Sample records for linear positive operators

  1. On differences of linear positive operators

    NASA Astrophysics Data System (ADS)

    Aral, Ali; Inoan, Daniela; Raşa, Ioan

    2018-04-01

    In this paper we consider two different general linear positive operators defined on unbounded interval and obtain estimates for the differences of these operators in quantitative form. Our estimates involve an appropriate K-functional and a weighted modulus of smoothness. Similar estimates are obtained for Chebyshev functional of these operators as well. All considerations are based on rearrangement of the remainder in Taylor's formula. The obtained results are applied for some well known linear positive operators.

  2. A characterization of positive linear maps and criteria of entanglement for quantum states

    NASA Astrophysics Data System (ADS)

    Hou, Jinchuan

    2010-09-01

    Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.

  3. Electronic Non-Contacting Linear Position Measuring System

    DOEpatents

    Post, Richard F.

    2005-06-14

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  4. Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators

    NASA Astrophysics Data System (ADS)

    Siudzińska, Katarzyna; Chruściński, Dariusz

    2018-03-01

    In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.

  5. The consistency of positive fully fuzzy linear system

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghassan O.; Alfifi, Hassan Y.

    2017-11-01

    In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.

  6. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  7. Inductive Linear-Position Sensor/Limit-Sensor Units

    NASA Technical Reports Server (NTRS)

    Alhom, Dean; Howard, David; Smith, Dennis; Dutton, Kenneth

    2007-01-01

    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs)

  8. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  9. Fluctuation removal around spectral and temporal constancy limits via use of an extended space expectation value weight function for singular quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Berfin; Demiralp, Metin

    2015-03-10

    This work is a new extension to our a very recent work whose paper will appear in the proceedings of a very recent international conference. What we have done in the previous work is the use of a weight operator to suppress the singularities causing nonexistence of some of temporal Maclaurin expansion coefficients. The weight operator has been constructed in such a way that certain number of expectation values of position operator’s first positive integer powers with and without the chosen weight operator match. Therein this match has not been considered for the momentum operator’s corresponding power expectation values andmore » a finite linear combination of the spatial variable’s first reciprocal powers has been used in the construction of the weight operator. Here, that approach is extended to the case where matches for both position and momentum operators are considered and the weight operator involves finite linear combinations of the spatial variable’s both positive integer powers and their reciprocals.« less

  10. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  11. Drive control and position measurement of RailCab vehicles driven by linear motors

    NASA Astrophysics Data System (ADS)

    Pottharst, Andreas; Henke, Christian; Schneider, Tobias; Böcker, Joachim; Grotstollen, Horst

    2006-11-01

    The novel railway system RailCab makes use of autonomous vehicles which are driven by an AC linear motor. Depending on the track-side motor part, long-stator or short-stator operations are possible. The paper deals with the operation of the doubly-fed induction motor which is used for motion control and for transferring the energy required onboard the vehicle. This type of linear motor synchronization of the traveling fields generated by the stationary primary and moving secondary windings is an important and demanding task because the instantaneous positions of the vehicle or the primary traveling wave must be determined with high accuracy. The paper shows how this task is solved at the moment and what improvements are under development.

  12. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  13. Resolvent positive linear operators exhibit the reduction phenomenon

    PubMed Central

    Altenberg, Lee

    2012-01-01

    The spectral bound, s(αA + βV), of a combination of a resolvent positive linear operator A and an operator of multiplication V, was shown by Kato to be convex in . Kato's result is shown here to imply, through an elementary “dual convexity” lemma, that s(αA + βV) is also convex in α > 0, and notably, ∂s(αA + βV)/∂α ≤ s(A). Diffusions typically have s(A) ≤ 0, so that for diffusions with spatially heterogeneous growth or decay rates, greater mixing reduces growth. Models of the evolution of dispersal in particular have found this result when A is a Laplacian or second-order elliptic operator, or a nonlocal diffusion operator, implying selection for reduced dispersal. These cases are shown here to be part of a single, broadly general, “reduction” phenomenon. PMID:22357763

  14. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  15. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off-the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.

  16. Determining vehicle operating speed and lateral position along horizontal curves using linear mixed-effects models.

    PubMed

    Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G

    2013-01-01

    Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.

  17. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    PubMed

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  18. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  19. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    NASA Astrophysics Data System (ADS)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  1. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  2. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  3. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  4. Positive detection of exfoliated colon cancer cells on linear stapler cartridges was associated with depth of tumor invasion and preoperative bowel preparation in colon cancer.

    PubMed

    Ikehara, Kishiko; Endo, Shungo; Kumamoto, Kensuke; Hidaka, Eiji; Ishida, Fumio; Tanaka, Jun-Ichi; Kudo, Shin-Ei

    2016-08-31

    The aim of this study was to investigate exfoliated cancer cells (ECCs) on linear stapler cartridges used for anastomotic sites in colon cancer. We prospectively analyzed ECCs on linear stapler cartridges used for anastomosis in 100 colon cancer patients who underwent colectomy. Having completed the functional end-to-end anastomosis, the linear stapler cartridges were irrigated with saline, which was collected for cytological examination and cytological diagnoses were made by board-certified pathologists based on Papanicolaou staining. The detection rate of ECCs on the linear stapler cartridges was 20 %. Positive detection of ECCs was significantly associated with depth of tumor invasion (p = 0.012) and preoperative bowel preparation (p = 0.003). There were no marked differences between ECC-positive and ECC-negative groups in terms of the operation methods, tumor location, histopathological classification, and surgical margins. Since ECCs were identified on the cartridge of the linear stapler used for anastomosis, preoperative mechanical bowel preparation using polyethylene glycol solution and cleansing at anastomotic sites using tumoricidal agents before anastomosis may be necessary to decrease ECCs in advanced colon cancer.

  5. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    PubMed

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  6. Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen

    2018-05-01

    Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.

  7. Linear analysis of a force reflective teleoperator

    NASA Technical Reports Server (NTRS)

    Biggers, Klaus B.; Jacobsen, Stephen C.; Davis, Clark C.

    1989-01-01

    Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space.

  8. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  9. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  10. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  11. Feedback Linearization in a Six Degree-of-Freedom MAG-LEV Stage

    NASA Technical Reports Server (NTRS)

    Ludwick, Stephen J.; Trumper, David L.; Holmes, Michael L.

    1996-01-01

    A six degree-of-freedom electromagnetically suspended motion control stage (the Angstrom Stage) has been designed and constructed for use in short-travel, high-resolution motion control applications. It achieves better than 0.5 nm resolution over a 100 micron range of travel. The stage consists of a single moving element (the platen) floating in an oil filled chamber. The oil is crucial to the stage's operation since it forms squeeze film dampers between the platen and the frame. Twelve electromagnetic actuators provide the forces necessary to suspend and servo the platen, and six capacitance probes measure its position relative to the frame. The system is controlled using a digital signal processing board residing in a '486 based PC. This digital controller implements a feedback linearization algorithm in real-time to account for nonlinearities in both the magnetic actuators and the fluid film dampers. The feedback linearization technique reduces a highly nonlinear plant with coupling between the degrees of freedom into one that is linear, decoupled, and setpoint independent. The key to this procedure is a detailed plant model. The operation of the feedback linearization procedure is transparent to the outer loop of the controller, and so a proportional controller is sufficient for normal operation. We envision applications of this stage in scanned probe microscopy and for integrated circuit measurement.

  12. The Elementary Operations of Human Vision Are Not Reducible to Template-Matching

    PubMed Central

    Neri, Peter

    2015-01-01

    It is generally acknowledged that biological vision presents nonlinear characteristics, yet linear filtering accounts of visual processing are ubiquitous. The template-matching operation implemented by the linear-nonlinear cascade (linear filter followed by static nonlinearity) is the most widely adopted computational tool in systems neuroscience. This simple model achieves remarkable explanatory power while retaining analytical tractability, potentially extending its reach to a wide range of systems and levels in sensory processing. The extent of its applicability to human behaviour, however, remains unclear. Because sensory stimuli possess multiple attributes (e.g. position, orientation, size), the issue of applicability may be asked by considering each attribute one at a time in relation to a family of linear-nonlinear models, or by considering all attributes collectively in relation to a specified implementation of the linear-nonlinear cascade. We demonstrate that human visual processing can operate under conditions that are indistinguishable from linear-nonlinear transduction with respect to substantially different stimulus attributes of a uniquely specified target signal with associated behavioural task. However, no specific implementation of a linear-nonlinear cascade is able to account for the entire collection of results across attributes; a satisfactory account at this level requires the introduction of a small gain-control circuit, resulting in a model that no longer belongs to the linear-nonlinear family. Our results inform and constrain efforts at obtaining and interpreting comprehensive characterizations of the human sensory process by demonstrating its inescapably nonlinear nature, even under conditions that have been painstakingly fine-tuned to facilitate template-matching behaviour and to produce results that, at some level of inspection, do conform to linear filtering predictions. They also suggest that compliance with linear transduction may be the targeted outcome of carefully crafted nonlinear circuits, rather than default behaviour exhibited by basic components. PMID:26556758

  13. Development of a Linear Stirling System Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  14. Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.

    2017-02-01

    This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.

  15. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenummore » pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.« less

  16. Concurrent Schedules of Positive and Negative Reinforcement: Differential-Impact and Differential-Outcomes Hypotheses

    PubMed Central

    Magoon, Michael A; Critchfield, Thomas S

    2008-01-01

    Considerable evidence from outside of operant psychology suggests that aversive events exert greater influence over behavior than equal-sized positive-reinforcement events. Operant theory is largely moot on this point, and most operant research is uninformative because of a scaling problem that prevents aversive events and those based on positive reinforcement from being directly compared. In the present investigation, humans' mouse-click responses were maintained on similarly structured, concurrent schedules of positive (money gain) and negative (avoidance of money loss) reinforcement. Because gains and losses were of equal magnitude, according to the analytical conventions of the generalized matching law, bias (log b ≠ 0) would indicate differential impact by one type of consequence; however, no systematic bias was observed. Further research is needed to reconcile this outcome with apparently robust findings in other literatures of superior behavior control by aversive events. In an incidental finding, the linear function relating log behavior ratio and log reinforcement ratio was steeper for concurrent negative and positive reinforcement than for control conditions involving concurrent positive reinforcement. This may represent the first empirical confirmation of a free-operant differential-outcomes effect predicted by contingency-discriminability theories of choice. PMID:18683609

  17. Elementary derivation of the quantum propagator for the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Shao, Jiushu

    2016-10-01

    Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.

  18. Operator-assisted planning and execution of proximity operations subject to operational constraints

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1991-01-01

    Future multi-vehicle operations will involve multiple scenarios that will require a planning tool for the rapid, interactive creation of fuel-efficient trajectories. The planning process must deal with higher-order, non-linear processes involving dynamics that are often counter-intuitive. The optimization of resulting trajectories can be difficult to envision. An interaction proximity operations planning system is being developed to provide the operator with easily interpreted visual feedback of trajectories and constraints. This system is hosted on an IRIS 4D graphics platform and utilizes the Clohessy-Wiltshire equations. An inverse dynamics algorithm is used to remove non-linearities while the trajectory maneuvers are decoupled and separated in a geometric spreadsheet. The operator has direct control of the position and time of trajectory waypoints to achieve the desired end conditions. Graphics provide the operator with visualization of satisfying operational constraints such as structural clearance, plume impingement, approach velocity limits, and arrival or departure corridors. Primer vector theory is combined with graphical presentation to improve operator understanding of suggested automated system solutions and to allow the operator to review, edit, or provide corrective action to the trajectory plan.

  19. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, L.F.

    1995-05-30

    A method is disclosed for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining. 5 figs.

  20. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, Lothar F.

    1995-05-30

    A method for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining.

  1. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion.

    PubMed

    Lee, Dong-Jin; Lee, Sun-Kyu

    2015-01-01

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.

  2. Simulation of longitudinal dynamics of long freight trains in positioning operations

    NASA Astrophysics Data System (ADS)

    Qi, Zhaohui; Huang, Zhihao; Kong, Xianchao

    2012-09-01

    Positioning operations are performed in a railway goods yard, in which the freight train is pulled precisely at a specific point by a positioner. The positioner moves strictly according to the predesigned speed and provides all the traction and braking forces which are highly dependent on the longitudinal dynamic response. In order to improve the efficiency and protect the wagons from damage during positioning operations, the design speed of the positioner has to be optimised based on the simulation of longitudinal train dynamics. However, traditional models of longitudinal train dynamics are not accurate enough in some aspects. In this study, we make some changes in the traditional theory to make it suitable for the study of long freight trains in positioning operations. In the proposed method, instead of the traction force on the train, the motion of the positioner is assumed to be known; more importantly, the traditional draft gear model with nonlinear spring and linear damping is replaced by a more detailed model based on the achievement of contact and impact mechanics; the switching effects of the resistance and the coupler slack are also taken into consideration. Numerical examples that deal with positioning operations on the straight lines, slope lines and curving lines are given.

  3. DCJ-indel and DCJ-substitution distances with distinct operation costs

    PubMed Central

    2013-01-01

    Background Classical approaches to compute the genomic distance are usually limited to genomes with the same content and take into consideration only rearrangements that change the organization of the genome (i.e. positions and orientation of pieces of DNA, number and type of chromosomes, etc.), such as inversions, translocations, fusions and fissions. These operations are generically represented by the double-cut and join (DCJ) operation. The distance between two genomes, in terms of number of DCJ operations, can be computed in linear time. In order to handle genomes with distinct contents, also insertions and deletions of fragments of DNA – named indels – must be allowed. More powerful than an indel is a substitution of a fragment of DNA by another fragment of DNA. Indels and substitutions are called content-modifying operations. It has been shown that both the DCJ-indel and the DCJ-substitution distances can also be computed in linear time, assuming that the same cost is assigned to any DCJ or content-modifying operation. Results In the present study we extend the DCJ-indel and the DCJ-substitution models, considering that the content-modifying cost is distinct from and upper bounded by the DCJ cost, and show that the distance in both models can still be computed in linear time. Although the triangular inequality can be disrupted in both models, we also show how to efficiently fix this problem a posteriori. PMID:23879938

  4. Control of a multidegree of freedom standing wave ultrasonic motor driven precise positioning system

    NASA Astrophysics Data System (ADS)

    Ferreira, Antoine; Minotti, Patrice

    1997-04-01

    A newly developed positioning system incorporating a multidegree of freedom standing wave ultrasonic motor (SWUM) is presented and its advantageous features, operating principles, and some experimental results are described. The principle of motorization is based on the conversion, through frictional contact, of a stationary bending vibration sustained in a slotted metallic resonator, into rigid body displacements. A small autonomous multidegree of freedom nanopositioner using a SWUM motor is presented for fine positioning in scanning tunneling microscopy. The positioning system is achieved via the simultaneous operation of two identical pulse width modulation servo-control systems, each having a laser vibrometer position feedback loop. The closed loop position schemes are theoretically considered and their results are demonstrated and evaluated in practice. Evaluations of experimental tests indicate that a positioning resolution less than 100 nm are successfully achieved for an unlimited X-Y travel range with linear speeds between 1 mm s-1 and few cm s-1.

  5. High resolution optical shaft encoder for motor speed control based on an optical disk pick-up

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.

    1998-08-01

    Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.

  6. Hand-Held Electronic Gap-Measuring Tools

    NASA Technical Reports Server (NTRS)

    Sugg, F. E.; Thompson, F. W.; Aragon, L. A.; Harrington, D. B.

    1985-01-01

    Repetitive measurements simplified by tool based on LVDT operation. With fingers in open position, Gap-measuring tool rests on digital readout instrument. With fingers inserted in gap, separation alters inductance of linear variable-differential transformer in plastic handle. Originally developed for measuring gaps between surface tiles of Space Shuttle orbiter, tool reduces measurement time from 20 minutes per tile to 2 minutes. Also reduces possibility of damage to tiles during measurement. Tool has potential applications in mass production; helps ensure proper gap dimensions in assembly of refrigerator and car doors and also used to measure dimensions of components and to verify positional accuracy of components during progressive assembly operations.

  7. SU-F-T-44: A Comparison of the Pre-Plan, Intra-Operative Plan, and Post-Implant Dosimetry for a Prostate Implant Case Using Prefabricated Linear Polymer-Encapsulated Pd-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheu, R; Powers, A; McGee, H

    Purpose: To investigate the reproducibility and limitations of Pd-103 prostate brachytherapy using fixed length linear sources (CivaString). Methods: An LDR prostate brachytherapy case which was preplanned on MR images with prefabricated linear polymer-encapsulated Pd-103 sources (CivaString) was studied and compared with ultrasound based intra-operative planning and CT based post-implant dosimetry. We evaluated the following parameters among the three studies: prostate geometry (volume and cross sectional area), needle position and alignment deviations, and dosimetry parameters (D90). Results: The prostate volumes and axial cross sectional areas at center of prostate were measured as 41.8, 39.3 and 36.8 cc, and 14.9, 14.3, andmore » 11.3 respectively on pre-plan MR, inter-op US, and post-implant CT studies. The deviation of prostate volumes and axial cross sectional areas measured on pre-planning MR and intra-operative US were within 5%. 17 out of 19 pre-planned needles were positioned within 5mm (the template grid size). One needle location was adjusted intra-operatively and another needle was removed due to proximity to urethra. The needle pathways were not always parallel to the trans-rectal probe due to the flexibility of CivaString. The angle of deviation was up to 10 degrees. Two pairs of needles were exchanged to better fit the length of prostate at the time of implant. This resulted in a prostate D90 of 153.8 Gy (124%) and 131.4 Gy (106.7%) for intra-op and PID respectively. Conclusion: Preplanning is a necessary part of implants performed with prefabricated linear polymer sources. However, as is often the case, there were real-time deviations from the pre-plan. Intra-op planning provides the ability conform to anatomy at the time of implant. Therefore, we propose to develop a systematic way to order extra strings of different length to provide the flexibility to perform intra-operative planning with fixed length strands.« less

  8. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  9. Air Force Operational Test and Evaluation Center, Volume 2, Number 2

    DTIC Science & Technology

    1988-01-01

    the special class of attributes arc recorded, cost or In place of the normalization ( I). we propose beliefit. the lollowins normalization NUMERICAL ...comprchcnsi\\c set of modular basic data flow to meet requirements at test tools ,. designed to provide flexible data reduction start, then building to...possible. a totlinaion ot the two position error measurement techniques arc used SLR is a methd of fitting a linear model o accumlulate a position error

  10. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  11. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  12. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  13. A study of data analysis techniques for the multi-needle Langmuir probe

    NASA Astrophysics Data System (ADS)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Moen, J. I.; Spicher, A.; Clausen, L. B. N.; Miloch, W. J.; Trondsen, E.; Pedersen, A.

    2018-06-01

    In this paper we evaluate two data analysis techniques for the multi-needle Langmuir probe (m-NLP). The instrument uses several cylindrical Langmuir probes, which are positively biased with respect to the plasma potential in order to operate in the electron saturation region. Since the currents collected by these probes can be sampled at kilohertz rates, the instrument is capable of resolving the ionospheric plasma structure down to the meter scale. The two data analysis techniques, a linear fit and a non-linear least squares fit, are discussed in detail using data from the Investigation of Cusp Irregularities 2 sounding rocket. It is shown that each technique has pros and cons with respect to the m-NLP implementation. Even though the linear fitting technique seems to be better than measurements from incoherent scatter radar and in situ instruments, m-NLPs can be longer and can be cleaned during operation to improve instrument performance. The non-linear least squares fitting technique would be more reliable provided that a higher number of probes are deployed.

  14. Quantum Strategies and Local Operations

    NASA Astrophysics Data System (ADS)

    Gutoski, Gus

    2010-02-01

    This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.

  15. Protocol for fermionic positive-operator-valued measures

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Lepage, H. V.; Owen, E. T.; Ferrus, T.; Barnes, C. H. W.

    2017-11-01

    In this paper we present a protocol for the implementation of a positive-operator-valued measure (POVM) on massive fermionic qubits. We present methods for implementing nondispersive qubit transport, spin rotations, and spin polarizing beam-splitter operations. Our scheme attains linear opticslike control of the spatial extent of the qubits by considering ground-state electrons trapped in the minima of surface acoustic waves in semiconductor heterostructures. Furthermore, we numerically simulate a high-fidelity POVM that carries out Procrustean entanglement distillation in the framework of our scheme, using experimentally realistic potentials. Our protocol can be applied not only to pure ensembles with particle pairs of known identical entanglement, but also to realistic ensembles of particle pairs with a distribution of entanglement entropies. This paper provides an experimentally realizable design for future quantum technologies.

  16. An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks

    NASA Astrophysics Data System (ADS)

    Lin, Geng; Guan, Jian; Feng, Huibin

    2018-06-01

    The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.

  17. Stochastic resonance-enhanced laser-based particle detector.

    PubMed

    Dutta, A; Werner, C

    2009-01-01

    This paper presents a Laser-based particle detector whose response was enhanced by modulating the Laser diode with a white-noise generator. A Laser sheet was generated to cast a shadow of the object on a 200 dots per inch, 512 x 1 pixels linear sensor array. The Laser diode was modulated with a white-noise generator to achieve stochastic resonance. The white-noise generator essentially amplified the wide-bandwidth (several hundred MHz) noise produced by a reverse-biased zener diode operating in junction-breakdown mode. The gain in the amplifier in the white-noise generator was set such that the Receiver Operating Characteristics plot provided the best discriminability. A monofiber 40 AWG (approximately 80 microm) wire was detected with approximately 88% True Positive rate and approximately 19% False Positive rate in presence of white-noise modulation and with approximately 71% True Positive rate and approximately 15% False Positive rate in absence of white-noise modulation.

  18. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  19. Design and Parametric Study of the Magnetic Sensor for Position Detection in Linear Motor Based on Nonlinear Parametric Model Order Reduction

    PubMed Central

    Paul, Sarbajit; Chang, Junghwan

    2017-01-01

    This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension. PMID:28671580

  20. Design and Parametric Study of the Magnetic Sensor for Position Detection in Linear Motor Based on Nonlinear Parametric model order reduction.

    PubMed

    Paul, Sarbajit; Chang, Junghwan

    2017-07-01

    This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.

  1. Vectorization of linear discrete filtering algorithms

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1977-01-01

    Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.

  2. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  3. Data Traffic Reduction Schemes for Cholesky Factorization on Asynchronous Multiprocessor Systems

    DTIC Science & Technology

    1989-06-01

    Engineering NASA Langley Research Center Hampton, Virginia 23665-5225 Operated by the Universities Space Research Association DTIC ELECTE NASA jAUG 23...Hampton, VA 23665. ti- 1. Introduction Consider the problem of solving a system of linear equations Ax=b where .4 is an n x n symmetric, positive

  4. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  5. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    NASA Technical Reports Server (NTRS)

    Keung, C.; Patt, P. J.; Starr, M.; Sweet, R. C.; Bourdillon, L. A.; Figueroa, R.; Hartmann, M.; Mcfarlane, R.

    1990-01-01

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.

  6. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  7. Speech-language pathologist job satisfaction in school versus medical settings.

    PubMed

    Kalkhoff, Nicole L; Collins, Dana R

    2012-04-01

    The goal of this study was to determine if job satisfaction differs between speech-language pathologists (SLPs) working in school settings and SLPs working in medical settings. The Job Satisfaction Survey (JSS) by Spector (1997) was sent via electronic mail to 250 SLPs in each of the 2 settings. Job satisfaction scores were computed from subscale category ratings and were compared between the 2 settings. Subscale category ratings for pay, promotion, supervision, benefits, contingent rewards, operating conditions, coworkers, nature of work, and communication were analyzed for differences between and within settings. Age, caseload size, and years-at-position were analyzed by linear regression to determine whether these factors might predict SLPs' job satisfaction. The survey had a response rate of 19.6% (N = 98 participants). Although SLPs in both settings were generally satisfied with their jobs, SLPs in medical settings had significantly higher total job satisfaction scores. Respondents from both settings had similar satisfaction ratings for subscale categories, with nature of work receiving the highest rating and operating conditions and promotion the lowest. Results of the linear regression analysis for age, caseload size, and years-at-position were not significant. Further research should evaluate important aspects of job satisfaction in both settings, especially nature of work operating conditions, and promotion.

  8. Ultraprecision XY stage using a hybrid bolt-clamped Langevin-type ultrasonic linear motor for continuous motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr

    2015-01-15

    This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less

  9. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  10. Development of a piezo-actuated micro-teleoperation system for cell manipulation.

    PubMed

    Zareinejad, M; Rezaei, S M; Abdullah, A; Shiry Ghidary, S

    2009-03-01

    Intracytoplasmic sperm injection (ICSI) requires long training and has low success rates, primarily due to poor control over the injection force. Making force feedback available to the operator will improve the success rate of the injection task. A macro-micro-teleoperation system bridges the gap between the task performed at the micro-level and the macroscopic movements of the operator. The teleoperation slave manipulator should accurately position a needle to precisely penetrate a cell membrane. Piezoelectric actuators are widely used in micromanipulation applications; however, hysteresis non-linearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as slave manipulator of a teleoperation system. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in a feedforward scheme to cancel out this non-linearity. To deal with the influence of parametric uncertainties, unmodelled dynamics and PI identification error, a perturbation term is added to the slave model and applies a sliding mode-based impedance control with perturbation estimation. The stability of entire system is guaranteed by Llewellyn's absolute stability criterion. The performance of the proposed controller was investigated through experiments for cell membrane penetration. The experimental results verified the accurate position tracking in free motion and simultaneous position and force tracking in contact with a low stiffness environment.

  11. Analysis and application of a velocity command motor as a reaction mass actuator

    NASA Technical Reports Server (NTRS)

    Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.

    1990-01-01

    A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.

  12. On the asymptotic stability of nonlinear mechanical switched systems

    NASA Astrophysics Data System (ADS)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  13. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  14. Operator bases, S-matrices, and their partition functions

    NASA Astrophysics Data System (ADS)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi

    2017-10-01

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.

  15. Control System for Prosthetic Devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  16. Control system and method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  17. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  18. Gas Dynamics of a Recessed Nozzle in Its Displacement in the Radial Direction

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Denisikhin, S. V.; Emel'yanov, V. N.

