Sample records for linear power monitor

  1. Detecting temporal change in freshwater fisheries surveys: statistical power and the important linkages between management questions and monitoring objectives

    USGS Publications Warehouse

    Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,

    2016-01-01

    Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.

  2. Wideband Communications Equipment, Ground Radio Communication, Space Comm Systems Equipment. 304X0/X4/X6. Appendix A - Task Analysis

    DTIC Science & Technology

    1990-05-01

    ALARM LAMPS A CHECK TWT POWER SUPPLY VOLTAGE AND CURRENT A ADJUST POWER ALARM THRESHOLD AND TRANSMITTER OUTPUT A CHECK HELIX MONITOR K INTERPRET AN/FRC...POWER SUPPLY A CHECK TRAVELING WAVE TUBE ( TWT ) POWER SUPPLY HELIX CURRENT AND BEAM CURRENT A CHECK TWT RF POWER OUTPUT A CHECK TRANSMITTER POWER...A ADJUST TRANSMITTER LINEARITY A CALIBRATE TRANSMIT DEVIATION AND ADJUST MODULATION AMPLIFIER A ADJUST TWT PERFORMANCE MONITOR A ADJUST TWT OUTPUT

  3. Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.

  4. A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations.

    PubMed

    Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu

    2016-12-01

    Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

  5. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  6. Statistical power for detecting trends with applications to seabird monitoring

    USGS Publications Warehouse

    Hatch, Shyla A.

    2003-01-01

    Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.

  7. Self-powered monitoring of repeated head impacts using time-dilation energy measurement circuit.

    PubMed

    Feng, Tao; Aono, Kenji; Covassin, Tracey; Chakrabartty, Shantanu

    2015-04-01

    Due to the current epidemic levels of sport-related concussions (SRC) in the U.S., there is a pressing need for technologies that can facilitate long-term and continuous monitoring of head impacts. Existing helmet-sensor technology is inconsistent, inaccurate, and is not economically or logistically practical for large-scale human studies. In this paper, we present the design of a miniature, battery-less, self-powered sensor that can be embedded inside sport helmets and can continuously monitor and store different spatial and temporal statistics of the helmet impacts. At the core of the proposed sensor is a novel time-dilation circuit that allows measurement of a wide-range of impact energies. In this paper an array of linear piezo-floating-gate (PFG) injectors has been used for self-powered sensing and storage of linear and rotational head-impact statistics. The stored statistics are then retrieved using a plug-and-play reader and has been used for offline data analysis. We report simulation and measurement results validating the functionality of the time-dilation circuit for different levels of impact energies. Also, using prototypes of linear PFG integrated circuits fabricated in a 0.5 μm CMOS process, we demonstrate the functionality of the proposed helmet-sensors using controlled drop tests.

  8. Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.

    2017-06-01

    A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.

  9. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  10. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.

    PubMed

    Anzt, H; Quintana-Ortí, E S

    2014-06-28

    While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Study of the linearity of CABRI experimental ionization chambers during RIA transients

    NASA Astrophysics Data System (ADS)

    Lecerf, J.; Garnier, Y.; Hudelot, JP.; Duc, B.; Pantera, L.

    2018-01-01

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center and funded by the French Nuclear Safety and Radioprotection Institute (IRSN). For the purpose of the CABRI International Program (CIP), operated and managed by IRSN under an OECD/NEA framework it has been refurbished since 2003 to be able to provide experiments in prototypical PWR conditions (155 bar, 300 °C) in order to study the fuel behavior under Reactivity Initiated Accident (RIA) conditions. This paper first reminds the objectives of the power commissioning tests performed on the CABRI facility. The design and location of the neutron detectors monitoring the core power are also presented. Then it focuses on the different methodologies used to calibrate the detectors and check the consistency and co-linearity of the measurements. Finally, it presents the methods used to check the linearity of the neutron detectors up to the high power levels ( 20 GW) reached during power transients. Some results obtained during the power tests campaign are also presented.

  12. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms

    NASA Astrophysics Data System (ADS)

    Sinitsin, Vladimir V.; Shestakov, Aleksandr L.

    2017-09-01

    Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms.

  13. Assessing power of large river fish monitoring programs to detect population changes: the Missouri River sturgeon example

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Bryan, J.L.; Gladish, D.W.; Ellersieck, M.

    2011-01-01

    In 2003, the US Army Corps of Engineers initiated the Pallid Sturgeon Population Assessment Program (PSPAP) to monitor pallid sturgeon and the fish community of the Missouri River. The power analysis of PSPAP presented here was conducted to guide sampling design and effort decisions. The PSPAP sampling design has a nested structure with multiple gear subsamples within a river bend. Power analyses were based on a normal linear mixed model, using a mixed cell means approach, with variance estimates from the original data. It was found that, at current effort levels, at least 20 years for pallid and 10 years for shovelnose sturgeon is needed to detect a 5% annual decline. Modified bootstrap simulations suggest power estimates from the original data are conservative due to excessive zero fish counts. In general, the approach presented is applicable to a wide array of animal monitoring programs.

  14. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  15. Laser power meters as an X-ray power diagnostic for LCLS-II.

    PubMed

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  16. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE PAGES

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  17. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    PubMed

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A new venous infusion pathway monitoring system.

