by Paul of Aegina in the treatment of nasal injuries. We studied the original Greek texts and the translation published in Venice, titled "The seven books of excellent doctor Paul of Aegina." The sixth book of his medical compendium is devoted to surgery. We identified the treatments and techniques applied to the restoration of injured noses. In this historical article we present the management of nasal fractures by Paul of Aegina. Paul of Aegina's conservative and surgical management for each form of injury was adopted by later physicians and influenced European medicine, a management surprisingly identical with the way nasal fractures are managed nowadays.

  17. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  18. 11. Photocopy of photograph (from St. Paul's Church) Photographer unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph (from St. Paul's Church) Photographer unknown 1886 'EPISCOPAL CHURCH, CORNER OF 1ST AND J ST. BENICIA' WEST AND SOUTH SIDES - St. Paul's Episcopal Church, 120 East J Street, Benicia, Solano County, CA

  19. Strong mechanoluminescence of Zn2(Ge0.9Si0.1)O4:Mn with weak persistent luminescence

    NASA Astrophysics Data System (ADS)

    Zhao, Haifeng; Wang, Xusheng; Li, Jun; Li, Yanxia; Yao, Xi

    2016-01-01

    A novel elastic mechanoluminescence (EML) material Zn2(Ge0.9Si0.1)O4:Mn is reported to exhibit weak persistent luminescence (PL), a dynamic compressive load in the 300-2800 N range, and a nearly perfect linear response. The PL and EML spectra indicate that the EML and PL emissions originate from the 4T1 → 6A1 transition of Mn2+. The thermoluminescence properties reveal the existence of three types of traps. The shallowest trap responsible for a fast decay afterglow may contribute little to the EML. On the other hand, the other two, deeper, trap types, underlie EML.

  20. Implementing Photodissociation in an Orbitrap Mass Spectrometer

    PubMed Central

    Vasicek, Lisa A.; Ledvina, Aaron R.; Shaw, Jared; Griep-Raming, Jens; Westphall, Michael S.; Coon, Joshua J.; Brodbelt, Jennifer S.

    2011-01-01

    We modified a dual pressure linear ion trap Orbitrap to permit infrared multiphoton dissociation (IRMPD) in the higher energy collisional dissociation (HCD) cell for high resolution analysis. A number of parameters, including the pressures of the C-trap and HCD cell, the radio frequency (rf) amplitude applied to the C-trap, and the HCD DC offset, were evaluated to optimize IRMPD efficiency and maintain a high signal-to-noise ratio. IRMPD was utilized for characterization of phosphopeptides, supercharged peptides, and N-terminal modified peptides, as well as for top-down protein analysis. The high resolution and high mass accuracy capabilities of the Orbitrap analyzer facilitated confident assignment of product ions arising from IRMPD. PMID:21953052

  1. Nonlinear quantum Rabi model in trapped ions

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique

    2018-02-01

    We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.

  2. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  3. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  4. Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems [review article

    NASA Astrophysics Data System (ADS)

    Luque, A.; Schamel, H.

    2005-08-01

    This review article focusses on the phenomenon of collective particle trapping in dilute plasmas and related fluid-like systems. A coherent electrostatic wave or fluctuation, being excited by some mechanism in a plasma, is able to trap collectively charged particles in its potential trough(s) with the ultimate feedback of stabilizing and manipulating the original cause of growth. This phenomenon is well-known from particle simulations of a current-driven two-stream instability and its subsequent quenching by particle trapping. But also the nonlinear Landau damping process resulting in a BGK-like (Bernstein, Green, Kruskal) trapped particle mode sets an example. However, as shown in this report, already a slightly driven plasma has many possibilities of generating trapped particle modes-the mentioned cases representing only two examples-through which it generally becomes nonlinearly unstable. A direct consequence of this feedback of particle trapping is that the macroscopic (dielectric) properties of such a structured plasma may have changed fundamentally such that the relationship to what is known from linear wave theory is lost. We, hence, have to deal with a nonlinear kinetic description which, in case of a collisionless, electrostatic plasma, is the Vlasov-Poisson description. The present report is devoted to a large extent to a 1D Vlasov-Poisson system but also consequences for other physical systems will be derived and mentioned. These and other findings will be developed in some detail culminating in a new paradigm for plasma stability which says: a current-carrying plasma is nonlinearly unstable in a much wider region of parameter space than predicted by linear wave theory with the consequence that the associated turbulence and anomalous transport are triggered much easier than suggested by standard linear wave analysis. Responsible for this new scenario are localized trapped particle modes-more specifically electron and ion holes of zero or negative energy-which are found to be excited well below the threshold of linear instability. In other words, a current-driven plasma shows a much larger sensibility to fluctuations than thought before and described in textbooks. The analysis presented reveals that a plasma, becoming structured by the generation of such modes, resides in a lower free energy state than the one without structures, being therefore in a preferred state that acts as an attractor in the system. Holes having this property will be briefly called negative energy holes (NEHs). For example, zero or negative energy ion holes are found to exist for any drift velocity between electrons and ions and for any temperature ratio. Two independent codes, a Vlasov-code and a PIC-(particle in cell)code, are used to approve this new scenario of instability. Moreover, by adding a Fokker-Planck collision term to the Vlasov-code, holes are shown to resist weak collisions, turn out to be robust and not only found in purely collisionless plasmas and cause an increase of resistivity. A natural outcome of this scenario, therefore, is that whenever free (kinetic) energy is available, holes (and double layers) are necessarily excited, penetrating intermittently the plasma. Satellite measurements, yielding holes and double layers as the most omnipresent structures found in space, provide a typical example. Having investigated classical plasmas this way, we show that many of these innovations can be transferred to other systems, as well. First, we perform a quantum-correction to electron holes by using the Wigner-Moyal description of quantum mechanics in phase-space. As a result we get a weakening of the hole for which tunneling of particles across the separatrix of the unperturbed, deterministic classical hole equilibrium is responsible. The formalism is then used to find a link between hole structures in classical plasmas and envelope solitons in nonlinear optical media. This gives rise to a new approximation method for wave envelope solutions of the nonlinear Schrödinger equation, which utilizes quasi-particle trapping and may be valuable in cases of nonlinearties for which a direct solution is missing. Another important application are particle beams in circular accelerators and storage rings. We prove analytically the existence of localized and periodic structures in coasting beams, as have been found experimentally for instance at Fermilab and at CERN, which are quite analogous to holes in classical plasmas. We also present an improved criterion for focusing. For bunched beams we describe and apply an iterative numerical procedure to find solitary hump and hole structures superimposed on the particle bunch, the former of which having been found recently in the Relativistic Hadron-Ion Collider (RHIC) at Brookhaven. Finally, we stress the mathematical equivalence between the 1D Vlasov-Poisson system and the equations describing a 2D incompressible, ideal fluid or the perpendicular dynamics of a strongly magnetized plasma in fluid or MHD approximation and other more complex fluids, such as rotating fluids, inhomogeneous plasmas, etc. This implies that tiny fluid elements trapped in coherent patches of shear flow motion, such as in secondary (tertiary) states that govern the transition to turbulence in ordinary hydrodynamics, do play a similar role than trapped particles in electrostatic waves, violating any linear wave ansatz. Or, said in different words, whenever a continues spectrum arises in a linearized fluid-like system associated with singular perturbations and a resonance between (quasi-)particles and the field, one has to consider this as a hint that the neglect of nonlinearity is not justified and that nonlinear wave solutions have to be taken into account in describing the evolution of the system correctly. This statement holds true already at an infinitesimal energy level of the coherent perturbations. Nonlinearity, and with it trapping structures, turns out to be a necessary requisite in all stages of the dynamical evolution not only at finite wave amplitudes, as commonly believed. In conclusion, in this report we emphasize the importance of collective trapping in (nearly) ideal plasmas and related systems bringing in at any level of wave activity a fundamental nonlinearity which is missed in standard linear wave theories as described in textbooks. The associated trapped particle modes challenge standard flow theories playing a key role in the interpretation of turbulence and anomalous transport.

  5. Determination of Collision Cross Sections Using a Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Dziekonski, Eric T.; Johnson, Joshua T.; Lee, Kenneth W.; McLuckey, Scott A.

    2018-02-01

    Collision cross sections (CCSs) were determined from the frequency-domain linewidths in a Fourier transform electrostatic linear ion trap. With use of an ultrahigh-vacuum precision leak valve and nitrogen gas, transients were recorded as the background pressure in the mass analyzer chamber was varied between 4× 10-8 and 7 × 10-7 Torr. The energetic hard-sphere ion-neutral collision model, described by Xu and coworkers, was used to relate the recorded image charge to the CCS of the molecule. In lieu of our monoisotopically isolating the mass of interest, the known relative isotopic abundances were programmed into the Lorentzian fitting algorithm such that the linewidth was extracted from a sum of Lorentzians. Although this works only if the isotopic distribution is known a priori, it prevents ion loss, preserves the high signal-to-noise ratio, and minimizes the experimental error on our homebuilt instrument. Six tetraalkylammonium cations were used to correlate the CCS measured in the electrostatic linear ion trap with that measured by drift-tube ion mobility spectrometry, for which there was an excellent correlation ( R 2 ≈ 0.9999). Although the absolute CCSs derived with our method differ from those reported, the extracted linear correlation can be used to correct the raw CCS. With use of [angiotensin II]2+ and reserpine, the corrected CCSs (334.9 ± 2.1 and 250.1 ± 0.5, respectively) were in good agreement with the reported ion mobility spectrometry CCSs (335 and 254.3, respectively). With sufficient signal-to-noise ratio, the CCSs determined are reproducible to within a fraction of a percent, comparable to the uncertainties reported on dedicated ion mobility instruments.

  6. A Perspective on Research Challenges in Information Security

    DTIC Science & Technology

    2011-11-01

    UNCLASSIFIED A Perspective on Research Challenges in Information Security Tamas Abraham, David Adie, Angela Billard, Paul Buckland, Michael Frangos ...Abstract (U) 4. AUTHORS Tamas Abraham, David Adie, Angela Billard, Paul Buckland, Michael Frangos , Ben Long, Mar- tin Lucas, Paul Montague, Dean Philp

  7. Bats in a Farming Landscape Benefit from Linear Remnants and Unimproved Pastures

    PubMed Central

    Lentini, Pia E.; Gibbons, Philip; Fischer, Joern; Law, Brad; Hanspach, Jan; Martin, Tara G.

    2012-01-01

    Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (±17.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The “wildlife friendly farming” vs “land sparing” debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats. PMID:23155378

  8. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  9. Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion

    NASA Astrophysics Data System (ADS)

    Gong, Shi-Jie; Zhou, Fei; Wu, Hao-Yu; Wan, Wei; Chen, Liang; Feng, Mang

    2015-01-01

    We investigate the spectra of the electric quadrupole 42S1/2→32D5/2 transitions in a single 40Ca+ ion confined in a home-built linear trap. We probe the transitions with an ultra-narrow bandwidth laser at 729 nm. In a weak magnetic field, the quadrupole transition splits into ten components with the maximal line strength proportional to their squared Clebsch—Gordan factors. In a magnetic field of the order of Gauss, the observed equidistant sideband reflects the Zeeman substructure modulated by the quantized oscillation due to the secular motion in the trap. The temperature of the trapped ion can be determined by the envelope of the sideband spectrum. We also demonstrate the Rabi oscillation in a carrier transition after the ion has been Doppler cooled, which can be fitted by the model with the thermal state of motion.

  10. Reduction of LDI threshold by electron trapping

    NASA Astrophysics Data System (ADS)

    Rose, Harvey A.; Russell, David

    2000-10-01

    The effect of trapped electrons on the Langmuir wave decay instability (LDI), considered as a secondary instability to SRS, is twofold. First, for a given level of SRS, the Langmuir wave (LW) response, LW_0, may increase compared to that predicted by the linearized Vlasov equation because of electrons trapped by LW_0, and second, given LW_0, the threshold for LDI is lowered^* by electrons trapped in the LDI daughter wave, LW_1. When kλ D for LW0 is large, say greater than 0.30, then its harmonics, and those of LW_1, are very weakly excited and a complete catalog of nonlinear periodic solutions arising from the LDI is possible. Dependence of the nonlinear LDI threshold on kλ D for a CH plasma will be presented. *This possibility has also been discussed by D. Mourenas, Phys. Plasmas 6, 1258 (1999).

  11. FDTD simulations of forces on particles during holographic assembly.

    PubMed

    Benito, David C; Simpson, Stephen H; Hanna, Simon

    2008-03-03

    We present finite-difference time-domain (FDTD) calculations of the forces and torques on dielectric particles of various shapes, held in one or many Gaussian optical traps, as part of a study of the physical limitations involved in the construction of micro- and nanostructures using a dynamic holographic assembler (DHA). We employ a full 3-dimensional FDTD implementation, which includes a complete treatment of optical anisotropy. The Gaussian beams are sourced using a multipole expansion of a fifth order Davis beam. Force and torques are calculated for pairs of silica spheres in adjacent traps, for silica cylinders trapped by multiple beams and for oblate silica spheroids and calcite spheres in both linearly and circularly polarized beams. Comparisons are drawn between the magnitudes of the optical forces and the Van der Waals forces acting on the systems. The paper also considers the limitations of the FDTD approach when applied to optical trapping.

  12. Humidity sensor and ultraviolet photodetector based on carrier trapping effect and negative photoconductivity in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhuang, ShenDong; Chen, Yan; Zhang, WeiChao; Chen, Zhuo; Wang, ZhenLin

    2018-01-01

    We report on the experimental realization of a graphene quantum dots (GQD)-based humidity sensor and ultraviolet (UV) photodetector. We demonstrate that the conductance of the GQD increases linearly with increasing relative humidity (RH) of the surrounding environment due to the carrier trapping effect, which forms the basis of a humidity sensor. When the sensor is operated in the dark state, the sensitivity can reach as high as 0.48 nS RH -1. The GQD are also found to exhibit light intensity dependent negative photoconductivity under the UV irradiation, which can be exploited for UV detection. As a result of these carrier trapping and de-trapping processes, the performance of the photodetector can be significantly improved with the increasing RH, and the photoresponsivity can reach a high value of -418.1 μA W-1 in the high humid state of RH=90%.

  13. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    PubMed Central

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  14. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors. I. Analytical modeling of time-dependent characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.

  15. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

    PubMed

    Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A

    2014-04-01

    Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.

  16. Geometrical effects on the electron residence time in semiconductor nano-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koochi, Hakimeh; Ebrahimi, Fatemeh, E-mail: f-ebrahimi@birjand.ac.ir; Solar Energy Research Group, University of Birjand, Birjand

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ{sub r} in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r{sup 2} model) or through the whole particle (r{sup 3} model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW)more » simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ{sub r}. It has been observed that by increasing the coordination number n, the average value of electron residence time, τ{sup ¯}{sub r} rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ{sup ¯}{sub r} is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ{sup ¯}{sub r}. Our simulations indicate that for volume distribution of traps, τ{sup ¯}{sub r} scales as d{sup 2}. For a surface distribution of traps τ{sup ¯}{sub r} increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.« less

  17. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    PubMed

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.

  18. [Fatal diseases and "imaginary" suffering. "Hypochondria" and "consumption" in the correspondence between Jean Paul and Johann Bernhard Hermann, with a perspective on Jean Paul's literature and aesthetics].

    PubMed

    Meier, Monika

    2007-01-01

    The German writerJean Paul (Johann Paul Friedrich Richter, 1763-1825) and his friendJohann Bernhard Hermann (1761-1790) became acquainted with the thoughts of late Enlightenment at the University of Leipzig. They particularly appreciated the anthropology of Ernst Platner, who taught philosophy and aesthetics as well as medicine. Their confidential correspondence contains reflections on their respective situation and well being. Both write about feeling ill and label their illness "hypochondria". In the course of the correspondence Jean Paul's understanding of hypochondria evolves from an illness of the entrails as he follows Hermann, who supports the modern concept of hypochondria as an illness of the nerves. Two important themes from this correspondence recur in Jean Paul's novels and tales: firstly, his way of expressing comfort is related to his aesthetics, and secondly, the satirical way of portraying at least certain aspects of illness as imaginary reappears in his first successful novel "The Invisible Lodge" (1793).