    2017-07-01

    Numerical simulation of gasdynamic processes accompanying the operation of the recessed nozzle of a solid-propellant rocket motor in its linear displacement is carried out. Reynolds-averaged Navier-Stokes equations closed using the equations of a k-ɛ turbulence model are used for calculations. The calculations are done for different rates of flow of the gas in the main channel and in the over-nozzle gap, and also for different displacements of the nozzle from an axisymmetric position. The asymmetry of geometry gives rise to a complicated spatial flow pattern characterized by the presence of singular points of spreading and by substantially inhomogeneous velocity and pressure distributions. The vortex flow pattern resulting from the linear displacement of the nozzle from an axisymmetric position is compared with the data of experimental visualization. The change in the vortex pattern of the flow and in the position of the singular points as a function of the flow coefficient and the displacement of the nozzle from the symmetry axis is discussed.

  19. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    PubMed Central

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  20. Multi-Maneuver Clohessy-Wiltshire Targeting

    NASA Technical Reports Server (NTRS)

    Dannemiller, David P.

    2011-01-01

    Orbital rendezvous involves execution of a sequence of maneuvers by a chaser vehicle to bring the chaser to a desired state relative to a target vehicle while meeting intermediate and final relative constraints. Intermediate and final relative constraints are necessary to meet a multitude of requirements such as to control approach direction, ensure relative position is adequate for operation of space-to-space communication systems and relative sensors, provide fail-safe trajectory features, and provide contingency hold points. The effect of maneuvers on constraints is often coupled, so the maneuvers must be solved for as a set. For example, maneuvers that affect orbital energy change both the chaser's height and downrange position relative to the target vehicle. Rendezvous designers use experience and rules-of-thumb to design a sequence of maneuvers and constraints. A non-iterative method is presented for targeting a rendezvous scenario that includes a sequence of maneuvers and relative constraints. This method is referred to as Multi-Maneuver Clohessy-Wiltshire Targeting (MM_CW_TGT). When a single maneuver is targeted to a single relative position, the classic CW targeting solution is obtained. The MM_CW_TGT method involves manipulation of the CW state transition matrix to form a linear system. As a starting point for forming the algorithm, the effects of a series of impulsive maneuvers on the state are derived. Simple and moderately complex examples are used to demonstrate the pattern of the resulting linear system. The general form of the pattern results in an algorithm for formation of the linear system. The resulting linear system relates the effect of maneuver components and initial conditions on relative constraints specified by the rendezvous designer. Solution of the linear system includes the straight-forward inverse of a square matrix. Inversion of the square matrix is assured if the designer poses a controllable scenario - a scenario where the the constraints can be met by the sequence of maneuvers. Matrices in the linear system are dependent on selection of maneuvers and constraints by the designer, but the matrices are independent of the chaser's initial conditions. For scenarios where the sequence of maneuvers and constraints are fixed, the linear system can be formed and the square matrix inverted prior to real-time operations. Example solutions are presented for several rendezvous scenarios to illustrate the utility of the method. The MM_CW_TGT method has been used during the preliminary design of rendezvous scenarios and is expected to be useful for iterative methods in the generation of an initial guess and corrections.

  1. Alcator C-Mod Digital Plasma Control System

    NASA Astrophysics Data System (ADS)

    Wolfe, S. M.

    2005-10-01

    A new digital plasma control system (DPCS) has been implemented for Alcator C-Mod. The new system was put into service at the start of the 2005 run campaign and has been in routine operation since. The system consists of two 64-input, 16-output cPCI digitizers attached to a rack-mounted single-CPU Linux server, which performs both the I/O and the computation. During initial operation, the system was set up to directly emulate the original C-Mod ``Hybrid'' MIMO linear control system. Compatibility with the previous control system allows the existing user interface software and data structures to be used with the new hardware. The control program is written in IDL and runs under standard Linux. Interrupts are disabled during the plasma pulses to achieve real-time operation. A synchronous loop is executed with a nominal cycle rate of 10 kHz. Emulation of the original linear control algorithms requires 50 μsec per iteration, with the time evenly split between I/O and computation, so rates of about 20 KHz are achievable. Reliable vertical position control has been demonstrated with cycle rates as low as 5 KHz. Additional computations, including non-linear algorithms and adaptive response, are implemented as optional procedure calls within the main real-time loop.

  2. Performance of a reentrant cavity beam position monitor

    NASA Astrophysics Data System (ADS)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  3. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Ortmann, Jarosław

    2017-11-01

    The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.

  4. Positive resources for combating job burnout among Chinese telephone operators: Resilience and psychological empowerment.

    PubMed

    Tian, Xiaohong; Liu, Chunqin; Zou, Guiyuan; Li, Guopeng; Kong, Linghua; Li, Ping

    2015-08-30

    Job burnout is a major concern within the service industry. However, there is a lack of research exploring positive resources for combating burnout among telephone operators. The purpose of this study was to examine the associations between resilience, psychological empowerment, and job burnout, and the mediating role of psychological empowerment. A cross-sectional survey of 575 telephone operators was conducted in 2 call centers in Shandong Province, China. Self-report questionnaires were used to assess job burnout symptoms, resilience, and psychological empowerment. Hierarchical linear regression was performed to analyze the degree to which resilience and psychological empowerment are associated with job burnout, and the mediating role of psychological empowerment. The results showed that resilience and psychological empowerment had significant "net effects" on job burnout, which may represent positive resources for combating job burnout. Psychological empowerment may partially mediate the relationship between resilience and job burnout. Thus, interventions focused on resilience and psychological empowerment may be useful options for managers concerned about burnout. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Research on fast algorithm of small UAV navigation in non-linear matrix reductionism method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Fang, Jiancheng; Sheng, Wei; Cao, Juanjuan

    2008-10-01

    The low Reynolds numbers of small UAV will result in unfavorable aerodynamic conditions to support controlled flight. And as operated near ground, the small UAV will be affected seriously by low-frequency interference caused by atmospheric disturbance. Therefore, the GNC system needs high frequency of attitude estimation and control to realize the steady of the UAV. In company with the dimensional of small UAV dwindling away, its GNC system is more and more taken embedded designing technology to reach the purpose of compactness, light weight and low power consumption. At the same time, the operational capability of GNC system also gets limit in a certain extent. Therefore, a kind of high speed navigation algorithm design becomes the imminence demand of GNC system. Aiming at such requirement, a kind of non-linearity matrix reduction approach is adopted in this paper to create a new high speed navigation algorithm which holds the radius of meridian circle and prime vertical circle as constant and linearizes the position matrix calculation formulae of navigation equation. Compared with normal navigation algorithm, this high speed navigation algorithm decreases 17.3% operand. Within small UAV"s mission radius (20km), the accuracy of position error is less than 0.13m. The results of semi-physical experiments and small UAV's auto pilot testing proved that this algorithm can realize high frequency attitude estimation and control. It will avoid low-frequency interference caused by atmospheric disturbance properly.

  6. Operation of a high impedance applied-B extraction ion diode on the SABRE positive polarity linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Cuneo, M.E.; McKay, P.F.

    We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less

  7. Comparative analysis of linear motor geometries for Stirling coolers

    NASA Astrophysics Data System (ADS)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  8. Perfect commuting-operator strategies for linear system games

    NASA Astrophysics Data System (ADS)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  9. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  10. Harmonic-phase path-integral approximation of thermal quantum correlation functions

    NASA Astrophysics Data System (ADS)

    Robertson, Christopher; Habershon, Scott

    2018-03-01

    We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.

  11. Quantitative fault tolerant control design for a hydraulic actuator with a leaking piston seal

    NASA Astrophysics Data System (ADS)

    Karpenko, Mark

    Hydraulic actuators are complex fluid power devices whose performance can be degraded in the presence of system faults. In this thesis a linear, fixed-gain, fault tolerant controller is designed that can maintain the positioning performance of an electrohydraulic actuator operating under load with a leaking piston seal and in the presence of parametric uncertainties. Developing a control system tolerant to this class of internal leakage fault is important since a leaking piston seal can be difficult to detect, unless the actuator is disassembled. The designed fault tolerant control law is of low-order, uses only the actuator position as feedback, and can: (i) accommodate nonlinearities in the hydraulic functions, (ii) maintain robustness against typical uncertainties in the hydraulic system parameters, and (iii) keep the positioning performance of the actuator within prescribed tolerances despite an internal leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. Experimental tests verify the functionality of the fault tolerant control under normal and faulty operating conditions. The fault tolerant controller is synthesized based on linear time-invariant equivalent (LTIE) models of the hydraulic actuator using the quantitative feedback theory (QFT) design technique. A numerical approach for identifying LTIE frequency response functions of hydraulic actuators from acceptable input-output responses is developed so that linearizing the hydraulic functions can be avoided. The proposed approach can properly identify the features of the hydraulic actuator frequency response that are important for control system design and requires no prior knowledge about the asymptotic behavior or structure of the LTIE transfer functions. A distributed hardware-in-the-loop (HIL) simulation architecture is constructed that enables the performance of the proposed fault tolerant control law to be further substantiated, under realistic operating conditions. Using the HIL framework, the fault tolerant hydraulic actuator is operated as a flight control actuator against the real-time numerical simulation of a high-performance jet aircraft. A robust electrohydraulic loading system is also designed using QFT so that the in-flight aerodynamic load can be experimentally replicated. The results of the HIL experiments show that using the fault tolerant controller to compensate the internal leakage fault at the actuator level can benefit the flight performance of the airplane.

  12. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem

    PubMed Central

    Podhraški, Matija; Trontelj, Janez

    2016-01-01

    An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC) is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm. PMID:26999146

  13. A Differential Monolithically Integrated Inductive Linear Displacement Measurement Microsystem.

    PubMed

    Podhraški, Matija; Trontelj, Janez

    2016-03-17

    An inductive linear displacement measurement microsystem realized as a monolithic Application-Specific Integrated Circuit (ASIC) is presented. The system comprises integrated microtransformers as sensing elements, and analog front-end electronics for signal processing and demodulation, both jointly fabricated in a conventional commercially available four-metal 350-nm CMOS process. The key novelty of the presented system is its full integration, straightforward fabrication, and ease of application, requiring no external light or magnetic field source. Such systems therefore have the possibility of substituting certain conventional position encoder types. The microtransformers are excited by an AC signal in MHz range. The displacement information is modulated into the AC signal by a metal grating scale placed over the microsystem, employing a differential measurement principle. Homodyne mixing is used for the demodulation of the scale displacement information, returned by the ASIC as a DC signal in two quadrature channels allowing the determination of linear position of the target scale. The microsystem design, simulations, and characterization are presented. Various system operating conditions such as frequency, phase, target scale material and distance have been experimentally evaluated. The best results have been achieved at 4 MHz, demonstrating a linear resolution of 20 µm with steel and copper scale, having respective sensitivities of 0.71 V/mm and 0.99 V/mm.

  14. Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; de Hon, B. P.; Tijhuis, A. G.

    2011-08-01

    In this paper we present the application of linear embedding via Green's operators (LEGO) to the solution of the electromagnetic scattering from clusters of arbitrary (both conducting and penetrable) bodies randomly placed in a homogeneous background medium. In the LEGO method the objects are enclosed within simple-shaped bricks described in turn via scattering operators of equivalent surface current densities. Such operators have to be computed only once for a given frequency, and hence they can be re-used to perform the study of many distributions comprising the same objects located in different positions. The surface integral equations of LEGO are solved via the Moments Method combined with Adaptive Cross Approximation (to save memory) and Arnoldi basis functions (to compress the system). By means of purposefully selected numerical experiments we discuss the time requirements with respect to the geometry of a given distribution. Besides, we derive an approximate relationship between the (near-field) accuracy of the computed solution and the number of Arnoldi basis functions used to obtain it. This result endows LEGO with a handy practical criterion for both estimating the error and keeping it in check.

  15. SU-E-T-317: Dynamic Modulated Brachytherapy (DMBT): Robotic Applicator Design.

    PubMed

    Han, Dae Yup; Webster, Matthew J; Devic, Slobodan; Vuong, Te; Scanderbeg, Dan; Song, William Y

    2012-06-01

    To investigate the hardware necessary for implementing our Dynamic Modulated Brachytherapy (DMBT) treatment concept for rectal cancer. The DMBT robot has three major parts: 1) shield and shield delivery module, 2) controlling module, and 3) DMBT controlling and monitoring software. The shield is a tungsten alloy cylinder (r=0.95cm, l=4.5cm) with a 5.5mm rectangular-shaped opening. The shield is controlled by an aluminum pipe with gear set (1:3) and linear actuator (2mm/turn). An Ir-192 radiation source will be placed through the aluminum pipe. The power source is a Nema-17 stepping motor with EvoDrive ST-17 (EVA Robotics, Queensland, Australia) and USB-6009 DAQ (National Instrument, Austin, TX). With our in-house operating program through LabView (National Instrument, Austin, TX), we can make and load plans for treatment as well as testing. Checking the shield position is also possible through the operating program. For safety, a lexan sheath tube and emergency buttons are built-in. The DMBT robot has 2 degrees of freedom, which are linear translation and rotation. With our power delivery system, the spatial resolutions are 0.0125mm (linear stage) and 0.012Ëš (rotation). In 0.5s, motors achieve the desired position with the maximum speeds 450 step/s (1Ëš), 7,500 step/s (30Ëš), and 12,000 step/s (5mm). Four registers are triggered with USB-6009 DAQ signals. The operating program includes gages for checking shield position, loading treatment plans, and safety buttons. In all, we have designed the hardware components of the DMBT system for rectal cancer. For treatment, the system needs more elements to support the DMBT robot; lexan sheath tube holder, DMBT robot security joint, and a system for reducing friction between the tube and shield. We will also refine our system to be more compact by using DC servomotors instead of the larger Nema-17 stepping motors. © 2012 American Association of Physicists in Medicine.

  16. Optimal PID gain schedule for hydrogenerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orelind, G.; Wozniak, L.; Medanic, J.

    1989-09-01

    This paper describes the development and testing of a digital gain switching governor for hydrogenerators. Optimal gains were found at different load points by minimizing a quadratic performance criterion prior to controller operating. During operation, the gain sets are switched in depending on the gate position and speed error magnitude. With gain switching operating, the digital governor was shown to have a substantial reduction of noise on the command signal and up to 42% faster responses to power requests. Non-linear control strategies enabled the digital governor to have a 2.5% to 2% reduction in speed overshoot on startups, and anmore » 8% to 1% reduction in undershoot on load rejections as compared to the analog.« less

  17. Cooperative control of two active spacecraft during proximity operations. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1989-01-01

    A cooperative autopilot is developed for the control of the relative attitude, relative position and absolute attitude of two maneuvering spacecraft during on orbit proximity operations. The autopilot consists of an open-loop trajectory solver which computes a nine dimensional linearized nominal state trajectory at the beginning of each maneuver and a phase space regulator which maintains the two spacecraft on the nominal trajectory during coast phases of the maneuver. A linear programming algorithm is used to perform jet selection. Simulation tests using a system of two space shuttle vehicles are performed to verify the performance of the cooperative controller and comparisons are made to a traditional passive target/active pursuit vehicle approach to proximity operations. The cooperative autopilot is shown to be able to control the two vehicle system when both the would be pursuit vehicle and the target vehicle are not completely controllable in six degrees of freedom. The cooperative controller is also shown to use as much as 37 percent less fuel and 57 percent fewer jet firings than a single pursuit vehicle during a simple docking approach maneuver.

  18. Operator bases, S-matrices, and their partition functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  19. Operator bases, S-matrices, and their partition functions

    DOE PAGES

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...

    2017-10-27

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  20. Algebraic solutions of shape-invariant position-dependent effective mass systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less

  1. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, Rik W. A. A.

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  2. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, R.W.A.A.

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  3. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    DOEpatents

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  4. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  5. Fixed-point image orthorectification algorithms for reduced computational cost

    NASA Astrophysics Data System (ADS)

    French, Joseph Clinton

    Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.

  6. Fast ion swapping for quantum-information processing

    NASA Astrophysics Data System (ADS)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-05-01

    We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of 42 μ s . Extending these techniques to three ions, we reverse the order of a three-ion crystal and reconstruct the truth table for this operation, resulting in a mean process fidelity of 99.96(13)% in the logical basis.

  7. Compact very low temperature scanning tunneling microscope with mechanically driven horizontal linear positioning stage.

    PubMed

    Suderow, H; Guillamon, I; Vieira, S

    2011-03-01

    We describe a scanning tunneling microscope for operation in a dilution refrigerator with a sample stage which can be moved macroscopically in a range up to a cm and with an accuracy down to the tens of nm. The position of the tip over the sample as set at room temperature does not change more than a few micrometers when cooling down. This feature is particularly interesting for work on micrometer sized samples. Nanostructures can be also localized and studied, provided they are repeated over micrometer sized areas. The same stage can be used to approach a hard single crystalline sample to a knife and cleave it, or break it, in situ. In situ positioning is demonstrated with measurements at 0.1 K in nanofabricated samples. Atomic resolution down to 0.1 K and in magnetic fields of 8 T is demonstrated in NbSe(2). No heat dissipation nor an increase in mechanical noise has been observed at 0.1 K when operating the slider.

  8. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  9. Quantum description of light propagation in generalized media

    NASA Astrophysics Data System (ADS)

    Häyrynen, Teppo; Oksanen, Jani

    2016-02-01

    Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.

  10. Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model. Final Report, Sep. 1981 - Sep. 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keung, C.; Patt, P.J.; Starr, M.

    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial positionmore » of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations.« less

  11. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  12. Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon

    2018-02-01

    This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.

  13. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  14. A magnetically suspended linearly driven cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.

    1983-01-01

    This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.

  15. Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain

    NASA Astrophysics Data System (ADS)

    Tischler, N.; Rockstuhl, C.; Słowik, K.

    2018-04-01

    Unitary transformations are routinely modeled and implemented in the field of quantum optics. In contrast, nonunitary transformations, which can involve loss and gain, require a different approach. In this work, we present a universal method to deal with nonunitary networks. An input to the method is an arbitrary linear transformation matrix of optical modes that does not need to adhere to bosonic commutation relations. The method constructs a transformation that includes the network of interest and accounts for full quantum optical effects related to loss and gain. Furthermore, through a decomposition in terms of simple building blocks, it provides a step-by-step implementation recipe, in a manner similar to the decomposition by Reck et al. [Experimental Realization of Any Discrete Unitary Operator, Phys. Rev. Lett. 73, 58 (1994), 10.1103/PhysRevLett.73.58] but applicable to nonunitary transformations. Applications of the method include the implementation of positive-operator-valued measures and the design of probabilistic optical quantum information protocols.

  16. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    DOEpatents

    Garcia, Ernest J.; Sniegowski, Jeffry J.

    1997-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  17. Direct measurement of the image displacement instability in a linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-01

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.

  18. Direct measurement of the image displacement instability in a linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less

  19. Direct measurement of the image displacement instability in a linear induction accelerator

    DOE PAGES

    Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.

    2017-06-19

    The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less

  20. Stellar figure sensor

    NASA Technical Reports Server (NTRS)

    Peters, W. N.

    1973-01-01

    A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.

  1. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  2. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  3. Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)

    NASA Technical Reports Server (NTRS)

    Burdea, Grigore C.; Speeter, Thomas H.

    1989-01-01

    A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given.

  4. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate.

    PubMed

    Schroeck, Florian R; de Sousa, Chiquita A Palha; Kalman, Ross A; Kalia, Maitri S; Pierre, Sean A; Haleblian, George E; Sun, Leon; Moul, Judd W; Albala, David M

    2008-04-01

    We evaluated the learning curves and perioperative outcomes of an experienced laparoscopic surgeon and his trainees to assess our structured teaching program. We retrieved 383 patients undergoing robot-assisted laparoscopic prostatectomy (RALP) from our database. Trainees completed a structured teaching program and were categorized as early (days 0 to 232), mid (days 566 to 797), and late (days 825 to 1218) according to the time period in which they were working with the mentor. We compared operative times, estimated blood loss (EBL), and positive surgical margin (PSM) rates between the trainees and the mentor (Mann-Whitney and Chi-square test). Association of EBL, body mass index (BMI), and prostate weight with operative time was evaluated in multivariate linear regression analysis. Median operative times of the early, mid, and late trainees (258, 220, and 200 minutes) significantly decreased and were similar to the corresponding senior surgeon's (254, 242, and 180 minutes). Operative times decreased with lower BMI, EBL, and prostate weight (P = 0.006, P <0.001, and P <0.001, respectively). Overall, EBL (150 mL vs. 150 mL, P = 0.215) and PSM rates (20% vs. 18.6%, P = 0.741) did not differ between the mentor and the trainees. A structured teaching program for RALP is effective and trainees are able to adopt the increased efficiency and skills of their mentor. Lower BMI, EBL, and prostate weight were associated with shorter operative times. Trainees performing the procedure did not negatively affect EBL and positive surgical margin rate.

  5. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  6. Coulomb branch operators and mirror symmetry in three dimensions

    NASA Astrophysics Data System (ADS)

    Dedushenko, Mykola; Fan, Yale; Pufu, Silviu S.; Yacoby, Ran

    2018-04-01

    We develop new techniques for computing exact correlation functions of a class of local operators, including certain monopole operators, in three-dimensional N=4 abelian gauge theories that have superconformal infrared limits. These operators are position-dependent linear combinations of Coulomb branch operators. They form a one-dimensional topological sector that encodes a deformation quantization of the Coulomb branch chiral ring, and their correlation functions completely fix the ( n ≤ 3)-point functions of all half-BPS Coulomb branch operators. Using these results, we provide new derivations of the conformal dimension of half-BPS monopole operators as well as new and detailed tests of mirror symmetry. Our main approach involves supersymmetric localization on a hemisphere HS 3 with half-BPS boundary conditions, where operator insertions within the hemisphere are represented by certain shift operators acting on the HS 3 wavefunction. By gluing a pair of such wavefunctions, we obtain correlators on S 3 with an arbitrary number of operator insertions. Finally, we show that our results can be recovered by dimensionally reducing the Schur index of 4D N=2 theories decorated by BPS 't Hooft-Wilson loops.

  7. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  8. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  9. New highly linear tunable transconductor circuits with low number of MOS transistors

    NASA Astrophysics Data System (ADS)

    Yucel, Firat; Yuce, Erkan

    2016-08-01

    In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.

  10. Flyby Error Analysis Based on Contour Plots for the Cassini Tour

    NASA Technical Reports Server (NTRS)

    Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.

    2008-01-01

    The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.

  11. Front-line managers as boundary spanners: effects of span and time on nurse supervision satisfaction.

    PubMed

    Meyer, Raquel M; O'Brien-Pallas, Linda; Doran, Diane; Streiner, David; Ferguson-Paré, Mary; Duffield, Christine

    2011-07-01

    To examine the influence of nurse manager span (number of direct report staff), time in staff contact, transformational leadership practices and operational hours on nurse supervision satisfaction. Increasing role complexity has intensified the boundary spanning functions of managers. Because work demands and scope vary by management position, time in staff contact rather than span may better explain managers' capacity to support staff. A descriptive, correlational design was used to collect cross-sectional survey and prospective work log and administrative data from a convenience sample of 558 nurses in 51 clinical areas and 31 front-line nurse managers from four acute care hospitals in 2007-2008. Data were analysed using hierarchical linear modelling. Span, but not time in staff contact, interacted with leadership and operational hours to explain supervision satisfaction. With compressed operational hours, supervision satisfaction was lower with highly transformational leadership in combination with wider spans. With extended operational hours, supervision satisfaction was higher with highly transformational leadership, and this effect was more pronounced under wider spans. Operational hours, which influence the manager's daily span (average number of direct report staff working per weekday), should be factored into the design of front-line management positions. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  12. Position dependent mass Schroedinger equation and isospectral potentials: Intertwining operator approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midya, Bikashkali; Roy, B.; Roychoudhury, R.

    2010-02-15

    Here, we have studied first- and second-order intertwining approaches to generate isospectral partner potentials of position dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second-order linear differential operator with position dependent coefficients, and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained, which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to removemore » bound state(s), and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is shown that our results are consistent with the formulation of type A N-fold supersymmetry [T. Tanaka, J. Phys. A 39, 219 (2006); A. Gonzalez-Lopez and T. Tanaka, J. Phys. A 39, 3715 (2006)] for the particular cases N=1 and N=2, respectively.« less

  13. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  14. IRNSS/NavIC L5 Attitude Determination

    PubMed Central

    Zaminpardaz, Safoora; Teunissen, Peter J.G.; Nadarajah, Nandakumaran

    2017-01-01

    The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with the objective of offering positioning, navigation and timing (PNT) to the users in its service area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia. Our evaluations are conducted for both a linear array of two antennas and a planar array of three antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution of the double-differenced (DD) integer carrier-phase ambiguities. In this contribution, we will compare the performances of different such methods, amongst which the unconstrained and the multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from 5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost instantaneous precise attitude determination with heading and elevation standard deviations of 0.05° and 0.10°, respectively. PMID:28146107

  15. ADVANCED DESIGNS OF MAGNETIC JACK-TYPE CONTROL ROD DRIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, J.N.

    1959-11-01

    The magnetic jack is a device for positioning the control rods In a nuclear reactor, especially in a reactor containing water under pressure. Magnetic actuation precludes the need for shaft seals and eliminates the problems associated with mechanisms operating in water. It consists of a pressure shell, four sets of external stationary magnet coils (hold, grip, lift, pull down), and one Internal moving part (ammature) that impants linear motion to a cluster of rods. (W.L.H.)

  16. Survey of beam instrumentation used in SLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecklund, S.D.

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.

  17. Scheduling Aircraft Landings under Constrained Position Shifting

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  18. A position-dependent mass harmonic oscillator and deformed space

    NASA Astrophysics Data System (ADS)

    da Costa, Bruno G.; Borges, Ernesto P.

    2018-04-01

    We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.

  19. Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant.