    PubMed

    Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton

    2007-01-01

    A new infusion catheter pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer has been developed for hospital and home use. The sensor consists of coaxial three-layer conductive tapes wrapped around the polyvinyl chloride infusion tube. The inner tape is the main electrode, which records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The outside tape layer is a reference electrode to monitor the AC voltage around the main electrode. The center tape layer is connected to system ground and functions as a shield. The microcomputer calculates the ratio of the induced AC voltages recorded by the main and reference electrodes and if the ratio indicates a detached infusion, alerts the nursing station, via the nurse call system or low transmitting power mobile phone.

  19. A new infusion pathway monitoring system utilizing electrostatic induced potential.

    PubMed

    Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton

    2006-01-01

    We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).

  20. A new infusion pathway intactness monitoring system.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton

    2006-01-01

    A new infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. An AC (alternating current) voltage is induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The induced AC voltage can be recorded by a main electrode wrapped around the infusion polyvinyl chloride tube. A reference electrode is wrapped on the electrode to monitor the AC voltage around the main electrode. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).

  1. A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    PubMed Central

    Blundell, N. J.; Hopkins, A.; Worsfold, P. J.; Casey, H.

    1993-01-01

    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented. PMID:18924971

  2. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    PubMed

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  3. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adaptable piezoelectric hemispherical composite strips using a scalable groove technique for a self-powered muscle monitoring system.

    PubMed

    Alluri, Nagamalleswara Rao; Vivekananthan, Venkateswaran; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2018-01-18

    Contrary to traditional planar flexible piezoelectric nanogenerators (PNGs), highly adaptable hemispherical shape-flexible piezoelectric composite strip (HS-FPCS) based PNGs are required to harness/measure non-linear surface motions. Therefore, a feasible, cost-effective and less-time consuming groove technique was developed to fabricate adaptable HS-FPCSs with multiple lengths. A single HS-CSPNG generates 130 V/0.8 μA and can also work as a self-powered muscle monitoring system (SP-MMS) to measure maximum human body part movements, i.e., spinal cord, throat, jaw, elbow, knee, foot stress, palm hand/finger force and inhale/exhale breath conditions at a time or at variable time intervals.

  5. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  6. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  7. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Automated Cryocooler Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.

  9. Automated recognition system for power quality disturbances

    NASA Astrophysics Data System (ADS)

    Abdelgalil, Tarek

    The application of deregulation policies in electric power systems has resulted in the necessity to quantify the quality of electric power. This fact highlights the need for a new monitoring strategy which is capable of tracking, detecting, classifying power quality disturbances, and then identifying the source of the disturbance. The objective of this work is to design an efficient and reliable power quality monitoring strategy that uses the advances in signal processing and pattern recognition to overcome the deficiencies that exist in power quality monitoring devices. The purposed monitoring strategy has two stages. The first stage is to detect, track, and classify any power quality violation by the use of on-line measurements. In the second stage, the source of the classified power quality disturbance must be identified. In the first stage, an adaptive linear combiner is used to detect power quality disturbances. Then, the Teager Energy Operator and Hilbert Transform are utilized for power quality event tracking. After the Fourier, Wavelet, and Walsh Transforms are employed for the feature extraction, two approaches are then exploited to classify the different power quality disturbances. The first approach depends on comparing the disturbance to be classified with a stored set of signatures for different power quality disturbances. The comparison is developed by using Hidden Markov Models and Dynamic Time Warping. The second approach depends on employing an inductive inference to generate the classification rules directly from the data. In the second stage of the new monitoring strategy, only the problem of identifying the location of the switched capacitor which initiates the transients is investigated. The Total Least Square-Estimation of Signal Parameters via Rotational Invariance Technique is adopted to estimate the amplitudes and frequencies of the various modes contained in the voltage signal measured at the facility entrance. After extracting the amplitudes and frequencies, an Artificial Neural Network is employed to identify the switched capacitor by using amplitudes and frequencies extracted from the transient signal. The new algorithms for detecting, tracking, and classifying power quality disturbances demonstrate the potential for further development of a fully automated recognition system for the assessment of power quality. This is possible because the implementation of the proposed algorithms for the power quality monitoring device becomes a straight forward process by modifying the device software.

  10. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  11. Dissemination of the Phasor Method in Electrical Engineering in China

    ERIC Educational Resources Information Center

    Zhang, Liangliang; Lei, Yinzhao

    2014-01-01

    Synchrophasors, widely used in the monitoring and analysis of power systems, evolved from the phasor method presented by Charles Proteus Steinmetz in 1893. The phasor method is a mathematical method for solving linear sinusoidal steady-state circuits and time-varying electromagnetic fields. This paper traces the history and diffusion of the phasor…

  12. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection

    NASA Astrophysics Data System (ADS)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart

    2017-07-01

    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  13. Multicriteria relocation analysis of an off-site radioactive monitoring network for a nuclear power plant.

    PubMed

    Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang

    2006-08-01

    Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for narrowing the set of scenarios that decision-makers need to consider in this relocation process.

  14. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train - A contemporary survey

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, R.; Umamaheswari, R.

    2017-02-01

    Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.

  15. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  16. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  17. Application of Multiregressive Linear Models, Dynamic Kriging Models and Neural Network Models to Predictive Maintenance of Hydroelectric Power Systems

    NASA Astrophysics Data System (ADS)

    Lucifredi, A.; Mazzieri, C.; Rossi, M.

    2000-05-01

    Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple regression is not optimal, and that a different approach is necessary to reduce the amount of work during the learning phase using, when available, all the information stored during the initial phase of the plant to build the reference baseline, elaborating, if it is the case, the raw information available. A mixed approach using the kriging statistical technique and neural network techniques could optimise the result.