  19. Mass selectivity of dipolar resonant excitation in a linear quadrupole ion trap.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-03-15

    For mass analysis, linear quadrupole ion traps operate with dipolar excitation of ions for either axial or radial ejection. There have been comparatively few computer simulations of this process. We introduce a new concept, the excitation contour, S(q), the fraction of the excited ions that reach the trap electrodes when trapped at q values near that corresponding to the excitation frequency. Ion trajectory calculations are used to calculate S(q). Ions are given Gaussian distributions of initial positions in x and y, and thermal initial velocity distributions. To model gas damping, a drag force is added to the equations of motion. The effects of the initial conditions, ejection Mathieu parameter q, scan speed, excitation voltage and collisional damping, are modeled. We find that, with no buffer gas, the mass resolution is mostly determined by the excitation time and is given by R~dβ/dq qn, where β(q) determines the oscillation frequency, and n is the number of cycles of the trapping radio frequency during the excitation or ejection time. The highest resolution at a given scan speed is reached with the lowest excitation amplitude that gives ejection. The addition of a buffer gas can increase the mass resolution. The simulation results are in broad agreement with experiments. The excitation contour, S(q), introduced here, is a useful tool for studying the ejection process. The excitation strength, excitation time and buffer gas pressure interact in a complex way but, when set properly, a mass resolution R0.5 of at least 10,000 can be obtained at a mass-to-charge ratio of 609. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A cross-cultural comparison of eating behaviors and home food environmental factors in adolescents from São Paulo (Brazil) and Saint Paul/Minneapolis (USA)

    PubMed Central

    Estima, Camilla C.P.; Bruening, Meg; Hannan, Peter J.; Alvarenga, Marle S.; Leal, Greisse V.S.; Philippi, Sonia T.; Neumark-Sztainer, Dianne

    2015-01-01

    Objective Describe cross-cultural differences in nutrition-related factors among adolescents from São Paulo, Brazil and St. Paul/Minneapolis, U.S. Design Two large- population-based studies with cross-cultural comparisons Setting 12 São Paulo and 10 St. Paul/Minneapolis high schools in 2009-2010 Participants 1148 adolescents from São Paulo; 1632 adolescents from St. Paul/Minneapolis Main outcome measure(s) Meal consumption, family meals, fast food consumption and home food availability Analysis Binomial regressions, weighted for age distributions and adjusted for gender, were used to compare identical measures from each sample. Results Generally, São Paulo adolescents reported healthier nutritional outcomes than St. Paul/Minneapolis adolescents. São Paulo adolescents were seven times less likely to report high fast food consumption than St. Paul/Minneapolis adolescents (p<0.001). While most measures of the home environment indicated healthier home environments in São Paulo, more São Paulo adolescents reported that sugar-sweetened beverages was usually available at home than St. Paul/Minneapolis adolescents (p<0.001). Conclusions and implications São Paulo youth tended to have healthier eating behaviors and home food environment factors than St. Paul/Minneapolis youth. Brazilian eating patterns tend to be healthier and support a connection with food and culture. Interventions are needed to encourage youth and their families to maintain these patterns. PMID:24656651

  1. A cross-cultural comparison of eating behaviors and home food environmental factors in adolescents from São Paulo (Brazil) and Saint Paul-Minneapolis (US).

    PubMed

    Estima, Camilla C P; Bruening, Meg; Hannan, Peter J; Alvarenga, Marle S; Leal, Greisse V S; Philippi, Sonia T; Neumark-Sztainer, Dianne

    2014-01-01

    Describe cross-cultural differences in nutrition-related factors among adolescents from São Paulo, Brazil and St Paul-Minneapolis, US. Two large-population-based studies with cross-cultural comparisons. Twelve São Paulo and 10 St Paul-Minneapolis high schools in 2009-2010. A total of 1,148 adolescents from São Paulo and 1,632 adolescents from St Paul-Minneapolis. Meal consumption, family meals, fast-food consumption, and home food availability. Binomial regressions, weighted for age distributions and adjusted for gender, were used to compare identical measures from each sample. Generally, São Paulo adolescents reported healthier nutritional outcomes than St Paul-Minneapolis adolescents. São Paulo adolescents were 7 times less likely to report high fast-food consumption than St Paul-Minneapolis adolescents (P < .001). Whereas most measures of the home environment indicated healthier home environments in São Paulo, more São Paulo adolescents reported that sugar-sweetened beverages were usually available at home than did St Paul-Minneapolis adolescents (P < .001). São Paulo youth tended to have healthier eating behaviors and home food environment factors than St Paul-Minneapolis youth. Brazilian eating patterns tend to be healthier and support a connection with food and culture. Interventions are needed to encourage youth and their families to maintain these patterns. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  2. Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves

    DOE PAGES

    Brunner, S.; Berger, R. L.; Cohen, B. I.; ...

    2014-10-01

    Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPImore » accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.« less

  3. Extracting Both Peptide Sequence and Glycan Structural Information by 157 nm Photodissociation of N-Linked Glycopeptides

    PubMed Central

    Zhang, Liangyi; Reilly, James P.

    2009-01-01

    157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943

  4. Broadband linear high-voltage amplifier for radio frequency ion traps.

    PubMed

    Kuhlicke, Alexander; Palis, Klaus; Benson, Oliver

    2014-11-01

    We developed a linear high-voltage amplifier for small capacitive loads consisting of a high-voltage power supply and a transistor amplifier. With this cost-effective circuit including only standard parts sinusoidal signals with a few volts can be amplified to 1.7 kVpp over a usable frequency range at large-signal response spanning four orders of magnitude from 20 Hz to 100 kHz under a load of 10 pF. For smaller output voltages the maximum frequency shifts up to megahertz. We test different capacitive loads to probe the influence on the performance. The presented amplifier is sustained short-circuit proof on the output side, which is a significant advantage over other amplifier concepts. The amplifier can be used to drive radio frequency ion traps for single charged nano- and microparticles, which will be presented in brief.

  5. Dual-band reflective polarization converter based on slotted wire resonators

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Zhao, Rui; Zhou, Yang; Liang, Difei; Lu, Haipeng; Deng, Longjiang

    2018-02-01

    A dual-band and high-efficiency reflective linear polarization converter composed of a layer of slotted metal wires has been proposed. Both the simulated and experimental results indicate that the structure can convert a linearly polarized wave to its cross-polarized state for two distinct frequency bands under normal incidence: 9.8-15.1 and 19.2-25.7 GHz. This phenomenon is attributed to a resonance that corresponds to the "trapped mode" at 15.8 GHz. This mode is stable with structural parameters and incident angle at a relatively wide range, and thus becomes promising for dual-band (also multiband) devices design. By surface current distribution and electric field analysis, the operation mechanism has been illuminated, especially for the "trapped mode", identified by the equally but also oppositely directed currents in each unit cell.

  6. Structural distinction of diacyl-, alkylacyl, and alk-1-enylacyl glycerophosphocholines as [M - 15]⁻ ions by multiple-stage linear ion-trap mass spectrometry with electrospray ionization.

    PubMed

    Hsu, Fong-Fu; Lodhi, Irfan J; Turk, John; Semenkovich, Clay F

    2014-08-01

    We describe a linear ion-trap (LIT) multiple-stage (MS(n)) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M - 15]⁻ ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS⁴ mass spectra of the [M - 15 - R²'CH = CO]⁻ ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.

  7. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  8. Torque Induced on Lipid Microtubules with Optical Tweezers

    NASA Astrophysics Data System (ADS)

    wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.

    2017-09-01

    Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.

  9. Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania

    PubMed Central

    Schmied, Wolfgang H; Takken, Willem; Killeen, Gerry F; Knols, Bart GJ; Smallegange, Renate C

    2008-01-01

    Background Evaluation of mosquito responses towards different trap-bait combinations in field trials is a time-consuming process that can be shortened by experiments in contained semi-field systems. Possible use of the BG Sentinel (BGS) trap to sample Anopheles gambiae s.s. was evaluated. The efficiency of this trap was compared with that of the Mosquito Magnet-X (MM-X) trap, when baited with foot odour alone or combinations of foot odour with carbon dioxide (CO2) or lemongrass as behaviour-modifying cues. Methods Female An. gambiae s.s. were released in an experimental flight arena that was placed in a semi-field system and left overnight. Catch rates for the MM-X and BGS traps were recorded. Data were analysed by fitting a generalized linear model to the (n+1) transformed catches. Results Both types of traps successfully captured mosquitoes with all odour cues used. When the BGS trap was tested against the MM-X trap in a choice assay with foot odour as bait, the BGS trap caught about three times as many mosquitoes as the MM-X trap (P = 0.002). Adding CO2 (500 ml/min) to foot odour increased the number of mosquitoes caught by 268% for the MM-X (P < 0.001) and 34% (P = 0.051) for the BGS trap, compared to foot odour alone. When lemongrass leaves were added to foot odour, mosquito catches were reduced by 39% (BGS, P < 0.001) and 38% (MM-X, P = 0.353), respectively. Conclusion The BGS trap shows high potential for field trials due to its simple construction and high catch rate when baited with human foot odour only. However, for rapid screening of different baits in a contained semi-field system, the superior discriminatory power of the MM-X trap is advantageous. PMID:18980669

  10. Application of high-performance liquid chromatography-tandem mass spectrometry with a quadrupole/linear ion trap instrument for the analysis of pesticide residues in olive oil.

    PubMed

    Hernando, M D; Ferrer, C; Ulaszewska, M; García-Reyes, J F; Molina-Díaz, A; Fernández-Alba, A R

    2007-11-01

    This article describes the development of an enhanced liquid chromatography-mass spectrometry (LC-MS) method for the analysis of pesticides in olive oil. One hundred pesticides belonging to different classes and that are currently used in agriculture have been included in this method. The LC-MS method was developed using a hybrid quadrupole/linear ion trap (QqQ(LIT)) analyzer. Key features of this technique are the rapid scan acquisition times, high specificity and high sensitivity it enables when the multiple reaction monitoring (MRM) mode or the linear ion-trap operational mode is employed. The application of 5 ms dwell times using a linearly accelerating (LINAC) high-pressure collision cell enabled the analysis of a high number of pesticides, with enough data points acquired for optimal peak definition in MRM operation mode and for satisfactory quantitative determinations to be made. The method quantifies over a linear dynamic range of LOQs (0.03-10 microg kg(-1)) up to 500 microg kg(-1). Matrix effects were evaluated by comparing the slopes of matrix-matched and solvent-based calibration curves. Weak suppression or enhancement of signals was observed (<15% for most-80-of the pesticides). A study to assess the identification criteria based on the MRM ratio was carried out by comparing the variations observed in standard vs matrix (in terms of coefficient of variation, CV%) and within the linear range of concentrations studied. The CV was lower than 15% when the response observed in solvent was compared to that in olive oil. The limit of detection was < or =10 microg kg(-1) for five of the selected pesticides, < or =5 microg kg(-1) for 14, and < or =1 microg kg(-1) for 81 pesticides. For pesticides where additional structural information was necessary for confirmatory purposes-in particular at low concentrations, since the second transition could not be detected-survey scans for enhanced product ion (EPI) and MS3 were developed.

  11. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    PubMed

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  12. Information measures for a local quantum phase transition: Lattice fermions in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Zhang, Yicheng; Vidmar, Lev; Rigol, Marcos

    2018-02-01

    We use quantum information measures to study the local quantum phase transition that occurs for trapped spinless fermions in one-dimensional lattices. We focus on the case of a harmonic confinement. The transition occurs upon increasing the characteristic density and results in the formation of a band-insulating domain in the center of the trap. We show that the ground-state bipartite entanglement entropy can be used as an order parameter to characterize this local quantum phase transition. We also study excited eigenstates by calculating the average von Neumann and second Renyi eigenstate entanglement entropies, and compare the results with the thermodynamic entropy and the mutual information of thermal states at the same energy density. While at low temperatures we observe a linear increase of the thermodynamic entropy with temperature at all characteristic densities, the average eigenstate entanglement entropies exhibit a strikingly different behavior as functions of temperature below and above the transition. They are linear in temperature below the transition but exhibit activated behavior above it. Hence, at nonvanishing energy densities above the ground state, the average eigenstate entanglement entropies carry fingerprints of the local quantum phase transition.

  13. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ??? in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) ??2H reproducibility (1?? standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1 ??? to 0.58 ???. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  14. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    NASA Astrophysics Data System (ADS)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  15. [From Paul Flechsig to the Paul Flechsig Institute for Brain Research. Development of brain research at the Karl Marx University].

    PubMed

    Leibnitz, L; Werner, L; Schober, W; Brauer, K

    1977-04-01

    A review is given on the development of the brain research institute of the Karl-Marx-University of Leipzig during the directorates of Paul Flechsig (1883-1920), Richard Arwed Pfeifer (1925-1957), and Wolfgang Wünscher (1957-1971).

  16. 67. Photocopy of photograph (original print in the Minnesota Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Photocopy of photograph (original print in the Minnesota Historical Society, St. Paul Minnesota, ca. 1925. #35109. Photographer: St. Paul Daily News.) VIEW TO NORTHEAST, SHOWING SPAN NOS. 9-19, ca. 1925 - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  17. 63. Photocopy of photograph (original print in the Minnesota Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Photocopy of photograph (original print in the Minnesota Historical Society, St. Paul, Minnesota, 1958. #31008. Photographer: St. Paul Dispatch-Pioneer Press.) AERIAL VIEW OF HIGH BRIDGE, LOOKING SOUTHWEST, 1958 - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  18. 68. Photocopy of photograph (original print in the Minnesota Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Photocopy of photograph (original print in the Minnesota Historical Society, St. Paul, Minnesota, 1924. #35108. Photographer: St. Paul Daily News.) VIEW TO EAST, SHOWING SPAN NOS. 10-20, 1924 - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  19. Catalytic Creativity: The Case of Linus Pauling.

    ERIC Educational Resources Information Center

    Nakamura, Jeanne; Csikszentmihalyi, Mihaly

    2001-01-01

    Illustrates how creativity is constituted by forces beyond the innovating individual, drawing examples from the career of chemist Linus Pauling that highlight the formative influence of the social field on an individual's relationship to the domain. Pauling's case reveals how variously the social field contributes to creativity, shaping the…

  20. Debating Paul

    ERIC Educational Resources Information Center

    Torbett, David

    2007-01-01

    This classroom note describes the lessons I learned from the use of formal debates during the two semesters I taught "Paul and Early Christianity" to undergraduates at a liberal arts college in Ohio. The purpose of the course was primarily to give students the exegetical skills to understand Paul in his own context. The secondary purpose…

  1. 78 FR 76143 - Proposed CERCLA Settlement Relating to the Paul's Tank Cleaning Service Superfund Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Paul's Tank Cleaning Service Superfund Site, Burlington County, New Jersey AGENCY: Environmental.... (``Settling Party''). The Settling Party is a potentially responsible party, pursuant to Section 107(a) of CERCLA, and thus is potentially liable for response costs incurred at or in connection Paul's Tank...

  2. The great man from Tarsus: Freud on the apostle Paul.

    PubMed

    Westerink, Herman

    2007-01-01

    The author describes developments in Freud's writings concerning his views on the apostle Paul. This development shows that Freud more and more clearly regarded Paul as a key figure in understanding the complex relationship between Judaism and Christianity--and also as a man who essentially has no comfortable place in either of these religions. For Freud, Paul was a unique figure, an analyst of the human character and of his own culture and religion--a Jew who tried to free himself and his people from the burden of the sense of guilt.

  3. 31. Photocopy of line illustration; originally published in William N. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of line illustration; originally published in William N. Carey, 'St. Paul Builds an Airport One Mile From Post Office,' Engineering News-Record, (August 21, 1930), figure 6, page 294; SHOWS CANTILEVERED ROOF-TRUSS SYSTEM OF MUNICIPAL HANGAR COMPLETED AT ST. PAUL MUNICIPAL AIRPORT IN 1930; THE STRUCTURAL DESIGN WAS BASED ON THAT OF THE NORTHWEST AIRWAYS HANGAR, EXCEPT FOR THE SUBSTITUTION OF BOWSTRING TRUSSES FOR TRAPEZOIDAL TRUSSES - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  4. Multistep estimators of the between-study variance: The relationship with the Paule-Mandel estimator.