    PubMed

    Giordano, Antonietta; Febbraio, Ferdinando; Russo, Consiglia; Rossi, Mosè; Raia, Carlo A

    2005-06-01

    The interaction of coenzyme with thermostable homotetrameric NAD(H)-dependent alcohol dehydrogenase from the thermoacidophilic sulphur-dependent crenarchaeon Sulfolobus solfataricus (SsADH) and its N249Y (Asn-249-->Tyr) mutant was studied using the high fluorescence sensitivity of its tryptophan residues Trp-95 and Trp-117 to the binding of coenzyme moieties. Fluorescence quenching studies performed at 25 degrees C show that SsADH exhibits linearity in the NAD(H) binding [the Hill coefficient (h) approximately 1) at pH 9.8 and at moderate ionic strength, in addition to positive co-operativity (h=2.0-2.4) at pH 7.8 and 6.8, and at pH 9.8 in the presence of salt. Furthermore, NADH binding is positively co-operative below 20 degrees C (h approximately 3) and negatively co-operative at 40-50 degrees C (h approximately 0.7), as determined at moderate ionic strength and pH 9.8. Steady-state kinetic measurements show that SsADH displays standard Michaelis-Menten kinetics between 35 and 45 degrees C, but exhibits positive and negative co-operativity for NADH oxidation below (h=3.3 at 20 degrees C) and above (h=0.7 at 70-80 degrees C) this range of temperatures respectively. However, N249Y SsADH displays non-co-operative behaviour in coenzyme binding under the same experimental conditions used for the wild-type enzyme. In loop 270-275 of the coenzyme domain and segments at the interface of dimer A-B, analyses of the wild-type and mutant SsADH structures identified the structural elements involved in the intersubunit communication and suggested a possible structural basis for co-operativity. This is the first report of co-operativity in a tetrameric ADH and of temperature-induced co-operativity in a thermophilic enzyme.

  20. Periodic differential equations with self-adjoint monodromy operator

    NASA Astrophysics Data System (ADS)

    Yudovich, V. I.

    2001-04-01

    A linear differential equation \\dot u=A(t)u with p-periodic (generally speaking, unbounded) operator coefficient in a Euclidean or a Hilbert space \\mathbb H is considered. It is proved under natural constraints that the monodromy operator U_p is self-adjoint and strictly positive if A^*(-t)=A(t) for all t\\in\\mathbb R.It is shown that Hamiltonian systems in the class under consideration are usually unstable and, if they are stable, then the operator U_p reduces to the identity and all solutions are p-periodic.For higher frequencies averaged equations are derived. Remarkably, high-frequency modulation may double the number of critical values.General results are applied to rotational flows with cylindrical components of the velocity a_r=a_z=0, a_\\theta=\\lambda c(t)r^\\beta, \\beta<-1, c(t) is an even p-periodic function, and also to several problems of free gravitational convection of fluids in periodic fields.

  1. Design of a prototype position actuator for the primary mirror segments of the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Morante, E.; Viera, T.; Núñez, M.; Reyes, M.

    2010-07-01

    European Extremely Large Telescope (E-ELT) based in 984 primary mirror segments achieving required optical performance; they must position relatively to adjacent segments with relative nanometer accuracy. CESA designed M1 Position Actuators (PACT) to comply with demanding performance requirements of EELT. Three PACT are located under each segment controlling three out of the plane degrees of freedom (tip, tilt, piston). To achieve a high linear accuracy in long operational displacements, PACT uses two stages in series. First stage based on Voice Coil Actuator (VCA) to achieve high accuracies in very short travel ranges, while second stage based on Brushless DC Motor (BLDC) provides large stroke ranges and allows positioning the first stage closer to the demanded position. A BLDC motor is used achieving a continuous smoothly movement compared to sudden jumps of a stepper. A gear box attached to the motor allows a high reduction of power consumption and provides a great challenge for sizing. PACT space envelope was reduced by means of two flat springs fixed to VCA. Its main characteristic is a low linear axial stiffness. To achieve best performance for PACT, sensors have been included in both stages. A rotary encoder is included in BLDC stage to close position/velocity control loop. An incremental optical encoder measures PACT travel range with relative nanometer accuracy and used to close the position loop of the whole actuator movement. For this purpose, four different optical sensors with different gratings will be evaluated. Control strategy show different internal closed loops that work together to achieve required performance.

  2. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  3. Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2016-01-01

    The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…

  4. Acoustic measurement of bubble size and position in a piezo driven inkjet printhead

    NASA Astrophysics Data System (ADS)

    van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef

    2008-11-01

    A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.

  5. About APPLE II Operation

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Zimoch, D.

    2007-01-01

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180° requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  6. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    PubMed

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces C 0 (β,γ) (E α-β ) of all E α-β -valued continuous functions φ(t) on [0, T] satisfying a Hölder condition with a weight (t + τ)(γ). New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  7. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  8. Application of linear logic to simulation

    NASA Astrophysics Data System (ADS)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  9. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  10. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  11. Dynamic Pricing Criteria in Linear Programming

    DTIC Science & Technology

    1988-07-01

    DTICE’ECTE h QSEPO08 19880 Department of Operations Researchs Stanford University Stanford, CA 94305 Fl . dommd lum b dLvulbcjasa Im %ailmft@d.I &~ T...information about positive ones. 38 C- M .9 ~ ,~- - ~ fl .’ %’% ’ % % .,h.] However, this rule works extremely well on the PILOT set, achieving...34 .r " .:." ," "e .-r".’.€ .-,N., N REFERENCES [1] Adler, I., Resende, M.G. and Veiga , G. (1986). An implementation of Karmax- kar’s algorithm for

  12. Influence of bending stress on flux distribution in toroidal transducers

    NASA Astrophysics Data System (ADS)

    Goktepe, M.; Meydan, T.

    1994-05-01

    Amorphous transducers consisting of toroidally wound amorphous ribbon with a magnetising winding and search coil windings have been investigated. The application of displacement to the toroid gives a linear search coil voltage against the applied force characteristics. The position of the search coils with respect to the applied force has been studied and it is shown that the effect of applied force is localised. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  13. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  14. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  15. Proton beam spatial distribution and Bragg peak imaging by photoluminescence of color centers in lithium fluoride crystals at the TOP-IMPLART linear accelerator

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ronsivalle, C.; Ampollini, A.; Bazzano, G.; Picardi, L.; Nenzi, P.; Trinca, E.; Vadrucci, M.; Bonfigli, F.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2017-11-01

    Solid-state radiation detectors based on the photoluminescence of stable point defects in lithium fluoride crystals have been used for advanced diagnostics during the commissioning of the segment up to 27 MeV of the TOP-IMPLART proton linear accelerator for proton therapy applications, under development at ENEA C.R. Frascati, Italy. The LiF detectors high intrinsic spatial resolution and wide dynamic range allow obtaining two-dimensional images of the beam transverse intensity distribution and also identifying the Bragg peak position with micrometric precision by using a conventional optical fluorescence microscope. Results of the proton beam characterization, among which, the estimation of beam energy components and dynamics, are reported and discussed for different operating conditions of the accelerator.

  16. Noise Analysis of Spatial Phase coding in analog Acoustooptic Processors

    NASA Technical Reports Server (NTRS)

    Gary, Charles K.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Optical beams can carry information in their amplitude and phase; however, optical analog numerical calculators such as an optical matrix processor use incoherent light to achieve linear operation. Thus, the phase information is lost and only the magnitude can be used. This limits such processors to the representation of positive real numbers. Many systems have been devised to overcome this deficit through the use of digital number representations, but they all operate at a greatly reduced efficiency in contrast to analog systems. The most widely accepted method to achieve sign coding in analog optical systems has been the use of an offset for the zero level. Unfortunately, this results in increased noise sensitivity for small numbers. In this paper, we examine the use of spatially coherent sign coding in acoustooptical processors, a method first developed for digital calculations by D. V. Tigin. This coding technique uses spatial coherence for the representation of signed numbers, while temporal incoherence allows for linear analog processing of the optical information. We show how spatial phase coding reduces noise sensitivity for signed analog calculations.

  17. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    DOEpatents

    Garcia, E.J.; Sniegowski, J.J.

    1997-05-20

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication. 30 figs.

  18. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.

  19. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes

    NASA Astrophysics Data System (ADS)

    Amsallem, David; Tezaur, Radek; Farhat, Charbel

    2016-12-01

    A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.

  20. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, A.K.; Kozlowski, D.M.; Charles, S.T.; Spalding, J.A.

    1999-08-31

    An apparatus is disclosed based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it. 12 figs.

  1. Master-slave micromanipulator apparatus

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    An apparatus based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be positioned in a remote location by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  2. The Prediction of Scattered Broadband Shock-Associated Noise

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.

  3. Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

    NASA Astrophysics Data System (ADS)

    Courdurier, M.; Monard, F.; Osses, A.; Romero, F.

    2015-09-01

    In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.

  4. The linear -- non-linear frontier for the Goldstone Higgs

    DOE PAGES

    Gavela, M. B.; Kanshin, K.; Machado, P. A. N.; ...

    2016-12-01

    The minimalmore » $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $$\\sigma$$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.« less

  5. From neurons to circuits: linear estimation of local field potentials.

    PubMed

    Rasch, Malte; Logothetis, Nikos K; Kreiman, Gabriel

    2009-11-04

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs) (a circuit property) and spiking multiunit activity (MUA). Recently, there has been increased interest in LFPs because of their correlation with functional magnetic resonance imaging blood oxygenation level-dependent measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same electrode or nearby electrodes. We used "signal estimation theory" to show that a linear filter operation on the activity of one or a few neurons can explain a significant fraction of the LFP time course in the macaque monkey primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positive time lags. The filter was similar across different neocortical regions and behavioral conditions, including spontaneous activity and visual stimulation. The estimations had a spatial resolution of approximately 1 mm and a temporal resolution of approximately 200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than the negative time lags. Additionally, we showed that spikes occurring within approximately 10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In summary, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons.

  6. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel M.

    2012-12-01

    It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.

  7. Studies of beam position monitor stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenenbaum, P.

    1998-05-01

    The authors present the results from two studies of the time stability between the mechanical center of a beam position monitor and its electrical/electronic center. In the first study, a group of 93 BPM processors was calibrated via Test Pulse Generator once per hour in order to measure the contribution of the readout electronics to offset drifts. In the second study, a triplet of stripline BPMs in the Final Focus Test Beam, separated only by drift spaces, was read out every 6 minutes during 1 week of beam operation. In both cases offset stability was observed to be on themore » order of microns over time spans ranging from hours to days, although during the beam study much worse performance was also observed. Implications for the beam position monitor system of future linear collider systems are discussed.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de; Reeb, David, E-mail: reeb.qit@gmail.com

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transposemore » bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.« less

  9. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  10. Using a Six Sigma Fishbone Analysis Approach To Evaluate the Effect of Extreme Weather Events on Salmonella Positives in Young Chicken Slaughter Establishments.

    PubMed

    Linville, John W; Schumann, Douglas; Aston, Christopher; Defibaugh-Chavez, Stephanie; Seebohm, Scott; Touhey, Lucy

    2016-12-01

    A six sigma fishbone analysis approach was used to develop a machine learning model in SAS, Version 9.4, by using stepwise linear regression. The model evaluated the effect of a wide variety of variables, including slaughter establishment operational measures, normal (30-year average) weather, and extreme weather events on the rate of Salmonella -positive carcasses in young chicken slaughter establishments. Food Safety and Inspection Service (FSIS) verification carcass sampling data, as well as corresponding data from the National Oceanographic and Atmospheric Administration and the Federal Emergency Management Agency, from September 2011 through April 2015, were included in the model. The results of the modeling show that in addition to basic establishment operations, normal weather patterns, differences from normal and disaster events, including time lag weather and disaster variables, played a role in explaining the Salmonella percent positive that varied by slaughter volume quartile. Findings show that weather and disaster events should be considered as explanatory variables when assessing pathogen-related prevalence analysis or research and slaughter operational controls. The apparent significance of time lag weather variables suggested that at least some of the impact on Salmonella rates occurred after the weather events, which may offer opportunities for FSIS or the poultry industry to implement interventions to mitigate those effects.

  11. Control method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  12. Assessment of resident operative performance using a real-time mobile Web system: preparing for the milestone age.

    PubMed

    Wagner, Justin P; Chen, David C; Donahue, Timothy R; Quach, Chi; Hines, O Joe; Hiatt, Jonathan R; Tillou, Areti

    2014-01-01

    To satisfy trainees' operative competency requirements while improving feedback validity and timeliness using a mobile Web-based platform. The Southern Illinois University Operative Performance Rating Scale (OPRS) was embedded into a website formatted for mobile devices. From March 2013 to February 2014, faculty members were instructed to complete the OPRS form while providing verbal feedback to the operating resident at the conclusion of each procedure. Submitted data were compiled automatically within a secure Web-based spreadsheet. Conventional end-of-rotation performance (CERP) evaluations filed 2006 to 2013 and OPRS performance scores were compared by year of training using serial and independent-samples t tests. The mean CERP scores and OPRS overall resident operative performance scores were directly compared using a linear regression model. OPRS mobile site analytics were reviewed using a Web-based reporting program. Large university-based general surgery residency program. General Surgery faculty used the mobile Web OPRS system to rate resident performance. Residents and the program director reviewed evaluations semiannually. Over the study period, 18 faculty members and 37 residents logged 176 operations using the mobile OPRS system. There were 334 total OPRS website visits. Median time to complete an evaluation was 45 minutes from the end of the operation, and faculty spent an average of 134 seconds on the site to enter 1 assessment. In the 38,506 CERP evaluations reviewed, mean performance scores showed a positive linear trend of 2% change per year of training (p = 0.001). OPRS overall resident operative performance scores showed a significant linear (p = 0.001), quadratic (p = 0.001), and cubic (p = 0.003) trend of change per year of clinical training, reflecting the resident operative experience in our training program. Differences between postgraduate year-1 and postgraduate year-5 overall performance scores were greater with the OPRS (mean = 0.96, CI: 0.55-1.38) than with CERP measures (mean = 0.37, CI: 0.34-0.41). Additionally, there were consistent increases in each of the OPRS subcategories. In contrast to CERPs, the OPRS fully satisfies the Accreditation Council for Graduate Medical Education and American Board of Surgery operative assessment requirements. The mobile Web platform provides a convenient interface, broad accessibility, automatic data compilation, and compatibility with common database and statistical software. Our mobile OPRS system encourages candid feedback dialog and generates a comprehensive review of individual and group-wide operative proficiency in real time. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Digital redesign of the control system for the Robotics Research Corporation model K-1607 robot

    NASA Technical Reports Server (NTRS)

    Carroll, Robert L.

    1989-01-01

    The analog control system for positioning each link of the Robotics Research Corporation Model K-1607 robot manipulator was redesigned for computer control. In order to accomplish the redesign, a linearized model of the dynamic behavior of the robot was developed. The parameters of the model were determined by examination of the input-output data collected in closed-loop operation of the analog control system. The robot manipulator possesses seven degrees of freedom in its motion. The analog control system installed by the manufacturer of the robot attempts to control the positioning of each link without feedback from other links. Constraints on the design of a digital control system include: the robot cannot be disassembled for measurement of parameters; the digital control system must not include filtering operations if possible, because of lack of computer capability; and criteria of goodness of control system performing is lacking. The resulting design employs sampled-data position and velocity feedback. The criteria of the design permits the control system gain margin and phase margin, measured at the same frequencies, to be the same as that provided by the analog control system.

  14. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  15. [Comparison of the application between circular stapler and linear stapler in Billroth II( anastomosis of distal gastrectomy].

    PubMed

    Zhang, Nan; Su, Xiangqian; Xu, Kai

    2018-02-25

    To compare the safety and effectiveness of circular stapler and linear stapler in Billroth II( anastomosis following distal gastrectomy for gastric cancer patients. Clinical data of gastric adenocarcinoma patients who received distal gastrectomy with Billroth II( anastomosis at Ward IIII( of Gastrointestinal Cancer Center of Peking University Cancer Hospital from January 2013 to April 2017 were collected retrospectively. (1) patients identified as stage IIII( gastric cancer by preoperative clinical and postoperative pathological staging. (2) patients undergoing emergency operation due to perforation, obstruction, or bleeding of digestive tract. (3) patients receiving chemotherapy before operation. (4) patients undergoing combined organ resection due to tumor involving other organs. (5) patients complicating with other malignancies. A total of 116 cases were enrolled and divided into circular stapler (CS, 61 cases) group and linear stapler (LS, 55 cases) group according to the application of mechanical stapler. Clinicopathological characteristics, operative conditions and postoperative recovery were compared between two groups. Differences in baseline data, such as tumor size, Lauren classification, differentiation grade, and pathologic stage, between two groups were not statistically significant (all P>0.05). The mean operative time (230 min vs. 234 min), median intra-operative blood loss (50.0 ml vs. 50.0 ml), median number of harvested lymph node (28.0 vs. 26.0) and median number of positive lymph node (1.0 vs. 2.0) between LS group and CS group were not significantly different (all P>0.05) As compared to CS group, LS group presented shorter median time to the first flatus (3.0 days vs. 4.0 days, P=0.038), shorter median time to the first liquid diet (7.0 days vs. 8.0 days, P=0.000), shorter median time to remove the first abdominal drainage tube (7.0 days vs. 9.0 days, P=0.000) and shorter median time of postoperative hospital stay (8.0 days vs. 10.0 days, P=0.000). The morbidity of postoperative complication was 11.5% and 1.8% in CS group and LS group respectively without significant difference (P=0.092). In CS group, 1 case (1.6%) developed anastomotic hemorrhage, 3 cases (4.9%) gastric emptying disorder and 3 cases (4.9%) abdominal infection after operation, who all were cured by conservative treatment without duodenal stump fistula and re-operation. In LS group, only 1 case (1.8%) developed duodenal stump fistula and was cured by re-operation. In distal gastrectomy with Billroth II( anastomosis for gastric cancer, the application of linear stapler results in faster recovery of gastrointestinal function and shorter hospital stay, indicating more advantages.

  16. The Validity and Reliability of the Gymaware Linear Position Transducer for Measuring Counter-Movement Jump Performance in Female Athletes

    ERIC Educational Resources Information Center

    O'Donnell, Shannon; Tavares, Francisco; McMaster, Daniel; Chambers, Samuel; Driller, Matthew

    2018-01-01

    The current study aimed to assess the validity and test-retest reliability of a linear position transducer when compared to a force plate through a counter-movement jump in female participants. Twenty-seven female recreational athletes (19 ± 2 years) performed three counter-movement jumps simultaneously using the linear position transducer and…

  17. On the Quasimonotonicity of a Square Linear Operator with Respect to a Nonnegative Cone

    DTIC Science & Technology

    1998-06-01

    follows from the result from Perron (1907) and Frobenius (1912) on the theory of nonnegative matrices, which states that a nonnegative matrix has a...Dissertation 4. TITLE AND SUBTITLE ON THE QUASIMONOTONICITY OF A SQUARE LINEAR OPERATOR WITH RESPECT TO A NONNEGATIVE CONE 6. AUTHOR(S) Beaver, Philip...ABSTRACT (maximum 200 words) The question of when a square, linear operator is quasimonotone nondecreasing with respect to a nonnegative cone was posed for

  18. Galerkin finite difference Laplacian operators on isolated unstructured triangular meshes by linear combinations

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formulae in Cartesian coordinates for the Laplacian operator on isolated unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator along with linear combinations of the residual equations are used to develop the algorithm. The algorithm was tested for a wide variety of unstructured meshes and found to give satisfactory results.

  19. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  20. Comparison of Classifiers for Decoding Sensory and Cognitive Information from Prefrontal Neuronal Populations

    PubMed Central

    Astrand, Elaine; Enel, Pierre; Ibos, Guilhem; Dominey, Peter Ford; Baraduc, Pierre; Ben Hamed, Suliann

    2014-01-01

    Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF): the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders. PMID:24466019

  1. Linearization: Students Forget the Operating Point

    ERIC Educational Resources Information Center

    Roubal, J.; Husek, P.; Stecha, J.

    2010-01-01

    Linearization is a standard part of modeling and control design theory for a class of nonlinear dynamical systems taught in basic undergraduate courses. Although linearization is a straight-line methodology, it is not applied correctly by many students since they often forget to keep the operating point in mind. This paper explains the topic and…

  2. Quantum learning of classical stochastic processes: The completely positive realization problem

    NASA Astrophysics Data System (ADS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].

  3. Axisymmetric problem of fretting wear for a foundation with a nonuniform coating and rough punch

    NASA Astrophysics Data System (ADS)

    Manzhirov, A. V.; Kazakov, K. E.

    2018-05-01

    The axisymmetric contact problem with fretting wear for an elastic foundation with a longitudinally nonuniform (surface nonuniform) coating and a rigid punch with a rough foundation has been solved for the first time. The case of linear wear is considered. The nonuniformity of the coating and punch roughness are described by a different rapidly changing functions. This strong nonuniformity arises when coatings are deposited using modern additive manufacturing technologies. The problem is reduced the solution of an integral equation with two different integral operators: a compact self-adjoint positively defined operator with respect to the coordinate and the non-self-adjoint integral Volterra operator with respect to time. The solution is obtained in series using the projection method of the authors. The efficiency of the proposed approach for constructing a high-accuracy approximate solution to the problem (with only a few expansion terms retained) is demonstrated.

  4. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, T.; Zimoch, D.

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analyticalmore » model covering all types of APPLE II and its implementation will be presented.« less

  6. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  7. Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant

    PubMed Central

    2005-01-01

    The interaction of coenzyme with thermostable homotetrameric NAD(H)-dependent alcohol dehydrogenase from the thermoacidophilic sulphur-dependent crenarchaeon Sulfolobus solfataricus (SsADH) and its N249Y (Asn-249→Tyr) mutant was studied using the high fluorescence sensitivity of its tryptophan residues Trp-95 and Trp-117 to the binding of coenzyme moieties. Fluorescence quenching studies performed at 25 °C show that SsADH exhibits linearity in the NAD(H) binding [the Hill coefficient (h)∼1) at pH 9.8 and at moderate ionic strength, in addition to positive co-operativity (h=2.0–2.4) at pH 7.8 and 6.8, and at pH 9.8 in the presence of salt. Furthermore, NADH binding is positively co-operative below 20 °C (h∼3) and negatively co-operative at 40–50 °C (h∼0.7), as determined at moderate ionic strength and pH 9.8. Steady-state kinetic measurements show that SsADH displays standard Michaelis–Menten kinetics between 35 and 45 °C, but exhibits positive and negative co-operativity for NADH oxidation below (h=3.3 at 20 °C) and above (h=0.7 at 70–80 °C) this range of temperatures respectively. However, N249Y SsADH displays non-co-operative behaviour in coenzyme binding under the same experimental conditions used for the wild-type enzyme. In loop 270–275 of the coenzyme domain and segments at the interface of dimer A–B, analyses of the wild-type and mutant SsADH structures identified the structural elements involved in the intersubunit communication and suggested a possible structural basis for co-operativity. This is the first report of co-operativity in a tetrameric ADH and of temperature-induced co-operativity in a thermophilic enzyme. PMID:15651978

  8. Efficiency of energy conversion in model biological pumps. Optimization by linear nonequilibrium thermodynamic relations.

    PubMed

    Stucki, J W; Compiani, M; Caplan, S R

    1983-09-01

    Experimental investigations showed linear relations between flows and forces in some biological energy converters operating far from equilibrium. This observation cannot be understood on the basis of conventional nonequilibrium thermodynamics. Therefore, the efficiencies of a linear and a nonlinear mode of operation of an energy converter (a hypothetical redox-driven H+ pump) were compared. This comparison revealed that at physiological values of the forces and degrees of coupling (1) the force ratio permitting optimal efficiency was much higher in the linear than in the nonlinear mode and (2) the linear mode of operation was at least 10(6)-times more efficient that the nonlinear one. These observations suggest that the experimentally observed linear relations between flows and forces, particularly in the case of oxidative phosphorylation, may be due to a feedback regulation maintaining linear thermodynamic relations far from equilibrium. This regulation may have come about as the consequence of an evolutionary drive towards higher efficiency.

  9. Analysis of electrodes' placement and deformation in deep brain stimulation from medical images

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre

    2012-02-01

    Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.

  10. Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans

    2017-07-01

    We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.

  11. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    NASA Astrophysics Data System (ADS)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  12. Flexure bearing support, with particular application to stirling machines

    DOEpatents

    Beckett, Carl D.; Lauhala, Victor C.; Neely, Ron; Penswick, Laurence B.; Ritter, Darren C.; Nelson, Richard L.; Wimer, Burnell P.

    1996-01-01

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial nonrotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions.

  13. Flexure bearing support, with particular application to Stirling machines

    DOEpatents

    Beckett, C.D.; Lauhala, V.C.; Neely, R.; Penswick, L.B.; Ritter, D.C.; Nelson, R.L.; Wimer, B.P.

    1996-06-04

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial non-rotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions. 8 figs.

  14. Broadband bowtie belt nanoantennas

    NASA Astrophysics Data System (ADS)

    Morshed, Monir; Hattori, Haroldo T.

    2018-01-01

    In this article, we study a linear array of bowtie nanoantennas placed between two metallic strips that can work from 800 to 1420 nm (600 nm linewidth), with an electric field enhancement factor close to 20. We study the dynamical change of the position of the electric field enhancement amongst different elements in the array and, at the same time, the effects of dispersion on the scalability of the array elements. A systematic analysis and methodology to produce an array that can operate over a large bandwidth whilst maintaining the electric field enhancement without significant variation is provided.

  15. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  16. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  17. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses.

    PubMed

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  18. Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Mohammad Hadi

    Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.

  19. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  20. Loss-tolerant quantum secure positioning with weak laser sources

    NASA Astrophysics Data System (ADS)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; Chitambar, Eric; Evans, Philip G.; Qi, Bing

    2016-09-01

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. Recently, it has been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit. Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. In this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.

  1. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  2. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  3. Exact linearized Coulomb collision operator in the moment expansion

    DOE PAGES

    Ji, Jeong -Young; Held, Eric D.

    2006-10-05

    In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less

  4. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  5. A real-time visual inspection method of fastening bolts in freight car operation

    NASA Astrophysics Data System (ADS)

    Nan, Guo; Yao, JunEn

    2015-10-01

    A real-time inspection of the key components is necessary for ensuring safe operation of freight car. While traditional inspection depends on the trained human inspectors, which is time-consuming and lower efficient. With the development of machine vision, vision-based inspection methods get more railway on-spot applications. The cross rod end fastening bolts are important components on both sides of the train body that fixing locking plates together with the freight car main structure. In our experiment, we get the images containing fastening bolt components, and accurately locate the locking plate position using a linear Support Vector Machine (SVM) locating model trained with Histograms of Oriented Gradients (HOG) features. Then we extract the straight line segment using the Line Segment Detector (LSD) and encoding them in a range, which constitute a straight line segment dataset. Lastly we determine the locking plate's working state by the linear pattern. The experiment result shows that the localization accurate rate is over 99%, the fault detection rate is over 95%, and the module implementation time is 2f/s. The overall performance can completely meet the practical railway safety assurance application.