  18. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectricmore » actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.« less

  19. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less

  20. Microwave heating of a high-Tc YBa2Cu3O6.9 superconductor through a Josephson-junction system

    NASA Astrophysics Data System (ADS)

    Stankowski, J.; Czyak, B.; Martinek, J.

    1990-12-01

    An overheating of a Josephson-junction system (JJS) in ceramic YBa2Cu3O6.9 samples was induced by microwave irradiation in a microwave cavity. The amplitude of the Josephson microwave absorption (JMA) was used as a monitor of the local JJS temperature. The difference between the JJS temperature and a sample temperature depends linearly on the power of the microwave field. A thermal hysteresis of Tc for heating and cooling is proportional to the microwave power applied in the JMA experiment.

  1. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  2. A new venous infusion path monitoring system utilizing electrostatic induced potential.

    PubMed

    Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton

    2008-01-01

    A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).

  3. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  4. A Low-power CMOS BFSK Transceiver for Health Monitoring Systems.

    PubMed

    Kim, Sungho; Lepkowski, William; Wilk, Seth J; Thornton, Trevor J; Bakkaloglu, Bertan

    2011-01-01

    A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of -70dBm and -98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10 -3 at the input powers of -70dBm at 1.2V and -98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW.

  5. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC).

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000Ω, the current density produced by the sensor (5.6 ± 0.5-462.2 ± 0.5 mA/m(2)) increased linearly with DO level up to 8.8 ± 0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4 min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  7. Linear polarizer local characterizations by polarimetric imaging for applications to polarimetric sensors for torque measurement for hybrid cars

    NASA Astrophysics Data System (ADS)

    Georges, F.; Remouche, M.; Meyrueis, P.

    2011-06-01

    Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.

  8. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    PubMed Central

    Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-01

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892

  9. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    PubMed

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  10. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  11. A Low-power CMOS BFSK Transceiver for Health Monitoring Systems

    PubMed Central

    Kim, Sungho; Lepkowski, William; Wilk, Seth J.; Thornton, Trevor J.; Bakkaloglu, Bertan

    2014-01-01

    A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of −70dBm and −98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10−3 at the input powers of −70dBm at 1.2V and −98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW. PMID:24473462

  12. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    PubMed

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  13. Predictability of depression severity based on posterior alpha oscillations.

    PubMed

    Jiang, H; Popov, T; Jylänki, P; Bi, K; Yao, Z; Lu, Q; Jensen, O; van Gerven, M A J

    2016-04-01

    We aimed to integrate neural data and an advanced machine learning technique to predict individual major depressive disorder (MDD) patient severity. MEG data was acquired from 22 MDD patients and 22 healthy controls (HC) resting awake with eyes closed. Individual power spectra were calculated by a Fourier transform. Sources were reconstructed via beamforming technique. Bayesian linear regression was applied to predict depression severity based on the spatial distribution of oscillatory power. In MDD patients, decreased theta (4-8 Hz) and alpha (8-14 Hz) power was observed in fronto-central and posterior areas respectively, whereas increased beta (14-30 Hz) power was observed in fronto-central regions. In particular, posterior alpha power was negatively related to depression severity. The Bayesian linear regression model showed significant depression severity prediction performance based on the spatial distribution of both alpha (r=0.68, p=0.0005) and beta power (r=0.56, p=0.007) respectively. Our findings point to a specific alteration of oscillatory brain activity in MDD patients during rest as characterized from MEG data in terms of spectral and spatial distribution. The proposed model yielded a quantitative and objective estimation for the depression severity, which in turn has a potential for diagnosis and monitoring of the recovery process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  15. Self-Powered Temperature-Mapping Sensors Based on Thermo-Magneto-Electric Generator.

    PubMed

    Chun, Jinsung; Kishore, Ravi Anant; Kumar, Prashant; Kang, Min-Gyu; Kang, Han Byul; Sanghadasa, Mohan; Priya, Shashank

    2018-04-04

    We demonstrate a thermo-magneto-electric generator (TMEG) based on second-order phase transition of soft magnetic materials that provides a promising pathway for scavenging low-grade heat. It takes advantage of the cyclic magnetic forces of attraction and repulsion arising through ferromagnetic-to-paramagnetic phase transition to create mechanical vibrations that are converted into electricity through piezoelectric benders. To enhance the mechanical vibration frequency and thereby the output power of the TMEG, we utilize the nonlinear behavior of piezoelectric cantilevers and enhanced thermal transport through silver (Ag) nanoparticles (NPs) applied on the surface of a soft magnet. This results in large enhancement of the oscillation frequency reaching up to 9 Hz (300% higher compared with that of the prior literature). Optimization of the piezoelectric beam and Ag NP distribution resulted in the realization of nonlinear TMEGs that can generate a high output power of 80 μW across the load resistance of 0.91 MΩ, which is 2200% higher compared with that of the linear TMEG. Using a nonlinear TMEG, we fabricated and evaluated self-powered temperature-mapping sensors for monitoring the thermal variations across the surface. Combined, our results demonstrate that nonlinear TMEGs can provide additional functionality including temperature monitoring, thermal mapping, and powering sensor nodes.

  16. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  17. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  18. Measuring recovery: An adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations.