    PubMed

    van Aert, Robbie C M; Jackson, Dan

    2018-04-26

    A wide variety of estimators of the between-study variance are available in random-effects meta-analysis. Many, but not all, of these estimators are based on the method of moments. The DerSimonian-Laird estimator is widely used in applications, but the Paule-Mandel estimator is an alternative that is now recommended. Recently, DerSimonian and Kacker have developed two-step moment-based estimators of the between-study variance. We extend these two-step estimators so that multiple (more than two) steps are used. We establish the surprising result that the multistep estimator tends towards the Paule-Mandel estimator as the number of steps becomes large. Hence, the iterative scheme underlying our new multistep estimator provides a hitherto unknown relationship between two-step estimators and Paule-Mandel estimator. Our analysis suggests that two-step estimators are not necessarily distinct estimators in their own right; instead, they are quantities that are closely related to the usual iterative scheme that is used to calculate the Paule-Mandel estimate. The relationship that we establish between the multistep and Paule-Mandel estimator is another justification for the use of the latter estimator. Two-step and multistep estimators are perhaps best conceptualized as approximate Paule-Mandel estimators. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  5. Paul's gospel and the rhetoric of apostolic rejection: A study of Galatians 1:15--17, 1 Corinthians 15:8, F. C. Baur, and the origins of Paul's Gentile mission

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew Wesley

    This dissertation proposes a new understanding of Paul's Gentile mission and its relationship to his so-called "conversion." This dissertation examines the origins of Paul's mission to the Gentiles, and locates it in his claims to have been personally commissioned to undertake such a mission by Jesus. Specifically, I argue that it is the rejection of Paul's claim to be an apostle, a claim founded upon his "conversion" experience, that precipitates his mission to the Gentiles. In arguing this view, I draw upon Ferdinand Christian Baur's nineteenth century theories concerning both the unreliability of Acts as a historical source, and his proposal of a clear division between Paul and the other apostles. In establishing the methodological and theoretical framework of the dissertation, I discuss the "New Perspective on Paul" that has dominated New Testament scholarship over the past thirty years. My study is also informed methodologically by the growing interest in rhetorical criticism among biblical scholars, although the emphasis of this dissertation bears more of a resemblance to the approach of the New Rhetoric than the categories of classical, Greco-Roman rhetoric. The textual component of this work falls into two stages. The first contains a full examination of Paul's "conversion passages" in Galatians 1:15--17 and 1 Corinthians 15:8, attempting to situate these seemingly unusual self-descriptions in their cultural contexts. The second involves an examination of F. C. Baur's presentation of Paul, and the reception of Baur's views among biblical scholars throughout the years following his scholarly activity. This dissertation makes two claims, each of which can stand on its own as an important contribution to scholarship. My first claim is that components of Baur's work support my proposal concerning Paul's Gentile mission and his experience of apostolic rejection, and that this proposal has much to commend it as an explanation of a perennial scholarly puzzle. My second claim is methodological, as I demonstrate that scholarly writings about Paul and his modern interpreters are themselves exercises in argumentation, and thus are not to be accepted uncritically, or without close attention to the rhetorical practices they utilize.

  6. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  7. Quantum information processing between different atomic ions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Zheng, Bo; Zhang, Junhua; Um, Mark; An, Shuoming; Zhao, Tianji; Duan, Luming; Kim, Kihwan

    2012-06-01

    There is increasing interest in utilizing and combining the advantages of different quantum systems. Here, we discuss the experimental generation of entanglement between the quantum states of different atomic ions through the Coulomb interaction at the same linear radio-frequency trap. This scheme would be extended to implement the teleportation of quantum information from one kind of atom to the other. Moreover, the hybrid system of trapped ions is expected to play an essential role in the realization of a large quantum system, where a quantum state of one species is used for quantum operation and that of the other is for the cooling and stabilization of the whole ion chain. Finally, we will report the experimental progress on building the hybrid trapped ion system.

  8. Trapped ultracold molecular ions: candidates for an optical molecular clock for a fundamental physics mission in space

    NASA Astrophysics Data System (ADS)

    Roth, B.; Koelemeij, J.; Daerr, H.; Ernsting, I.; Jorgensen, S.; Okhapkin, M.; Wicht, A.; Nevsky, A.; Schiller, S.

    2017-11-01

    Narrow ro-vibrational transitions in ultracold molecules are excellent candidates for frequency references in the near-IR to visible spectral domain and interesting systems for fundamental tests of physics, in particular for a satellite test of the gravitational redshift of clocks. We have performed laser spectroscopy of several ro-vibrational overtone transitions υ = 0 → υ = 4 in HD+ ions at around 1.4 μm. 1+1 REMPD was used as a detection method, followed by measurement of the number of remaining molecules. The molecular ions were stored in a linear radiofrequency trap and cooled to millikelvin temperatures, by sympathetic cooling using laser-cooled Be+ ions simultaneously stored in the same trap.

  9. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOEpatents

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  10. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  11. Brittle failure of rock: A review and general linear criterion

    NASA Astrophysics Data System (ADS)

    Labuz, Joseph F.; Zeng, Feitao; Makhnenko, Roman; Li, Yuan

    2018-07-01

    A failure criterion typically is phenomenological since few models exist to theoretically derive the mathematical function. Indeed, a successful failure criterion is a generalization of experimental data obtained from strength tests on specimens subjected to known stress states. For isotropic rock that exhibits a pressure dependence on strength, a popular failure criterion is a linear equation in major and minor principal stresses, independent of the intermediate principal stress. A general linear failure criterion called Paul-Mohr-Coulomb (PMC) contains all three principal stresses with three material constants: friction angles for axisymmetric compression ϕc and extension ϕe and isotropic tensile strength V0. PMC provides a framework to describe a nonlinear failure surface by a set of planes "hugging" the curved surface. Brittle failure of rock is reviewed and multiaxial test methods are summarized. Equations are presented to implement PMC for fitting strength data and determining the three material parameters. A piecewise linear approximation to a nonlinear failure surface is illustrated by fitting two planes with six material parameters to form either a 6- to 12-sided pyramid or a 6- to 12- to 6-sided pyramid. The particular nature of the failure surface is dictated by the experimental data.

  12. Novel Ultrahigh Vacuum System for Chip-Scale Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Chen, Shaw-Pin; Trapped Team

    2011-05-01

    This presentation reports the experimental results of an ultrahigh vacuum (UHV) system as a scheme to implement scalable trapped-ion quantum computers that use micro-fabricated ion traps as fundamental building blocks. The novelty of this system resides in our design, material selection, mechanical liability, low complexity of assembly, and reduced signal interference between DC and RF electrodes. Our system utilizes RF isolation and onsite-filtering topologies to attenuate AC signals generated from the resonator. We use a UHV compatible printed circuit board (PCB) material to perform DC routing, while the RF high and RF ground received separated routing via wire-wrapping. The standard PCB fabrication process enabled us to implement ceramic-based filter components adjacent to the chip trap. The DC electrodes are connected to air-side electrical feed through using four 25D adaptors made with polyether ether ketone (PEEK). The assembly process of this system is straight forward and in-chamber structure is self-supporting. We report on initial testing of this concept with a linear chip trap fabricated by the Sandia National Labs.

  13. 72. Photocopy of photograph (original print in the Minnesota Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Photocopy of photograph (original print in the Minnesota Historical Society, St. Paul, Minnesota, June 25, 1958. #31024. Photographer: St. Paul Dispatch-Pioneer Press. VIEW TO SOUTH, SHOWING THE RESURFACING OF THE BRIDGE IN 1958 - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  14. 64. Photocopy of photograph (original print in the Minnesota Historical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. Photocopy of photograph (original print in the Minnesota Historical Society, St. Paul Minnesota, ca. 1891. #35805. Photographer: Haynes and Bros., St. Paul.) VIEW TO SOUTH, SHOWING FOUR PERCENT GRADE OF HIGH BRIDGE, ca. 1981 - Smith Avenue High Bridge, Smith Avenue between Cherokee Avenue & Cliff Street, Saint Paul, Ramsey County, MN

  15. 76 FR 18725 - Marine Mammals; File Nos. 14330 and 14335

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... (Phoca vitulina) on St. Paul, St. George, Otter, and Walrus Islands, and Sea Lion Rock, all of the... marine mammals in Alaska: (File No. 14330) the Aleut Community of St. Paul Island, Tribal Government, Ecosystem Conservation Office, St. Paul Island, AK; and (File No. 14335) the Alaska SeaLife Center, Seward...

  16. In Conversation with Paul Richards

    ERIC Educational Resources Information Center

    Holman, Andrew

    2013-01-01

    Paul Richards is one of those individuals who make a difference and is as far from institutional as one can be. The author met up with him at the Learning Disability Today conference in London to talk more about his work and life. Paul coordinates the service user involvement across Southdown Housing Association, based in Sussex.

  17. 76 FR 9278 - Safety Zone; Fourth Annual Offshore Challenge, Sunny Isles Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A.Steiner@uscg.mil . If you have questions on viewing or submitting material to the docket, call.... Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535- 8724, e-mail Paul.A.Steiner...

  18. 75 FR 77899 - Notice of Inventory Completion: Minnesota Indian Affairs Council, St. Paul and Bemidji, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [2253-665] Notice of Inventory Completion: Minnesota Indian Affairs Council, St. Paul and Bemidji, MN AGENCY: National Park Service, Interior. ACTION... funerary objects in the possession of the Minnesota Indian Affairs Council, St. Paul and Bemidji, MN. The...

  19. Paul Torcellini | NREL

    Science.gov Websites

    | 303-384-7528 Paul is the principal engineer for the Commercial Buildings Research Group and has been at the NREL for 19 years. Prior to this role, he was the group manager for the Commercial Buildings articles related to energy efficiency and zero-energy commercial buildings. Among his many awards, Paul has

  20. 75 FR 34670 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Revision to Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Promulgation of Air Quality Implementation Plans; Maryland; Revision to Emission Limitations for R. Paul Smith... revision pertains to revised emission limitations for the R. Paul Smith Power Station located in Washington... R. Paul Smith Power Station in Washington County. This facility had annual nitrogen oxides (NOx...

  1. Paul Voosen Receives 2013 David Perlman Award for Excellence in Science Journalism—News: Citation

    NASA Astrophysics Data System (ADS)

    Zaneski, Cyril T.

    2014-01-01

    It's my pleasure to nominate Paul Voosen, the former science reporter for Greenwire, for the David Perlman award. Last November, as Superstorm Sandy pounded the East Coast of the United States, Paul found himself stranded for several days in Miami, mourning a recently deceased family member.

  2. 78 FR 59317 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Revision to Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... for R. Paul Smith Power Station; Withdrawal of Proposed Rule AGENCY: Environmental Protection Agency... revision pertains to revised emission limitations for the R. Paul Smith Power Station located in Washington... action to approve the revised emission limitations for the R. Paul Smith Power Station contained in the...

  3. The Incalculable Benefits of Revitalizing Your Board

    ERIC Educational Resources Information Center

    Holtschneider, Dennis H.

    2013-01-01

    DePaul University has grown in size and stature in the last decade. Chicago's "little school under the El," as DePaul was once known, is now the nation's largest Catholic university and the largest private, nonprofit university in the Midwest. DePaul University restructured its board, enabling it to play an important role in the…

  4. 78 FR 29612 - Prevailing Rate Systems; Redefinition of the Minneapolis-St. Paul, MN, and Southwestern Wisconsin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... OFFICE OF PERSONNEL MANAGEMENT 5 CFR Part 532 RIN 3206-AM75 Prevailing Rate Systems; Redefinition of the Minneapolis-St. Paul, MN, and Southwestern Wisconsin Appropriated Fund Federal Wage System.... Paul, MN, and Southwestern Wisconsin appropriated fund Federal Wage System (FWS) wage areas. The final...

  5. Partnering for Environmental Security Cooperation in Central Asia and the Caspian Basin

    DTIC Science & Technology

    2002-04-01

    Organizations.......................................................................................98 Mr. Paul Giannone Disaster Response Planning Processes...Paul Giannone of CARE USA who discussed key points of Non-governmental Organizations’ relationships with the military and provided suggestions on...Relationships between Military and Civilian Organizations Mr. Paul Giannone Disaster Response Planning Processes and Procedures Mr. Wolfgang G

  6. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  7. Trapping of quantum particles and light beams by switchable potential wells

    NASA Astrophysics Data System (ADS)

    Sonkin, Eduard; Malomed, Boris A.; Granot, Er'El; Marchewka, Avi

    2010-09-01

    We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as scanning tunneling microscopy or photo-switchable quantum dots. The same models, based on the linear Schrödinger equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the Schrödinger equation. The first dynamical problem considered in this work is the retention of a particle released from a trap which was suddenly turned off, while another local trap was switched on at a distance—immediately or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance between the two traps. Another problem is retrapping of the bound particle when the addition of the second trap transforms the single-well setting into a double-well potential (DWP). In that case, we find probabilities for the retrapping into the ground or first excited state of the DWP. We also analyze effects entailed by the application of a kick to a bound particle, the most interesting one being a kick-induced transition between the DWP’s ground and excited states. In the latter case, the largest transition probability is achieved at a particular strength of the kick.

  8. Simulating the performance of a distance-3 surface code in a linear ion trap

    NASA Astrophysics Data System (ADS)

    Trout, Colin J.; Li, Muyuan; Gutiérrez, Mauricio; Wu, Yukai; Wang, Sheng-Tao; Duan, Luming; Brown, Kenneth R.

    2018-04-01

    We explore the feasibility of implementing a small surface code with 9 data qubits and 8 ancilla qubits, commonly referred to as surface-17, using a linear chain of 171Yb+ ions. Two-qubit gates can be performed between any two ions in the chain with gate time increasing linearly with ion distance. Measurement of the ion state by fluorescence requires that the ancilla qubits be physically separated from the data qubits to avoid errors on the data due to scattered photons. We minimize the time required to measure one round of stabilizers by optimizing the mapping of the two-dimensional surface code to the linear chain of ions. We develop a physically motivated Pauli error model that allows for fast simulation and captures the key sources of noise in an ion trap quantum computer including gate imperfections and ion heating. Our simulations showed a consistent requirement of a two-qubit gate fidelity of ≥99.9% for the logical memory to have a better fidelity than physical two-qubit operations. Finally, we perform an analysis of the error subsets from the importance sampling method used to bound the logical error rates to gain insight into which error sources are particularly detrimental to error correction.

  9. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  10. Rapid screening and identification of multi-class substances of very high concern in textiles using liquid chromatography-hybrid linear ion trap orbitrap mass spectrometry.

    PubMed

    Zhang, Li; Luo, Xin; Niu, Zengyuan; Ye, Xiwen; Tang, Zhixu; Yao, Peng

    2015-03-20

    A new analytical method was established and validated for the analysis of 19 substances of very high concern (SVHCs) in textiles, including phthalic acid esters (PAEs), organotins (OTs), perfluorochemicals (PFCs) and flame retardants (FRs). After ultrasonic extraction in methanol, the textile samples were analyzed by high performance liquid chromatography-hybrid linear ion trap Orbitrap high resolution mass spectrometry (HPLC-LTQ/Orbitrap). The values of LOQ were in the range of 2-200mg/kg. Recoveries at two levels (at the LOQ and at half the limit of regulation) ranged from 68% to 120%, and the repeatability was lower than 13%. This method was successfully applied to the screening of SVHCs in commercial textile samples and is useful for the fast screening of various SVHCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less

  12. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    PubMed Central

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  13. Activity of male pheromone of Melanesian rhinoceros beetle Scapanes australis.

    PubMed

    Rochat, Didier; Morin, Jean-Paul; Kakul, Titus; Beaudoin-Ollivier, Laurence; Prior, Robert; Renou, Michel; Malosse, Isabelle; Stathers, Tanya; Embupa, Sebastian; Laup, Samson

    2002-03-01

    Laboratory and field investigations were carried out to investigate the nature and role of the male pheromone emitted by the Dynast beetle Scapanes australis and to develop a mass trapping technique against this major coconut pest in Papua New Guinea. We report the biological data obtained from natural and synthetic pheromone, previously described as an 84:12:4 (w/w) mixture of 2-butanol (1), 3-hydoxy-2-butanone (2), and 2,3-butanediol (3). EAG recordings from natural and synthetic pheromone and a pitfall olfactometer were poorly informative. In contrast, extensive field trapping trials with various synthetic pheromone mixtures and doses showed that 1 and 2 (formulated in polyethylene sachets in 90:5 v/v ratio) were necessary and sufficient for optimum long-range attraction. Beetles were captured in traps baited with racemic 1 plus 2, with or without a stereoisomer mixture of 3 (2.5- to 2500-mg/day doses). Plant pieces, either sugarcane or coconut, enhanced captures by the synthetic pheromone, which was active alone. Traps with the pheromone caught both sexes in a 3:2 female-male ratio. A pheromone-based mass trapping led to the capture of 2173 beetles in 14 traps surrounding 40 ha of a cocoa-coconut plantation. The captures followed a log-linear decrease during the 125-week trapping program. The role of the male pheromone and its potential for crop protection are discussed.