  6. An incremental analysis of a deep drawing steel’s material behaviour undergoing the predeformation using drawbeads

    NASA Astrophysics Data System (ADS)

    Schmid, H.; Suttner, S.; Merklein, M.

    2017-09-01

    Nowadays lightweight design in metal forming processes leads to complex deep drawing geometries, which can cause multiple damages. Therefore, drawbeads are one way to regulate and control material flow during the forming process. Not only in research, but also in industrial practice, it could be determined that material is work hardened passing drawbead geometries. It particularly means when material is pre-deformed with tensile and alternating bending loads. This incident also gives the opportunity to utilize it in a reasonable way if examined properly. To investigate these findings, a process oriented and comprehensive analysis of the material behaviour during these forming operations is needed. In this paper, sheet metal strips are linearly drawn through a drawbead and stopped after passing the drawbead. Within this forming operation, the material undergoes non-linear straining before reaching the in-plane position again. Here, the process will be stopped to investigate a permanent strengthening local along the sheet thickness. Therefore, microhardness measurements are realized before and after passing the drawbead. Because of its common use and its wide known material data, a deep drawing steel DC will be used for these studies. Additionally, the strategy is applied to advanced high strength steel.

  7. Linearized inversion of multiple scattering seismic energy

    NASA Astrophysics Data System (ADS)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains curvature information is modified at every iteration by a low-rank update based on gradient changes at every step. At each iteration, the data residual is imaged using GT to determine the model update. Application of the linearized inversion to synthetic data to image a vertical fault plane demonstrate the effectiveness of this methodology to properly delineate the vertical fault plane and give better amplitude information than the standard migrated image using the adjoint operator that takes into account internal multiples. Thus, least-square imaging of multiple scattering enhances the spatial resolution of the events illuminated by internal scattering energy. It also deconvolves the source signature and helps remove the fingerprint of the acquisition geometry. The final image is obtained by the superposition of the least-square solution based on single scattering assumption and the least-square solution based on double scattering assumption.

  8. Local reduction of certain wave operators to one-dimensional form

    NASA Technical Reports Server (NTRS)

    Roe, Philip

    1994-01-01

    It is noted that certain common linear wave operators have the property that linear variation of the initial data gives rise to one-dimensional evolution in a plane defined by time and some direction in space. The analysis is given For operators arising in acoustics, electromagnetics, elastodynamics, and an abstract system.

  9. Ovule positions within linear fruit are correlated with nonrandom mating in Robinia pseudoacacia

    PubMed Central

    Yuan, Cunquan; Sun, Yuhan; Sun, Peng; Li, Yunfei; Hu, Ruiyang; Zhao, Keqi; Wang, Jinxing; Li, Yun

    2016-01-01

    Post-pollination processes can lead to nonrandom mating among compatible pollen donors. Moreover, morphological patterns of ovule development within linear fruits are reportedly nonrandom and depend on ovule position. However, little is known about the relationship between nonrandom mating and ovule position within linear fruit. Here, we combined controlled pollen competition experiments and paternity analyses on R. pseudoacacia to better understand nonrandom mating and its connection with ovule position. Molecular determination of siring success showed a significant departure from the expected ratio based on each kind of pollen mixture, suggesting a nonrandom mating. Outcrossed pollen grains, which were strongly favored, produced significantly more progeny than other pollen grains. Paternity analyses further revealed that the distribution of offspring produced by one specific pollen source was also nonrandom within linear fruit. The stylar end, which has a higher probability of maturation, produced a significantly higher number of outcrossed offspring than other offspring, suggesting a correlation between pollen source and ovule position. Our results suggested that a superior ovule position exists within the linear fruit in R. pseudoacacia, and the pollen that was strongly favored often preferentially occupies the ovules that were situated in a superior position, which ensured siring success and facilitated nonrandom mating. PMID:27819357

  10. Fast elastic registration of soft tissues under large deformations.

    PubMed

    Peterlík, Igor; Courtecuisse, Hadrien; Rohling, Robert; Abolmaesumi, Purang; Nguan, Christopher; Cotin, Stéphane; Salcudean, Septimiu

    2018-04-01

    A fast and accurate fusion of intra-operative images with a pre-operative data is a key component of computer-aided interventions which aim at improving the outcomes of the intervention while reducing the patient's discomfort. In this paper, we focus on the problematic of the intra-operative navigation during abdominal surgery, which requires an accurate registration of tissues undergoing large deformations. Such a scenario occurs in the case of partial hepatectomy: to facilitate the access to the pathology, e.g. a tumor located in the posterior part of the right lobe, the surgery is performed on a patient in lateral position. Due to the change in patient's position, the resection plan based on the pre-operative CT scan acquired in the supine position must be updated to account for the deformations. We suppose that an imaging modality, such as the cone-beam CT, provides the information about the intra-operative shape of an organ, however, due to the reduced radiation dose and contrast, the actual locations of the internal structures necessary to update the planning are not available. To this end, we propose a method allowing for fast registration of the pre-operative data represented by a detailed 3D model of the liver and its internal structure and the actual configuration given by the organ surface extracted from the intra-operative image. The algorithm behind the method combines the iterative closest point technique with a biomechanical model based on a co-rotational formulation of linear elasticity which accounts for large deformations of the tissue. The performance, robustness and accuracy of the method is quantitatively assessed on a control semi-synthetic dataset with known ground truth and a real dataset composed of nine pairs of abdominal CT scans acquired in supine and flank positions. It is shown that the proposed surface-matching method is capable of reducing the target registration error evaluated of the internal structures of the organ from more than 40 mm to less then 10 mm. Moreover, the control data is used to demonstrate the compatibility of the method with intra-operative clinical scenario, while the real datasets are utilized to study the impact of parametrization on the accuracy of the method. The method is also compared to a state-of-the art intensity-based registration technique in terms of accuracy and performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Noncontact Temperature Measurements of Organic Layers in an Organic Light-Emitting Diode Using Wavenumber-Temperature Relations of Raman Bands

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio

    2008-05-01

    We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.

  12. Development of a 3D CZT detector prototype for Laue Lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano; Abbene, Leonardo; Budtz-Jørgensen, Carl; Casini, Fabio; Curado da Silva, Rui M.; Kuvvetlli, Irfan; Milano, Luciano; Natalucci, Lorenzo; Quadrini, Egidio M.; Stephen, John B.; Ubertini, Pietro; Zanichelli, Massimiliano; Zappettini, Andrea

    2010-07-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.

  13. Linear Actuator Has Long Stroke and High Resolution

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Moore, Donald M.; Braun, David F.; Koenig, John S.; Hankins, Steve M.

    2009-01-01

    The term precision linear actuator, direct drive ( PLADD ) refers to a robust linear actuator designed to be capable of repeatedly performing, over a lifetime of the order of 5 to 10 years, positioning maneuvers that include, variously, submicron increments or slews of the order of a centimeter. The PLADD is capable of both long stroke (120 mm) and high resolution (repeatable increments of 20 nm). Unlike precise linear actuators of prior design, the PLADD contains no gears, levers, or hydraulic converters. The PLADD, now at the prototype stage of development, is intended for original use as a coarse-positioning actuator in a spaceborne interferometer. The PLADD could also be adapted to terrestrial applications in which there are requirements for long stroke and high resolution: potential applications include medical imaging and fabrication of semiconductor devices. The PLADD (see figure) includes a commercially available ball-screw actuator driven directly by a commercially available three-phase brushless DC motor. The ball-screw actuator comprises a spring-preloaded ball nut on a ball screw that is restrained against rotation as described below. The motor is coupled directly (that is, without an intervening gear train) to a drive link that, in turn, is coupled to the ball nut. By eliminating the gear train, the direct-drive design eliminates the complexity, backlash, and potential for misalignment associated with a gear train. To prevent inadvertent movement, there is a brake that includes flexured levers compressed against the drive link by preload springs. This is a power-off brake: There are also piezoelectric stacks that can be activated to oppose the springs and push the levers away from the drive link. Hence, power must be applied to the piezoelectric stacks to release the drive link from braking. To help ensure long operational life, all of the mechanical drive components are immersed in an oil bath within hermetically sealed bellows. The outer end of the bellows holds the outer end of the ball screw, thereby preventing rotation of the ball screw. Positioning is controlled by an electronic control system that includes digital and analog subsystems that interact with the motor and brake and with two sensor/encoder units: a Hall-effect-sensor rotation encoder and a linear glass-scale encoder. This system implements a proportional + integral + derivative control algorithm that results in variation of voltage commands to each of the three pairs of windings of the brushless DC motor. In one of two alternative control modes, the voltages are applied to the windings in a trapezoidal commutation scheme on the basis of timing signals obtained from the Hall-effect sensors; this scheme yields relatively coarse positioning - 24 steps per motor revolution. The second control mode involves a sinusoidal commutation scheme in which the output of the linear glass-scale encoder is transposed to rotational increments to yield much finer position feedback - more than 400,000 steps per revolution.

  14. Integrated otpical monitoring of MEMS for closed-loop control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Wang, Limin; McCormick, W. B.; Rittenhouse, S. A.; Famouri, Parviz F.; Hornak, Lawrence A.

    2003-01-01

    Robust control and failure assessment of MEMS employed in physically demanding, mission critical applications will allow for higher degrees of quality assurance in MEMS operation. Device fault detection and closed-loop control require detailed knowledge of the operational states of MEMS over the lifetime of the device, obtained by a means decoupled from the system. Preliminary through-wafer optical monitoring research efforts have shown that through-wafer optical probing is suitable for characterizing and monitoring the behavior of MEMS, and can be implemented in an integrated optical monitoring package for continuous in-situ device monitoring. This presentation will discuss research undertaken to establish integrated optical device metrology for closed-loop control of a MUMPS fabricated lateral harmonic oscillator. Successful linear closed-loop control results using a through-wafer optical microprobe position feedback signal will be presented. A theoretical optical output field intensity study of grating structures, fabricated on the shuttle of the resonator, was performed to improve the position resolution of the optical microprobe position signal. Through-wafer microprobe signals providing a positional resolution of 2 μm using grating structures will be shown, along with initial binary Fresnel diffractive optical microelement design layout, process development, and testing results. Progress in the design, fabrication, and test of integrated optical elements for multiple microprobe signal delivery and recovery will be discussed, as well as simulation of device system model parameter changes for failure assessment.

  15. Mixture models in diagnostic meta-analyses--clustering summary receiver operating characteristic curves accounted for heterogeneity and correlation.

    PubMed

    Schlattmann, Peter; Verba, Maryna; Dewey, Marc; Walther, Mario

    2015-01-01

    Bivariate linear and generalized linear random effects are frequently used to perform a diagnostic meta-analysis. The objective of this article was to apply a finite mixture model of bivariate normal distributions that can be used for the construction of componentwise summary receiver operating characteristic (sROC) curves. Bivariate linear random effects and a bivariate finite mixture model are used. The latter model is developed as an extension of a univariate finite mixture model. Two examples, computed tomography (CT) angiography for ruling out coronary artery disease and procalcitonin as a diagnostic marker for sepsis, are used to estimate mean sensitivity and mean specificity and to construct sROC curves. The suggested approach of a bivariate finite mixture model identifies two latent classes of diagnostic accuracy for the CT angiography example. Both classes show high sensitivity but mainly two different levels of specificity. For the procalcitonin example, this approach identifies three latent classes of diagnostic accuracy. Here, sensitivities and specificities are quite different as such that sensitivity increases with decreasing specificity. Additionally, the model is used to construct componentwise sROC curves and to classify individual studies. The proposed method offers an alternative approach to model between-study heterogeneity in a diagnostic meta-analysis. Furthermore, it is possible to construct sROC curves even if a positive correlation between sensitivity and specificity is present. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.

    PubMed

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan

    2016-01-01

    In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.

  17. Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.

    We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less

  18. An inclusive SUSY approach to position dependent mass systems

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.

    2018-06-01

    The supersymmetry (SUSY) formalism for a position dependent mass problem with a more general ordering is yet to be formulated. In this paper, we present an unified SUSY approach for PDM problems of any ordering. Highlighting all non-Hermitian Hamiltonians of PDM problems are of quasi-Hermitian nature, the SUSY operators of these problems are constructed using similarity transformation. The methodology that we propose here is applicable for even more general cases where the kinetic energy term is represented by linear combination of infinite number of possible orderings. We illustrate the method with an example, namely Mathews-Lakshmanan (ML) oscillator. Our results show that the latter system is shape invariant for all possible orderings. We derive eigenvalues and eigenvectors of this nonlinear oscillator for all possible orderings including Hermitian and non-Hermitian ones.

  19. Reborn quadrant anode image sensor

    NASA Astrophysics Data System (ADS)

    Prokazov, Yury; Turbin, Evgeny; Vitali, Marco; Herzog, Andreas; Michaelis, Bernd; Zuschratter, Werner; Kemnitz, Klaus

    2009-06-01

    We describe a position sensitive photon counting microchannel plate based detector with an improved quadrant anode (QA) readout system. The technique relies on a combination of the four planar elements pattern and an additional fifth electrode. The charge cloud induced by single particle detection is split between the electrodes. The measured charge values uniquely define the position of the initial event. QA has been first published in 1976 by Lampton and Malina. This anode configuration was undeservedly forgotten and its potential has been hardly underestimated. The presented approach extends the operating spatial range to the whole sensitive area of the microchannel plate surface and demonstrates good linearity over the field of view. Therefore, the novel image sensor results in spatial resolution better then 50 μm and count rates up to one million events per second.

  20. Application of double laser interferometer in the measurement of translational stages' roll characteristics

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Shen, Lu; Ke, Youlong; Hou, Wenmei; Ju, Aisong; Yang, Wei; Luo, Jialin

    2016-10-01

    In order to achieve rapid measurement of larger travel translation stages' roll-angle error in industry and to study the roll characteristics, this paper designs a small roll-angle measurement system based on laser heterodyne interferometry technology, test and researched on the roll characteristics of ball screw linear translation stage to fill the blank of the market. The results show that: during the operation of the ball screw linear translation stage, the workbench's roll angle changes complexly, its value is not only changing with different positions, but also shows different levels of volatility, what's more, the volatility varies with the workbench's work speed . Because of the non uniform stiffness of ball screw, at the end of each movement, the elastic potential energy being stored from the working process should release slowly, and the workbench will cost a certain time to roll fluctuate before it achieves a stable tumbling again.

  1. Linear polarization of a group of symbiotic systems

    NASA Astrophysics Data System (ADS)

    Brandi, E.; García, L. G.; Piirola, V.; Scaltriti, F.; Quiroga, C.

    2000-08-01

    We report linear polarization measurements of a set of symbiotic stars, made at several epochs during the period 1994-1998. Evidence of intrinsic polarization is looked for from the wavelength dependence of the polarization degree and position angle in UBVRI bands. The results have also been analysed to search for temporal variability of polarization. Several objects have shown a polarization spectrum different from that produced by interstellar dust grains and/or polarimetric variations on time scales as short as several days or months, indicating the presence of polarization component of circumstellar origin. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.

  2. Learning-based position control of a closed-kinematic chain robot end-effector

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.

  3. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.

  4. Multi-star processing and gyro filtering for the video inertial pointing system

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.

    1976-01-01

    The video inertial pointing (VIP) system is being developed to satisfy the acquisition and pointing requirements of astronomical telescopes. The VIP system uses a single video sensor to provide star position information that can be used to generate three-axis pointing error signals (multi-star processing) and for input to a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization system (gyro filtering). The CRT display facilitates target acquisition and positioning of the telescope by a remote operator. Linearized small angle equations are used for the multistar processing and a consideration of error performance and singularities lead to star pair location restrictions and equation selection criteria. A discrete steady-state Kalman filter which uses the integration of the gyros is developed and analyzed. The filter includes unit time delays representing asynchronous operations of the VIP microprocessor and video sensor. A digital simulation of a typical gyro stabilized gimbal is developed and used to validate the approach to the gyro filtering.

  5. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  6. Some subclasses of multivalent functions involving a certain linear operator

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Patel, J.

    2005-10-01

    The authors investigate various inclusion and other properties of several subclasses of the class of normalized p-valent analytic functions in the open unit disk, which are defined here by means of a certain linear operator. Problems involving generalized neighborhoods of analytic functions in the class are investigated. Finally, some applications of fractional calculus operators are considered.

  7. Stochastic Analysis and Design of Systems

    DTIC Science & Technology

    2011-09-14

    measures is described by the Frobenius - Perron operator corresponding to the map T (qi, ., .). This is the unique operator [Pi] such that∫ A [Pi]µ(x...ξi(k)) are non-linear, the Frobenius - Perron operators are linear operators, but infinite-dimensional. For more details on the theory of these...given by the Frobenius - Perron operator corresponding to the map R(qi, qj , ., .). This is given as ∫ A [Mi,j ]µ(x)dx = Eηj ∫ Rn µ(x).χA(R(qi, qj , x

  8. Elementary operators on self-adjoint operators

    NASA Astrophysics Data System (ADS)

    Molnar, Lajos; Semrl, Peter

    2007-03-01

    Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .

  9. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  10. Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.

    1991-01-01

    In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.

  11. Risk Factors for Periacetabular Osteolysis and Wear in Asymptomatic Patients with Uncemented Total Hip Arthroplasties

    PubMed Central

    Olivecrona, Henrik; Garellick, Göran

    2014-01-01

    Osteolysis is a silent disease leading to aseptic loosening. This has not been studied in a cohort of asymptomatic patients. The aim of this study was to detect factors that might be associated with the development of periacetabular osteolysis and wear around an uncemented cup. We assessed 206 patients with an uncemented cup, measuring wear and periacetabular osteolysis using computed tomography with a median follow-up of 10 years after surgery (range 7–14 years). EQ5D, pain from the hip, and satisfaction were assessed. The association between periacetabular osteolysis and wear, age, gender, activity, BMI, cup type, cup age, positioning of the cup, and surface coating was investigated with a proportional odds model. Wear and male gender were associated with an increased risk for periacetabular osteolysis. There was no association with periacetabular osteolysis for time from operation, patient age, UCLA Activity Score, liner thickness at time of operation, BMI, cup positioning, and type of implant. A thin liner at time of operation is correlated to increased wear. Linear wear rate was 0.18 mm/year and 46 of 206 patients had large periacetabular osteolysis. Asymptomatic patients with these implants should be followed up on a regular basis with a sensitive method such as CT in order to detect complications early. PMID:25478600

  12. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics.

    PubMed

    Koda, Shin-ichi

    2015-05-28

    It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.

  13. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  14. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  15. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  16. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  17. Nonexpansiveness of a linearized augmented Lagrangian operator for hierarchical convex optimization

    NASA Astrophysics Data System (ADS)

    Yamagishi, Masao; Yamada, Isao

    2017-04-01

    Hierarchical convex optimization concerns two-stage optimization problems: the first stage problem is a convex optimization; the second stage problem is the minimization of a convex function over the solution set of the first stage problem. For the hierarchical convex optimization, the hybrid steepest descent method (HSDM) can be applied, where the solution set of the first stage problem must be expressed as the fixed point set of a certain nonexpansive operator. In this paper, we propose a nonexpansive operator that yields a computationally efficient update when it is plugged into the HSDM. The proposed operator is inspired by the update of the linearized augmented Lagrangian method. It is applicable to characterize the solution set of recent sophisticated convex optimization problems found in the context of inverse problems, where the sum of multiple proximable convex functions involving linear operators must be minimized to incorporate preferable properties into the minimizers. For such a problem formulation, there has not yet been reported any nonexpansive operator that yields an update free from the inversions of linear operators in cases where it is utilized in the HSDM. Unlike previously known nonexpansive operators, the proposed operator yields an inversion-free update in such cases. As an application of the proposed operator plugged into the HSDM, we also present, in the context of the so-called superiorization, an algorithmic solution to a convex optimization problem over the generalized convex feasible set where the intersection of the hard constraints is not necessarily simple.

  18. Projection Operator: A Step Towards Certification of Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  19. Amorphous ribbon transducers

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1984-02-01

    Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  20. Operator-sum representation for bosonic Gaussian channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.

    2011-10-15

    Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which themore » antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D({kappa}) in the Holevo classification. The matrix transposition channels D({kappa}), D({kappa}{sup -1}) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor {kappa} and the beam-splitter channel with attenuation factor {kappa}{sup -1} turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement breaking channels. A characterization of extremality in terms of Kraus operators, originally due to Choi, is employed to show that all quantum-limited Gaussian channels are extremal. The fact that almost every noisy Gaussian channel can be realized as a product of a pair of quantum-limited channels is used to construct a discrete set of linearly independent Kraus operators for these noisy Gaussian channels, including the classical noise channel, and these Kraus operators have a particularly simple structure.« less

  1. Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.

    2005-01-01

    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.

  2. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  3. 23 years of toxicology testing fatally injured pilots: Implications for aviation and other modes of transportation.

    PubMed

    McKay, Mary Pat; Groff, Loren

    2016-05-01

    Use of over-the-counter, prescription, and illicit drugs is increasing in the United States (US). Many of these drugs are psychoactive and can affect the user's ability to safely operate a vehicle. However, data about drug use by vehicle operators is typically limited to a small proportion of operators and a short list of drugs. For instance, required testing for commercial vehicle operators following most accidents is limited to a urine test for 11 drugs. By comparison, the Federal Aviation Administration (FAA), routinely tests fatally injured pilots' blood and tissues for hundreds of compounds. This study used the results from these tests to assess drug use in aviation. Using matched data from the FAA's Civil Aerospace Medical Institute toxicology database and the National Transportation Safety Board's (NTSB's) aviation accident database, this study examined trends in the prevalence of over-the-counter, prescription, and illicit drugs identified in toxicology tests of fatally injured pilots between 1990 and 2012. Cases that failed to match or where toxicology testing had not been performed were excluded. Pilots identified by the NTSB investigation as being the "flying pilot" at the time of the accident and results from blood or tissues were included. Toxicology results for ethanol and other alcohols were not included. Positive test results were categorized by drug type and potential for causing impairment. Analysis used SPSS Version 19.1 to perform linear by linear chi-squared statistics. The study included 6677 pilots or 87% of the eligible subjects. The large majority were male (98%) and flying general aviation operations (96%) at the time of their fatal accident. There were increasing trends in pilots' use of all drugs, potentially impairing drugs, drugs used to treat potentially impairing conditions, drugs designated as controlled substances, and illicit drugs. The most common potentially impairing drug pilots had used was diphenhydramine, a sedating antihistamine that is an active ingredient in many over-the-counter allergy formulations, cold medicines, and sleep aids in the US. Although evidence of illicit drug use was found only in a small number of cases, the percentage of pilots testing positive for marijuana use increased during the study period, mostly in the last 10 years. Published by Elsevier Ltd.

  4. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  5. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  6. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  7. Study on the description method of upper limb's muscle force levels during simulated in-orbit operations

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang

    2013-03-01

    The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.

  8. Assessment of Schrodinger Eigenmaps for target detection

    NASA Astrophysics Data System (ADS)

    Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek

    2014-06-01

    Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.

  9. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  10. Operator pencil passing through a given operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, A., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk; Khudaverdian, H. M., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk

    Let Δ be a linear differential operator acting on the space of densities of a given weight λ{sub 0} on a manifold M. One can consider a pencil of operators Π-circumflex(Δ)=(Δ{sub λ}) passing through the operator Δ such that any Δ{sub λ} is a linear differential operator acting on densities of weight λ. This pencil can be identified with a linear differential operator Δ-circumflex acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e., pencils of self-adjoint and anti-self-adjoint operators. We studymore » lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular, we analyze the relation between these two concepts, and apply it to the study of diff (M)-equivariant liftings. Finally, we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings. Our constructions can be considered as a generalisation of equivariant quantisation.« less

  11. Quantum learning of classical stochastic processes: The completely positive realization problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less

  12. Algebraic approach to electronic spectroscopy and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutounji, Mohamad

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less

  13. Linear systems on balancing chemical reaction problem

    NASA Astrophysics Data System (ADS)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  14. A Study of VITOM in Pediatric Surgery and Urology: Evaluation of Technology Acceptance and Usability by Operating Team and Surgeon Musculoskeletal Discomfort.

    PubMed

    Frykman, Philip K; Freedman, Andrew L; Kane, Timothy D; Cheng, Zhi; Petrosyan, Mikael; Catchpole, Kenneth

    2017-02-01

    We studied operating team acceptability of Video Telescopic Monitor (VITOM ® ) exoscope by exploring the ease of use of the device in two centers. We also assessed factors affecting surgeon musculoskeletal discomfort. We focused on how the operating team interacted with the VITOM system with surrogate measures of usefulness, image quality, ease of use, workload, and setup time. Multivariable linear regression was used to model the relationships between team role, experience, and setup time. Relationships between localized musculoskeletal discomfort and use of VITOM alone, and with loupes, were also analyzed. Four surgeons, 7 surgical techs, 7 circulating nurses, and 13 surgical residents performed 70 pediatric surgical and urological operations. We found that subjective views of each team member were consistently positive with 69%-74% agreed or strongly agreed that VITOM enhanced their ability to perform their job and improved the surgical process. Unexpectedly, the scrub techs and nurses perceived more value and utility of VITOM, presumably because it provides them a view of the operative field that would otherwise be unavailable to them. Team members rated perceptions of image quality highly and workload generally satisfactory. Not surprisingly, setup time decreased with team experience and multivariable modeling showed significant correlations with surgeon and surgical tech experience, but not circulating nurse. An important finding was that surgeon neck discomfort was reduced with use of VITOM alone for magnification, compared with use of loupes and VITOM. The most likely explanation for these findings is improved posture with the neck at a neutral position when viewing the VITOM images, compared with neck flexion with loupes, and thus, a less favorable ergonomic position. This study suggests that there may be small drawbacks associated with VITOM use initially, but these reduce with increased experience and benefit both the surgeon and the rest of the team.

  15. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    NASA Astrophysics Data System (ADS)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  16. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  17. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  18. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    PubMed Central

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  19. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; Lynett, P.; Pedersen, G.

    2013-06-01

    Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing) model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  20. Superconducting bearings for application in cryogenic experiments in space

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Worden, P. W., Jr.