    PubMed

    Shearer, David A; Sparkes, William; Northeast, Jonny; Cunningham, Daniel J; Cook, Christian J; Kilduff, Liam P

    2017-05-01

    Biochemical (e.g. creatine kinase (CK)) and neuromuscular (e.g. peak power output (PPO)) markers of recovery are expensive and require specialist equipment. Perceptual measures are an effective alternative, yet most validated scales are too long for daily use. This study utilises a longitudinal multi-level design to test an adapted Brief Assessment of Mood (BAM+), with four extra items and a 100mm visual analogue scale to measure recovery. Elite under-21 academy soccer players (N=11) were monitored across five games with data (BAM+, CK and PPO) collected for each game at 24h pre, 24h and 48h post-match. Match activity data for each participant was also collected using GPS monitors on players. BAM+, CK and PPO had significant (p<.05) linear and quadratic growth curves across time and games that matched the known time reports of fatigue and recovery. Multi-level linear modelling (MLM) with random intercepts for 'participant' and 'game' indicated only CK significantly contributed to the variance of BAM+ scores (p<.05). Significant correlations (p<.01) were found between changes in BAM+ scores from baseline at 24 and 48h post-match for total distance covered per minute, high intensity distance covered per minute, and total number of sprints per minute. Visual and inferential results indicate that the BAM+ appears effective for monitoring longitudinal recovery cycles in elite level athletes. Future research is needed to confirm both the scales reliability and validity. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence.

    PubMed

    Taylor, Terence E; Lacalle Muls, Helena; Costello, Richard W; Reilly, Richard B

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence.

  20. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence

    PubMed Central

    Lacalle Muls, Helena; Costello, Richard W.; Reilly, Richard B.

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence. PMID:29346430

  1. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  2. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  3. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.

    PubMed

    Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun

    2016-09-01

    Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A novel pulse height analysis technique for nuclear spectroscopic and imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Wang, C. Y.; Chou, H. P.

    2005-08-01

    The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.

  5. Development of the reactor antineutrino detection technology within the iDream project

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Kuznetsov, D.; Murchenko, A.; Novikova, G.; Obinyakov, B.; Oralbaev, A.; Plakitina, K.; Skorokhvatov, M.; Sukhotin, S.; Chepurnov, A.; Etenko, A.

    2017-12-01

    The iDREAM (industrial Detector for reactor antineutrino monitoring) project is aimed at remote monitoring of the operating modes of the atomic reactor on nuclear power plant to ensure a technical support of IAEA non-proliferation safeguards. The detector is a scintillator spectrometer. The sensitive volume (target) is filled with a liquid organic scintillator based on linear alkylbenzene where reactor antineutrinos will be detected via inverse beta-decay reaction. We present first results of laboratory tests after physical launch. The detector was deployed at sea level without background shielding. The number of calibrations with radioactive sources was conducted. All data were obtained by means of a slow control system which was put into operation.

  6. Energy Monitoring and Control Systems Inspection Guidelines.

    DTIC Science & Technology

    1982-12-01

    When the pressure port is exposed to atmosphere, the transducer will indicate zero PSIG. An absolute pressure transducer measures pressure referenced...Environment. dbm: A measure of absolute power values. Zero dbm equals one milliwatt. Data Transmission Transmission equipment including cables and Media (DTM...the four listed, type "K" is the most linear of the T/C’s and type "E" has the highest voltage per degree farenheit . Some advantages of thermo- couples

  7. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    PubMed

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (-41.54, -41.80, -48.86, and -46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (-25.85, -43.56, -49.04, and -49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation.

  8. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation

    PubMed Central

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-01-01

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (−1.8 and −0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (−2.95 and −3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (−48.34, −44.21, −48.34, and −46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (−45.61, −41.57, −45.01, and −45.51 dB, respectively). When five-cycle 20 dBm input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (−41.54, −41.80, −48.86, and −46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (−25.85, −43.56, −49.04, and −49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation. PMID:28375165

  9. Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.

    PubMed

    Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran

    2017-04-10

    An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.

  10. Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot

    PubMed Central

    Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran

    2017-01-01

    An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298

  11. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    PubMed

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  12. An RF dosimeter for independent SAR measurement in MRI scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less

  13. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  14. An open-population hierarchical distance sampling model.

    PubMed

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  15. Power Management and SRAM for Energy-Autonomous and Low-Power Systems

    NASA Astrophysics Data System (ADS)

    Chen, Gregory K.

    We demonstrate the two first-known, complete, self-powered millimeter-scale computer systems. These microsystems achieve zero-net-energy operation using solar energy harvesting and ultra-low-power circuits. A medical implant for monitoring intraocular pressure (IOP) is presented as part of a treatment for glaucoma. The 1.5mm3 IOP monitor is easily implantable because of its small size and measures IOP with 0.5mmHg accuracy. It wirelessly transmits data to an external wand while consuming 4.70nJ/bit. This provides rapid feedback about treatment efficacies to decrease physician response time and potentially prevent unnecessary vision loss. A nearly-perpetual temperature sensor is presented that processes data using a 2.1muW near-threshold ARMRTM Cortex-M3(TM) muP that provides a widely-used and trusted programming platform. Energy harvesting and power management techniques for these two microsystems enable energy-autonomous operation. The IOP monitor harvests 80nW of solar power while consuming only 5.3nW, extending lifetime indefinitely. This allows the device to provide medical information for extended periods of time, giving doctors time to converge upon the best glaucoma treatment. The temperature sensor uses on-demand power delivery to improve low-load dc-dc voltage conversion efficiency by 4.75x. It also performs linear regulation to deliver power with low noise, improved load regulation, and tight line regulation. Low-power high-throughput SRAM techniques help millimeter-scale microsystems meet stringent power budgets. VDD scaling in memory decreases energy per access, but also decreases stability margins. These margins can be improved using sizing, VTH selection, and assist circuits, as well as new bitcell designs. Adaptive Crosshairs modulation of SRAM power supplies fixes 70% of parametric failures. Half-differential SRAM design improves stability, reducing VMIN by 72mV. The circuit techniques for energy autonomy presented in this dissertation enable millimeter-scale microsystems for medical implants, such as blood pressure and glucose sensors, as well as non-medical applications, such as supply chain and infrastructure monitoring. These pervasive sensors represent the continuation of Bell's Law, which accurately traces the evolution of computers as they have become smaller, more numerous, and more powerful. The development of millimeter-scale massively-deployed ubiquitous computers ensures the continued expansion and profitability of the semiconductor industry. NanoWatt circuit techniques will allow us to meet this next frontier in IC design.