  14. Linearized theory of inhomogeneous multiple 'water-bag' plasmas

    NASA Technical Reports Server (NTRS)

    Bloomberg, H. W.; Berk, H. L.

    1973-01-01

    Equations are derived for describing the inhomogeneous equilibrium and small deviations from the equilibrium, giving particular attention to systems with trapped particles. An investigation is conducted of periodic systems with a single trapped-particle water bag, taking into account the behavior of the perturbation equations at the turning points. An outline is provided concerning a procedure for obtaining the eigenvalues. The results of stability calculations connected with the sideband effects are considered along with questions regarding the general applicability of the multiple water-bag approach in stability calculations.

  15. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  16. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  17. Trapping saturation of the bump-on-tail instability and electrostatic harmonic excitation in earth's foreshock

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    1990-01-01

    The Vlasov simulation is used to examine the trapping saturation of the bump-on-tail instability both with and without mode-mode coupling and subsequent harmonic excitation. It is found that adding the pumped harmonic modes leads to a significant difference in the behavior of the phase-space distribution function near the unstable bump at the saturation time of the instability. The pumped modes permit rapid plateau formation on the space-averaged velocity distribution, in effect preventing the onset of the quasi-linear velocity-diffusion saturation mechanism.

  18. Coupling between Transport and Injection Properties of Pentacene Field-Effect Transistors with Different Morphologies

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-08-01

    We investigated the injection and transport properties of pentacene organic field-effect transistors (OFETs) with inclined and lamellar pentacene grains at various mutual ratios. Although the threshold voltage was conserved and no additional trapping on grain boundaries was suggested from the current-voltage measurements, the contact resistance and mobility increased linearly with the lamellar phase content. We showed that a model based on the coupling between both transport and injection properties via a space charge field caused by injected and trapped carriers accounts for these results.

  19. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  20. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  1. Precise measurement of the angular correlation parameter aβν in the β decay of 35Ar with LPCTrap

    NASA Astrophysics Data System (ADS)

    Fabian, X.; Ban, G.; Boussaïd, R.; Breitenfeldt, M.; Couratin, C.; Delahaye, P.; Durand, D.; Finlay, P.; Fléchard, X.; Guillon, B.; Lemière, Y.; Leredde, A.; Liénard, E.; Méry, A.; Naviliat-Cuncic, O.; Pierre, E.; Porobic, T.; Quéméner, G.; Rodríguez, D.; Severijns, N.; Thomas, J. C.; Van Gorp, S.

    2014-03-01

    Precise measurements in the β decay of the 35Ar nucleus enable to search for deviations from the Standard Model (SM) in the weak sector. These measurements enable either to check the CKM matrix unitarity or to constrain the existence of exotic currents rejected in the V-A theory of the SM. For this purpose, the β-ν angular correlation parameter, aβν, is inferred from a comparison between experimental and simulated recoil ion time-of-flight distributions following the quasi-pure Fermi transition of 35Ar1+ ions confined in the transparent Paul trap of the LPCTrap device at GANIL. During the last experiment, 1.5×106 good events have been collected, which corresponds to an expected precision of less than 0.5% on the aβν value. The required simulation is divided between the use of massive GPU parallelization and the GEANT4 toolkit for the source-cloud kinematics and the tracking of the decay products.

  2. Layer Splitting in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy

    2009-11-01

    Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.

  3. 75 FR 72964 - Determinations of Attainment by the Applicable Attainment Date for the Hayden, Nogales, Paul Spur...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [R09-OAR-2010-0718; FRL-9233-1] Determinations of Attainment by the Applicable Attainment Date for the Hayden, Nogales, Paul Spur/Douglas PM10 Nonattainment... November 2, 2010 (75 FR 67220), direct final rule determining that the Hayden, Nogales, and Paul Spur...

  4. 28. Photocopy of photograph dated ca. 1940; photographer unknown; original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of photograph dated ca. 1940; photographer unknown; original filed as MR2.9/SP8/r373 in Audio-Visual Collection of Minnesota Historical Society, St. Paul; WEST SIDE AFTER SECOND-STORY ADDITION; LOOKING EAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  5. Religion in the Locker Room

    ERIC Educational Resources Information Center

    Price, Sean

    2013-01-01

    In September 2011, Paul Phillips stepped out of his football team's field house and into a struggle over the separation of church and state. Like most teams, Paul's practiced after school. But one day he found that the coach had called in a local minister to conduct a weekly half-hour "team chapel" before practice. Paul, who does not believe in…

  6. 76 FR 24840 - Safety Zone; 2011 Rohto Ironman 70.3 Miami, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A.Steiner@uscg.mil . If you have questions on viewing or submitting material to the docket, call... Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail...

  7. 76 FR 34649 - Foreign-Trade Zone 119-Minneapolis-St. Paul, MN; Application for Reorganization Under Alternative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...--Minneapolis-St. Paul, MN; Application for Reorganization Under Alternative Site Framework An application has... current zone project includes the following sites: Site 1 (3,002 acres)--located at the Minneapolis-St...); Site 9 (20 acres)--1700 Wynne Avenue, St. Paul (Ramsey County); and, Site 10 (236 acres)-- Bloomington...

  8. Paul D. Boyer, Adenosine Triphosphate (ATP), and the Binding Change

    Science.gov Websites

    -- October 1975, DOE Technical Report, 1975 A Perspective of the Binding Change Mechanism for ATP Synthesis Reports, Vol. 18, No. 3, 1998 ATP Synthesis and the Binding Change Mechanism: The Work of Paul D. Boyer Mechanism of ATP Synthesis Additional Web Pages: Adenosine Triphosphate: The Energy Currency of Life Paul D

  9. 78 FR 28633 - Prometric, Inc., a Subsidiary of Educational Testing Service, Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Subsidiary of Educational Testing Service, Including On-Site Leased Workers From Office Team St. Paul... Office Team were employed on-site at the St. Paul, Minnesota location of the subject firm. The Department... workers leased from Office Team working on- site at the St. Paul, Minnesota location of Prometric, Inc., a...

  10. Modelling deuterium release during thermal desorption of D +-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Poon, M.; Haasz, A. A.; Davis, J. W.

    2008-03-01

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D + irradiations on single crystal tungsten at 300 and 500 K to fluences of 10 22-10 24 D +/m 2. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 μm, and a linear drop in the D distribution was assumed in the intermediate sub-surface region (˜30 nm to 1 μm). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 ± 0.03, 1.34 ± 0.03 and 2.1 ± 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  11. Utility of Higher Harmonics in Electrospray Ionization Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometry.

    PubMed

    Dziekonski, Eric T; Johnson, Joshua T; McLuckey, Scott A

    2017-04-18

    Mass resolution (M/ΔM fwhm) is observed to linearly increase with harmonic order in a Fourier transform electrostatic linear ion trap (ELIT) mass spectrometer. This behavior was predicted by Grosshans and Marshall for frequency-multiple detection in a Fourier transform ion cyclotron resonance mass spectrometer only for situations when the prominent mechanism for signal decay is ion ejection from the trap. As the analyzer pressure in our ELIT chamber is relatively high, such that collisional scattering and collision-induced dissociation are expected to underlie much of the ion loss, we sought to explore the relationship between harmonic order and mass resolution. Mass resolutions of 36 900 (fundamental), 75 850 (2nd harmonic), and 108 200 (3rd harmonic) were obtained for GdO + (avg. m/z 173.919) with a transient length of 300 ms. To demonstrate that the mass resolution was truly increasing with harmonic order, the unresolved isotopes at the fundamental distribution of cytochrome c +8 (m/z ∼ 1549) were nearly baseline, resolved at the third harmonic (mass resolution ≈ 23 000) with a transient length of only 200 ms. This experiment demonstrates that, when the ion density is sufficiently low, ions with frequency differences of less than 4 Hz remain uncoalesced. Higher harmonics can be used to increase the effective mass resolution for a fixed transient length and thereby may enable the resolution of closely spaced masses, determination of a protein ion's charge state, and study of the onset of peak coalescence when the resolution at the fundamental frequency is insufficient.

  12. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    PubMed Central

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-01-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility. PMID:26940301

  13. Simulation of linear and nonlinear Landau damping of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Lei; Wang, X. Y.; Lin, Y.

    2013-06-15

    The linear physics of lower hybrid waves (LHWs) and their nonlinear interaction with particles through Landau damping are studied with the gyrokinetic electron and fully kinetic ion (GeFi) particle simulation model in the electrostatic limit. Unlike most other wave modes, the LHWs can resonantly interact with both electrons and ions, with the former being highly magnetized and latter nearly unmagnetized around the lower hybrid frequency. Direct interactions of LHWs with electrons and/or ions are investigated for cases with various k{sub ∥}/k,T{sub i}/T{sub e}, and wave amplitudes. In the linear electron Landau damping (ELD), the dispersion relation and the linear dampingmore » rate obtained from our simulation agree well with the analytical linear theory. As the wave amplitude increases, the nonlinear Landau effects are present, and a transition from strong decay at smaller amplitudes to weak decay at larger amplitudes is observed. In the nonlinear stage, the LHWs in the long time evolution finally exhibit a steady Bernstein-Greene-Kruskal mode, in which the wave amplitude is saturated above the noise level. While the resonant electrons are trapped in the wave field in the nonlinear ELD, the resonant ions are untrapped in the LHW time scales. The ion Landau damping is thus predominantly in a linear fashion, leading to a wave saturation level significantly lower than that in the ELD. On the long time scales, however, the ions are still weakly trapped. The results show a coupling between the LHW frequency and the ion cyclotron frequency during the long-time LHW evolution.« less

  14. Non-thermalization in trapped atomic ion spin chains

    NASA Astrophysics Data System (ADS)

    Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.

    2017-10-01

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  15. Non-thermalization in trapped atomic ion spin chains.

    PubMed

    Hess, P W; Becker, P; Kaplan, H B; Kyprianidis, A; Lee, A C; Neyenhuis, B; Pagano, G; Richerme, P; Senko, C; Smith, J; Tan, W L; Zhang, J; Monroe, C

    2017-12-13

    Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  16. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    NASA Astrophysics Data System (ADS)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is set up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. The beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.

  17. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  18. 26. Photocopy of photograph dated 1930; photographer unknown; original filed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of photograph dated 1930; photographer unknown; original filed as MR2.9/SP8/p343 in Audio-Visual Collection of Minnesota Historical Society, St. Paul; THREE-QUARTER VIEW SHOWING WEST SIDE AND SOUTH FRONT SHORTLY AFTER COMPLETION; LOOKING NORTHEAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  19. 27. Photocopy of photograph dated ca. 1940; photographer unknown; original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Photocopy of photograph dated ca. 1940; photographer unknown; original filed as MR2.9/SP8/r374 in Audio-Visual Collection Minnesota Historical Society, St. Paul; THREE-QUARTER VIEW SHOWING WEST SIDE AND SOUTH FRONT AFTER SECOND-STORY ADDITION; LOOKING NORTHEAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  20. Ultrasonically Activated Diffusion Bonding for Fluidic Control Assembly

    DTIC Science & Technology

    1979-02-01

    CONTROL ASSEMBLY SONOBOND CORPORATION SUBSIDIARY OF CHRISTIAN METALS CORPORATION WEST CHESTER, PENNSYLVANIA HOWARD A. SCHEETZ PAUL L. COPPA JANET...FLUIDIC CONTROL ASSEMBLY Howard A. Scheetz Paul L. Coppa Janet Devine Sonobond Corporation Subsidiary of Christiana Metals Corporation West... Paul L. Coppa Janet Devine fl. CONTRACT OR GRANT NUMBERS.) Contract No. DAAA21-76-C-0136 ». PERFORMING ORGANIZATION N AM t AND ADDRESS

  1. Paul of Tarsus: The Ancient Model of "Parrhesia" or Freedom of Speech.

    ERIC Educational Resources Information Center

    Keefe, Carolyn

    The word "parrhesia" is of Greek origin and indicates the right to say anything a person chooses. The Apostle Paul was himself an operational definition of parrhesia, and a term that symbolizes such a controlling force on such a significant figure is worthy of examination and academic study. For Paul, his work as an evangelist and pastor was a…

  2. A simulation study for determination of refractive index dispersion of dielectric film from reflectance spectrum by using Paul wavelet

    NASA Astrophysics Data System (ADS)

    Tiryaki, Erhan; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work, the Continuous Wavelet Transform (CWT) with Paul wavelet was improved as a tool for determination of refractive index dispersion of dielectric film by using the reflectance spectrum of the film. The reflectance spectrum was generated theoretically in the range of 0.8333 - 3.3333 μm wavenumber and it was analyzed with presented method. Obtained refractive index determined from various resolution of Paul wavelet were compared with the input values, and the importance of the tunable resolution with Paul wavelet was discussed briefly. The noise immunity and uncertainty of the method was also studied.

  3. Many-body excitations and deexcitations in trapped ultracold bosonic clouds

    NASA Astrophysics Data System (ADS)

    Theisen, Marcus; Streltsov, Alexej I.

    2016-11-01

    We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.

  4. Investigation of diocotron modes in toroidally trapped electron plasmas using non-destructive method

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Sengupta, Sudip; Yeole, Yogesh G.; Bajpai, Manu; Chattopadhyay, P. K.

    2017-10-01

    Experiments with trapped electron plasmas in a SMall Aspect Ratio Toroidal device (SMARTEX-C) have demonstrated a flute-like mode represented by oscillations on capacitive (wall) probes. Although analogous to diocotron mode observed in linear electron traps, the mode evolution in toroids can have interesting consequences due to the presence of in-homogeneous magnetic field. In SMARTEX-C, the probe signals are observed to undergo transition from small, near-sinusoidal oscillations to large amplitude, non-linear "double-peaked" oscillations. To interpret the wall probe signal and bring forth the dynamics, an expression for the induced current on the probe for an oscillating charge is derived, utilizing Green's Reciprocation Theorem. Equilibrium position, poloidal velocity of the charge cloud, and charge content of the cloud, required to compute the induced current, are estimated from the experiments. Signal through capacitive probes is thereby computed numerically for possible charge cloud trajectories. In order to correlate with experiments, starting with an intuitive guess of the trajectory, the model is evolved and tweaked to arrive at a signal consistent with experimentally observed probe signals. A possible vortex like dynamics is predicted, hitherto unexplored in toroidal geometries, for a limited set of experimental observations from SMARTEX-C. Though heuristic, a useful interpretation of capacitive probe data in terms of charge cloud dynamics is obtained.

  5. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps.

    PubMed

    Greenwood, J B; Kelly, O; Calvert, C R; Duffy, M J; King, R B; Belshaw, L; Graham, L; Alexander, J D; Williams, I D; Bryan, W A; Turcu, I C E; Cacho, C M; Springate, E

    2011-04-01

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components. © 2011 American Institute of Physics

  6. Homotropic Cooperativity from the Activation Pathway of the Allosteric Ligand-Responsive Regulatory Protein TRAP†

    PubMed Central

    Kleckner, Ian R.; McElroy, Craig A.; Kuzmic, Petr; Gollnick, Paul; Foster, Mark P.