    1980-01-01

    Linear superconducting magnetic bearings suitable for use in a proposed orbital equivalence principle experiment and for general application in space were developed and tested. Current flows in opposite directions in adjacent superconducting wires arranged parallel to the axis of a cylinder. This configuration provides maximum stiffness radially while allowing the test mass to move freely along the cylinder axis. In a space application, the wires are extended to cover the entire perimeter of the cylinder: for the earth-based tests it was desirable to use only the bottom half. Control of the axial position of the test mass is by small control coils which may be positioned inside or outside the main bearing. The design is suitable for application to other geometries where maximum stiffness is desired. A working model scaled to operate in a 1-g environment was perfected approximate solutions for the bearings were developed. A superconducting transformer method of charging the magnets for the bearing, and a position detector based on a SQUID magnetometer and associated superconducting circuit were also investigated.

  1. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  2. Loss-tolerant quantum secure positioning with weak laser sources

    DOE PAGES

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George; ...

    2016-09-14

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  3. The impact of days off between cases on perioperative outcomes for robotic-assisted laparoscopic prostatectomy.

    PubMed

    Pearce, Shane M; Pariser, Joseph J; Patel, Sanjay G; Anderson, Blake B; Eggener, Scott E; Zagaja, Gregory P

    2016-02-01

    To examine the effect of days off between cases on perioperative outcomes for robotic-assisted laparoscopic prostatectomy (RALP). We analyzed a single-surgeon series of 2036 RALP cases between 2003 and 2014. Days between cases (DBC) was calculated as the number of days elapsed since the surgeon's previous RALP with the second start cases assigned 0 DBC. Surgeon experience was assessed by dividing sequential case experience into cases 0-99, cases 100-249, cases 250-999, and cases 1000+ based on previously reported learning curve data for RALP. Outcomes included estimated blood loss (EBL), operative time (OT), and positive surgical margins (PSMs). Multiple linear regression was used to assess the impact of the DBC and surgeon experience on EBL, OT, and PSM, while controlling for patient characteristics, surgical technique, and pathologic variables. Overall median DBC was 1 day (0-3) and declined with increasing surgeon case experience. Multiple linear regression demonstrated that each additional DBC was independently associated with increased EBL [β = 3.7, 95% CI (1.3-6.2), p < 0.01] and OT [β = 2.3 (1.4-3.2), p < 0.01], but was not associated with rate of PSM [β = 0.004 (-0.003-0.010), p = 0.2]. Increased experience was also associated with reductions in EBL and OT (p < 0.01). Surgeon experience of 1000+ cases was associated with a 10% reduction in PSM rate (p = 0.03) compared to cases 0-99. In a large single-surgeon RALP series, DBC was associated with increased blood loss and operative time, but not associated with positive surgical margins, when controlling for surgeon experience.

  4. Non-equilibrium dynamics from RPMD and CMD.

    PubMed

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  5. Resistive and Capacitive Memory Effects in Oxide Insulator/ Oxide Conductor Hetero-Structures

    NASA Astrophysics Data System (ADS)

    Meyer, Rene; Miao, Maosheng; Wu, Jian; Chevallier, Christophe

    2013-03-01

    We report resistive and capacitive memory effects observed in oxide insulator/ oxide conductor hetero-structures. Electronic transport properties of Pt/ZrO2/PCMO/Pt structures with ZrO2 thicknesses ranging from 20A to 40A are studied before and after applying short voltage pulses of positive and negative polarity for set and reset operation. As processed devices display a non-linear IV characteristic which we attribute to trap assisted tunneling through the ZrO2 tunnel oxide. Current scaling with electrode area and tunnel oxide thickness confirms uniform conduction. The set/reset operation cause an up/down shift of the IV characteristic indicating that the conduction mechanism of both states is still dominated by tunneling. A change in the resistance is associated with a capacitance change of the device. An exponential relation between program voltages and set times is found. A model based on electric field mediated non-linear transport of oxygen ions across the ZrO2/PCMO interface is proposed. The change in the tunnel current is explained by ionic charge transfer between tunnel oxide and conductive metal oxide changing both tunnel barrier height and PCMO conductivity. DFT techniques are employed to explain the conductivity change in the PCMO interfacial layer observed through capacitance measurements.

  6. A new formulation for anisotropic radiative transfer problems. I - Solution with a variational technique

    NASA Technical Reports Server (NTRS)

    Cheyney, H., III; Arking, A.

    1976-01-01

    The equations of radiative transfer in anisotropically scattering media are reformulated as linear operator equations in a single independent variable. The resulting equations are suitable for solution by a variety of standard mathematical techniques. The operators appearing in the resulting equations are in general nonsymmetric; however, it is shown that every bounded linear operator equation can be embedded in a symmetric linear operator equation and a variational solution can be obtained in a straightforward way. For purposes of demonstration, a Rayleigh-Ritz variational method is applied to three problems involving simple phase functions. It is to be noted that the variational technique demonstrated is of general applicability and permits simple solutions for a wide range of otherwise difficult mathematical problems in physics.

  7. Impact of the World Health Organization's Surgical Safety Checklist on safety culture in the operating theatre: a controlled intervention study

    PubMed Central

    Haugen, A. S.; Søfteland, E.; Eide, G. E.; Sevdalis, N.; Vincent, C. A.; Nortvedt, M. W.; Harthug, S.

    2013-01-01

    Background Positive changes in safety culture have been hypothesized to be one of the mechanisms behind the reduction in mortality and morbidity after the introduction of the World Health Organization's Surgical Safety Checklist (SSC). We aimed to study the checklist effects on safety culture perceptions in operating theatre personnel using a prospective controlled intervention design at a single Norwegian university hospital. Methods We conducted a study with pre- and post-intervention surveys using the intervention and control groups. The primary outcome was the effects of the Norwegian version of the SSC on safety culture perceptions. Safety culture was measured using the validated Norwegian version of the Hospital Survey on Patient Safety Culture. Descriptive characteristics of operating theatre personnel and checklist compliance data were also recorded. A mixed linear regression model was used to assess changes in safety culture. Results The response rate was 61% (349/575) at baseline and 51% (292/569) post-intervention. Checklist compliance ranged from 77% to 85%. We found significant positive changes in the checklist intervention group for the culture factors ‘frequency of events reported’ and ‘adequate staffing’ with regression coefficients at −0.25 [95% confidence interval (CI), −0.47 to −0.07] and 0.21 (95% CI, 0.07–0.35), respectively. Overall, the intervention group reported significantly more positive culture scores—including at baseline. Conclusions Implementation of the SSC had rather limited impact on the safety culture within this hospital. PMID:23404986

  8. Quantum Brownian motion with inhomogeneous damping and diffusion

    NASA Astrophysics Data System (ADS)

    Massignan, Pietro; Lampo, Aniello; Wehr, Jan; Lewenstein, Maciej

    2015-03-01

    We analyze the microscopic model of quantum Brownian motion, describing a Brownian particle interacting with a bosonic bath through a coupling which is linear in the creation and annihilation operators of the bath, but may be a nonlinear function of the position of the particle. Physically, this corresponds to a configuration in which damping and diffusion are spatially inhomogeneous. We derive systematically the quantum master equation for the Brownian particle in the Born-Markov approximation and we discuss the appearance of additional terms, for various polynomials forms of the coupling. We discuss the cases of linear and quadratic coupling in great detail and we derive, using Wigner function techniques, the stationary solutions of the master equation for a Brownian particle in a harmonic trapping potential. We predict quite generally Gaussian stationary states, and we compute the aspect ratio and the spread of the distributions. In particular, we find that these solutions may be squeezed (superlocalized) with respect to the position of the Brownian particle. We analyze various restrictions to the validity of our theory posed by non-Markovian effects and by the Heisenberg principle. We further study the dynamical stability of the system, by applying a Gaussian approximation to the time-dependent Wigner function, and we compute the decoherence rates of coherent quantum superpositions in position space. Finally, we propose a possible experimental realization of the physics discussed here, by considering an impurity particle embedded in a degenerate quantum gas.

  9. A review on prognostic techniques for non-stationary and non-linear rotating systems

    NASA Astrophysics Data System (ADS)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  10. Koopman operator theory: Past, present, and future

    NASA Astrophysics Data System (ADS)

    Brunton, Steven; Kaiser, Eurika; Kutz, Nathan

    2017-11-01

    Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.

  11. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  12. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  13. An approach to multivariable control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.

  14. Electrostatic interaction between stereocilia: II. Influence on the mechanical properties of the hair bundle.

    PubMed

    Dolgobrodov, S G; Lukashkin, A N; Russell, I J

    2000-12-01

    This paper is based on our model [Dolgobrodov et al., 2000. Hear. Res., submitted for publication] in which we examine the significance of the polyanionic surface layers of stereocilia for electrostatic interaction between them. We analyse how electrostatic forces modify the mechanical properties of the sensory hair bundle. Different charge distribution profiles within the glycocalyx are considered. When modelling a typical experiment on bundle stiffness measurements, applying an external force to the tallest row of stereocilia shows that the asymptotic stiffness of the hair bundle for negative displacements is always larger than the asymptotic stiffness for positive displacements. This increase in stiffness is monotonic for even charge distribution and shows local minima when the negative charge is concentrated in a thinner layer within the cell coat. The minima can also originate from the co-operative effect of electrostatic repulsion and inter-ciliary links with non-linear mechanical properties. Existing experimental observations are compared with the predictions of the model. We conclude that the forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena, which have been recorded from the auditory periphery.

  15. From neurons to circuits: linear estimation of local field potentials

    PubMed Central

    Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel

    2010-01-01

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990

  16. Sequence information gain based motif analysis.

    PubMed

    Maynou, Joan; Pairó, Erola; Marco, Santiago; Perera, Alexandre

    2015-11-09

    The detection of regulatory regions in candidate sequences is essential for the understanding of the regulation of a particular gene and the mechanisms involved. This paper proposes a novel methodology based on information theoretic metrics for finding regulatory sequences in promoter regions. This methodology (SIGMA) has been tested on genomic sequence data for Homo sapiens and Mus musculus. SIGMA has been compared with different publicly available alternatives for motif detection, such as MEME/MAST, Biostrings (Bioconductor package), MotifRegressor, and previous work such Qresiduals projections or information theoretic based detectors. Comparative results, in the form of Receiver Operating Characteristic curves, show how, in 70% of the studied Transcription Factor Binding Sites, the SIGMA detector has a better performance and behaves more robustly than the methods compared, while having a similar computational time. The performance of SIGMA can be explained by its parametric simplicity in the modelling of the non-linear co-variability in the binding motif positions. Sequence Information Gain based Motif Analysis is a generalisation of a non-linear model of the cis-regulatory sequences detection based on Information Theory. This generalisation allows us to detect transcription factor binding sites with maximum performance disregarding the covariability observed in the positions of the training set of sequences. SIGMA is freely available to the public at http://b2slab.upc.edu.

  17. Many-body excitations and deexcitations in trapped ultracold bosonic clouds

    NASA Astrophysics Data System (ADS)

    Theisen, Marcus; Streltsov, Alexej I.

    2016-11-01

    We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.

  18. Successive Projections Algorithm-Multivariable Linear Regression Classifier for the Detection of Contaminants on Chicken Carcasses in Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Wu, W.; Chen, G. Y.; Kang, R.; Xia, J. C.; Huang, Y. P.; Chen, K. J.

    2017-07-01

    During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice-water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)-multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA , and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA-MLR classifier provided the best detection results when compared with the SPA-partial least squares (PLS) regression classifier and the SPA-least squares supported vector machine (LS-SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA-MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.

  19. Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting

    NASA Astrophysics Data System (ADS)

    Palenichka, Roman M.; Zaremba, Marek B.

    2003-03-01

    Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.

  20. Normal form decomposition for Gaussian-to-Gaussian superoperators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Palma, Giacomo; INFN, Pisa; Mari, Andrea

    2015-05-15

    In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms ofmore » their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.« less

  1. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors

    PubMed Central

    Paul, Sarbajit; Chang, Junghwan

    2015-01-01

    A new method to detect the mover position of a linear motor is proposed in this paper. This method employs a simple cheap Hall Effect sensor-based magnetic sensor unit to detect the mover position of the linear motor. With the movement of the linear motor, Hall Effect sensor modules electrically separated 120° along with the idea of three phase balanced condition (va + vb + vc = 0) are used to produce three phase signals. The amplitude of the sensor output voltage signals are adjusted to unit amplitude to minimize the amplitude errors. With the unit amplitude signals three to two phase transformation is done to reduce the three multiples of harmonic components. The final output thus obtained is converted to position data by the use of arctangent function. The measurement accuracy of the new method is analyzed by experiments and compared with the conventional two phase method. Using the same number of sensor modules as the conventional two phase method, the proposed method gives more accurate position information compared to the conventional system where sensors are separated by 90° electrical angles. PMID:26506348

  2. Linear encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

  3. Back-focal-plane position detection with extended linear range for photonic force microscopy.

    PubMed

    Martínez, Ignacio A; Petrov, Dmitri

    2012-09-01

    In photonic force microscopes, the position detection with high temporal and spatial resolution is usually implemented by a quadrant position detector placed in the back focal plane of a condenser. An objective with high numerical aperture (NA) for the optical trap has also been used to focus a detection beam. In that case the displacement of the probe at a fixed position of the detector produces a unique and linear response only in a restricted region of the probe displacement, usually several hundred nanometers. There are specific experiments where the absolute position of the probe is a relevant measure together with the probe position relative the optical trap focus. In our scheme we introduce the detection beam into the condenser with low NA through a pinhole with tunable size. This combination permits us to create a wide detection spot and to achieve the linear range of several micrometers by the probe position detection without reducing the trapping force.

  4. Kalman filter with a linear state model for PDR+WLAN positioning and its application to assisting a particle filter

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Nurminen, Henri; Piché, Robert

    2015-12-01

    Indoor positioning based on wireless local area network (WLAN) signals is often enhanced using pedestrian dead reckoning (PDR) based on an inertial measurement unit. The state evolution model in PDR is usually nonlinear. We present a new linear state evolution model for PDR. In simulated-data and real-data tests of tightly coupled WLAN-PDR positioning, the positioning accuracy with this linear model is better than with the traditional models when the initial heading is not known, which is a common situation. The proposed method is computationally light and is also suitable for smoothing. Furthermore, we present modifications to WLAN positioning based on Gaussian coverage areas and show how a Kalman filter using the proposed model can be used for integrity monitoring and (re)initialization of a particle filter.

  5. A Propagator Expansion Method for Solving Linearized Plasma Kinetic Equations with Collisions.

    DTIC Science & Technology

    1984-06-25

    of the collision frequency. For the linearized Balescu -Lenard collision * operator and for the zero-order distribution function Maxwellian, we obtain...Rev. 94:511. 3. Lenard, A. , and Bernstein, 1. 13. (1958) Phys. Rev. 112:1456. 4. Dougherty, J. P. (1964) Phys. Fluids 7:1788. 5. Balescu , R. (1960...long wavelength limit for the linearized Balescu - Lenard collision operator and for f0 Maxwellian. We obLain the total L damping rate 1 jry which is

  6. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  7. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  8. Rotary encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  9. Normalization of cell responses in cat striate cortex

    NASA Technical Reports Server (NTRS)

    Heeger, D. J.

    1992-01-01

    Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

  10. Quantum processing by remote quantum control

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Zhou, Xiaoqi; Aungskunsiri, Kanin; Cable, Hugo; O'Brien, Jeremy L.

    2017-12-01

    Client-server models enable computations to be hosted remotely on quantum servers. We present a novel protocol for realizing this task, with practical advantages when using technology feasible in the near term. Client tasks are realized as linear combinations of operations implemented by the server, where the linear coefficients are hidden from the server. We report on an experimental demonstration of our protocol using linear optics, which realizes linear combination of two single-qubit operations by a remote single-qubit control. In addition, we explain when our protocol can remain efficient for larger computations, as well as some ways in which privacy can be maintained using our protocol.

  11. Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching

    NASA Astrophysics Data System (ADS)

    Chan, H. M.; Yen, K. S.; Ratnam, M. M.

    2008-09-01

    The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.

  12. Statistical properties of the radiation from SASE FEL operating in the linear regime

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1998-02-01

    The paper presents comprehensive analysis of statistical properties of the radiation from self amplified spontaneous emission (SASE) free electron laser operating in linear mode. The investigation has been performed in a one-dimensional approximation, assuming the electron pulse length to be much larger than a coherence length of the radiation. The following statistical properties of the SASE FEL radiation have been studied: field correlations, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and photoelectric counting statistics of SASE FEL radiation. It is shown that the radiation from SASE FEL operating in linear regime possesses all the features corresponding to completely chaotic polarized radiation.

  13. Finite-dimensional linear approximations of solutions to general irregular nonlinear operator equations and equations with quadratic operators

    NASA Astrophysics Data System (ADS)

    Kokurin, M. Yu.

    2010-11-01

    A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.

  14. Design and test of the Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; Ko, Junseok; Kim, Hyo-Bong; Yeom, Han-Kil; In, Sehwan; Park, Seong-Je

    2017-12-01

    Stirling type pulse tube cryocoolers are very attractive for cooling of diverse application because it has it has several inherent advantages such as no moving part in the cold end, low manufacturing cost and long operation life. To develop the Stirling-type pulse tube cryocooler, we need to design a linear compressor to drive the pulse tube cryocooler. A moving magnet type linear motor of dual piston configuration is designed and fabricated, and this compressor could be operated with the electric power of 100 W and the frequency up to 60 Hz. A single stage coaxial type pulse tube cold finger aiming at over 1.5 W at 80K is built and tested with the linear compressor. Experimental investigations have been conducted to evaluate their performance characteristics with respect to several parameters such as the phase shifter, the charging pressure and the operating frequency of the linear compressor.

  15. Chaotic Oscillations of Second Order Linear Hyperbolic Equations with Nonlinear Boundary Conditions: A Factorizable but Noncommutative Case

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Huang, Yu; Chen, Goong; Huang, Tingwen

    If a second order linear hyperbolic partial differential equation in one-space dimension can be factorized as a product of two first order operators and if the two first order operators commute, with one boundary condition being the van der Pol type and the other being linear, one can establish the occurrence of chaos when the parameters enter a certain regime [Chen et al., 2014]. However, if the commutativity of the two first order operators fails to hold, then the treatment in [Chen et al., 2014] no longer works and significant new challenges arise in determining nonlinear boundary conditions that engenders chaos. In this paper, we show that by incorporating a linear memory effect, a nonlinear van der Pol boundary condition can cause chaotic oscillations when the parameter enters a certain regime. Numerical simulations illustrating chaotic oscillations are also presented.

  16. Learning curve of single port laparoscopic cholecystectomy determined using the non-linear ordinary least squares method based on a non-linear regression model: An analysis of 150 consecutive patients.

    PubMed

    Han, Hyung Joon; Choi, Sae Byeol; Park, Man Sik; Lee, Jin Suk; Kim, Wan Bae; Song, Tae Jin; Choi, Sang Yong

    2011-07-01

    Single port laparoscopic surgery has come to the forefront of minimally invasive surgery. For those familiar with conventional techniques, however, this type of operation demands a different type of eye/hand coordination and involves unfamiliar working instruments. Herein, the authors describe the learning curve and the clinical outcomes of single port laparoscopic cholecystectomy for 150 consecutive patients with benign gallbladder disease. All patients underwent single port laparoscopic cholecystectomy using a homemade glove port by one of five operators with different levels of experiences of laparoscopic surgery. The learning curve for each operator was fitted using the non-linear ordinary least squares method based on a non-linear regression model. Mean operating time was 77.6 ± 28.5 min. Fourteen patients (6.0%) were converted to conventional laparoscopic cholecystectomy. Complications occurred in 15 patients (10.0%), as follows: bile duct injury (n = 2), surgical site infection (n = 8), seroma (n = 2), and wound pain (n = 3). One operator achieved a learning curve plateau at 61.4 min per procedure after 8.5 cases and his time improved by 95.3 min as compared with initial operation time. Younger surgeons showed significant decreases in mean operation time and achieved stable mean operation times. In particular, younger surgeons showed significant decreases in operation times after 20 cases. Experienced laparoscopic surgeons can safely perform single port laparoscopic cholecystectomy using conventional or angled laparoscopic instruments. The present study shows that an operator can overcome the single port laparoscopic cholecystectomy learning curve in about eight cases.

  17. Preparation and evaluation of highly drug-loaded fine globular granules using a multi-functional rotor processor.

    PubMed

    Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.

  18. Estimated SLR station position and network frame sensitivity to time-varying gravity

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Melachroinos, Stavros; Beckley, Brian D.; Beall, Jennifer Wiser; Bordyugov, Oleg

    2014-06-01

    This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993-2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008-2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.

  19. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  20. Bio-inspired sensing and control for disturbance rejection and stabilization

    NASA Astrophysics Data System (ADS)

    Gremillion, Gregory; Humbert, James S.

    2015-05-01

    The successful operation of small unmanned aircraft systems (sUAS) in dynamic environments demands robust stability in the presence of exogenous disturbances. Flying insects are sensor-rich platforms, with highly redundant arrays of sensors distributed across the insect body that are integrated to extract rich information with diminished noise. This work presents a novel sensing framework in which measurements from an array of accelerometers distributed across a simulated flight vehicle are linearly combined to directly estimate the applied forces and torques with improvements in SNR. In simulation, the estimation performance is quantified as a function of sensor noise level, position estimate error, and sensor quantity.

  1. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  2. High resolution particle tracking method by suppressing the wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Chang, Xinyu; Yang, Yuan; Kou, Li; Jin, Lei; Lu, Junsheng; Hu, Xiaodong

    2018-01-01

    Digital in-line holographic microscopy is one of the most efficient methods for particle tracking as it can precisely measure the axial position of particles. However, imaging systems are often limited by detector noise, image distortions and human operator misjudgment making the particles hard to locate. A general method is used to solve this problem. The normalized holograms of particles were reconstructed to the pupil plane and then fit to a linear superposition of the Zernike polynomial functions to suppress the aberrations. Relative experiments were implemented to validate the method and the results show that nanometer scale resolution was achieved even when the holograms were poorly recorded.

  3. A laser measurement system with multi-degree-of-freedom

    NASA Astrophysics Data System (ADS)

    Long, Lingli; Yang, Liangen; Wang, Xuanze; Zhai, Zhongsheng

    2008-10-01

    A new five-degree-of-freedom measuring system was developed as a linear guide. According to the principle of autocollimation, the system consisted of two semiconductor lasers, two right angle prisms, two lenses, two polarization spectroscopes and four quadrant Si-photoelectric detectors(QPD). Two axial displacements and three angular rotation degrees are measured by comparing the position of the spot center on the QPD. Repetitive simulations show that the accuracy of the system is 3" for measurement of angle, which proves the feasibility of this system. The advantages of the system include simple structure, easy operation, high accuracy, low cost and real-time work.

  4. An Introduction to Multilinear Formula Score Theory. Measurement Series 84-4.

    ERIC Educational Resources Information Center

    Levine, Michael V.

    Formula score theory (FST) associates each multiple choice test with a linear operator and expresses all of the real functions of item response theory as linear combinations of the operator's eigenfunctions. Hard measurement problems can then often be reformulated as easier, standard mathematical problems. For example, the problem of estimating…

  5. Reliability issues for a bolometer detector for ITER at high operating temperatures.

    PubMed

    Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H

    2012-10-01

    The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.

  6. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  7. Membrane-less variable focus liquid lens with manual actuation

    NASA Astrophysics Data System (ADS)

    Patra, Roshan; Agarwal, Shivam; Kondaraju, Sasidhar; Bahga, Supreet Singh

    2017-04-01

    We present a tunable, membrane-less, mechanical-wetting liquid lens that can be actuated manually using a linear actuator such as screw or piston. The operation of the liquid lens is based on deforming the interface separating two immiscible liquids with different refractive indices, while pinning the three-phase contact line at the sharp edge of lens aperture. Our lens design improves upon the existing designs of mechanical-wetting lenses by eliminating the use of complex actuation mechanisms, without compromising on the optical performance. We demonstrate the operation of the liquid lens by tuning its power back and forth from negative to positive by simple rotation of a screw. We also present an analytical description of the focal length of the lens and validate it with detailed experimental measurements. Our experiments show that the focal length of the liquid lens can be tuned repeatably without any adverse effects of hysteresis and gravity.

  8. Bootstrapping conformal field theories with the extremal functional method.

    PubMed

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  9. Piping inspection carriage having axially displaceable sensor

    DOEpatents

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  10. Inductive Non-Contact Position Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Garcia, Alyssa; Simmons, Stephen

    2010-01-01

    Optical hardware has been developed to measure the depth of defects in the Space Shuttle Orbiter's windows. In this hardware, a mirror is translated such that its position corresponds to the defect's depth, so the depth measurement problem is transferred to a mirror-position measurement problem. This is preferable because the mirror is internal to the optical system and thus accessible. Based on requirements supplied by the window inspectors, the depth of the defects needs to be measured over a range of 200 microns with a resolution of about 100 nm and an accuracy of about 400 nm. These same requirements then apply to measuring the position of the mirror, and in addition, since this is a scanning system, a response time of about 10 ms is needed. A market search was conducted and no sensor that met these requirements that also fit into the available housing volume (less than one cubic inch) was found, so a novel sensor configuration was constructed to meet the requirements. This new sensor generates a nearly linearly varying magnetic field over a small region of space, which can easily be sampled, resulting in a voltage proportional to position. Experiments were done with a range of inductor values, drive voltages, drive frequencies, and inductor shapes. A rough mathematical model was developed for the device that, in most aspects, describes how it operates and what electrical parameters should be chosen for best performance. The final configuration met all the requirements, yielding a small rugged sensor that was easy to use and had nanometer resolution over more than the 200-micron range required. The inductive position sensor is a compact device (potentially as small as 2 cubic centimeters), which offers nanometer-position resolution over a demonstrated range of nearly 1 mm. One of its advantages is the simplicity of its electrical design. Also, the sensor resolution is nearly uniform across its operational range, which is in contrast to eddy current and capacitive sensors whose sensitivity is dependent upon position.

  11. Quasistatic elastoplasticity via Peridynamics: existence and localization

    NASA Astrophysics Data System (ADS)

    Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse

    2018-04-01

    Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.

  12. Automatic determination of optimal linear drilling trajectories for cochlear access accounting for drill-positioning error.