  16. Reliability and Validity Assessment of a Linear Position Transducer

    PubMed Central

    Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.

    2015-01-01

    The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300

  17. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location determination. The multiplexer also identifies which channels are acquired by encoding TTL logic pulses onto the latter portion of the signals. This prototype system was demonstrated using pencil lead break (Hsu-Neilsen) sources on an aluminum plate. It performed as designed providing rapid low noise trigger based switching with encoded channel identification. this multiplexing approach is not limited to linear arrays, but can be easily extended to monitor sensors in planar ot three dimensional arrays. A 32 channel multiplexing system is under development that will allow arbitrary sensor placement. Another benefit of this multiplexing system is the reduction in the expense of data acquisition hardware. In addition, the reduced weight and power requirements are of extreme importance for proposed AE systems on aerospace vehicles.

  18. Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes*

    PubMed Central

    Michalski, Annette; Damoc, Eugen; Lange, Oliver; Denisov, Eduard; Nolting, Dirk; Müller, Mathias; Viner, Rosa; Schwartz, Jae; Remes, Philip; Belford, Michael; Dunyach, Jean-Jacques; Cox, Juergen; Horning, Stevan; Mann, Matthias; Makarov, Alexander

    2012-01-01

    Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm—incorporating phase information—further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s—increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides. PMID:22159718

  19. Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform

    PubMed Central

    Cennamo, Nunzio; De Maria, Letizia; D’Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-01-01

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor. PMID:25871719

  20. Monitoring of low levels of furfural in power transformer oil with a sensor system based on a POF-MIP platform.

    PubMed

    Cennamo, Nunzio; De Maria, Letizia; D'Agostino, Girolamo; Zeni, Luigi; Pesavento, Maria

    2015-04-13

    In this work an innovative, miniaturized and low cost optical chemical sensor (POF-MIP platform), based on a molecular imprinted polymer (MIP) and surface plasmon resonance in a plastic optical fiber (POF), is presented and preliminarily tested for monitoring of furfural (furan-2-carbaldehyde) in transformer oil. To this end, the optical platform was coupled to an MIP layer, highly selective for furfural. The ability of the developed sensor to directly detect furfural in the insulating oil was investigated. The detection limit of the sensor has been found to be 9 ppb, with a linear response up to about 30 ppb. However there is a sensible response up to 0.15 ppm. Because of the small linearity range, the Hill equation is suggested for the quantification. The sensor has been effectively tested in real oil samples collected from aged electrical equipment removed from service. The assessed concentration of furfural is in good agreement with that evaluated by a high pressure liquid chromatography (HLPC) method, confirming the good selectivity of the proposed sensor.

  1. [Spectral analysis of fiber bragg grating modulated by double long period grating and its application in smart structure monitoring].

    PubMed

    Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu

    2009-12-01

    Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.

  2. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  3. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  4. To Jump or Cycle? Monitoring Neuromuscular Function in Rugby Union Players.

    PubMed

    Roe, Gregory; Darrall-Jones, Joshua; Till, Kevin; Phibbs, Padraic; Read, Dale; Weakley, Jonathon; Jones, Ben

    2017-05-01

    To evaluate changes in performance of a 6-s cycle-ergometer test (CET) and countermovement jump (CMJ) during a 6-wk training block in professional rugby union players. Twelve young professional rugby union players performed 2 CETs and CMJs on the 1st and 4th mornings of every week before the commencement of daily training during a 6-wk training block. Standardized changes in the highest score of 2 CET and CMJ efforts were assessed using linear mixed modeling and magnitude-based inferences. After increases in training load during wk 3 to 5, moderate decreases in CMJ peak and mean power and small decreases in flight time were observed during wk 5 and 6 that were very likely to almost certainly greater than the smallest worthwhile change (SWC), suggesting neuromuscular fatigue. However, only small decreases, possibly greater than the SWC, were observed in CET peak power. Changes in CMJ peak and mean power were moderately greater than in CET peak power during this period, while the difference between flight time and CET peak power was small. The greater weekly changes in CMJ metrics in comparison with CET may indicate differences in the capacities of these tests to measure training-induced lower-body neuromuscular fatigue in rugby union players. However, future research is needed to ascertain the specific modes of training that elicit changes in CMJ and CET to determine the efficacy of each test for monitoring neuromuscular function in rugby union players.

  5. Development of a Low Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.

  6. Development of a Low-Inductance Linear Alternator for Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schifer, Nicholas A.

    2017-01-01

    The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.

  7. Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range.

    PubMed

    Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

  8. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used to...

  9. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    PubMed

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.

  10. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  11. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  12. Extension of the lower bound of monitor solutions of maximally permissive supervisors to non-α net systems

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Chao, D. Y.