    2014-01-01

    The trp RNA-binding Attenuation Protein (TRAP) assembles into an 11-fold symmetric ring that regulates transcription and translation of trp-mRNA in bacilli via heterotropic allosteric activation by the amino acid tryptophan (Trp). Whereas nuclear magnetic resonance studies have revealed that Trp-induced activation coincides with both μs-ms rigidification and local structural changes in TRAP, the pathway of binding of the 11 Trp ligands to the TRAP ring remains unclear. Moreover, because each of eleven bound Trp molecules is completely surrounded by protein, its release requires flexibility of Trp-bound (holo) TRAP. Here, we used stopped-flow fluorescence to study the kinetics of Trp binding by Bacillus stearothermophilus TRAP over a range of temperatures and we observed well-separated kinetic steps. These data were analyzed using non-linear least-squares fitting of several two- and three-step models. We found that a model with two binding steps best describes the data, although the structural equivalence of the binding sites in TRAP implies a fundamental change in the time-dependent structure of the TRAP rings upon Trp binding. Application of the two binding step model reveals that Trp binding is much slower than the diffusion limit, suggesting a gating mechanism that depends on the dynamics of apo TRAP. These data also reveal that Trp dissociation from the second binding mode is much slower than after the first Trp binding mode, revealing insight into the mechanism for positive homotropic allostery, or cooperativity. Temperature dependent analyses reveal that both binding modes imbue increases in bondedness and order toward a more compressed active state. These results provide insight into mechanisms of cooperative TRAP activation, and underscore the importance of protein dynamics for ligand binding, ligand release, protein activation, and allostery. PMID:24224873

  7. Characteristics of the spin-trapping reaction of a free radical derived from AAPH: further development of the ORAC-ESR assay.

    PubMed

    Nakajima, A; Matsuda, E; Masuda, Y; Sameshima, H; Ikenoue, T

    2012-06-01

    The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R=H(2)N(HN)C-C(CH(3))(2)). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern-Volmer's plot) for each spin trap showed good linearity, and their slopes, k (SB)/k (ST), were estimated to be 87.7±2.3, 267±15, 228±9, and 213±16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k (SB)/k (ST) values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.

  8. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less

  9. On the nonlinear trapping nature of undamped, coherent structures in collisionless plasmas and its impact on stability

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Mandal, Debraj; Sharma, Devendra

    2017-03-01

    An outstanding notion for collisionless plasmas is the essential nonlinear character of their coherent structures, which in the stationary, weak amplitude limit are described by a continuum of cnoidal electron and ion hole modes governed by a multiparametric nonlinear dispersion relation. The well-known discrete structure of undamped linear plasma modes is seamlessly embedded in this nonlinear continuum as the microscopic texture of plasma begins to reveal itself in the high temperature collisionless plasma limit. This transforms the linear-threshold-based operating mechanism of plasma turbulence into a fundamental nonlinear, multifaceted one. Based on a comprehensive three-level description of increasing profundity, a proof of this novel dictum is presented, which makes use of the joint properties of such structures, their coherency and stationarity, and uses in succession a fluid, linear Vlasov and a full Vlasov description. It unifies discrete and continuum limits by resolving the inevitable resonant region and shows that coherent electrostatic equilibria are generally controlled by kinetic particle trapping and are hence fundamentally nonlinear. By forging a link between damped and growing wave solutions, these modes render plasma stability complex and difficult to evaluate due to the entangled pattern of the stability boundary in function and parameter space, respectively. A direct consequence is the existence of negative energy modes of arbitrarily small amplitudes in the subcritical region of the two-stream instability as well as the failure of linear Landau (Vlasov, van Kampen) theory, whenever resonant particles are involved, in addressing the onset of instability in a current-carrying plasma. Responsible for this subtle phase space behavior is hence the thresholdless omnipresence of the trapping nonlinearity originating from coherency. A high resolution, exact-mass-ratio, multispecies, and collisionless plasma simulation is employed to illustrate exemplarily how tiny seed fluctuations in phase-space can act as a triggering agent for a subcritical plasma excitation verifying an access to these modes in the noisy, collisionless plasma limit.

  10. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  11. 29. Photocopy of photograph dated 1930; photographer unknown; original filed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph dated 1930; photographer unknown; original filed as HE17/p7 in Audio-Visual Collection of Minnesota Historical Society, St. Paul; HANGAR AREA, INTERIOR, SHOWING LONGITUDINAL 'CARRYING' TRUSS AND CANTILEVERED SECTION OF ROOF TRUSSES; LOOKING NORTHWEST FROM SOUTHEAST FRONT CORNER - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  12. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  13. 16TH Annual Review of Progress in Applied Computational Electromagnetics of the Naval Postgraduate School, Monterey, CA. Volume I

    DTIC Science & Technology

    2000-03-24

    Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein ............................................ 28...34Finite Element Method for Designing Plasma Reactors" Leo Kempel, Paul Rummel, Tim Grotjohn and John Amrhein...548 "lime-Domain Simulation of Electromagnetic Wave Propagation in a Magnetized Plasma" J. Paul , C. Christopoulos, and

  14. Ontonagon Harbor Operation and Maintenance Activities. Lake Superior.

    DTIC Science & Technology

    1975-08-01

    St. Paul, Minnesota 55101 August 1975 FINAL ENVIRONMENTAL IMPACT STATEMENT OPERATION AND MAINTENAN4CE ACTIVITIES ONTONAGON HARBDOR, MICHIGAN LAKE...SUPERIOR Responsible Office: St. Paul District, Corps of Engineers, 1135 U.S. Post Office and Custom House, St. Paul, Minnesota 55101 Telephone Number 612...Nonesuch shale is a finer siltstone containing recoverable copper deposits. Active mining is present at White Pine, 12 air miles southwest of Ontonagon

  15. Moral Perception and Judgment and a Truly Radical Change of Social Practices: A Reply to Paul Standish's "Registers of the Religious"

    ERIC Educational Resources Information Center

    Smeyers, Paul

    2012-01-01

    This article presents the author's response to Paul Standish's "Registers of the Religious". Addressing what he calls the "global", Paul Standish starts from MacIntyre's observation that people live in a world characterized by a vocabulary of value whose purchase on life is no longer authentically experienced: "MacIntyre's diagnosis of the…

  16. 38. Photographic copy of historic construction drawing, ink on linen, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photographic copy of historic construction drawing, ink on linen, February 1902 (original filed in drawer 98, Bridge Division, Department of Public Works, St. Paul City Annex). Re- flooring and re-paving of Selby Avenue Bridge over tracks of Chicago, Milwaukee & St. Paul RY. CO. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  17. Instability analysis of charges trapped in the oxide of metal-ultra thin oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Kassmi, K.; Maimouni, R.; Olivié, F.; Sarrabayrouse, G.; Martinez, A.

    2005-09-01

    In this paper, we present the theoretical and experimental results of the influence of a charge trapped in ultra-thin oxide of metal/ultra-thin oxide/semiconductor structures (MOS) on the I(Vg) current-voltage characteristics when the conduction is of the Fowler-Nordheim (FN) tunneling type. The charge, which is negative, is trapped near the cathode (metal/oxide interface) after constant current injection by the metal (Vg<0). Of particular interest is the influence on the Δ Vg(Vg) shift over the whole I(Vg) characteristic at high field (greater than the injection field (>12.5 MV/cm)). It is shown that the charge centroid varies linearly with respect to the voltage Vg. The behavior at low field (<12.5 MV/cm) is analyzed in référence A. Aziz, K. Kassmi, Ka. Kassmi, F. Olivié, Semicond. Sci. Technol. 19, 877 (2004) and considers that the trapped charge centroid is fixed. The results obtained make it possible to analyze the influence of the injected charge and the applied field on the centroid position of the trapped charge, and to highlight the charge instability in the ultra-thin oxide of MOS structures.

  18. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    NASA Astrophysics Data System (ADS)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  19. An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions

    NASA Astrophysics Data System (ADS)

    Woody, Michael S.; Capitanio, Marco; Ostap, E. Michael; Goldman, Yale E.

    2017-08-01

    We assembled an ultra-fast infrared optical trapping system to detect mechanical events that occur less than a millisecond after a ligand binds to its filamentous substrate, such as myosin undergoing its 5 - 10 nm working stroke after actin binding. The instrument is based on the concept of Capitanio et al.1, in which a polymer bead-actin-bead dumbbell is held in two force-clamped optical traps. A force applied by the traps causes the filament to move at a constant velocity as hydrodynamic drag balances the applied load. When the ligand binds, the filament motion stops within 100 μs as the total force from the optical traps is transferred to the attachment. Subsequent translations signal active motions, such as the magnitude and timing of the motor's working stroke. In our instrument, the beads defining the dumbbell are held in independent force clamps utilizing a field-programmable gate array (FPGA) to update the trap beam positions at 250 kHz. We found that in our setup, acousto-optical deflectors (AODs) steering the beams were unsuitable for this purpose due to a slightly non-linear response in the beam intensity and deflection angle vs. the AOD ultra-sound wavelength, likely caused by low-amplitude standing acoustic waves in the deflectors. These aberrations caused instability in the force feedback loops leading to artefactual 20 nm jumps in position. This type of AOD non-linearity has been reported to be absent in electro-optical deflectors (EODs)2. We demonstrate that replacement of the AODs with EODs improves the performance of our instrument. Combining the superior beam-steering capability of the EODs, force acquisition via back-plane interferometry, and the dual high-speed FPGA-based feedback loops, we smoothly and precisely apply constant loads to study the dynamics of interactions between biological molecules such as actin and myosin.

  20. Vitamin C supplementation and the common cold--was Linus Pauling right or wrong?

    PubMed

    Hemilä, H

    1997-01-01

    In 1970 Linus Pauling claimed that vitamin C prevents and alleviates the episodes of the common cold. Pauling was correct in concluding from trials published up till then, that in general vitamin C does have biological effects on the common cold, but he was rather over-optimistic as regards the size of benefit. His quantitative conclusions were based on a single placebo-controlled trial on schoolchildren in a skiing camp in the Swiss Alps, in which a significant decrease in common cold incidence and duration in the group administered 1 g/day of vitamin C was found. As children in a skiing camp are not a representative sample of the general population, Pauling's extrapolation to the population at large was too bold, erring as to the magnitude of the effect. Nevertheless, Pauling's general conclusion that vitamin C has physiological effects on the common cold is of major importance as it conflicts with the prevailing consensus that the only physiological effect of vitamin C on human beings is to prevent scurvy.

  1. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    DTIC Science & Technology

    2015-03-01

    capacitance-voltage measurements indicating Frenkel-Poole (FP) and Fowler-Nordheim tunneling (FNT) are the primary current mechanisms before and after...linear FNT model and a 0.013 eV increase in the barrier potential for the FP model. There was a decrease of 0.19 eV in the tunneling potential for the...non-linear FNT model. Defects generated by the neutron damage increased currents by increasing trap assisted tunneling (TAT). v

  2. [Screening and confirmation of 24 hormones in cosmetics by ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry].

    PubMed

    Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui

    2014-05-01

    A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were < or = 10 microg/kg, which can meet the requirements for the actual screening of cosmetic samples. The developed method was applied to screen the hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.

  3. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  4. Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields

    NASA Astrophysics Data System (ADS)

    Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.

    2012-01-01

    A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.

  5. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P.

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  6. A Demonstration to Assess Effectiveness, Suitability, and Survivability With the Missions and Means Framework

    DTIC Science & Technology

    2012-12-01

    A Demonstration to Assess Effectiveness, Suitability, and Survivability With the Missions and Means Framework by Beth S . Ward, Paul J...Tanenbaum, Keon U. Burley, Paul H. Deitz, Britt E. Bray, Richard S . Sandmeyer, and Jack H. Sheehan ARL-TR-6271 December 2012...Demonstration to Assess Effectiveness, Suitability, and Survivability With the Missions and Means Framework Beth S . Ward, Paul J. Tanenbaum, and Keon U

  7. Privilege: The Making of an Adolescent Elite at St. Paul's School. Princeton Studies in Cultural Sociology

    ERIC Educational Resources Information Center

    Khan, Shamus Rahman

    2012-01-01

    As one of the most prestigious high schools in the nation, St. Paul's School in Concord, New Hampshire, has long been the exclusive domain of America's wealthiest sons. But times have changed. Today, a new elite of boys and girls is being molded at St. Paul's, one that reflects the hope of openness but also the persistence of inequality. In…

  8. Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering

    DTIC Science & Technology

    2010-01-01

    117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS

  9. A Biophysical-Computational Perspective of Breast Cancer Pathogenesis and Treatment Response

    DTIC Science & Technology

    2008-03-01

    or for monitoring therapy responsiveness. In addition, we recently began a fruitful collaboration with Dr. Paul Hansma from UC Santa Barbara who has...Inactivation of the apoptotic effector Apaf-1 in malignant melanoma. Nature 409, 207-211 (2001). 44. Gifford, G., Paul , J., Vasey, P.A., Kaye, S.B...clustering. Data in parenthesis are 95% confidence intervals. Tissue Diagnostic Instrument Paul Hansma, Hongmei Yu, David Schultz, Azucena Rodriguez

  10. Changes in abundance of vascular plants under varying silvicultural systems at the Forest Ecosystem Research and Demonstration Area, Paul Smiths, New York

    Treesearch

    Mark J. Twery; Elizabeth Olson; Gary L. Wade; Michael. Rechlin

    2013-01-01

    The Forest Ecosystem Research and Demonstration Area (FERDA) was established in 1998 adjacent to the Visitor Interpretive Center (VIC) for the Adirondack Park in Paul Smiths, NY, to provide visitors with first-hand exposure to forest management activities and to provide research opportunities for scientists and students at Paul Smith's College. This research note...

  11. Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.

    2018-04-01

    The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.

  12. Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes*

    PubMed Central

    Michalski, Annette; Damoc, Eugen; Lange, Oliver; Denisov, Eduard; Nolting, Dirk; Müller, Mathias; Viner, Rosa; Schwartz, Jae; Remes, Philip; Belford, Michael; Dunyach, Jean-Jacques; Cox, Juergen; Horning, Stevan; Mann, Matthias; Makarov, Alexander

    2012-01-01

    Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm—incorporating phase information—further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s—increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides. PMID:22159718

  13. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five French laboratories. Phase I of this project has seen the development of a dedicated testbed that enables performance characterization of an Orbitrap analyzer as a function of compromised environmental conditions, simulating the reduced resources expected for planetary missions to small bodies and/or cryogenic worlds.

  14. Paul Bert

    NASA Technical Reports Server (NTRS)

    Colin, J.

    1978-01-01

    This biographical article on Paul Bert highlights his studies on the physiology of respiration and barometric pressure and, in particular his contributions to the understanding of hypoxia, hyperoxia and anesthesia.

  15. Paul Davis Restoration Information Sheet

    EPA Pesticide Factsheets

    Paul Davis Restoration (the Company) is located in Nicholasville, Kentucky. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Lexington, Kentucky.

  16. Modeling and Analysis of Resolve and Morale for the Long War’

    DTIC Science & Technology

    2007-12-01

    Alexandria, Virginia, 1995 Bratley, Paul , Bennett L. Fox, and Linus E. Schrage, A Guide to Simulation (2nd ed.), Springer-Verlag, New York, 1987 Bross... Paul J., Measuring the “Will to Fight” in Simulation, Lockheed Martin Corporation, 73rd MORS Symposium Working Group 33 Presentation, DTIC...115, 2004 MacKay, Niall, “Lanchester combat models”, Mathematics Today, Volume 42, Number 5, Pages 170-173, 2006 Macioce, Paul , “Viscoelastic

  17. Non-Lethal Weapons for Today’s Operations

    DTIC Science & Technology

    2011-01-01

    Division Chief Lieutenant Colonel Paul L. Scholl : paul.scholl@usmc.mil Acquisition Division Chief Kevin J. Swenson: kevin.swenson@usmc.mil Technology...Division Chief David B. Law: david.b.law1@usmc.mil Health Effects Officer Mary R. Williams : mary.r.williams1.ctr@usmc.mil Annual Report Editorial Board...Douglas J. Jerothe Lieutenant Colonel Paul L. Scholl Susan D. LeVine Kevin J. Swenson Kelley S. Hughes Alicia J. Owsiak Publication Management Bethel

  18. College and University Speech Codes in the Aftermath of R.A.V v. City of St. Paul.

    ERIC Educational Resources Information Center

    Fraleigh, Douglas

    In the case of RAV v. City of St. Paul, a teenager was charged with violating the city's Bias-Motivated Crime Ordinance after being accused of burning a cross inside the fenced yard of a black family. In a 9-0 decision, the Supreme Court struck down the St. Paul ordinance, a decision which raised a question as to whether many college and…

  19. Teaching to Make Disciples in a Higher Education Online Learning Environment: A Comparison of the Literature of Online Learning, the Objectives and Practices of Three Christian Colleges, and the Letters of Paul

    ERIC Educational Resources Information Center

    Morris, Raymond E.