    PubMed

    Noble, Jack H; Majdani, Omid; Labadie, Robert F; Dawant, Benoit; Fitzpatrick, J Michael

    2010-09-01

    Cochlear implantation is a surgical procedure in which an electrode array is permanently implanted into the cochlea to stimulate the auditory nerve and allow deaf people to hear. Percutaneous cochlear access, a new minimally invasive implantation approach, requires drilling a single linear channel from the skull surface to the cochlea. The focus of this paper addresses a major challenge with this approach, which is the ability to determine, in a pre-operative CT, a safe and effective drilling trajectory. A measure of the safety and effectiveness of a given trajectory relative to sensitive structures is derived using a Monte Carlo approach. The drilling trajectory that maximizes this measure is found using an optimization algorithm. In tests on 13 ears, the technique was shown to find approximately twice as many acceptable trajectories as those found manually by an experienced surgeon. Using this method, safe trajectories can be automatically determined quickly and consistently. Copyright 2010 John Wiley & Sons, Ltd.

  13. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  14. Why Does Rebalancing Class-Unbalanced Data Improve AUC for Linear Discriminant Analysis?

    PubMed

    Xue, Jing-Hao; Hall, Peter

    2015-05-01

    Many established classifiers fail to identify the minority class when it is much smaller than the majority class. To tackle this problem, researchers often first rebalance the class sizes in the training dataset, through oversampling the minority class or undersampling the majority class, and then use the rebalanced data to train the classifiers. This leads to interesting empirical patterns. In particular, using the rebalanced training data can often improve the area under the receiver operating characteristic curve (AUC) for the original, unbalanced test data. The AUC is a widely-used quantitative measure of classification performance, but the property that it increases with rebalancing has, as yet, no theoretical explanation. In this note, using Gaussian-based linear discriminant analysis (LDA) as the classifier, we demonstrate that, at least for LDA, there is an intrinsic, positive relationship between the rebalancing of class sizes and the improvement of AUC. We show that the largest improvement of AUC is achieved, asymptotically, when the two classes are fully rebalanced to be of equal sizes.

  15. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  16. A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang

    2013-01-01

    A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.

  17. Five degree-of-freedom control of an ultra-precision magnetically-suspended linear bearing. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Slocum, A. H.

    1991-01-01

    The authors constructed a high precision linear bearing. A 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is suspended and controlled in five degrees of freedom by seven electromagnets. The position of the platen is measured by five capacitive probes which have nanometer resolution. The suspension acts as a linear bearing, allowing linear travel of 50 mm in the sixth degree of freedom. In the laboratory, this bearing system has demonstrated position stability of 5 nm peak-to-peak. This is believed to be the highest position stability yet demonstrated in a magnetic suspension system. Performance at this level confirms that magnetic suspensions can address motion control requirements at the nanometer level. The experimental effort associated with this linear bearing system is described. Major topics are the development of models for the suspension, implementation of control algorithms, and measurement of the actual bearing performance. Suggestions for the future improvement of the bearing system are given.

  18. Linear programming model to develop geodiversity map using utility theory

    NASA Astrophysics Data System (ADS)

    Sepehr, Adel

    2015-04-01

    In this article, the classification and mapping of geodiversity based on a quantitative methodology was accomplished using linear programming, the central idea of which being that geosites and geomorphosites as main indicators of geodiversity can be evaluated by utility theory. A linear programming method was applied for geodiversity mapping over Khorasan-razavi province located in eastern north of Iran. In this route, the main criteria for distinguishing geodiversity potential in the studied area were considered regarding rocks type (lithology), faults position (tectonic process), karst area (dynamic process), Aeolian landforms frequency and surface river forms. These parameters were investigated by thematic maps including geology, topography and geomorphology at scales 1:100'000, 1:50'000 and 1:250'000 separately, imagery data involving SPOT, ETM+ (Landsat 7) and field operations directly. The geological thematic layer was simplified from the original map using a practical lithologic criterion based on a primary genetic rocks classification representing metamorphic, igneous and sedimentary rocks. The geomorphology map was provided using DEM at scale 30m extracted by ASTER data, geology and google earth images. The geology map shows tectonic status and geomorphology indicated dynamic processes and landform (karst, Aeolian and river). Then, according to the utility theory algorithms, we proposed a linear programming to classify geodiversity degree in the studied area based on geology/morphology parameters. The algorithm used in the methodology was consisted a linear function to be maximized geodiversity to certain constraints in the form of linear equations. The results of this research indicated three classes of geodiversity potential including low, medium and high status. The geodiversity potential shows satisfied conditions in the Karstic areas and Aeolian landscape. Also the utility theory used in the research has been decreased uncertainty of the evaluations.

  19. Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets

    DTIC Science & Technology

    2011-01-01

    additional a transportation system operator (TSO) who manages the congestion and 172 flows. The TSO’s linear program is as follows (where other...were tested are shown in Table 5.11 below. Node 1 Node 2 Producer A Producer B Producer C Producer D Transmission System Operator 174... Systems to Solve Problems that are Not Linear. Operational Research Quarterly , 26, 609–618. 9. Beale, E., & Tomlin, J. (1970). Special Facilities

  20. Higher operation temperature quadrant photon detectors of 2-11 μm wavelength radiation with large photosensitive areas

    NASA Astrophysics Data System (ADS)

    Pawluczyk, J.; Sosna, A.; Wojnowski, D.; Koźniewski, A.; Romanis, M.; Gawron, W.; Piotrowski, J.

    2017-10-01

    We report on the quadrant photon HgCdTe detectors optimized for 2-11 μm wavelength spectral range and Peltier or no cooling, and photosensitive area of a quad-cell of 1×1 to 4×4 mm. The devices are fabricated as photoconductors or multiple photovoltaic cells connected in series (PVM). The former are characterized by a relatively uniform photosensitive area. The PVM photovoltaic cells are distributed along the wafer surface, comprising a periodical stripe structure with a period of 20 μm. Within each period, there is an insensitive gap/trench < 9 μm wide between stripe mesas. The resulting spatial quantization error prevents positioning of the beam spot of size close to the period, but becomes negligible for the optimal spot size comparable to a quadrant-cell area. The photoconductors produce 1/f noise with about 10 kHz knee frequency, due to bias necessary for their operation. The PVM photodiodes are typically operated at 0 V bias, so they generate no 1/f noise and operation from DC is enabled. At 230 K, upper corner frequency of 16 to 100 MHz is obtained for photoconductor and 60 to 80 MHz for PVM, normalized detectivity D* 6×107 cm×Hz1/2/W to >1.4×108 cm×Hz1/2/W for photoconductor and >1.7×108 cm·Hz1/2/W for PVM, allowing for position control of the radiation beam with submicron accuracy at 16 MHz, 10.6 μm wavelength of pulsed radiation spot of 0.8 mm dia at the close-to-maximal input radiation power density in a range of detector linear operation.

  1. Video Image Tracking Engine

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Bryan, ThomasC. (Inventor); Book, Michael L. (Inventor)

    2004-01-01

    A method and system for processing an image including capturing an image and storing the image as image pixel data. Each image pixel datum is stored in a respective memory location having a corresponding address. Threshold pixel data is selected from the image pixel data and linear spot segments are identified from the threshold pixel data selected.. Ihe positions of only a first pixel and a last pixel for each linear segment are saved. Movement of one or more objects are tracked by comparing the positions of fust and last pixels of a linear segment present in the captured image with respective first and last pixel positions in subsequent captured images. Alternatively, additional data for each linear data segment is saved such as sum of pixels and the weighted sum of pixels i.e., each threshold pixel value is multiplied by that pixel's x-location).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Charles Ci Wen; Xu, Feihu; Siopsis, George

    Quantum position verification (QPV) is the art of verifying the geographical location of an untrusted party. It has recently been shown that the widely studied Bennett & Brassard 1984 (BB84) QPV protocol is insecure after the 3 dB loss point assuming local operations and classical communication (LOCC) adversaries. Here in this paper, we propose a time-reversed entanglement swapping QPV protocol (based on measurement-device-independent quantum cryptography) that is highly robust against quantum channel loss. First, assuming ideal qubit sources, we show that the protocol is secure against LOCC adversaries for any quantum channel loss, thereby overcoming the 3 dB loss limit.more » Then, we analyze the security of the protocol in a more practical setting involving weak laser sources and linear optics. Lastly, in this setting, we find that the security only degrades by an additive constant and the protocol is able to verify positions up to 47 dB channel loss.« less

  3. Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents.

    PubMed

    Cook, Greg W; LaPuma, Peter T; Hook, Gary L; Eckenrode, Brian A

    2010-11-01

    Ion mobility spectrometry (IMS) is a valued field detection technology because of its speed and high sensitivity, but IMS cannot easily resolve analytes of interest within mixtures. Coupling gas chromatography (GC) to IMS adds a separation capability to resolve complex matrices. A GC-IONSCAN® operated in IMS and GC⁄ IMS modes was evaluated with combinations of five explosives and four interferents. In 100 explosive/interferent combinations, IMS yielded 21 false positives while GC⁄ IMS substantially reduced the occurrence of false positives to one. In addition, the results indicate that through redesign or modification of the preconcentrator there would be significant advantages to using GC⁄ IMS, such as enhancement of the linear dynamic range (LDR) in some situations. By balancing sensitivity with LDR, GC⁄ IMS could prove to be a very advantageous tool when addressing real world complex mixture situations.

  4. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  5. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  6. Optical telescope refocussing mechanism concept design on remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  7. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  8. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  9. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  10. Rf linearity in low dimensional nanowire mosfets

    NASA Astrophysics Data System (ADS)

    Razavieh, Ali

    Ever decreasing cost of electronics due to unique scaling potential of today's VLSI processes such as CMOS technology along with innovations in RF devices, circuits and architectures make wireless communication an un-detachable part of everyday's life. This rapid transition of communication systems toward wireless technologies over last couple of decades resulted in operation of numerous standards within a small frequency window. More traffic in adjacent frequency ranges imposes more constraints on the linearity of RF front-end stages, and increases the need for more effective linearization techniques. Long-established ways to improve linearity in DSM CMOS technology are focused on system level methods which require complex circuit design techniques due to challenges such as nonlinear output conductance, and mobility degradation especially when low supply voltage is a key factor. These constrains have turned more focus toward improvement of linearity at the device level in order to simplify the existing linearization techniques. This dissertation discusses the possibility of employing nanostructures particularly nanowires in order to achieve and improve RF linearity at the device level by making a connection between the electronic transport properties of nanowires and their circuit level RF characteristics (RF linearity). Focus of this work is mainly on transconductance (gm) linearity because of the following reasons: 1) due to good electrostatics, nanowire transistors show fine current saturation at very small supply voltages. Good current saturation minimizes the output conductance nonlinearities. 2) non-linearity due to the gate to source capacitances (Cgs) can also be ignored in today's operating frequencies due to small gate capacitance values. If three criteria: i) operation in the quantum capacitance limit (QCL), ii) one-dimensional (1-D) transport, and iii) operation in the ballistic transport regime are met at the same time, a MOSFET will exhibit an ideal linear Id-Vgs characteristics with a constant gm of which is independent of the choice of channel material when operated under high enough drain voltages. Unique scaling potential of nanowires in terms of body thickness, channel length, and oxide thickness makes nanowire transistors an excellent device structure of choice to operate in 1-D ballistic transport regime in the QCL. A set of guidelines is provided for material parameters and device dimensions for nanowire FETs, which meet the three criteria of i) 1-D transport ii) operation in the QCL iii) ballistic transport, and challenges and limitations of fulfilling any of the above transport conditions from materials point of view are discussed. This work also elaborates how a non-ideal device, one that approaches but does not perfectly fulfill criteria i) through iii), can be analyzed in terms of its linearity performance. In particular the potential of silicon based devices will be discussed in this context, through mixture of experiment and simulation. 1-D transport is successfully achieved in the lab. QCL is simulated through back calculation of the band movement of the transistors in on-state. Quasi-ballistic transport conditions can be achieved by cooling down the samples to 77K. Since, ballistic transport is challenging to achieve for practical channel lengths in today's leading semiconductor device technologies the effect of carrier back-scattering on RF linearity is explored through third order intercept point (IIP3) analysis. These findings show that for the devices which operate in the QCL, while 1-D sub-bands are involved in carrier transport, current linearity is directly related to the nature of the dominant scattering mechanism in the channel, and can be improved by proper choice of channel material in order to enforce a specific scattering mechanism to prevail in the channel. Usually, in semiconductors, the dominant scattering mechanism in the channel is the superposition of different mechanisms. Suitable choice of channel material and bias conditions can magnify the effect of a particular scattering mechanism to achieve higher linearity levels. The closing section of this thesis focuses on InAS due to its potential for high linearity since it has small effective mass and large mean-free-path.

  11. Rotary encoding device with polygonal reflector and centroid detection

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1994-01-01

    A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  12. Compatible diagonal-norm staggered and upwind SBP operators

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; O'Reilly, Ossian

    2018-01-01

    The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.

  13. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  14. Predicting procedural pain after ureteroscopy: does hydrodistention play a role?

    PubMed Central

    Gul, Zeynep; Alazem, Kareem; Li, Ina; Monga, Manoj

    2016-01-01

    ABSTRACT Purpose: To identify perioperative predictors of immediate pain after ureteroscopy, specifically evaluating the impact of hydrodistention from irrigation on pain. Materials and Methods: We retrospectively identified patients who underwent ureteroscopy for the treatment of calculi. Data recorded for these patients included their maximum pain score in the post-anesthesia care unit (PACU), average flow rate of irrigant used during the procedure, patient and stone characteristics, operative procedure, and details of patients' immediate, post-operative course. Spearman's rho was used to determine the relationship between non-parametric, continuous variables. Then, a linear regression was performed to assess which variables could predict the peak pain score. Results: A total of 131 patients were included in the study. A non-parametric correlation analysis revealed that maximum pain score was negatively correlated with being male (r = −0.18, p=0.04), age (r = −0.34, p<0.001), and post-op foley placement (r = −0.20, p=0.02) but positively correlated with the preoperative pain score (r = 0.41, p<0.001), time in the PACU (r = 0.19, p = 0.03), and the morphine equivalent dose (MED) of narcotics administered in the PACU (r = 0.67, p<0.001). On linear regression, the significant variables were age, preoperative pain score, and stent placement. For every ten-year increase in age post-operative pain score decreased by 4/10 of a point (p = 0.03). For every 1 point increase in preoperative pain score there was a 3/10 of a point increase in the maximum pain score (p = 0.01), and leaving a stent in place post-operatively was associated with a 1.6 point increase in the maximum pain score. Conclusions: Hydrodistention does not play a role in post-ureteroscopy pain. Patients who are younger, have higher preoperative pain scores, or who are stented will experience more post-operative pain after ureteroscopy. PMID:27564284

  15. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  16. Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.

    PubMed

    Trninić, Marko; Jeličić, Mario; Papić, Vladan

    2015-07-01

    In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.

  17. The linear regulator problem for parabolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1983-01-01

    An approximation framework is presented for computation (in finite imensional spaces) of Riccati operators that can be guaranteed to converge to the Riccati operator in feedback controls for abstract evolution systems in a Hilbert space. It is shown how these results may be used in the linear optimal regulator problem for a large class of parabolic systems.

  18. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  19. Integration and Interoperability of Special Operations Forces and Conventional Forces in Irregular Warfare

    DTIC Science & Technology

    2009-06-12

    Phasing Model ......................................................................................................9 Figure 2. The Continuum of...the communist periphery. In a high-intensity conflict, doctrine at the time called for conventional forces to fight the traditional, linear fight...operations and proximity of cross component forces in a non- linear battlespace – Rigid business rules, translator applications, or manual workarounds to

  20. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  1. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  2. Surface wave and linear operating mode of a plasma antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristicsmore » of the plasma antenna in this mode are close to those of an analogous metal antenna.« less

  3. Linear positioning laser calibration setup of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Sui, Xiulin; Yang, Congjing

    2002-10-01

    The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.

  4. Simulating Operation of a Large Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Frederick, Dean K.; DeCastro, Jonathan

    2008-01-01

    The Commercial Modular Aero- Propulsion System Simulation (C-MAPSS) is a computer program for simulating transient operation of a commercial turbofan engine that can generate as much as 90,000 lb (.0.4 MN) of thrust. It includes a power-management system that enables simulation of open- or closed-loop engine operation over a wide range of thrust levels throughout the full range of flight conditions. C-MAPSS provides the user with a set of tools for performing open- and closed-loop transient simulations and comparison of linear and non-linear models throughout its operating envelope, in an easy-to-use graphical environment.

  5. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  6. Using an elastic magnifier to increase power output and performance of heart-beat harvesters

    NASA Astrophysics Data System (ADS)

    Galbier, Antonio C.; Karami, M. Amin

    2017-09-01

    Embedded piezoelectric energy harvesting (PEH) systems in medical pacemakers have been a growing and innovative research area. The goal of these systems, at present, is to remove the pacemaker battery, which makes up 60%-80% of the unit, and replace it with a sustainable power source. This requires that energy harvesting systems provide sufficient power, 1-3 μW, for operating a pacemaker. The goal of this work is to develop, test, and simulate cantilevered energy harvesters with a linear elastic magnifier (LEM). This research hopes to provide insight into the interaction between pacemaker energy harvesters and the heart. By introducing the elastic magnifier into linear and nonlinear systems oscillations of the tip are encouraged into high energy orbits and large tip deflections. A continuous nonlinear model is presented for the bistable piezoelectric energy harvesting (BPEH) system and a one-degree-of-freedom linear mass-spring-damper model is presented for the elastic magnifier. The elastic magnifier will not consider the damping negligible, unlike most models. A physical model was created for the bistable structure and formed to an elastic magnifier. A hydrogel was designed for the experimental model for the LEM. Experimental results show that the BPEH coupled with a LEM (BPEH + LEM) produces more power at certain input frequencies and operates a larger bandwidth than a PEH, BPEH, and a standard piezoelectric energy harvester with the elastic magnifier (PEH + LEM). Numerical simulations are consistent with these results. It was observed that the system enters high-energy and high orbit oscillations and that, ultimately, BPEH systems implemented in medical pacemakers can, if designed properly, have enhanced performance if positioned over the heart.

  7. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools

    PubMed Central

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-01-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343

  8. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.

    PubMed

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-03-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.

  9. Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.

    1990-02-01

    A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.

  10. Analysis of Zenith Tropospheric Delay above Europe based on long time series derived from the EPN data

    NASA Astrophysics Data System (ADS)

    Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej

    2015-04-01

    In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.

  11. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PILAT,F.; CAMERON,P.; PTITSYN,V.

    2002-06-02

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analysing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developedmore » that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10{sup -5} resolution) determines the multipole content of an IR triplet.« less

  12. Solar shutter arrangement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, P.L.

    1988-02-02

    In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less

  13. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of up to eight times with respect to an equivalent single-grid method, and by two times with respect to an artificially-stabilized MG method.

  14. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, R.W.; Silva, L.L.

    1988-05-10

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.

  15. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  16. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring.

    PubMed

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J

    2012-11-21

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(t(i)) and the projected marker positions p(x(p), y(p); t(i)) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(x(p), y(p); t(i)) - P(θ(i)) · (aR(t(i)) + bR(t(i) - τ) + c)‖(2) with the projection operator P(θ(i)). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been experimentally investigated for arc and static field delivery. The average beam-target error was 1 mm.

  17. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2012-11-01

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) - P(θi) · (aR(ti) + bR(ti - τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been experimentally investigated for arc and static field delivery. The average beam-target error was 1 mm.

  18. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  19. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE PAGES

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...

    2017-02-04

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  20. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  1. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  2. Effects of Cerebral Blood Flow and Vessel Conditions on Speech Recognition in Patients With Postlingual Adult Cochlear Implant: Predictable Factors for the Efficacy of Cochlear Implant.

    PubMed

    Ishino, Takashi; Ragaee, Mahmoud Ali; Maruhashi, Tatsuya; Kajikawa, Masato; Higashi, Yukihito; Sonoyama, Toru; Takeno, Sachio; Hirakawa, Katsuhiro

    Cochlear implantation (CI) has been the most successful procedure for restoring hearing in a patient with severe and profound hearing loss. However, possibly owing to the variable brain functions of each patient, its performance and the associated patient satisfaction are widely variable. The authors hypothesize that peripheral and cerebral circulation can be assessed by noninvasive and globally available methods, yielding superior presurgical predictive factors of the performance of CI in adult patients with postlingual hearing loss who are scheduled to undergo CI. Twenty-two adult patients with cochlear implants for postlingual hearing loss were evaluated using Doppler sonography measurement of the cervical arteries (reflecting cerebral blood flow), flow-mediated dilation (FMD; reflecting the condition of cerebral arteries), and their pre-/post-CI best score on a monosyllabic discrimination test (pre-/post-CI best monosyllabic discrimination [BMD] score). Correlations between post-CI BMD score and the other factors were examined using univariate analysis and stepwise multiple linear regression analysis. The prediction factors were calculated by examining the receiver-operating characteristic curve between post-CI BMD score and the significantly positively correlated factors. Age and duration of deafness had a moderately negative correlation. The mean velocity of the internal carotid arteries and FMD had a moderate-to-strong positive correlation with the post-CI BMD score in univariate analysis. Stepwise multiple linear regression analysis revealed that only FMD was significantly positively correlated with post-CI BMD score. Analysis of the receiver-operating characteristic curve showed that a FMD cutoff score of 1.8 significantly predicted post-CI BMD score. These data suggest that FMD is a convenient, noninvasive, and widely available tool for predicting the efficacy of cochlear implants. An FMD cutoff score of 1.8 could be a good index for determining whether patients will hear well with cochlear implants. It could also be used to predict whether cochlear implants will provide good speech recognition benefits to candidates, even if their speech discrimination is poor. This FMD index could become a useful predictive tool for candidates with poor speech discrimination to determine the efficacy of CI before surgery.

  3. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  4. Linear Motor With Air Slide

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  5. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  6. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  7. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams.

    PubMed

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Koopman Operator Framework for Time Series Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  9. Array of Hall Effect Sensors for Linear Positioning of a Magnet Independently of Its Strength Variation. A Case Study: Monitoring Milk Yield during Milking in Goats

    PubMed Central

    García-Diego, Fernando-Juan; Sánchez-Quinche, Angel; Merello, Paloma; Beltrán, Pedro; Peris, Cristófol

    2013-01-01

    In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R2 = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%. PMID:23793020

  10. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  11. Algorithms for sorting unsigned linear genomes by the DCJ operations.

    PubMed

    Jiang, Haitao; Zhu, Binhai; Zhu, Daming

    2011-02-01

    The double cut and join operation (abbreviated as DCJ) has been extensively used for genomic rearrangement. Although the DCJ distance between signed genomes with both linear and circular (uni- and multi-) chromosomes is well studied, the only known result for the NP-complete unsigned DCJ distance problem is an approximation algorithm for unsigned linear unichromosomal genomes. In this article, we study the problem of computing the DCJ distance on two unsigned linear multichromosomal genomes (abbreviated as UDCJ). We devise a 1.5-approximation algorithm for UDCJ by exploiting the distance formula for signed genomes. In addition, we show that UDCJ admits a weak kernel of size 2k and hence an FPT algorithm running in O(2(2k)n) time.

  12. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  13. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Lin; Park, Sungsu

    2005-09-01

    This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.

  14. Multivariable control of a rolling spider drone

    NASA Astrophysics Data System (ADS)

    Lyu, Haifeng

    The research and application of Unmanned Aerial Vehicles (UAVs) has been a hot topic recently. A UAV is dened as an aircraft which is designed not to carry a human pilot or operated with remote electronic input by the flight controller. In this thesis, the design of a control system for a quadcopter named Rolling Spider Drone is conducted. The thesis work presents the design of two kinds of controllers that can control the Drone to keep it balanced and track different kinds of input trajectories. The nonlinear mathematical model for the Drone is derived by the Newton-Euler method. The rotational subsystem and translational system are derived to describe the attitude and position motion of Drone. Techniques from linear control theory are employed to linearize the highly coupled and nonlinear quadcopter plant around equilibrium points and apply the linear feedback controller to stabilize the system. The controller is a digital tracking system that deploys LQR for system stability design. Fixed gain and adaptive gain scheduled controllers are developed and compared with different LQR weights. Step references and reference trajectories involving signicant variation for the yaw angle in the xy-plane and three-dimensional spaces are tracked in the simulation. The physical implementation and an output feedback controller are considered for future work.

  15. Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application

    NASA Astrophysics Data System (ADS)

    Bhojwani, Virendra; Inamdar, Asif; Lele, Mandar; Tendolkar, Mandar; Atrey, Milind; Bapat, Shridhar; Narayankhedkar, Kisan

    2017-04-01

    A two-stage Stirling Cryocooler has been developed and tested for cooling IR sensors in space application. The concept uses an opposed piston linear compressor to drive the two-stage Stirling expander. The configuration used a moving coil linear motor for the compressor as well as for the expander unit. Electrical phase difference of 80 degrees was maintained between the voltage waveforms supplied to the compressor motor and expander motor. The piston and displacer surface were coated with Rulon an anti-friction material to ensure oil less operation of the unit. The present article discusses analysis results, features of the cryocooler and experimental tests conducted on the developed unit. The two-stages of Cryo-cylinder and the expander units were manufactured from a single piece to ensure precise alignment between the two-stages. Flexure bearings were used to suspend the piston and displacer about its mean position. The objective of the work was to develop a two-stage Stirling cryocooler with 2 W at 120 K and 0.5 W at 60 K cooling capacity for the two-stages and input power of less than 120 W. The Cryocooler achieved a minimum temperature of 40.7 K at stage 2.

  16. Design principles and operating principles: the yin and yang of optimal functioning.

    PubMed

    Voit, Eberhard O

    2003-03-01

    Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.

  17. Design and characterization of a plastic optical fiber pH sensor

    NASA Astrophysics Data System (ADS)

    Ferreira, Licínio; Simões, Pedro; Carvalho, Rui S.; Lopes, Paulo; Ferreira, Mário

    2013-11-01

    In this paper are present the design and characterization of a pH sensor using plastic optical fiber (POF) technology and a material produced by the sol-gel process with TEOS (tetraethyl orthosilicate) to immobilize universal indicator of pH (comprised of Thymol Blue, Methyl Red, Bromothymol Blue and Phenolphthalein) inside the silica matrix. This matrix is positioned between two extensions of plastic optical fiber tightly positioned at each side with both fibers aligned and sharing a common optical axis. This set will work as a pH sensor since the matrix embedded with indicator and in the presence of a solution (basic or acid solution) will change the optical transmittance properties. The optical source is a superluminescent white LED and the receiver is a photodiode having a good and linear responsivity in the visible spectrum. This pH sensitive matrix has large pores which allow the diffusion of the surrounding fluid molecules into the matrix and thus the close contact of these to the indicator molecules. This contact causes the change of color of the whole matrix allowing proper colorimetric detection by the photodiode. This variation of color associated with the detector wavelength linear response is the base of operation of the proposed device. This pH sensor presents many advantages over the standard and commercial pH meters namely, lightweight, portability and a low cost.