    2016-07-01

    Traditional region-based liveness-enforcing supervisors focus on (1) maximal permissiveness of not losing legal states, (2) structural simplicity of minimal number of monitors, and (3) fast computation. Lately, a number of similar approaches can achieve minimal configuration using efficient linear programming. However, it is unclear as to the relationship between the minimal configuration and the net structure. It is important to explore the structures involved for the fewest monitors required. Once the lower bound is achieved, further iteration to merge (or reduce the number of) monitors is not necessary. The minimal strongly connected resource subnet (i.e., all places are resources) that contains the set of resource places in a basic siphon is an elementary circuit. Earlier, we showed that the number of monitors required for liveness-enforcing and maximal permissiveness equals that of basic siphons for a subclass of Petri nets modelling manufacturing, called α systems. This paper extends this to systems more powerful than the α one so that the number of monitors in a minimal configuration remains to be lower bounded by that of basic siphons. This paper develops the theory behind and shows examples.

  13. The non-linear power spectrum of the Lyman alpha forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate themore » comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.« less

  14. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  15. Monitoring of urban subsidence with SAR interferometric point target analysis: A case study in Suzhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghong; Zhang, Jixian; Wu, Hongan; Lu, Zhong; Guangtong, Sun

    2011-10-01

    Ground subsidence, mainly caused by over exploitation of groundwater and other underground resources, such as oil, gas and coal, occurs in many cities in China. The annual direct loss associated with subsidence across the country is estimated to exceed 100 million US dollar. Interferometric SAR (InSAR) is a powerful tool to map ground deformation at an unprecedented level of spatial detail. It has been widely used to investigate the deformation resulting from earthquakes, volcanoes and subsidence. Repeat-pass InSAR, however, may fail due to impacts of spatial decorrelation, temporal decorrelation and heterogeneous refractivity of atmosphere. In urban areas, a large amount of natural stable radar reflectors exists, such as buildings and engineering structures, at which radar signals can remain coherent during a long time interval. Interferometric point target analysis (IPTA) technique, also known as persistent scatterers (PS) InSAR is based on these reflectors. It overcomes the shortfalls in conventional InSAR. This paper presents a procedure for urban subsidence monitoring with IPTA. Calculation of linear deformation rate and height residual, and the non-linear deformation estimate, respectively, are discussed in detail. Especially, the former is highlighted by a novel and easily implemented 2-dimensional spatial search algorithm. Practically useful solutions that can significantly improve the robustness of IPTA, are recommended. Finally, the proposed procedure is applied to mapping the ground subsidence in Suzhou city, Jiangsu province, China. Thirty-four ERS-1/2 SAR scenes are analyzed, and the deformation information over 38,881 point targets between 1992 and 2000 are generated. The IPTA-derived deformation estimates correspond well with leveling measurements, demonstrating the potential of the proposed subsidence monitoring procedure based on IPTA technique. Two shortcomings of the IPTA-based procedure, e.g., the requirement of large number of SAR images and assumed linear plus non-linear deformation model, are discussed as the topics of further research.

  16. A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation.

    PubMed

    Ding, Junjie; Wang, Yi; Lin, Weiwei; Wang, Changlian; Zhao, Limei; Li, Xingang; Zhao, Zhigang; Miao, Liyan; Jiao, Zheng

    2015-03-01

    Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy. A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM(®) software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models. The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model. The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.

  17. Application of Nearly Linear Solvers to Electric Power System Computation

    NASA Astrophysics Data System (ADS)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  18. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  19. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  20. Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study.

    PubMed

    Le, Nhan; Song, ShaoZhen; Nabi, Ghulam; Wang, Ruikang; Huang, Zhihong

    2016-09-01

    Phase-sensitive optical coherence tomography (PhS-OCT) is proposed, as a new high intensity focused ultrasound (HIFU) imaging guidance to detect and track HIFU focus inside 1% agar samples in this work. The experiments studied the effect of varying HIFU power on the induction of shear wave, which can be implemented as a new technique to monitor focused ultrasound surgery (FUS). A miniature HIFU transducer (1.02 MHz, 20 mm aperture diameter, 15 mm radius of curvature) was produced in-house, pressure-field mapped, and calibrated. The transducer was then embedded inside a 1% agar phantom, which was placed under PhS-OCT for observation, under various HIFU power settings (acoustic power, and number of cycles per pulse). Shear wave was induced on the sample surface by HIFU and was captured in full under PhS-OCT. The lowest HIFU acoustic power output for the detection of shear wave was found to be 0.36 W (1.02 MHz, 100 cycles/pulse), or with the number of cycles/pulse as low as 20 (1.02 MHz, 0.98 W acoustic power output). A linear relationship between acoustic power output and the maximum shear wave displacement was found in the first study. The second study explores a non-linear correlation between the (HIFU) numbers of cycles per pulse, and the maximum shear wave displacement. PhS-OCT demonstrates excellent tracking and detection of HIFU-induced shear wave. The results could benefit other imaging techniques in tracking and guiding HIFU focus. Further studies will explore the relationship between the physical transducer characteristics and the HIFU-induced shear wave.

  1. Power to detect trends in Missouri River fish populations within the Habitat Assessment Monitoring Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan W.