    2012-01-01

    This dissertation explores engaging students in spiritual formation and discipleship in the online environment. This researcher begins with the proposition that the letters of Paul are examples of distance teaching and distance learning. The effectiveness of the letters of Paul in engaging their recipients in spiritual formation and discipleship…

  20. Development of a Robust Static Punch Experiment for Screening Unprocessed Ultra-High Molecular Weight Polyethylene (UHMWPE) Unidirectional Cross-Ply Material

    DTIC Science & Technology

    2014-09-01

    Cross-Ply Material by David Gray, Robert Kaste , and Paul Moy ARL-TR-7090 September 2014...Screening Unprocessed Ultra-High Molecular Weight Polyethylene (UHMWPE) Unidirectional Cross-Ply Material David Gray, Robert Kaste , and Paul...ELEMENT NUMBER 6. AUTHOR(S) David Gray, Robert Kaste , and Paul Moy 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7

  1. Space Weather Editors in Transition: Hail and Farewell

    NASA Astrophysics Data System (ADS)

    Knipp, Delores J.

    2017-02-01

    I hope you will join me in welcoming Dr. Daniel Welling of University of Michigan and Dr. T. Paul O'Brien of the Aerospace Corporation to the Space Weather (SWE) editorial team. Dan and Paul have answered the call to fill the shoes of two departing editors: Dr. Howard Singer and Dr. Barbara Giles. Dan brings insight related to space weather model development, while Paul brings expertise in the geospace radiation environment.

  2. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scielzo, N. D.; Wu, C.

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β ± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can bemore » reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146Ba where the octupole deformation is evident from the measured B(E3; 3 -→0 +) strengths that significantly greater than the theoretical predictions. We anticipate that CHICO2 will continue to be a viable charged-­particle detector for the research need of the low-­energy nuclear physics community.« less

  3. Chemical interaction between Lilium brownii and Rhizoma Anemarrhenae, the herbal constituents of Baihe Zhimu decoction, by liquid chromatography coupled to hybrid triple quadrupole linear ion trap mass spectrometer.

    PubMed

    Yang, Bo; Liu, Zhirui; Wang, Qian; Xia, Peiyuan

    2018-03-01

    During the course of decoction, the components of herbal formula interact with each other, such that chemical extraction characteristics are altered. The crude drugs, Lilium brownii (Baihe) and Rhizoma Anemarrhenae (Zhimu), are the herbal constituents of Baihe Zhimu decoction, a traditional herbal formula. To investigate the chemical interaction between Baihe and Zhimu when decocting together, eight marker components in Baihe Zhimu decoction were simultaneously characterized and quantified in one run by a hybrid triple quadrupole linear ion trap mass spectrometer in the multiple reactions monitoring-information dependent acquisition-enhanced product ion mode. The results showed that Zhimu significantly suppressed the extraction of phenolic glycosides (the components from Baihe) when co-decocting, and Baihe clearly suppressed the extraction of xanthones and steroidal saponins (the components from Zhimu). Overall, the presently developed method would be a preferred candidate for the investigation of the chemical interaction between herbal medicines. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Gel electrophoresis of linear and star-branched DNA

    NASA Astrophysics Data System (ADS)

    Lau, Henry W.; Archer, Lynden A.

    2011-12-01

    The electrophoretic mobility of double-stranded DNA in polyacrylamide gel is investigated using an activated hopping model for the transport of a charged object within a heterogeneous medium. The model is premised upon a representation of the DNA path through the gel matrix as a series of traps with alternating large and small cross sections. Calculations of the trap dimensions from gel data show that the path imposes varying degrees of confinement upon migrating analytes, which retard their forward motion in a size-dependent manner. An expression derived for DNA mobility is shown to provide accurate predictions for the dynamics of linear DNA (67-622 bp) in gels of multiple concentrations. For star-branched DNA, the incorporation within the model of a length scale previously proposed to account for analyte architecture [Yuan , Anal. Chem.ANCHAM0003-270010.1021/ac060414w 78, 6179 (2006)] leads to mobility predictions that compare well with experimental results for a wide range of DNA shapes and molecular weights.

  5. Rapid identif ication and comparative analysis of chemical constituents in herbal medicine Fufang decoction by ultra-high-pressure liquid chromatography coupled with a hybrid linear ion trap-high-resolution mass spectrometry.

    PubMed

    Cao, Gang; Chen, Xiaocheng; Wu, Xin; Li, Qinglin; Zhang, Hongyan

    2015-05-01

    This study was conducted to reveal the relation between herbal medicine Fufang decoction and a single drug in terms of material base. Da-Cheng-Qi decoction (DCQD) was used as a model. Ultrahigh-pressure liquid chromatography coupled with a hybrid linear ion trap-high-resolution mass spectrometry (UHPLC-LTQ-Orbitrap) was applied to detect and identify the main chemical compounds. This technique was also employed to determine the different chemical components. Under optimized liquid chromatography and mass spectrometry conditions, 64 components, including iridoids, flavonoids, anthraquinones and coumarins, were separated and tentatively characterized in Da-Cheng-Qi decoction. After decoction, the contents of 18 compounds were markedly changed, and two components were no longer detected in Fufang decoction compared with single-medicine decoction. The established method provided a good example for the rapid identification of complicated polar constituents in herbal medicine prescriptions. Copyright © 2014 John Wiley & Sons, Ltd.

  6. A liquid-phase microextraction method, combining a dual gauge microsyringe with a hollow fiber membrane, for the determination of organochlorine pesticides in aqueous solution by gas chromatography/ion trap mass spectrometry.

    PubMed

    Yan, Chih-Hao; Wu, Hui-Fen

    2004-01-01

    A liquid-phase microextraction (LPME) method has been demonstrated for the extraction and determination of organochlorine pesticides (OCPs) in aqueous solution. The method combines a dual gauge microsyringe with a hollow fiber membrane (LPME/DGM-HF) followed by detection by gas chromatography/ion trap mass spectrometry (GC/ITMS). The advantages include speed, low solvent and sample consumption, simplicity and ease of use. The extraction time, solvent selection, salt concentration and sample stirring rate have been investigated in order to optimize extraction efficiency. The viability is evaluated by measuring the linearity and detection limit of the five OCPs in aqueous solution. Detection linearity for the OCPs has been achieved over a range of concentrations between 1 and 500 microg/L (r2 > 0.930), with a detection limit of 0.1 microg/L for each OCP. Copyright 2004 John Wiley & Sons, Ltd.

  7. Sonoluminescence at Carthage: Sound into Light

    NASA Astrophysics Data System (ADS)

    Swanson, Lukas K.; Arion, D.; Crosby, K.

    2006-12-01

    Single bubble sonoluminescence is a phenomenon in which acoustic energy traps and compresses a bubble resulting in the emission of light through an, as of yet, unidentified mechanism. Mathematical modeling of the single bubble system allows for theoretical predictions of the bubbles interior atmosphere such as radius, pressure and temperature as a function of time. Profiling of the light through polarization measurements, wavelength specific filter imaging as well as raw image analysis may give further insight as to the dynamics of the trapped bubble and a possible mechanism. Results of the linear polarization measurements indicate that the light emitted is not linearly polarized. Long exposures of the light clearly reproduce previously reported data of the high energy, short wavelength end of the visible spectrum by the bluish-violet glow emanating from the bubble. The procedure and design improvements of the apparatus that were made make the phenomenon of sonoluminescence more accessible to study as an undergraduate. My AAPT sponsors are Prof. Douglas Arion and Prof. Kevin Crosby.

  8. Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Calabrese, Giorgio; Gennaro, Maria Carla; Marengo, Emilio

    2013-01-15

    The study deals with the identification of the degradation products formed by simulated sunlight photoirradiation in a commercial beverage that contains Allura Red AC dye. An UHPLC-MS/MS method, that makes use of hybrid triple quadrupole/linear ion trap, was developed. In the identification step the software tool information dependent acquisition (IDA) was used to automatically obtain information about the species present and to build a multiple reaction monitoring (MRM) method with the MS/MS fragmentation pattern of the species considered. The results indicate that the identified degradation products are formed from side-reactions and/or interactions among the dye and other ingredients present in the beverage (ascorbic acid, citric acid, sucrose, aromas, strawberry juice, and extract of chamomile flowers). The presence of aromatic amine or amide functionalities in the chemical structures proposed for the degradation products might suggest potential hazards to consumer health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  10. Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham

    2017-10-17

    Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.

  11. Complete structural characterization of ceramides as [M – H]− ions by multiple-stage linear ion trap mass spectrometry

    PubMed Central

    Hsu, Fong-Fu

    2016-01-01

    Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MSn) towards complete structural determination of ceramides in ten major families characterized as the [M – H]− ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS2 spectrum, while the sequential MS3 and MS4 spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail. PMID:27523779

  12. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham

    2018-03-01

    Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.

  13. Depth dependence of absorbed dose, dose equivalent and linear energy transfer spectra of galactic and trapped particles in polyethylene and comparison with calculations of models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.

  14. Tight focusing of spatially variant vector optical fields with elliptical symmetry of linear polarization.

    PubMed

    Lerman, Gilad M; Levy, Uriel

    2007-08-01

    We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.

  15. Vector optical fields with bipolar symmetry of linear polarization.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian

    2013-09-15

    We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.

  16. First-principles study on stability of transition metal solutes in aluminum by analyzing the underlying forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xu, Yichun; Li, Xiangyan

    2015-05-07

    Although there have been some investigations on behaviors of solutes in metals under strain, the underlying mechanism of how strain changes the stability of a solute is still unknown. To gain such knowledge, first-principles calculations are performed on substitution energy of transition metal solutes in fcc Al host under rhombohedral strain (RS). Our results show that under RS, substitution energy decreases linearly with the increase of outermost d radius r{sub d} of the solute due to Pauli repulsion. The screened Coulomb interaction increases or decreases the substitution energy of a solute on condition that its Pauling electronegativity scale ϕ{sub P}more » is less or greater than that of Al under RS. This paper verifies a linear relation of substitution energy change versus r{sub d} and ϕ{sub P} under RS, which might be instructive for composition design of long life alloys serving in high stress condition.« less

  17. Use of infrared spectroscopy for the determination of electronegativity of rare earth elements.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; McKinnon, Adam R; Williams, Peter A; Leverett, Peter

    2004-07-01

    Infrared spectroscopy has been used to study a series of synthetic agardite minerals. Four OH stretching bands are observed at around 3568, 3482, 3362, and 3296 cm(-1). The first band is assigned to zeolitic, non-hydrogen-bonded water. The band at 3296 cm(-1) is assigned to strongly hydrogen-bonded water with an H bond distance of 2.72 A. The water in agardites is better described as structured water and not as zeolitic water. Two bands at around 999 and 975 cm(-1) are assigned to OH deformation modes. Two sets of AsO symmetric stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Linear relationships between positions of infrared bands associated with bonding to the OH units and the electronegativity of the rare earth elements were derived, with correlation coefficients >0.92. These linear functions were then used to calculate the electronegativity of Eu, for which a value of 1.1808 on the Pauling scale was found.

  18. Prediction of LDEF ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  19. Complex Economies Have a Lateral Escape from the Poverty Trap

    PubMed Central

    Pugliese, Emanuele; Chiarotti, Guido L.; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension. PMID:28072867

  20. Complex Economies Have a Lateral Escape from the Poverty Trap.

    PubMed

    Pugliese, Emanuele; Chiarotti, Guido L; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension.

  1. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE PAGES

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    2018-01-01

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  2. Generation of forerunner electron beam during interaction of ion beam pulse with plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro; Kaganovich, Igor D.; Startsev, Edward A.

    The long-time evolution of the two-stream instability of a cold tenuous ion beam pulse propagating through the background plasma with density much higher than the ion beam density is investigated using a large-scale one-dimensional electrostatic kinetic simulation. The three stages of the instability are investigated in detail. After the initial linear growth and saturation by the electron trapping, a portion of the initially trapped electrons becomes detrapped and moves ahead of the ion beam pulse forming a forerunner electron beam, which causes a secondary two-stream instability that preheats the upstream plasma electrons. Consequently, the self-consistent nonlinear-driven turbulent state is setmore » up at the head of the ion beam pulse with the saturated plasma wave sustained by the influx of the cold electrons from upstream of the beam that lasts until the final stage when the beam ions become trapped by the plasma wave. Finally, the beam ion trapping leads to the nonlinear heating of the beam ions that eventually extinguishes the instability.« less

  3. The Mobilization of Effort: Sergeants, Patrol Officers, and Productivity in an American Agency.

    DTIC Science & Technology

    1982-02-01

    Berlceley. Cain, M. 1974 Society and the policeman’s role. London: Routledge and Kegan Paul. Chatterton, Michael 1975 Organizational relationships and...Routledge and Kegan Paul. Pike, D. 1981 A comparative analysis of the role of women in police training. Unpublished Ph.D. Dissertation, Yale University...David 1970 Yhe theory of organization. NY: Basic. 1974 ()rranizational work. London: Root ledge and Kegan Paul. Van Maanen , lo’in 1972 Pledging the

  4. Life Cycle Management Commands: Wartime Process or Long-Term Solution?

    DTIC Science & Technology

    2007-03-31

    this memorandum. • 1998: The Director of the Army Acquisition Corps (AAC), Lieutenant General (LTG) Paul Kern, testified before Congress about two...the Army finally determined that PVS did not benefit the Army overall. 17 The Director of the Army Acquisition Corps (AAC), LTG Paul Kern, championed...2 and 3 on pages 10 and 11 of the study. 9 LTG Paul J. Kern, Military Deputy to the ASA(ALT), comments made to the Army Acquisition Corps (AAC

  5. Minutes of the Explosives Safety Seminar (19th) Held at Los Angeles, California, 9-10-11 September 1980. Volume 1

    DTIC Science & Technology

    1980-01-01

    DOUBLE-BASE EXTRUSION COMPOSITIONS ................................... 89 Messrs. Craig E. Johnson and Paul F. Dendor V I GUN PROPELLANT PROPAGATION IN...Mullins and C. F. Baker RESULTS AND ANALYSIS OF STRENGTHENED STEEL BUILDING BLAST TESTS ..... 165 Messrs. Frederic E. Sock, Norval Dobbs, Paul Price and...347 Mr. J. Paul Glenn I viLR SESSION - EXPLOSION CONTAIMENT & VENTING Moderator - Mr. Irving Forsten EXPLOSION CONTAINMENT VESSELS AND M4TERIALS

  6. Another Crossroads? Professional Military Education Two Decades After the Goldwater-Nichols Act and the Skelton Panel

    DTIC Science & Technology

    2010-04-01

    staff including Erin Conaton, Paul Arcangeli, Robert Simmons, Paul Oostburg Sanz, Paul Lewis, Debra Wada, Suzanne McKenna, Vickie Plunkett, Craig ...National Defense University: Lieutenant General Frances C. Wilson, Dr. John Deegan , Jr., and Dr. John W. Yaeger, 16 March 2009. Marine Corps...diversity.” The Washington Post (on line), 10 November 2009. Deegan , John, Jr. “First Step to Academic Excellence: The Faculty.” 14 April 2009

  7. The Inadequacy of Definition and the Utility of a Theory of Hybrid Conflict: Is the Hybrid Threat New?

    DTIC Science & Technology

    2012-05-17

    Era of Persistent Conflict, edited by Paul Brister, William H. Natter III, & Robert R. Tomes, 60-69. Washington, DC: CENSA, 2011. Gott, Kendall G...Conflict.” In Hybrid Warfare and Transnational Threats: Perspectives for an Era of Persistent Conflict, edited by Paul Brister, William H. Natter...Hybrid Warfare and Transnational Threats: Perspectives for an Era of Persistent Conflict, edited by Paul Brister, William H. Natter III, & Robert R

  8. Welcoming nora: a family event.

    PubMed

    Walsh, Allison J; Walsh, Paul R; Walsh, Jane M; Walsh, Gavin T

    2011-01-01

    In this column, Allison and Paul Walsh share the story of the birth of Nora, their third baby and their second child to be born at home. Allison and Paul share their individual memories of labor and birth. But their story is only part of the story of Nora's birth. Nora's birth was a family event, with Allison and Paul's other children very much part of the experience. Jane and Gavin share their own memories of their baby sister's birth.