  18. Internal and external environmental factors affecting the performance of hospital-based home nursing care.

    PubMed

    Noh, J-W; Kwon, Y-D; Yoon, S-J; Hwang, J-I

    2011-06-01

    Numerous studies on HNC services have been carried out by signifying their needs, efficiency and effectiveness. However, no study has ever been performed to determine the critical factors associated with HNC's positive results despite the deluge of positive studies on the service. This study included all of the 89 training hospitals that were practising HNC service in Korea as of November 2006. The input factors affecting the performance were classified as either internal or external environmental factors. This analysis was conducted to understand the impact that the corresponding factors had on performance. Data were analysed by using multiple linear regressions. The internal and external environment variables affected the performance of HNC based on univariate analysis. The meaningful variables were internal environmental factors. Specifically, managerial resource (the number of operating beds and the outpatient/inpatient ratio) were meaningful when the multiple linear regression analysis was performed. Indeed, the importance of organizational culture (the passion of HNC nurses) was significant. This study, considering the limited market size of Korea, illustrates that the critical factor for the development of hospital-led HNC lies with internal environmental factors rather than external ones. Among the internal environmental factors, the hospitals' managerial resource-related factors (specifically, the passion of nurses) were the most important contributing element. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  19. Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. II

    NASA Astrophysics Data System (ADS)

    Kazeykina, Anna; Muñoz, Claudio

    2018-04-01

    We continue our study on the Cauchy problem for the two-dimensional Novikov-Veselov (NV) equation, integrable via the inverse scattering transform for the two dimensional Schrödinger operator at a fixed energy parameter. This work is concerned with the more involved case of a positive energy parameter. For the solution of the linearized equation we derive smoothing and Strichartz estimates by combining new estimates for two different frequency regimes, extending our previous results for the negative energy case [18]. The low frequency regime, which our previous result was not able to treat, is studied in detail. At non-low frequencies we also derive improved smoothing estimates with gain of almost one derivative. Then we combine the linear estimates with a Fourier decomposition method and Xs,b spaces to obtain local well-posedness of NV at positive energy in Hs, s > 1/2. Our result implies, in particular, that at least for s > 1/2, NV does not change its behavior from semilinear to quasilinear as energy changes sign, in contrast to the closely related Kadomtsev-Petviashvili equations. As a complement to our LWP results, we also provide some new explicit solutions of NV at zero energy, generalizations of the lumps solutions, which exhibit new and nonstandard long time behavior. In particular, these solutions blow up in infinite time in L2.

  20. Spiky strings and single trace operators in gauge theories

    NASA Astrophysics Data System (ADS)

    Kruczenski, Martin

    2005-08-01

    We consider single trace operators of the form Script Ol1...ln = Tr D+l1F...D+lnF which are common to all gauge theories. We argue that, when all li are equal and large, they have a dual description as strings with cusps, or spikes, one for each field F. In the case of Script N = 4 SYM, we compute the energy as a function of angular momentum by finding the corresponding solutions in AdS5 and compare with a 1-loop calculation of the anomalous dimension. As in the case of two spikes (twist two operators), there is agreement in the functional form but not in the coupling constant dependence. After that, we analyze the system in more detail and find an effective classical mechanics describing the motion of the spikes. In the appropriate limit, it is the same (up to the coupling constant dependence) as the coherent state description of linear combinations of the operators Script Ol1...ln such that all li are equal on average. This agreement provides a map between the operators in the boundary and the position of the spikes in the bulk. We further suggest that moving the spikes in other directions should describe operators with derivatives other than D+ indicating that these ideas are quite generic and should help in unraveling the string description of the large-N limit of gauge theories.

  1. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  2. Method and apparatus for assembling solid oxide fuel cells

    DOEpatents

    Szreders, B.E.; Campanella, N.

    1988-05-11

    This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.

  3. Pressure fluctuations and time scales in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh

    2015-11-01

    Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.

  4. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.

    PubMed

    Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan

    2015-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.

  5. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  6. A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes

    PubMed Central

    Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan

    2017-01-01

    A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039

  7. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  8. [The application status of the linear stapler device in the total laryngectomy].

    PubMed

    Wang, W U; Wei, X L; Su, J P

    2017-01-01

    Summary It is very obvious that the linear stapler can shorten the operation time, reduce the incidence of pharyngeal fistula, and shorten the oral feeding time in total laryngectomy. However the stapler was used in the total laryngectomy not as widespread as in gastrointestinal surgery. In order to further understanding the function of the linear stapler device in the total laryngectomy, the stapler's composition, working principle, classification,method to use, operation method, and application of advantages and disadvantages will be reviewed. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  9. New techniques for the analysis of manual control systems. [mathematical models of human operator behavior

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.

    1971-01-01

    Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.

  10. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  11. End State: The Fallacy of Modern Military Planning

    DTIC Science & Technology

    2017-04-06

    operational planning for non -linear, complex scenarios requires application of non -linear, advanced planning techniques such as design methodology ...cannot be approached in a linear, mechanistic manner by a universal planning methodology . Theater/global campaign plans and theater strategies offer no...strategic environments, and instead prescribes a universal linear methodology that pays no mind to strategic complexity. This universal application

  12. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  13. Ultrasound-guided approach to the cervical articular process joints in horses: a validation of the technique in cadavers.

    PubMed

    Purefoy Johnson, Jessica; Stack, John David; Rowan, Conor; Handel, Ian; O'Leary, John Mark

    2017-05-22

    To compare accuracy of the ultrasound-guided craniodorsal (CrD) approach with the dorsal (D) approach to the cervical articular process joints, and to evaluate the effect of the transducer, needle gauge, and operator experience. Cervical articular process joints from 14 cadaveric neck specimens were injected using either a D or CrD approach, a linear (13 MHx) or microconvex transducer (10 MHz), and an 18 or 20 gauge needle, by an experienced or inexperienced operator. Injectate consisted of an iodinated contrast material solution. Time taken for injection, number of redirects, and retrieval of synovial fluid were recorded. Accuracy was assessed using a scoring system for contrast seen on computed tomography (CT). The successful performance of intra-articular injections of contrast detected by CT using the D (61/68) and CrD (57/64) approaches was comparable. No significant effect of approach, transducer or needle gauge was observed on injection accuracy, time taken to perform injection, or number of redirects. The 18 gauge needle had a positive correlation with retrieval of synovial fluid. A positive learning curve was observed for the inexperienced operator. Both approaches to the cervical articular process joints were highly accurate. Ultrasound-guided injection of the cervical articular process joints is an easily-learnt technique for an inexperienced veterinarian. Either approach may be employed in the field with a high level of accuracy, using widely available equipment.

  14. On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Martel, G.; Chédot, C.; Réglier, V.; Hideur, A.; Ortaç, B.; Grelu, Ph.

    2007-02-01

    On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.

  15. Quantum treatment of field propagation in a fiber near the zero dispersion wavelength

    NASA Astrophysics Data System (ADS)

    Safaei, A.; Bassi, A.; Bolorizadeh, M. A.

    2018-05-01

    In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.

  16. A climate-compatible approach to development practice by international humanitarian NGOs.

    PubMed

    Clarke, Matthew; de Cruz, Ian

    2015-01-01

    If current climate-change predictions prove accurate, non-linear change, including potentially catastrophic change, is possible and the environments in which international humanitarian NGOs operate will change figuratively and literally. This paper proposes that a new approach to development is required that takes changing climate into account. This 'climate-compatible approach' to development is a bleak shift from some of the current orthodox positions and will be a major challenge to international humanitarian NGOs working with the most vulnerable. However, it is necessary to address the challenges and context such NGOs face, and the need to be resilient and adaptive to these changes. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  17. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  18. [Gastric stromal tumor treated by laparoscopic surgery].

    PubMed

    Alecu, L; Costan, I; Vitalariu, A; Obrocea, F; Păcuraru, Elena; Gulinescu, L

    2002-01-01

    The authors describe a 59 years old female patient, with a gastrointestinal stromal tumor located on the posterior wall of the gastric funds, who was treated successfully by laparoscopic wedge resection (with clear resection margins), through an anteriorly placed gastrotomy, thus allowing an endoscopic linear cutter Endo GIA, to excise the tumor with a cuff of normal gastric tissue. The anterior gastrotomy was performed with Ultra-Shears. Delivery of the tumor through the gastrotomy is essential for success. The operative time was 110 minutes. The tumor was diagnosed as a gastrointestinal stromal submucosal tumor (of low-grade malignancy) and immunohistochemicaly, this tumor was positive for CD 34. Posterior gastric tumor can be removed using laparoscopic surgery.

  19. Deployment cycle stressors and post-traumatic stress symptoms in Army National Guard women: the mediating effect of resilience.

    PubMed

    Wooten, Nikki R

    2012-01-01

    This study examined the associations between deployment cycle stressors, post-traumatic stress symptoms (PTSS), and resilience in Army National Guard (ARNG) women deployed to Operations Enduring Freedom and Iraqi Freedom. Resilience was also tested as a mediator. Hierarchical linear regression indicated that deployment and post-deployment stressors were positively associated, and resilience was negatively associated with PTSS. Resilience fully mediated the association between post-deployment stressors and PTSS. Findings suggest assessing deployment and post-deployment stressors in ARNG women may be helpful in identifying those at risk for severe PTSS; and highlight the potential of individual-level resilient characteristics in mitigating the adverse impact of post-deployment stressors.

  20. Quantum-limited amplification with a nonlinear cavity detector

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Clerk, A. A.

    2011-03-01

    We consider the quantum measurement properties of a driven cavity with a Kerr-type nonlinearity that is used to amplify a dispersively coupled input signal. Focusing on an operating regime that is near a bifurcation point, we derive simple asymptotic expressions describing the cavity’s noise and response. We show that the cavity’s backaction and imprecision noise allow for quantum-limited linear amplification and position detection only if one is able to utilize the sizable correlations between these quantities. This is possible when one amplifies a nonresonant signal but is not possible in quantum nondemolition qubit detection. We also consider the possibility of using the nonlinear cavity’s backaction for cooling a mechanical mode.

  1. Calibration of Lévy Processes with American Options

    NASA Astrophysics Data System (ADS)

    Achdou, Yves

    We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.

  2. Ultra-fast 3D scanning and holographic illumination in non-linear microscopy using acousto-optic deflectors

    NASA Astrophysics Data System (ADS)

    Akemann, Walther; Ventalon, Cathie; Léger, Jean-François; Mathieu, Benjamin; Dieudonné, Stéphane; Blochet, Baptiste; Gigan, Sylvain; Bourdieu, Laurent

    2017-04-01

    Decoding of information in the brain requires the imaging of large neuronal networks using e.g. two-photon microscopy (TPM). Fast control of the focus in 3D can be achieved with phase shaping of the light beam using acoustooptic deflectors (AODs). However, beam shaping using AODs is not straightforward because of non-stationary of acousto-optic diffraction. Here, we demonstrated a new stable AOD-based phase modulator, which operates at a rate of up to about hundred kHz. It provides opportunity for 3D scanning in TPM with the possibility to correct aberrations independently for every focus position or to achieve refocusing of scattered photons in rapidly decorrelating tissues.

  3. Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Sonnad, Vijay

    1991-01-01

    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.

  4. The damped wave equation with unbounded damping

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  5. Experimental realization of equiangular three-state quantum key distribution

    PubMed Central

    Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo

    2016-01-01

    Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643

  6. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  7. Basic linear algebra subprograms for FORTRAN usage

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.

    1977-01-01

    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

  8. A Sawmill Manager Adapts To Change With Linear Programming

    Treesearch

    George F. Dutrow; James E. Granskog

    1973-01-01

    Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.

  9. A novel method to predict current voltage characteristics of positive corona discharges based on a perturbation technique. I. Local analysis

    NASA Astrophysics Data System (ADS)

    Shibata, Hisaichi; Takaki, Ryoji

    2017-11-01

    A novel method to compute current-voltage characteristics (CVCs) of direct current positive corona discharges is formulated based on a perturbation technique. We use linearized fluid equations coupled with the linearized Poisson's equation. Townsend relation is assumed to predict CVCs apart from the linearization point. We choose coaxial cylinders as a test problem, and we have successfully predicted parameters which can determine CVCs with arbitrary inner and outer radii. It is also confirmed that the proposed method essentially does not induce numerical instabilities.

  10. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  11. Resettable binary latch mechanism for use with paraffin linear motors

    NASA Technical Reports Server (NTRS)

    Maus, Daryl; Tibbitts, Scott

    1991-01-01

    A new resettable Binary Latch Mechanism was developed utilizing a paraffin actuator as the motor. This linear actuator alternately latches between extended and retracted positions, maintaining either position with zero power consumption. The design evolution and kinematics of the latch mechanism are presented, as well as the development problems and lessons that were learned.

  12. A position-aware linear solid constitutive model for peridynamics

    DOE PAGES

    Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.

    2015-11-06

    A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations onmore » simple benchmark problems show a sharp reduction in error relative to the LPS model.« less

  13. A position-aware linear solid constitutive model for peridynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, John A.; Silling, Stewart A.; Littlewood, David J.

    A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. We improved model behavior in the vicinity of free surfaces through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. Furthermore, the model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations onmore » simple benchmark problems show a sharp reduction in error relative to the LPS model.« less

  14. The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation.

    PubMed

    Lee, J H; Lee, J-H; Park, J W; Shin, Y H

    2012-01-01

    In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.

  15. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  16. Rotary encoding device using polygonal mirror with diffraction gratings on each facet

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  17. Environmental factors and flow paths related to Escherichia coli concentrations at two beaches on Lake St. Clair, Michigan, 2002–2005

    USGS Publications Warehouse

    Holtschlag, David J.; Shively, Dawn; Whitman, Richard L.; Haack, Sheridan K.; Fogarty, Lisa R.

    2008-01-01

    Regression analyses and hydrodynamic modeling were used to identify environmental factors and flow paths associated with Escherichia coli (E. coli) concentrations at Memorial and Metropolitan Beaches on Lake St. Clair in Macomb County, Mich. Lake St. Clair is part of the binational waterway between the United States and Canada that connects Lake Huron with Lake Erie in the Great Lakes Basin. Linear regression, regression-tree, and logistic regression models were developed from E. coli concentration and ancillary environmental data. Linear regression models on log10 E. coli concentrations indicated that rainfall prior to sampling, water temperature, and turbidity were positively associated with bacteria concentrations at both beaches. Flow from Clinton River, changes in water levels, wind conditions, and log10 E. coli concentrations 2 days before or after the target bacteria concentrations were statistically significant at one or both beaches. In addition, various interaction terms were significant at Memorial Beach. Linear regression models for both beaches explained only about 30 percent of the variability in log10 E. coli concentrations. Regression-tree models were developed from data from both Memorial and Metropolitan Beaches but were found to have limited predictive capability in this study. The results indicate that too few observations were available to develop reliable regression-tree models. Linear logistic models were developed to estimate the probability of E. coli concentrations exceeding 300 most probable number (MPN) per 100 milliliters (mL). Rainfall amounts before bacteria sampling were positively associated with exceedance probabilities at both beaches. Flow of Clinton River, turbidity, and log10 E. coli concentrations measured before or after the target E. coli measurements were related to exceedances at one or both beaches. The linear logistic models were effective in estimating bacteria exceedances at both beaches. A receiver operating characteristic (ROC) analysis was used to determine cut points for maximizing the true positive rate prediction while minimizing the false positive rate. A two-dimensional hydrodynamic model was developed to simulate horizontal current patterns on Lake St. Clair in response to wind, flow, and water-level conditions at model boundaries. Simulated velocity fields were used to track hypothetical massless particles backward in time from the beaches along flow paths toward source areas. Reverse particle tracking for idealized steady-state conditions shows changes in expected flow paths and traveltimes with wind speeds and directions from 24 sectors. The results indicate that three to four sets of contiguous wind sectors have similar effects on flow paths in the vicinity of the beaches. In addition, reverse particle tracking was used for transient conditions to identify expected flow paths for 10 E. coli sampling events in 2004. These results demonstrate the ability to track hypothetical particles from the beaches, backward in time, to likely source areas. This ability, coupled with a greater frequency of bacteria sampling, may provide insight into changes in bacteria concentrations between source and sink areas.

  18. Research Technology

    NASA Image and Video Library

    2002-08-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  19. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  20. 14 CFR 137.47 - Operation without position lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operation without position lights. 137.47... AIRCRAFT OPERATIONS Operating Rules § 137.47 Operation without position lights. Notwithstanding part 91 of this chapter, an aircraft may be operated without position lights if prominent unlighted objects are...

  1. 14 CFR 137.47 - Operation without position lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Operation without position lights. 137.47... AIRCRAFT OPERATIONS Operating Rules § 137.47 Operation without position lights. Notwithstanding part 91 of this chapter, an aircraft may be operated without position lights if prominent unlighted objects are...

  2. 14 CFR 137.47 - Operation without position lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Operation without position lights. 137.47... AIRCRAFT OPERATIONS Operating Rules § 137.47 Operation without position lights. Notwithstanding part 91 of this chapter, an aircraft may be operated without position lights if prominent unlighted objects are...

  3. 14 CFR 137.47 - Operation without position lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Operation without position lights. 137.47... AIRCRAFT OPERATIONS Operating Rules § 137.47 Operation without position lights. Notwithstanding part 91 of this chapter, an aircraft may be operated without position lights if prominent unlighted objects are...

  4. Assessing the impact of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Altamimi, Zuheir; Chin, Toshio; Collilieux, Xavier; Dach, Rolf; Gross, Richard; Heflin, Michael; König, Rolf; Lemoine, Frank; Macmillan, Dan; Parker, Jay; van Dam, Tonie; Wu, Xiaoping

    2014-05-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, we assess the impact of non-tidal atmospheric loading (NTAL) corrections on the TRF computation. Focusing on the a-posteriori approach, (i) the NTAL model derived from the National Centre for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations; (ii) adopting a Kalman-filter based approach, two distinct linear TRFs are estimated combining the 4 SG solutions with (corrected TRF solution) and without the NTAL displacements (standard TRF solution). Linear fits (offset and atmospheric velocity) of the NTAL displacements removed during step (i) are estimated accounting for the station position discontinuities introduced in the SG solutions and adopting different weighting strategies. The NTAL-derived (atmospheric) velocity fields are compared to those obtained from the TRF reductions during step (ii). The consistency between the atmospheric and the TRF-derived velocity fields is examined. We show how the presence of station position discontinuities in SG solutions degrades the agreement between the velocity fields and compare the effect of different weighting structure adopted while estimating the linear fits to the NTAL displacements. Finally, we evaluate the effect of restoring the atmospheric velocities determined through the linear fits of the NTAL displacements to the single-technique linear reference frames obtained by stacking the standard SG SINEX files. Differences between the velocity fields obtained restoring the NTAL displacements and the standard stacked linear reference frames are discussed.

  5. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  6. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  7. Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region

  8. Real-time implementation of camera positioning algorithm based on FPGA & SOPC

    NASA Astrophysics Data System (ADS)

    Yang, Mingcao; Qiu, Yuehong

    2014-09-01

    In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.

  9. Linear optics only allows every possible quantum operation for one photon or one port

    NASA Astrophysics Data System (ADS)

    Moyano-Fernández, Julio José; Garcia-Escartin, Juan Carlos

    2017-01-01

    We study the evolution of the quantum state of n photons in m different modes when they go through a lossless linear optical system. We show that there are quantum evolution operators U that cannot be built with linear optics alone unless the number of photons or the number of modes is equal to one. The evolution for single photons can be controlled with the known realization of any unitary proved by Reck, Zeilinger, Bernstein and Bertani. The evolution for a single mode corresponds to the trivial evolution in a phase shifter. We analyze these two cases and prove that any other combination of the number of photons and modes produces a Hilbert state too large for the linear optics system to give any desired evolution.

  10. Rim inertial measuring system

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Anderson, W. W.; Phillips, W. H. (Inventor)

    1981-01-01

    The invention includes an angular momentum control device (AMCD) having a rim and several magnetic bearing stations. The AMCD is in a strapped down position on a spacecraft. Each magnetic bearing station comprises means, including an axial position sensor, for controlling the position of the rim in the axial direction; and means, including a radial position sensor, for controlling the position of the rim in the radial direction. A first computer receives the signals from all the axial position sensors and computes the angular rates about first and second mutually perpendicular axes in the plane of the rim and computes the linear acceleration along a third axis perpendicular to the first and second axes. A second computer receives the signals from all the radial position sensors and computes the linear accelerations along the first and second axes.

  11. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  12. Dynamic stability of vortex solutions of Ginzburg-Landau and nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Weinstein, M. I.; Xin, J.

    1996-10-01

    The dynamic stability of vortex solutions to the Ginzburg-Landau and nonlinear Schrödinger equations is the basic assumption of the asymptotic particle plus field description of interacting vortices. For the Ginzburg-Landau dynamics we prove that all vortices are asymptotically nonlinearly stable relative to small radial perturbations. Initially finite energy perturbations of vortices decay to zero in L p (ℝ2) spaces with an algebraic rate as time tends to infinity. We also prove that under general (nonradial) perturbations, the plus and minus one-vortices are linearly dynamically stable in L 2; the linearized operator has spectrum equal to (-∞, 0] and generates a C 0 semigroup of contractions on L 2(ℝ2). The nature of the zero energy point is clarified; it is resonance, a property related to the infinite energy of planar vortices. Our results on the linearized operator are also used to show that the plus and minus one-vortices for the Schrödinger (Hamiltonian) dynamics are spectrally stable, i.e. the linearized operator about these vortices has ( L 2) spectrum equal to the imaginary axis. The key ingredients of our analysis are the Nash-Aronson estimates for obtaining Gaussian upper bounds for fundamental solutions of parabolic operator, and a combination of variational and maximum principles.

  13. Accurate ocean bottom seismometer positioning method inspired by multilateration technique

    USGS Publications Warehouse

    Benazzouz, Omar; Pinheiro, Luis M.; Matias, Luis M. A.; Afilhado, Alexandra; Herold, Daniel; Haines, Seth S.

    2018-01-01

    The positioning of ocean bottom seismometers (OBS) is a key step in the processing flow of OBS data, especially in the case of self popup types of OBS instruments. The use of first arrivals from airgun shots, rather than relying on the acoustic transponders mounted in the OBS, is becoming a trend and generally leads to more accurate positioning due to the statistics from a large number of shots. In this paper, a linearization of the OBS positioning problem via the multilateration technique is discussed. The discussed linear solution solves jointly for the average water layer velocity and the OBS position using only shot locations and first arrival times as input data.

  14. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    PubMed

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  15. Translation and rotation positioning motor

    DOEpatents

    Schmid, Andreas [Berkeley, CA; Schaff, Oliver [13355 Berlin, DE

    2005-02-01

    A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.

  16. Translation and rotation positioning motor

    DOEpatents

    Schmid, Andreas [Berkeley, CA; Schaff, Oliver [Berlin, DE

    2006-07-04

    A positioning device provides the capability of moving an object in both a linear and a rotational direction. The positioning device includes a first piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device further includes a second piezo stack with plural piezo plates that are capable of movement in orthogonal directions with respect to each other. The positioning device also includes a first bearing that is disposed against the first piezo stack. The positioning device further includes a second bearing that is disposed against the second piezo stack. The positioning device also includes a spring element and a fifth bearing that is disposed against the spring element. The first through fifth bearings are disposed around and against the object to be positioned, to provide for positioning of the object in at least one of a linear direction and a rotational direction.

  17. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    DOE PAGES

    Slattery, Stuart R.; Evans, Thomas M.; Wilson, Paul P. H.

    2015-09-08

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear oper- ator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approxi- mation and the mean chord approximation are applied to estimate the leakagemore » frac- tion of random walks from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem in numerical experiments to test the models for symmetric operators with spectral qualities similar to light water reactor problems. We find, in general, the derived approximations show good agreement with random walk lengths and leakage fractions computed by the numerical experiments.« less

  18. Genetics-based control of a mimo boiler-turbine plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.M.; Lee, K.Y.

    1994-12-31

    A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.

  19. Drawing the line between constituent structure and coherence relations in visual narratives

    PubMed Central

    Cohn, Neil; Bender, Patrick

    2016-01-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that hierarchic “grammatical” structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a “segmentation task” where participants drew lines between images in order to divide them into sub-episodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants’ divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. PMID:27709982

  20. Quasi-model free control for the post-capture operation of a non-cooperative target

    NASA Astrophysics Data System (ADS)

    She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting

    2018-06-01

    This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.

  1. Master-slave micromanipulator method

    DOEpatents

    Morimoto, Alan K.; Kozlowski, David M.; Charles, Steven T.; Spalding, James A.

    1999-01-01

    A method based on precision X-Y stages that are stacked. Attached to arms projecting from each X-Y stage are a set of two axis gimbals. Attached to the gimbals is a rod, which provides motion along the axis of the rod and rotation around its axis. A dual-planar apparatus that provides six degrees of freedom of motion precise to within microns of motion. Precision linear stages along with precision linear motors, encoders, and controls provide a robotics system. The motors can be remotized by incorporating a set of bellows on the motors and can be connected through a computer controller that will allow one to be a master and the other one to be a slave. Position information from the master can be used to control the slave. Forces of interaction of the slave with its environment can be reflected back to the motor control of the master to provide a sense of force sensed by the slave. Forces import onto the master by the operator can be fed back into the control of the slave to reduce the forces required to move it.

  2. A study of different modeling choices for simulating platelets within the immersed boundary method

    PubMed Central

    Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L.; Kirby, Robert M.

    2012-01-01

    The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid–structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations – radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations – for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations. PMID:23585704

  3. Drawing the line between constituent structure and coherence relations in visual narratives.

    PubMed

    Cohn, Neil; Bender, Patrick

    2017-02-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a "segmentation task" where participants drew lines between images in order to divide them into subepisodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants' divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Numerical solution for linear cyclotron and diocotron modes in a nonneutral plasma column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel H. E.