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately one-third of the mainstem length impounded and one-third channelized. These physical alterations to the environment have affected the fish populations, but studies examining the effects of alterations have been localized and for short periods of time, thereby preventing generalization. In response to the U.S. Fish and Wildlife Service Biological Opinion, the U.S. Army Corps of Engineers (USACE) initiated monitoring of habitat improvements of the Missouri River in 2005. The goal of the Habitat Assessment Monitoring Program (HAMP) is to provide information on the response of target fish species to the USACE habitat creation on the Lower Missouri River. To determine the statistical power of the HAMP and in cooperation with USACE, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first complete year of data. At a level of 20/16 (20 bends with 16 subsamples in each bend), at least one species/month/gear model has the power to determine differences between treated and untreated bends. The trammel net in September had the most species models with adequate power at the 20/16 level and overall, the trammel net had the most species/month models with adequate power at the 20/16 level. However, using only one gear or gear/month combination would eliminate other species of interest, such as three chub species (Macrhybopsis meeki, Macrhybopsis aestivalis, and Macrhybopsis gelida), sand shiners (Notropis stramineus), pallid sturgeon (Scaphirhynchus albus), and juvenile sauger (Sander canadensis). Since gear types are selective in their species efficiency, the strength of the HAMP approach is using multiple gears that have statistical power to differentiate habitat treatment differences in different fish species within the Missouri River. As is often the case with sampling rare species like the pallid sturgeon, the data used to conduct the analyses exhibit some departures from the parametric model assumptions. However, preliminary simulations indicate that the results of this study are appropriate for application to the HAMP study design.

  2. Comparison of futility monitoring guidelines using completed phase III oncology trials.

    PubMed

    Zhang, Qiang; Freidlin, Boris; Korn, Edward L; Halabi, Susan; Mandrekar, Sumithra; Dignam, James J

    2017-02-01

    Futility (inefficacy) interim monitoring is an important component in the conduct of phase III clinical trials, especially in life-threatening diseases. Desirable futility monitoring guidelines allow timely stopping if the new therapy is harmful or if it is unlikely to demonstrate to be sufficiently effective if the trial were to continue to its final analysis. There are a number of analytical approaches that are used to construct futility monitoring boundaries. The most common approaches are based on conditional power, sequential testing of the alternative hypothesis, or sequential confidence intervals. The resulting futility boundaries vary considerably with respect to the level of evidence required for recommending stopping the study. We evaluate the performance of commonly used methods using event histories from completed phase III clinical trials of the Radiation Therapy Oncology Group, Cancer and Leukemia Group B, and North Central Cancer Treatment Group. We considered published superiority phase III trials with survival endpoints initiated after 1990. There are 52 studies available for this analysis from different disease sites. Total sample size and maximum number of events (statistical information) for each study were calculated using protocol-specified effect size, type I and type II error rates. In addition to the common futility approaches, we considered a recently proposed linear inefficacy boundary approach with an early harm look followed by several lack-of-efficacy analyses. For each futility approach, interim test statistics were generated for three schedules with different analysis frequency, and early stopping was recommended if the interim result crossed a futility stopping boundary. For trials not demonstrating superiority, the impact of each rule is summarized as savings on sample size, study duration, and information time scales. For negative studies, our results show that the futility approaches based on testing the alternative hypothesis and repeated confidence interval rules yielded less savings (compared to the other two rules). These boundaries are too conservative, especially during the first half of the study (<50% of information). The conditional power rules are too aggressive during the second half of the study (>50% of information) and may stop a trial even when there is a clinically meaningful treatment effect. The linear inefficacy boundary with three or more interim analyses provided the best results. For positive studies, we demonstrated that none of the futility rules would have stopped the trials. The linear inefficacy boundary futility approach is attractive from statistical, clinical, and logistical standpoints in clinical trials evaluating new anti-cancer agents.

  3. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.

  4. Estimating linear temporal trends from aggregated environmental monitoring data

    USGS Publications Warehouse

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  5. Lightweight Exoskeletons with Controllable Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  6. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    Science.gov Websites

    construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power Technology-listing by parabolic trough, linear Fresnel reflector, power tower, or dish/engine systems Status

  7. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  8. OMI air-quality monitoring over the Middle East

    NASA Astrophysics Data System (ADS)

    Barkley, Michael P.; González Abad, Gonzalo; Kurosu, Thomas P.; Spurr, Robert; Torbatian, Sara; Lerot, Christophe

    2017-04-01

    Using Ozone Monitoring Instrument (OMI) trace gas vertical column observations of nitrogen dioxide (NO2), formaldehyde (HCHO), sulfur dioxide (SO2), and glyoxal (CHOCHO), we have conducted a robust and detailed time series analysis to assess changes in local air quality for over 1000 locations (focussing on urban, oil refinery, oil port, and power plant targets) over the Middle East for 2005-2014. Apart from NO2, which is highest over urban locations, average tropospheric column levels of these trace gases are highest over oil ports and refineries. The highest average pollution levels over urban settlements are typically in Bahrain, Kuwait, Qatar, and the United Arab Emirates. We detect 278 statistically significant and real linear NO2 trends in total. Over urban areas NO2 increased by up to 12 % yr-1, with only two locations showing a decreasing trend. Over oil refineries, oil ports, and power plants, NO2 increased by about 2-9 % yr-1. For HCHO, 70 significant and real trends were detected, with HCHO increasing by 2-7 % yr-1 over urban settlements and power plants and by about 2-4 % yr-1 over refineries and oil ports. Very few SO2 trends were detected, which varied in direction and magnitude (23 increasing and 9 decreasing). Apart from two locations where CHOCHO is decreasing, we find that glyoxal tropospheric column levels are not changing over the Middle East. Hence, for many locations in the Middle East, OMI observes a degradation in air quality over 2005-2014. This study therefore demonstrates the capability of OMI to generate long-term air-quality monitoring at local scales over this region.