  9. Short of General War: Perspectives on the Use of Military Power in the 21st Century

    DTIC Science & Technology

    2010-04-01

    Paul , MN: Zenith Press, 2004. Hammes’ work is one articulation of this argument. 5. United States Joint Forces Command, “The JOE 2008, Joint Operating...this approach would actually be counterproductive and might be more harmful than beneficial to American interests. According to Paul Sanders, 18...A New Security Strategy for America, Washington, DC: Brookings Institution Press, 1999, p. 55. 50. Paul J. Sanders, “Not the Way to Intervene

  10. Enhancing the Effectiveness of Ad Hoc Units: A Revised Training Model

    DTIC Science & Technology

    2009-06-01

    thank Dr. Kalev “Gunner” Sepp, Dr. Bob McNab, Dr. John Arquilla, Dr. Nancy Roberts, Dr. Susan Hocevar, and Dr. Dorothy Denning for providing their...also want to thank Colonel Paul Warren, Information Operations Branch Chief at U.S. Central Command – Special Operations (SOCCENT), for sponsoring my...Academy of Management Journal, 38 (1), 60-84. Paul M. Nemiroff, Paul M., William, A. Pasmore and David L. Ford, Jr., “The Effects of Two

  11. The first 'molecular disease': a story of Linus Pauling, the intellectual patron.

    PubMed

    Gormley, Melinda

    2007-06-01

    In November 1949, chemist Linus Pauling and three colleagues published an article on sickle-cell anemia, a study that opened up new and exciting possibilities for research into such 'molecular diseases'. Even before this celebrated publication appeared in Science, Pauling foresaw its potential benefits and announced it as a medical breakthrough: '... our structural chemistry and understanding of molecules is getting to the point where it should be of assistance in converting medicine into a real science' [Guiles, R. (1949) Discovery of blood disease called key to cancer research. The Detroit Times 13 Sep 1949, Newspaper Clippings 1949n.18, Pauling Papers.]. Their discovery--that this debilitating disorder was caused by an abnormal form of hemoglobin--was borne out of a rich mix of expertise, from Pauling's remarkable intuition to the careful experimental chemistry of his student Harvey A. Itano. It also relied upon technological innovation: a custom-made electrophoresis machine housed at the California Institute of Technology was the perfect tool to reveal fundamental chemical differences between normal and abnormal forms of hemoglobin. Not only did this work establish a new way of looking at inherited diseases, it also stimulated the mass production of the electrophoresis machine as an essential investigative and diagnostic tool. A close inspection of this case study illustrates just how Pauling ran his laboratory and helps to explain how one man could achieve so much over his lifetime.

  12. Energetic particle modes of q = 1 high-order harmonics in tokamak plasmas with monotonic weak magnetic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.

    Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less

  13. Energetic particle modes of q = 1 high-order harmonics in tokamak plasmas with monotonic weak magnetic shear

    DOE PAGES

    Ren, Zhen-Zhen; Wang, Feng; Fu, G. Y.; ...

    2017-04-24

    Linear and nonlinear simulations of high-order harmonics q=1 energetic particle modes excited by trapped energetic particles in tokamaks are carried out using kinetic/magnetohydrodynamic hybrid code M3D-K. It is found that with a flat safety factor profile in the core region, the linear growth rate of high-order harmonics (m=n>1) driven by energetic trapped particles can be higher than the m/n=1/1 component. The high m=n>1 modes become more unstable when the pressure of energetic particles becomes higher. Moreover, it is shown that there exist multiple resonant locations satisfying different resonant conditions in the phase space of energetic particles for the high-order harmonicsmore » modes, whereas there is only one precessional resonance for the m/n=1/1 harmonics. The fluid nonlinearity reduces the saturation level of the n=1 component, while it hardly affects those of the high n components, especially the modes with m=n=3,4. The frequency of these modes does not chirp significantly, which is different with the typical fishbone driven by trapped particles. Lastly, in addition, the flattening region of energetic particle distribution due to high-order harmonics excitation is wider than that due to m/n=1/1 component, although the m/n=1/1 component has a higher saturation amplitude.« less

  14. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  15. Discoveries in plasmas while teaching simulation

    NASA Astrophysics Data System (ADS)

    Birdsall, Charles K.(Ned); Estacio, Edison T.; Plasma Theory; Simulation Group (PTSG)

    2004-12-01

    Once PC's became ubiquitous, we have been using them for teaching plasma simulation, hands-on by instructors and by students. The transfer of skills from instructor to class has been very rapid (most desirable). However, occasionally some unanticipated results are observed with plausible explanations expected from the instructor (scary). Our examples are all one-dimensional. First, we show the famous two-stream instability in a periodic model, starting either cold or warm, which does not (quite) Maxwellianize; why not? Second, we show Landau damping also in a periodic model, with what appears to be small (hence linear) excitation, but observe trapping in the wave frame; going to very small excitation the trapping diminishes and the damping rate approaches that from Landau linear theory. Lastly, we show a warm plasma bounded by two grounded metal planar walls, uniform in density at t=0, bounded, one-dimensional. For t>0 we observe spontaneous plasma frequency oscillations in the midplane, sheath formation at ion sound speed at both walls, trapping of electrons, and acceleration of the ions to the walls; however, we also observe an oscillatory axial current, and 'staircasing' of the number of electrons in time. Both can come only from some degree of asymmetry in the system. The frequency of the current is the series resonance between the sheath capacitance (almost no electrons, so vacuum) and the bulk plasma 'inductance' (as ωseries≪ ωp).

  16. Validating activity indices from camera traps for commensal rodents and other wildlife in and around farm buildings.

    PubMed

    Lambert, Mark; Bellamy, Fiona; Budgey, Richard; Callaby, Rebecca; Coats, Julia; Talling, Janet

    2018-01-01

    Indices of rodent activity are used as indicators of population change during field evaluation of rodenticides. We investigated the potential for using camera traps to determine activity indices for commensal rodents living in and around farm buildings, and sought to compare these indices against previously calibrated survey methods. We recorded 41 263 images of 23 species, including Norway rats (Rattus norvegicus Berk.) and house mice (Mus musculus L.). We found a positive correlation between activity indices from camera traps and activity indices from a method (footprint tracking) previously shown to have a linear relationship with population size for Norway rats. Filtering the camera trap data to simulate a 30-s delay between camera trigger events removed 59.9% of data and did not adversely affect the correlation between activity indices from camera traps and footprint tracking. The relationship between activity indices from footprint tracking and Norway rat population size is known from a previous study; from this, we determined the relationship between activity indices from camera traps and population size for Norway rats living in and around farm buildings. Systematic use of camera traps was used to determine activity indices for Norway rats living in and around farm buildings; the activity indices were positively correlated with those derived from a method previously calibrated against known population size for this species in this context. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.

  17. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    NASA Technical Reports Server (NTRS)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  18. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with mass-selective ejection of ions by up to a factor of 2.7. The optimum ratio r/r0 is 1.14 to 1.16, which differs from the optimum ratio for a mass filter of 1.128-1.130. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  20. Nesting biology of Trypoxylon (Trypargilum) lactitarse Saussure (Hymenoptera, Crabronidae) in trap-nests in Southern Brazil.

    PubMed

    Buschini, M L T; Niesing, F; Wolff, L L

    2006-08-01

    This study was carried in the Parque Municipal das Araucárias in the municipality of Guarapuava, state of Paraná, Southern Brazil. Three hundred and sixty five nests of T. lactitarse were obtained using trap-nests of 0.7, 1.0, and 1.3 cm in diameter. All of them had similar architecture, regardless of the diameter of the trap-nest. Completed nests consisted of a linear series of brood cells whose average number per nest was of 3.3, 4.0 and 3.6 for the nests with 0.7 cm, 1.0 cm and 1.3 cm in diameter, respectively. They were constructed more often during the summer. T. lactitarse had two types of life cycles: direct development (without diapause), and delayed development (with diapause during winter). Natural enemies included Chrysididae, Sarcophagidae, Dolichopodidae and Ichneumonidae. Out of 1,353 identified spider prey, 1,313 belonged to the Araneidae family.

  1. [Specificity of the Adultrap for capturing females of Aedes aegypti (Diptera: Culicidae)].

    PubMed

    Gomes, Almério de Castro; da Silva, Nilza Nunes; Bernal, Regina Tomie Ivata; Leandro, André de Souza; de Camargo, Natal Jataí; da Silva, Allan Martins; Ferreira, Adão Celestino; Ogura, Luis Carlos; de Oliveira, Sebastião José; de Moura, Silvestre Marques

    2007-01-01

    The Adultrap is a new trap built for capturing females of Aedes aegypti. Tests were carried out to evaluate the specificity of this trap in comparison with the technique of aspiration of specimens in artificial shelters. Adultraps were kept for 24 hours inside and outside 120 randomly selected homes in two districts of the city of Foz do Iguaçú, State of Paraná. The statistical test was Poissons log-linear model. The result was 726 mosquitoes captured, of which 80 were Aedes aegypti. The Adultrap captured only females of this species, while the aspiration method captured both sexes of Aedes aegypti and another five species. The Adultrap captured Aedes aegypti inside and outside the homes, but the analysis indicated that, outside the homes, this trap captured significantly more females than aspiration did. The sensitivity of the Adultrap for detecting females of Aedes aegypti in low-frequency situations was also demonstrated.

  2. Towards a Quantum Interface between Diamond Spin Qubits and Phonons in an Optical Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Momeen, M. Ummal; Hsu, Jen-Feng; D'Urso, Brian; Dutt, Gurudev

    2014-05-01

    We introduce a method to optically levitate a pre-selected nanodiamond crystal in air or vacuum. The nanodiamond containing nitrogen-vacancy (NV) centers is suspended on a monolayer of graphene transferred onto a patterned substrate. Laser light is focused onto the sample, using a home-built confocal microscope with a high numerical aperture (NA = 0.9) objective, simultaneously burning the graphene and creating a 3D optical trap that captures the falling nano-diamond at the beam waist. The trapped diamond is an ultra-high-Q mechanical oscillator, allowing us to engineer strong linear and quadratic coupling between the spin of the NV center and the phonon mode. The system could result in an ideal quantum interface between a spin qubit and vibrational phonon mode, potentially enabling applications in quantum information processing and sensing the development of quantum information storage and processing.

  3. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically amore » possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.« less

  4. Negative differential mobility and trapping in active matter systems

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. O.

    2018-01-01

    Using simulations, we examine the average velocity as a function of applied drift force for active matter particles moving through a random obstacle array. We find that for low drift force, there is an initial flow regime where the mobility increases linearly with drive, while for higher drift forces a regime of negative differential mobility appears in which the velocity decreases with increasing drive due to the trapping of active particles behind obstacles. A fully clogged regime exists at very high drift forces when all the particles are permanently trapped behind obstacles. We find for increasing activity that the overall mobility is nonmonotonic, with an enhancement of the mobility for small levels of activity and a decrease in mobility for large activity levels. We show how these effects evolve as a function of disk and obstacle density, active run length, drift force, and motor force.

  5. Paul Feyerabend: Science and the Anarchist.

    ERIC Educational Resources Information Center

    Science, 1979

    1979-01-01

    Presents comments on the arguments of Paul Feyerabend toward progression science. The positions held by this philosopher of science are given with accompanying remarks from other philosophers and historians. (SA)

  6. Paul G. Silver (1948-2009)

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.

    2009-11-01

    A pioneer in the novel application of seismic observations to infer the flow field of Earth's mantle and the mechanics of fault zones, Paul Gordon Silver tragically was killed on 7 August in an automobile accident that also took the life of his 22-year-old daughter, Celine. Born and raised in Los Angeles, Calif., Paul received all of his degrees from the University of California. Following receipt of a B.A. in psychology from the University of California (UC), Los Angeles (1970), he pursued a career as a musician for several years. Drawn to Earth science, Paul obtained a B.A. in geology from UC Berkeley, in 1976, and he was recruited by Tom Jordan (now at the University of Southern California) to the graduate program of the Scripps Institution of Oceanography at UC San Diego.

  7. Major Additions to the Linus Pauling Canon

    NASA Astrophysics Data System (ADS)

    Davenport, Derek A.

    2002-08-01

    The National Library of Medicine has also just posted a Web site on Linus Pauling in its Profiles of Science series. While by no means as rich as the various Oregon State University sites, it is well worth visiting. There are texts of various speeches (including his Nobel address), many downloadable photographs, correspondence (including a poignant letter to James Watson and Francis Crick concerning their "rival" structures for DNA), and much else besides. There is a certain irony in Linus Pauling being honored by the National Library of Medicine. Ever since his 1949 presidential address to the American Chemical Society, and perhaps earlier, Pauling had been at loggerheads, sometimes acrimoniously so, with the medical establishment. It is easy to imagine him somewhere in the timeless infinitude of the empyrean sporting his characteristic ear-to-ear grin.

  8. 78 FR 62357 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ..., filing of petitions and applications and agency #0;statements of organization and functions are examples... interested in obtaining more information should contact Paul Kollmer-Dorsey at (202) 203-4545. Paul Kollmer...

  9. Keynote Address: When Breath Becomes Air-As Physician Becomes Patient.

    PubMed

    Kalanithi, Lucy; Wakelee, Heather; Carlson, Robert W

    2017-05-01

    As part of the NCCN 22nd Annual Conference: Improving the Quality, Effectiveness, and Efficiency of Cancer Care, Lucy Kalanithi, MD, wife of now-deceased best-selling author Paul Kalanithi ( When Breath Becomes Air ), and Heather Wakelee, MD, Paul's oncologist, discussed-for the first time together in a public forum-Paul's experience of going from a neurosurgery resident to a patient with cancer with a terminal diagnosis. Robert Carlson, MD, moderated the discussion. Copyright © 2017 by the National Comprehensive Cancer Network.

  10. 25. Photocopy of aerial photograph dated May 1930; J. E. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of aerial photograph dated May 1930; J. E. Quigley, Photographer; original filed as MR2.9/SP8/p355 in Audio-visual Collection of Minnesota Historical Society, St. Paul; SHOWS RECENTLY COMPLETED NORTHWEST HANGAR AND ADMINISTRATION BUILDING I N UPPER LEFT (THREE-QUARTER VIEW OF WEST SIDE AND SOUTH FRONT); ALSO SHOWS THE SIMILARLY DESIGNED MUNICIPAL HANGAR UNDER CONSTRUCTION IN FOREGROUND; LOOKING NORTHEAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  11. Proceedings of the Conference on the Design of Experiments in Army Research Development and Testing (34th) Held in Las Cruces, New Mexico on 19-21 October 1988

    DTIC Science & Technology

    1989-07-01

    Webb and Linda L.C. Moss.............,,...,....., 27 COMPARISON OF RELIABILITY CONFIDENCE INTERVALS Paul H . Thrasher. ......... . 0 1...Webb and Linda L.C. Moss, U.S. Army Ballistic Research Laboratory COMPARISON OF RELIABILITY CONFIDENCE INTERVALS Paul H. Thrasher, White Sands Missile...RELEVANT Paul H. Thrasher, White Sands Missile Range 0930 - 1000 BREAK 1000 - 1130 GENERAL SESSION III Chairperson: Douglas B. Tang, Valter Reed Army

  12. A Comparative Analysis of Army Physical Readiness Test Results of AMEDD Units Without Formal Physical Training Programs

    DTIC Science & Technology

    1984-06-01

    Paul C.; Albrink , Margaret J.; and Krall, John M. "Exercise Effects on Fitness,, Lipids, Glucose Tolerance and Insulin Levels in Young Adults...1982): 14-15. Shepherd, Roy J.; Corey, Paul; Renzland, Peter; and Cox Michael . "The Impact of Changes in Fitness and Lifestyle Upon Health Care...Utilization." Canadian Journal of Public Health 74 (January/February 1983): 51-55. Shepherd, Roy J.; Corey, Paul; Renzland, Peter; and Cox, Michael . "The

  13. Final Environmental Impact Statement. Ontonagon Harbor Operation and Maintenance Activities. Ontonagon County, Michigan.

    DTIC Science & Technology

    1975-08-01

    Paul, Minnesota 55101 August 1975 ,.’U * - S • S S S S S • S U U FIN"L ENVIRONMENTAL IMPACT STATEMENT OPERATION AND MAINTENANCE ACTIVITIES ONTONAGON...HARBOR, MICHIGAN LAKE SUPERIOR Responsible Office: St. Paul District, Corps of Engineers, 1135 U.S. Post Office and Custom House, St. Paul, Minnesota ... mining is present at White Pine, 12 air miles southwest of Ontonagon Harbor. 6 2.130 Topography. - The area’s topography is directly related to the

  14. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    DTIC Science & Technology

    2016-12-01

    Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT

  15. STS 41-G crew prepares to leave Operations and checkout bldg for launch

    NASA Image and Video Library

    1984-10-05

    41G-90081 / S17-90081 (5 Oct 1984) --- The seven member crew leaves the Operations and Checkout Building (OCB) to take a van ride to the launch pad. Leading the way is Kathryn D. Sullivan followed in file by Robert L. Crippen, Paul D. Scully-Power and Jon A. McBride. On the right side are Sally K. Ride, David C. Leestma and Marc Garneau. Trailing the crew are George W. S. Abbey, Richard Nygren, Paul Bulver, and Paul J. Weitz.