    2014-10-01

    This poster presents numerical methods for solution of the linearized Vlasov-Poisson (LVP) equation applied to a cylindrical single-species plasma in a uniform magnetic field. The code is used to study z-independent cyclotron and diocotron modes of these plasmas, including kinetic effects. We transform to polar coordinates in both position and velocity space and Fourier expand in both polar angles (i.e. the cyclotron gyro angle and θ). In one approach, we then discretize in the remaining variables r and v (where v is the magnitude of the perpendicular velocity). However, using centered differences the method is unstable to unphysical eigenmodes with rapid variation on the scale of the grid. We remedy this problem by averaging particular terms in the discretized LVP operator over neighboring gridpoints. We also present a stable Galerkin method that expands the r and v dependence in basis functions. We compare the numerical results from both methods to exact analytic results for various modes. Supported by NSF/DOE Partnership Grants PHY-0903877 and DE-SC0002451.

  5. Design and Operation of a 4kW Linear Motor Driven Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Zia, J. H.

    2004-06-01

    A 4 kW electrical input Linear Motor driven pulse tube cryocooler has successfully been designed, built and tested. The optimum operation frequency is 60 Hz with a design refrigeration of >200 W at 80 K. The design exercise involved modeling and optimization in DeltaE software. Load matching between the cold head and linear motor was achieved by careful sizing of the transfer tube. The cryocooler makes use of a dual orifice inertance network and a single compliance tank for phase optimization and streaming suppression in the pulse tube. The in-line cold head design is modular in structure for convenient change-out and re-assembly of various components. The Regenerator consists of layers of two different grades of wire-mesh. The Linear motor is a clearance seal, dual opposed piston design from CFIC Inc. Initial results have demonstrated the refrigeration target of 200 W by liquefying Nitrogen from an ambient temperature and pressure. Overall Carnot efficiencies of 13% have been achieved and efforts to further improve efficiencies are underway. Linear motor efficiencies up to 84% have been observed. Experimental results have shown satisfactory compliance with model predictions, although the effects of streaming were not part of the model. Refrigeration loss due to streaming was minimal at the design operating conditions of 80 K.

  6. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    NASA Astrophysics Data System (ADS)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  7. Cephalometric Evaluation of the Hyoid Bone Position in Lebanese Healthy Young Adults.

    PubMed

    Daraze, Antoine

    2018-05-01

    The objectives of this study are to assess hyoid sagittal and vertical position, and potential correlations with gender, skeletal class, and anthropometrics. Twenty-seven cephalometric linear, angular, and ratio measurements for the hyoid were recorded on lateral cephalograms obtained from 117 healthy young Lebanese adults. Anthropometric parameters including height, weight, body mass index (BMI), and neck circumference (NC) were measured. Statistically significant gender differences were demonstrated for 21 out of 27 parameters considered. All linear and two out of three angular measurements defining the vertical hyoid position were larger in males compared with females. Five linear, one angular, and two ratio measurements showed differences in the sagittal dimension. Skeletal classes did not influence the sagittal and vertical hyoid position. Anthropometric variables as height were strongly correlated to the vertical hyoid position, while weight correlated more sagittally. Cephalometric norms for hyoid position were established, sexual dimorphism and ethnic differences were demonstrated. Skeletal patterns did not influence the sagittal and vertical hyoid bone position. Anthropometric parameters, such as BMI correlated the least to both vertical and sagittal hyoid position measurements, while the impact of height and weight as separate entities made a paradigm shift providing accurate and strong correlation of the vertical hyoid position to the height, and the sagittal hyoid position to the weight of individuals. The cephalometric norms for the hyoid bone position in the Lebanese population established in the present study are of paramount clinical importance and should be considered in planning combined orthodontic and breathing disorders treatments.

  8. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

    PubMed

    Skigin, Diana C; Lester, Marcelo

    2016-10-01

    In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

  9. A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu; Xin, Xudong; Wu, Jingen; Chu, Zhaoqiang; Dong, Shuxiang

    2018-04-01

    In this work, a multilayered-cylindrical piezoelectric shear actuator (MCPSA) operating in the d15 shear mode was presented for precision actuation under a large mechanical load. The actuator was made of Pb(Zr,Ti)O3 (PZT-51) piezoelectric ceramic rings, which were concentrically assembled together in electrically parallel connection with alternately positive and negative polarizations along the axial direction. Experimental results show that the acquired displacement amplitude at the center of the actuator along the axial direction is around 6.5 μm under the 1 Hz applied voltage of 400 Vpp/mm, and it stayed stably under a mechanical load up to 18 N, which is 7 times larger than that of the previously reported d15 shear actuator. The proposed actuator also shows good displacement linearity with a high resolution of 0.1 μm in responding to a step voltage, indicating its great potential for precision actuation under a large mechanical load.

  10. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer.

    PubMed

    Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi

    2012-01-01

    The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  12. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for different types of noise are determined. Furthermore, we have selected 40 globally distributed stations that have a clear non-linear behaviour from two different International GNSS Service (IGS) analysis centers: JPL (Jet Propulsion Laboratory) and BLT (British Isles continuous GNSS Facility and University of Luxembourg Tide Gauge Benchmark Monitoring (TIGA) Analysis Center). We obtained maximum accelerations of -1.8±1.2 mm2/y and -4.5±3.3 mm2/y for the horizontal and vertical components, respectively. The noise analysis tests have shown that the addition of the non-linear term has significantly whitened the power spectra of the position time series, i.e. shifted the spectral index from flicker towards white noise.

  13. Resonance test system

    DOEpatents

    Musial, Walter [Boulder, CO; White, Darris [Superior, CO

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  14. On Nth roots of positive operators

    NASA Technical Reports Server (NTRS)

    Brown, D. R.; Omalley, M. J.

    1978-01-01

    A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).

  15. The vascular stapler in uncinate process division during pancreaticoduodenectomy: technical considerations and results.

    PubMed

    D'souza, Melroy A; Singh, Kailash; Hawaldar, Rohini V; Shukla, Parul J; Shrikhande, Shailesh V

    2010-08-01

    Few studies describing the use of stapling devices for uncinate process division during pancreaticoduodenectomy (PD) have data regarding outcomes. Our aim is to discuss our technique and the peri-operative outcomes with the use of the linear vascular stapler for division of the uncinate process during PD. 19 consecutive patients who underwent stapler division of the uncinate process ('stapler' group) were compared to 20 consecutive patients operated without stapler ('no-stapler' group). The overall surgical morbidity in the no-stapler group was 25% (5/20) and 31.6% (6/19) in the stapler group (p = 0.731). The mean blood loss in the no-stapler group was 1,077.5 +/- 594 ml compared to 778 +/- 302 ml in the stapler group (p = 0.113). The mean operative duration was 498 +/- 105 min in the no-stapler group and 490 +/- 60 min in the stapler group (p = 0.773). The average number of lymph nodes retrieved was 6.1 +/- 3 in the no-stapler group versus 5.9 +/- 4 in the stapler group (p = 0.627). Neither group had positive resection margins. Stapler division of the uncinate process for selected periampullary tumours compares well with the conventional method, has comparable peri-operative outcomes without compromising oncological radicality and has the potential to simplify uncinate resection.

  16. Linear and angular control of circular walking in healthy older adults and subjects with cerebellar ataxia.

    PubMed

    Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B

    2012-05-01

    Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.

  17. Top-up operation at Pohang Light Source-II

    NASA Astrophysics Data System (ADS)

    Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S.; Cho, Moohyun

    2014-05-01

    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.

  18. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    DOE PAGES

    Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...

    2016-07-26

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less

  19. Linear micromechanical stepping drive for pinhole array positioning

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Hoffmann, Martin

    2015-05-01

    A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array.

  20. Linearly Polarized Single-Frequency Oscillations of Laser-Diode-Pumped Microchip Ceramic Nd:YAG Lasers with Forced Ince-Gaussian Mode Operations

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun

    2007-09-01

    Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.

  1. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  2. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    PubMed

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  3. New Galerkin operational matrices for solving Lane-Emden type equations

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.

    2016-04-01

    Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.

  4. A Comprehensive Meta-Analysis of Triple P-Positive Parenting Program Using Hierarchical Linear Modeling: Effectiveness and Moderating Variables

    ERIC Educational Resources Information Center

    Nowak, Christoph; Heinrichs, Nina

    2008-01-01

    A meta-analysis encompassing all studies evaluating the impact of the Triple P-Positive Parenting Program on parent and child outcome measures was conducted in an effort to identify variables that moderate the program's effectiveness. Hierarchical linear models (HLM) with three levels of data were employed to analyze effect sizes. The results (N =…

  5. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    PubMed

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  7. Single axis control of ball position in magnetic levitation system using fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan

    2018-03-01

    This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.

  8. Stability analysis of gyroscopic systems with delay via decomposition

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.

    2018-05-01

    A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.

  9. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks.

    PubMed

    Kim, Jae-Woong; Kwon, Moon-Seok; Yenuga, Sree Sushma; Kwon, Young-Hoooo

    2010-06-01

    The study purpose was to investigate the effects of target distance on pivot hip, trunk, pelvis, and kicking leg movements in Taekwondo roundhouse kick. Twelve male black-belt holders executed roundhouse kicks for three target distances (Normal, Short, and Long). Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank were obtained through a three-dimensional video motion analysis. Select displacements, distances, peak orientation angles, and angle ranges were compared among the conditions using one-way repeated measure ANOVA (p < 0.05). Several orientation angle variables (posterior tilt range, peak right-tilted position, peak right-rotated position, peak left-rotated position, and left rotation range of the pelvis; peak hyperextended position and peak right-flexed position of the trunk; peak flexed position, flexion range and peak internal-rotated position of the hip) as well as the linear displacements of the pivot hip and the reach significantly changed in response to different target distances. It was concluded that the adjustment to different target distances was mainly accomplished through the pivot hip displacements, hip flexion, and pelvis left rotation. Target distance mainly affected the reach control function of the pelvis and the linear balance function of the trunk.

  10. Ultra-high-pressure liquid chromatography tandem mass spectrometry determination of antidepressant and anxiolytic drugs in neonatal meconium and maternal hair.

    PubMed

    Pichini, Simona; Cortes, Laura; Marchei, Emilia; Solimini, Renata; Pacifici, Roberta; Gomez-Roig, Mª Dolores; García-Algar, Oscar

    2016-01-25

    A procedure based on ultra-high-pressure liquid chromatography tandem mass spectrometry has been developed for the determination of 22 antidepressant and anxiolytic drugs ad metabolites in the three consecutive maternal hair segments representing the pregnancy trimesters and paired neonatal meconium samples. After hair washing with methyl alcohol and diethyl ether and subsequent addition of internal standards, hair samples were treated with 500 μl VMA-T M3 reagent for 1h at 100 °C. After cooling, 100 μl M3 extract were diluted with 400 μl water and a volume of 10 μl was injected into chromatographic system. Meconium samples were firstly treated with 1 ml methyl alcohol and the organic layer back-extracted twice with 1.5 ml of a mixture of ethylacetate:hexane (80:20, v/v). Chromatographic separation was achieved at ambient temperature using a reverse-phase column and a linear gradient elution with two solvents: 0.3% formic acid in acetonitrile and 5mM ammonium formate pH 3. The mass spectrometer was operated in positive ion mode, using multiple reaction monitoring via positive electrospray ionization. The method was linear from the limit of quantification (0.05-1 ng/mg hair and 5-25 ng/g meconium depending on analyte under investigation;) to 10 ng/mg hair and 1000 ng/g meconium, with an intra- and inter-assay imprecision and inaccuracy always less than 20% and an analytical recovery between 66.6% and 95.3%, depending on the considered analyte and biological matrix. Using the validated method, 7 mothers were found positive to one or more hair segments and 5 meconium samples were found positive to one or more antidepressant and anxiolytic drugs, assessing prenatal exposure to these drugs following maternal consumption in one or more pregnancy trimesters. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synoptic evaluation of scale-dependent metrics for hydrographic line feature geometry

    USGS Publications Warehouse

    Stanislawski, Larry V.; Buttenfield, Barbara P.; Raposo, Paulo; Cameron, Madeline; Falgout, Jeff T.

    2015-01-01

    Methods of acquisition and feature simplification for vector feature data impact cartographic representations and scientific investigations of these data, and are therefore important considerations for geographic information science (Haunert and Sester 2008). After initial collection, linear features may be simplified to reduce excessive detail or to furnish a reduced-scale version of the features through cartographic generalization (Regnauld and McMaster 2008, Stanislawski et al. 2014). A variety of algorithms exist to simplify linear cartographic features, and all of the methods affect the positional accuracy of the features (Shahriari and Tao 2002, Regnauld and McMaster 2008, Stanislawski et al. 2012). In general, simplification operations are controlled by one or more tolerance parameters that limit the amount of positional change the operation can make to features. Using a single tolerance value can have varying levels of positional change on features; depending on local shape, texture, or geometric characteristics of the original features (McMaster and Shea 1992, Shahriari and Tao 2002, Buttenfield et al. 2010). Consequently, numerous researchers have advocated calibration of simplification parameters to control quantifiable properties of resulting changes to the features (Li and Openshaw 1990, Raposo 2013, Tobler 1988, Veregin 2000, and Buttenfield, 1986, 1989).This research identifies relations between local topographic conditions and geometric characteristics of linear features that are available in the National Hydrography Dataset (NHD). The NHD is a comprehensive vector dataset of surface 18 th ICA Workshop on Generalisation and Multiple Representation, Rio de Janiero, Brazil 2015 2 water features within the United States that is maintained by the U.S. Geological Survey (USGS). In this paper, geometric characteristics of cartographic representations for natural stream and river features are summarized for subbasin watersheds within entire regions of the conterminous United States and compared to topographic metrics. A concurrent processing workflow is implemented using a Linux high-performance computing cluster to simultaneously process multiple subbasins, and thereby complete the work in a fraction of the time required for a single-process environment. In addition, similar metrics are generated for several levels of simplification of the hydrographic features to quantify the effects of simplification over the various landscape conditions. Objectives of this exploratory investigation are to quantify geometric characteristics of linear hydrographic features over the various terrain conditions within the conterminous United States and thereby illuminate relations between stream geomorphological conditions and cartographic representation. The synoptic view of these characteristics over regional watersheds that is afforded through concurrent processing, in conjunction with terrain conditions, may reveal patterns for classifying cartographic stream features into stream geomorphological classes. Furthermore, the synoptic measurement of the amount of change in geometric characteristics caused by the several levels of simplification can enable estimation of tolerance values that appropriately control simplification-induced geometric change of the cartographic features within the various geomorphological classes in the country. Hence, these empirically derived rules or relations could help generate multiscale-representations of features through automated generalization that adequately maintain surface drainage variations and patterns reflective of the natural stream geomorphological conditions across the country.

  12. Those Do What? Connecting Eigenvectors and Eigenvalues to the Rest of Linear Algebra: Using Visual Enhancements to Help Students Connect Eigenvectors to the Rest of Linear Algebra

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.

    2010-01-01

    This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…

  13. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashmore, Jason, E-mail: Jason.cashmore@uhb.nhs.uk; Ramtohul, Mark; Ford, Dan

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery ofmore » pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.« less

  14. A low-cost FMCW radar for footprint detection from a mobile platform

    NASA Astrophysics Data System (ADS)

    Boutte, David; Taylor, Paul; Hunt, Allan

    2015-05-01

    Footprint and human trail detection in rugged all-weather environments is an important and challenging problem for perimeter security, passive surveillance and reconnaissance. To address this challenge a low-cost, wideband, frequency-modulated continuous wave (FMCW) radar operating at 33.4GHz - 35.5GHz is being developed through a Department of Homeland Security Science and Technology Directorate Phase I SBIR and has been experimentally demonstrated to be capable of detecting footprints and footprint trails on unimproved roads in an experimental setting. It uses a low-cost digital signal processor (DSP) that makes important operating parameters reconfigurable and allows for frequency sweep linearization, a key technique developed to increase footprint signal-to-noise ratio (SNR). This paper discusses the design, DSP implementation and experimental results of a low-cost FMCW radar for mobile footprint detection. A technique for wideband sweep linearization is detailed along with system performance metrics and experimental results showing receive-SNR from footprint trails in sand and on unimproved dirt roads. Results from a second stepped frequency CW (SFCW) Ka-band system are also shown, verifying the ability of both systems to detect footprints and footprint trails in an experimental setting. The results show that there is sufficient receive-SNR to detect even shallow footprints (~1cm) using a radar based detection system in Ka-band. Field experimental results focus on system proof of concept from a static position with mobile results also presented highlighting necessary improvements to both systems.

  15. High Angular Sensitivity, Absolute Rotary Encoding Device with Polygonal Mirror and Stand-Alone Diffraction Gratings

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1996-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.

  16. Positioner with long travel in two dimensions

    DOEpatents

    Trumper, David L.; Williams, Mark E.

    1997-12-23

    A precision positioning system is provided which provides long travel in two of the linear dimensions, while using non-contact bearings for both a first subassembly which provides long travel in one of the linear dimension and a second subassembly which provides long travel in the second linear dimension. The first or upper subassembly is preferably a magnetic subassembly which, in addition to providing long travel, also compensates or positions in three rotary dimensions and in the third linear dimension. The second subassembly is preferably either an air bearing or magnetic subassembly and is normally used only to provide long travel. Angled surfaces may be provided for magnetic bearings and capacitive or other gap sensing probes may be mounted to the stage and ground flush with the bearing actuators to provide more precise gap measurements.

  17. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  18. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  19. Biological X-ray irradiator characterization for use with small animals and cells.

    PubMed

    Bruno, A Colello; Mazaro, S J; Amaral, L L; Rego, E M; Oliveira, H F; Pavoni, J F

    2017-03-02

    This study presents the characterization of an X-ray irradiator through dosimetric tests, which confirms the actual dose rate that small animals and cells will be exposed to during radiobiological experiments. We evaluated the linearity, consistency, repeatability, and dose distribution in the positions in which the animals or cells are placed during irradiation. In addition, we evaluated the performance of the X-ray tube (voltage and tube operating current), the radiometric survey (leakage radiation) and safety devices. The irradiator default setting was established as 160 kV and 25 mA. Tests showed that the dose rate was linear overtime (R2=1) and remained stable for long (constant) and short (repeatability) intervals between readings. The mean dose rate inside the animal cages was 1.27±0.06 Gy/min with a uniform beam of 95.40% (above the minimum threshold guaranteed by the manufacturer). The mean dose rate inside the cell plates was 0.92±0.19 Gy/min. The dose rate dependence with tube voltage and current presented a quadratic and linear relationship, respectively. There was no observed mechanical failure during evaluation of the irradiator safety devices and the radiometric survey obtained a maximum ambient equivalent dose rate of 0.26 mSv/h, which exempts it from the radiological protection requirements of the International Atomic Energy Agency. The irradiator characterization enables us to perform radiobiological experiments, and assists or even replaces traditional therapy equipment (e.g., linear accelerators) for cells and small animal irradiation, especially in early research stages.

  20. Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-06-01

    The Onsager's reciprocal relation plays a fundamental role in the nonequilibrium thermodynamics. However, unfortunately, its classical version is valid only within a narrow region near equilibrium due to the linear regression hypothesis, which largely restricts its usage. In this paper, based on the conservation-dissipation formalism, a generalized version of Onsager's relations for the master equations and Fokker-Planck equations was derived. Nonlinear constitutive relations with nonsymmetric and positively stable operators, which become symmetric under the detailed balance condition, constitute key features of this new generalization. Similar conclusions also hold for many other classical models in physics and chemistry, which in turn make the current study as a benchmark for the application of generalized Onsager's relations in nonequilibrium thermodynamics.

  1. Stepwise emergence of the face-sensitive N170 event-related potential component.

    PubMed

    Jemel, Boutheina; Schuller, Anne-Marie; Cheref-Khan, Yasémine; Goffaux, Valérie; Crommelinck, Marc; Bruyer, Raymond

    2003-11-14

    The present study used a parametric design to characterize early event-related potentials (ERP) to face stimuli embedded in gradually decreasing random noise levels. For both N170 and the vertex positive potential (VPP) there was a linear increase in amplitude and decrease in latency with decreasing levels of noise. In contrast, the earlier visual P1 component was stable across noise levels. The P1/N170 dissociation suggests not only a functional dissociation between low and high-level visual processing of faces but also that the N170 reflects the integration of sensorial information into a unitary representation. In addition, the N170/VPP association supports the view that they reflect the same processes operating when viewing faces.

  2. Integrated circuit electrometer and sweep circuitry for an atmospheric probe

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. E.

    1971-01-01

    The design of electrometer circuitry using an integrated circuit operational amplifier with a MOSFET input is described. Input protection against static voltages is provided by a dual ultra low leakage diode or a neon lamp. Factors affecting frequency response leakage resistance, and current stability are discussed, and methods are suggested for increasing response speed and for eliminating leakage resistance and current instabilities. Based on the above, two practical circuits, one having a linear response and the other a logarithmic response, were designed and evaluated experimentally. The design of a sweep circuit to implement mobility measurements using atmospheric probes is presented. A triangular voltage waveform is generated and shaped to contain a step in voltage from zero volts in both positive and negative directions.

  3. Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    NASA Technical Reports Server (NTRS)

    Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.; hide

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.

  4. Telemanipulation of cooperative robots: a case of study

    NASA Astrophysics Data System (ADS)

    Pliego-Jiménez, Javier; Arteaga-Pérez, Marco

    2018-06-01

    This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.

  5. Concentrating Solar Power Projects - Liddell Power Station | Concentrating

    Science.gov Websites

    : Linear Fresnel reflector Turbine Capacity: Net: 3.0 MW Gross: 3.0 MW Status: Currently Non-Operational Start Year: 2012 Do you have more information, corrections, or comments? Background Technology: Linear

  6. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  7. Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat

  8. Iterative color-multiplexed, electro-optical processor.

    PubMed

    Psaltis, D; Casasent, D; Carlotto, M

    1979-11-01

    A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.

  9. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  10. In-SITU, Time-resolved Raman Spectro-micro-topography of an Operating Lithium Ion Battery

    NASA Technical Reports Server (NTRS)

    Luo, Yu; Cai, Wen-Bin; Xing, Xue-Kun; Scherson, Daniel A.

    2003-01-01

    A Raman microscope has been coupled to a computer-controlled, two-dimensional linear translator attached to a custom-designed, sealed optical chamber to allow in situ acquisition of space-, and time-resolved spectra of an operating thin graphite/LiCoO2 Li-ion battery. This unique arrangement made it possible to collect continuously series of Raman spectra from a sharply defined edge of the battery exposing the anode (A), separator (S), and cathode (C), during charge and discharge, while the device was moved back and forth under the fixed focused laser beam along an axis normal to the layered A/S/C plane. Clear spectral evidence was obtained for changes in the amount of Li(+) within particles of graphite in the anode, and, to a lesser extent, of LiCoO2 in the cathode, during battery discharge both as a function of position and time. Analysis of time-resolved Raman spectro-micro-topography (SMT) measurements of the type described in this work are expected to open new prospects for assessing the validity of theoretical models aimed at simulating the flow of Li(+) within Li-ion batteries under operating conditions.

  11. Linearity of holographic entanglement entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    Here, we consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certainmore » such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in general systems with a large number of degrees of freedom.« less

  12. Linearity of holographic entanglement entropy

    DOE PAGES

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-02-14

    Here, we consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certainmore » such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in general systems with a large number of degrees of freedom.« less

  13. Cardiac surgery productivity and throughput improvements.

    PubMed

    Lehtonen, Juha-Matti; Kujala, Jaakko; Kouri, Juhani; Hippeläinen, Mikko

    2007-01-01

    The high variability in cardiac surgery length--is one of the main challenges for staff managing productivity. This study aims to evaluate the impact of six interventions on open-heart surgery operating theatre productivity. A discrete operating theatre event simulation model with empirical operation time input data from 2603 patients is used to evaluate the effect that these process interventions have on the surgery output and overtime work. A linear regression model was used to get operation time forecasts for surgery scheduling while it also could be used to explain operation time. A forecasting model based on the linear regression of variables available before the surgery explains 46 per cent operating time variance. The main factors influencing operation length were type of operation, redoing the operation and the head surgeon. Reduction of changeover time between surgeries by inducing anaesthesia outside an operating theatre and by reducing slack time at the end of day after a second surgery have the strongest effects on surgery output and productivity. A more accurate operation time forecast did not have any effect on output, although improved operation time forecast did decrease overtime work. A reduction in the operation time itself is not studied in this article. However, the forecasting model can also be applied to discover which factors are most significant in explaining variation in the length of open-heart surgery. The challenge in scheduling two open-heart surgeries in one day can be partly resolved by increasing the length of the day, decreasing the time between two surgeries or by improving patient scheduling procedures so that two short surgeries can be paired. A linear regression model is created in the paper to increase the accuracy of operation time forecasting and to identify factors that have the most influence on operation time. A simulation model is used to analyse the impact of improved surgical length forecasting and five selected process interventions on productivity in cardiac surgery.

  14. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  15. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  16. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  17. Thyra Abstract Interface Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A.

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less

  18. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    PubMed

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  19. Local description of a polyenic radical cation

    NASA Astrophysics Data System (ADS)

    Karafiloglou, P.; Kapsomenos, G.

    1995-06-01

    The various local electronic events occurring in a radical cation of a linear polyene with even number of centers are investigated by means of the calculation of the expectation values of second quantized density operators, in the framework of the general poly-electron population analysis. Two series of calculations in two limit geometries (a strong alternant and a polaron-like one) are performed by using as analysers both natural AOs in ab initio correlated wave functions, as well as the model orthogonal AOs in PPP + full CI ones. The probabilities of finding simultaneously the positive charge (+) and the radical center (·) follows, in accord with basic chemical intuition, an oscillating (even-odd) law, even at distant AO positions. The probability of having a transmission of the (+) charge through the π-bonds (when the (·) is located in one extremity of the polyene) is greater than this of the transmission of the (·). Comparing the radical cation with the parent polyene, it is shown that oxidation creates an important trend of single-double bond inversion even in strongly alternant geometry; this effect is more pronounced in bonds of the middle. The examination of various CDW structures shows that some of them can have small or negligible contributions; this counterintuitive and cooperative effect is rationalized by means of Moffitt's theorem. All the above effects are not the consequence of the polaron-like geometry, but are controlled from the topology of n-centers linearly disposed and involving ( n-1) electrons.

  20. Design of Beneficial Wave Dynamics for Engine Life and Operability Enhancement

    DTIC Science & Technology

    2010-07-30

    ST^(A), where S is the Dirac delta measure. Stochastic transition 9 function can be used to define two linear transfer operators called as Perron ... Frobenius and Koopman operators. Here we consider the finite dimensional approximation of the P-F operator. To do this we consider the finite

Top