  16. Paul D. Sturkie: Avian cardiac physiologist.

    PubMed

    Bello, Nicholas T; Cohick, Wendie S; McKeever, Kenneth H; Malinowski, Karyn

    2018-06-01

    Sturkie's Avian Physiology is a highly regarded textbook for the study of comparative poultry physiology. Less well known, however, is the contribution of Paul D. Sturkie (1909-2002) as a pioneer in the experimental physiology of avian species. His seminal research on the cardiovascular and hemodynamic controls of chickens and egg-laying hens had a notable impact on the poultry industry and breeding practices of farmers. The purpose of this article is to highlight the contributions and practical insights of Paul D. Sturkie to the field of poultry science.

  17. Thermoluminescence of nanocrystalline CaSO{sub 4}: Dy for gamma dosimetry and calculation of trapping parameters using deconvolution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandlik, Nandkumar, E-mail: ntmandlik@gmail.com; Patil, B. J.; Bhoraskar, V. N.

    2014-04-24

    Nanorods of CaSO{sub 4}: Dy having diameter 20 nm and length 200 nm have been synthesized by the chemical coprecipitation method. These samples were irradiated with gamma radiation for the dose varying from 0.1 Gy to 50 kGy and their TL characteristics have been studied. TL dose response shows a linear behavior up to 5 kGy and further saturates with increase in the dose. A Computerized Glow Curve Deconvolution (CGCD) program was used for the analysis of TL glow curves. Trapping parameters for various peaks have been calculated by using CGCD program.

  18. Thermoluminescence of nanocrystalline CaSO4: Dy for gamma dosimetry and calculation of trapping parameters using deconvolution method

    NASA Astrophysics Data System (ADS)

    Mandlik, Nandkumar; Patil, B. J.; Bhoraskar, V. N.; Sahare, P. D.; Dhole, S. D.

    2014-04-01

    Nanorods of CaSO4: Dy having diameter 20 nm and length 200 nm have been synthesized by the chemical coprecipitation method. These samples were irradiated with gamma radiation for the dose varying from 0.1 Gy to 50 kGy and their TL characteristics have been studied. TL dose response shows a linear behavior up to 5 kGy and further saturates with increase in the dose. A Computerized Glow Curve Deconvolution (CGCD) program was used for the analysis of TL glow curves. Trapping parameters for various peaks have been calculated by using CGCD program.

  19. Shielding and flux trapping properties of high temperature superconductors in the shape of hollow cylinders

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.

    1991-01-01

    Allowing for a field-dependent critical current density, the authors calculate the magnetic field that can be supported by hollow cylinders of varying wall thickness. An adiabatically stable field of 1.0 T can be shielded by or trapped in a cylinder with a wall thickness of 0.4 cm if the critical current density varies linearly with magnetic field and has a value of 104 A/sq cm at a field of 1.0 T. Such a current density appears to be within reach of present state-of-the-art melt-processed YBa2Cu3O7 (123) materials.

  20. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  1. Nonlinear waves in subwavelength waveguide arrays: evanescent bands and the "phoenix soliton".

    PubMed

    Peleg, Or; Segev, Mordechai; Bartal, Guy; Christodoulides, Demetrios N; Moiseyev, Nimrod

    2009-04-24

    We formulate wave propagation in arrays of subwavelength waveguides with sharp index contrasts and demonstrate the collapse of bands into evanescent modes and lattice solitons with superluminal phase velocity. We find a self-reviving soliton ("phoenix soliton") comprised of coupled forward- and backward-propagating light, originating solely from evanescent bands. In the linear regime, all Bloch waves comprising this beam decay, whereas a proper nonlinearity assembles them into a propagating self-trapped beam. Finally, we simulate the dynamics of such a beam and observe breakup into temporal pulses, indicating a new kind of slow-light gap solitons, trapped in time and in one transverse dimension.

  2. Paul Oil Company, Inc. Consent Agreements and Proposed Final Orders

    EPA Pesticide Factsheets

    Proposed settlements, recorded in two Consent Agreements and Final Orders (“Proposed Consent Agreements”), between EPA and Paul Oil Company, Inc., to resolve two civil administrative penalty proceedings.

  3. 5. Historic American Buildings Survey Paul J. F. Schumacher, Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Paul J. F. Schumacher, Photographer September 1957 FRONT and WEST SIDE ELEVATIONS - Sacred Heart Mission, Interstate 90 & Interchange 39, Cataldo, Shoshone County, ID

  4. Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements.

    PubMed

    Gu, Jifeng; Wu, Weijun; Huang, Mengwei; Long, Fen; Liu, Xinhua; Zhu, Yizhun

    2018-04-11

    A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloids, and one licorice coumarin, were identified or tentatively characterized. In addition, ten of the representative compounds (matrine, galuteolin, tectoridin, iridin, arctiin, tectorigenin, glycyrrhizic acid, irigenin, arctigenin, and irisflorentin) were quantified using the validated HPLC-LTQ-Orbitrap MS method. The method validation showed a good linearity with coefficients of determination (r²) above 0.9914 for all analytes. The accuracy of the intra- and inter-day variation of the investigated compounds was 95.0-105.0%, and the precision values were less than 4.89%. The mean recoveries and reproducibilities of each analyte were 95.1-104.8%, with relative standard deviations below 4.91%. The method successfully quantified the ten compounds in Shejin-liyan Granule, and the results show that the method is accurate, sensitive, and reliable.

  5. Featured Image: Tests of an MHD Code

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2

  6. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  7. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding. PMID:25894612

  8. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.

  9. Paul Lampe/McGarry Houghton | Division of Cancer Prevention

    Cancer.gov

    Project Title/Research Areas: Hybrid Plasma Markers that Complement CT Imaging for Early Lung Cancer DetectionPrincipal Investigator/Institution:  Paul Lampe/McGarry Houghton, Fred Hutchinson Cancer Research Center |

  10. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    2005-09-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  11. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    1998-02-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  12. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.

  13. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    PubMed

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  14. Fast Dynamical Decoupling of the Mølmer-Sørensen Entangling Gate.

    PubMed

    Manovitz, Tom; Rotem, Amit; Shaniv, Ravid; Cohen, Itsik; Shapira, Yotam; Akerman, Nitzan; Retzker, Alex; Ozeri, Roee

    2017-12-01

    Engineering entanglement between quantum systems often involves coupling through a bosonic mediator, which should be disentangled from the systems at the operation's end. The quality of such an operation is generally limited by environmental and control noise. One of the prime techniques for suppressing noise is by dynamical decoupling, where one actively applies pulses at a rate that is faster than the typical time scale of the noise. However, for boson-mediated gates, current dynamical decoupling schemes require executing the pulses only when the boson and the quantum systems are disentangled. This restriction implies an increase of the gate time by a factor of sqrt[N], with N being the number of pulses applied. Here we propose and realize a method that enables dynamical decoupling in a boson-mediated system where the pulses can be applied while spin-boson entanglement persists, resulting in an increase in time that is at most a factor of π/2, independently of the number of pulses applied. We experimentally demonstrate the robustness of our entangling gate with fast dynamical decoupling to σ_{z} noise using ions in a Paul trap.

  15. Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.

  16. 13. Photocopy of photograph mounted on Christmas card (from St. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph mounted on Christmas card (from St. Paul's Church) Photographer unknown 1906 INTERIOR LOOKING EAST - St. Paul's Episcopal Church, 120 East J Street, Benicia, Solano County, CA

  17. 18. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL AREAS; LOOKING EAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  18. 17. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL AREAS; LOOKING WEST. - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  19. ARC-2002-ACD02-0055-04

    NASA Image and Video Library

    2002-03-20

    Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting students from San Francisco Bay Area Schools Documentation Technology Branch Video communications van (code-JIT) David Maurantonio, Paul Langston

  20. Catalytic creativity. The case of Linus Pauling.

    PubMed

    Nakamura, J; Csikszentmihalyi, M

    2001-04-01

    This article illustrates how creativity is constituted by forces beyond the innovating individual, drawing examples from the career of the eminent chemist Linus Pauling. From a systems perspective, a scientific theory or other product is creative only if the innovation gains the acceptance of a field of experts and so transforms the culture. In addition to this crucial selective function vis-à-vis the completed work, the social field can play a catalytic role, fostering productive interactions between person and domain throughout a career. Pauling's case yields examples of how variously the social field contributes to creativity, shaping the individual's standards of judgment and providing opportunities, incentives, and critical evaluation. A formidable set of strengths suited Pauling for his scientific achievements, but examination of his career qualifies the notion of a lone genius whose brilliance carries the day.

  1. Brotherly Advice: Letters from Hugo to Paul Ehrenfest in his Final Years

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2006-03-01

    At the start of the 1930s, theoretician Paul Ehrenfest spent much of his time traveling through America and Europe while engaged in a steady stream of lectures. This traveling phase coincided with a frantic and intense period of negative self-examination, financial difficulty, and various other personal concerns that would ultimately lead to his 1933 suicide. Throughout these final years, he kept up a steady correspondence with his brother Hugo, a physician based in Saint Louis. Ten years older than Paul, Hugo freely doled out frank psychological advice about subjects ranging from the proper treatment of children to the dangers of self-pity. Through a look at some of the letters exchanged between the two brothers, this talk will examine the role Hugo played during the dark final years of Paul Ehrenfest's life.

  2. The use of GIS for monitoring and predicting urban growth in east and west St Paul, Winnipeg, Manitoba, Canada.

    PubMed

    Hathout, S

    2002-11-01

    Most urban growth in Canada occurs in the urban-rural fringe. The increasing dispersal of the Canadian urban population is due to centrifugal forces pulling urbanites past the suburbs into the surrounding exurban communities. Most Canadian urban centres are located on prime agricultural land. Exurban sprawl devours an inordinate amount of the better agricultural land. The growth around the city of Winnipeg is a case in point. Within Winnipeg's urban field are the rural municipalities of East and West St Paul. The objective of this study is to investigate the impact of urban growth on the agricultural land of these RMs as well as the rate of urban growth in both Municipalities based on database analysis using aerial photographs taken in 1960 and 1989 and Geographic Information System (GIS). East St Paul was found to have a higher rate of urbanization (from 10.14% to 43.75%) between 1960 and 1989 than West St Paul (from 7.36% to 23.57%). The growth prediction using Markov probability chain analysis showed that East St Paul will henceforth experience a reduced rate of increase than West St Paul. The rate of urbanization for both RMs is found to be comparable with areas surrounding other major cities such as Toronto. The largest increases in urban land use categories occurred in and around the existing exurban settlements. It was found that most urbanization take place on the most fertile soil.

  3. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    ScienceCinema

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2018-02-07

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  4. Route-Specific Transit Marketing in Minneapolis/St. Paul, MN

    DOT National Transportation Integrated Search

    1985-10-01

    The Minneapolis/St. Paul Transit Marketing Demonstration involved the administration of a combination of marketing techniques on five selected transit routes. The approach employed differed from most previous marketing demonstrations in that 1) prici...

  5. JAFCO d/b/a Paul Davis Restoration and Remodeling Information Sheet

    EPA Pesticide Factsheets

    JAFCO d/b/a Paul Davis Restoration and Remodeling (the Company) is located in Memphis, Tennessee. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Memphis, Tennessee.

  6. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn

    2011-01-01

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  7. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  8. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.

  9. Waveguide coupling in the few-cycle regime

    NASA Astrophysics Data System (ADS)

    Leblond, Hervé; Terniche, Said

    2016-04-01

    We consider the coupling of two optical waveguides in the few-cycle regime. The analysis is performed in the frame of a generalized Kadomtsev-Petviashvili model. A set of two coupled modified Korteweg-de Vries equations is derived, and it is shown that three types of coupling can occur, involving the linear index, the dispersion, or the nonlinearity. The linear nondispersive coupling is investigated numerically, showing the formation of vector solitons. Separate pulses may be trapped together if they have not initially the same location, size, or phase, and even if their initial frequencies differ.

  10. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  11. Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex (Inventor)

    2009-01-01

    A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.

  12. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased),more » Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.« less

  13. Decentralized control of large-scale systems: Fixed modes, sensitivity and parametric robustness. Ph.D. Thesis - Universite Paul Sabatier, 1985

    NASA Technical Reports Server (NTRS)

    Tarras, A.

    1987-01-01

    The problem of stabilization/pole placement under structural constraints of large scale linear systems is discussed. The existence of a solution to this problem is expressed in terms of fixed modes. The aim is to provide a bibliographic survey of the available results concerning the fixed modes (characterization, elimination, control structure selection to avoid them, control design in their absence) and to present the author's contribution to this problem which can be summarized by the use of the mode sensitivity concept to detect or to avoid them, the use of vibrational control to stabilize them, and the addition of parametric robustness considerations to design an optimal decentralized robust control.

  14. 11. Photocopy of 1906 photograph. Glass negative in Paul A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of 1906 photograph. Glass negative in Paul A. Kohl's office, Missouri Botanical Garden. CLOSE VIEW OF LINNAEUS BUST - Missouri Botanical Garden, Linnaean House, 2345 Tower Grove Avenue, Saint Louis, Independent City, MO

  15. 76 FR 8656 - Safety Zone; Miami International Triathlon, Bayfront Park, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-mail Lieutenant Paul A. Steiner, Sector Miami Prevention Department, Coast Guard; telephone 305-535-8724, e-mail Paul.A.Steiner@uscg.mil . If you have questions on viewing the docket, call Renee V...

  16. Coastal Imaging Spectroscopy

    DTIC Science & Technology

    2006-09-30

    Year, Semi-Finalist, Florida Environmental Research Institute, W. Paul Bissett, Ph.D., Executive Director, Greater Tampa Chamber of Commerce . 2004...Small Business of the Year, -Finalist, Florida Environmental Research Institute, W. Paul Bissett, Ph.D., Executive Director, Greater Tampa Chamber of Commerce .

  17. Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting students from San Francisco Bay Area Schools Documentation Technology Branch Video communications van (code-JIT)

  18. Paul Hill d/b/a Alternative Energy Windows and Siding

    EPA Pesticide Factsheets

    Paul Hill d/b/a Alternative Energy Windows and Siding (the Company) is located in Concord, New Hampshire. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Concord, New Hampshire.

  19. Senate Confirmation Hearing IG

    NASA Image and Video Library

    2009-10-14

    Paul K. Martin, nominee for Inspector General for NASA, answers questions during his confirmation hearing in front of the Senate Committee on Commerce, Science and Transportation, Thursday, Oct. 15, 2009, on Capitol Hill in Washington. Photo Credit: (NASA/Paul E. Alers)

  20. A dominant electron trap in molecular beam epitaxial InAlN lattice-matched to GaN

    NASA Astrophysics Data System (ADS)

    Pandey, Ayush; Bhattacharya, Aniruddha; Cheng, Shaobo; Botton, Gianluigi A.; Mi, Zetian; Bhattacharya, Pallab

    2018-04-01

    Deep levels in lattice-matched undoped and Si-doped InAlN/GaN grown by plasma-assisted molecular beam epitaxy have been identified and characterized by capacitance and photocapacitance measurements. From x-ray diffraction, reflectance measurements, electron energy loss spectroscopy and high-resolution transmission electron microscopy it is evident that the material has two distinct phases with different compositions. These correspond to In compositions of 18.1% and 25.8%, with corresponding bandgaps of 4.6 eV and 4.1 eV, respectively. The lower bandgap material is present as columnar microstructures in the form of quantum wires. A dominant electron trap with an activation energy of 0.293  ±  0.01 eV, a small capture cross-section of (1.54  ±  0.25)  ×  10-18 cm2, and density increasing linearly with Si doping density is identified in all the samples. The characteristics of the electron trap and variation of diode capacitance are discussed in the context of carrier dynamics involving the dominant trap level and the quantum wires.

Top