  9. Real-time kinematic PPP GPS for structure monitoring applied on the Severn Suspension Bridge, UK

    NASA Astrophysics Data System (ADS)

    Tang, Xu; Roberts, Gethin Wyn; Li, Xingxing; Hancock, Craig Matthew

    2017-09-01

    GPS is widely used for monitoring large civil engineering structures in real time or near real time. In this paper the use of PPP GPS for monitoring large structures is investigated. The bridge deformation results estimated using double differenced measurements is used as the truth against which the performance of kinematic PPP in a real-time scenario for bridge monitoring is assessed. The towers' datasets with millimetre level movement and suspension cable dataset with centimetre/decimetre level movement were processed by both PPP and DD data processing methods. The consistency of tower PPP time series indicated that the wet tropospheric delay is the major obstacle for small deflection extraction. The results of suspension cable survey points indicate that an ionospheric-free linear measurement is competent for bridge deformation by PPP kinematic model, the frequency domain analysis yields very similar results using either PPP or DD. This gives evidence that PPP can be used as an alternative method to DD for large structure monitoring when DD is difficult or impossible because of large baseline lengths, power outages or natural disasters. The PPP residual tropospheric wet delays can be applied to improve the capacity of small movement extraction.

  10. Crack Monitoring of Operational Wind Turbine Foundations

    PubMed Central

    McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-01-01

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687

  11. Crack Monitoring of Operational Wind Turbine Foundations.

    PubMed

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  12. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-01-25

    In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

  13. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  14. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    PubMed

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it showsmore » that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.« less

  16. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  17. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  18. Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.

    2014-01-01

    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  19. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  20. Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Shutter, Lori A.; Narayan, Raj K.

    2010-02-01

    The dual-mode operation of a polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) piezoelectric polymer diaphragm, in a capacitive or resonant mode, is reported as a flexible intracranial pressure (ICP) sensor. The pressure sensor using a capacitive mode exhibits a higher linearity and less power consumption than resonant mode operated pressure sensor. In contrast, the latter provides better sensitivity and easier adaption for wireless application. The metrological properties of the dual-mode ICP sensor being described are satisfactory in vitro. We propose that the piezoelectric polymer diaphragm has a promising future in intracranial pressure monitoring.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colosimo, A. M.; Ji, Jianfeng; Stepanov, P. S.

    In this paper, scintillation properties are often studied by photo-luminescence (PL) and scintillation measurements. In this work, we combine X-ray-induced luminescence (XRIL) spectroscopy [Review of Scientific Instruments 83, 103112 (2012)] with PL and standard scintillation measurements to give insight into the scintillation properties of un-doped ZnO single crystals. XRIL revealed that ZnO luminescence proportionally increases with X-ray power and exhibits excellent linearity - indicating the possibility of developing radiation detectors with good energy resolution. Finally, by coupling ZnO crystals to fast photomultiplier tubes and monitoring the anode signal, rise times as fast as 0.9 ns were measured.

  2. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator. Cleaner, simpler, and needs less maintenance. Features rotary-to-linear-motion converter with antibacklash gearing and position feedback via shaft-angle resolvers, which measure rotary motion.

  3. Effects of Lateral Heterogeneity and Power Law Rheology on Glacially Induced Surface Motion and Gravity Rate of Change

    NASA Astrophysics Data System (ADS)

    Wu, P.; Wang, H.; van der Wal, W.

    2006-12-01

    Modern geodetic measurements from GPS, satellite altimetry, tide-gauges, Satellite Laser Ranging (SLR) and space-borne gravimetry (such as GRACE) have been used to monitor global change. Since these measurements contain contributions from glacial isostatic adjustment (GIA) and other tectonic processes, they must be modeled and removed in order to observe current climate change. In the past, most GIA models assumed that the earth is laterally homogeneous and the rheology is linear. The aim of this paper is to investigate the effects of lateral heterogeneity and Power-Law rheology on GIA induced land uplift rate, horizontal velocities, relative sealevels, J-dot and the secular gravity rate of change in the southern part of Hudson Bay, which is detected by the GRACE mission. Here, GIA is modeled with a spherical, self-gravitating, compressible viscoelastic, laterally heterogeneous earth using the Finite-Element Method. The effect of gravitationally self-consistent sea levels in realistic oceans is also included. Lateral variations in mantle viscosities and lithospheric thickness are inferred from the seismic tomography model S20A using well known scaling relationships. Power-Law rheologies in the whole mantle or in combination with linear rheologies in the upper or lower mantle are also investigated. Both ICE-5G and ICE-4G deglaciation models are used to investigate their effect on the pattern of rebound. Preliminary results show that both lateral heterogeneity and power-law rheology have strong effects on the direction and magnitude of horizontal velocities. The effects of lateral heterogeneity and power-law rheology are also large enough to be detected in land uplift rate, relative sealevels, J-dot and gravity rate of change. Their implication on observing the effects of global warming will also be discussed.

  4. Time Course of Improvements in Power Characteristics in Elite Development Netball Players Entering a Full-Time Training Program.

    PubMed

    McKeown, Ian; Chapman, Dale W; Taylor, Kristie Lee; Ball, Nick B

    2016-05-01

    We describe the time course of adaptation to structured resistance training on entering a full-time high-performance sport program. Twelve international caliber female netballers (aged 19.9 ± 0.4 years) were monitored for 18 weeks with countermovement (CMJ: performed with body weight and 15 kg) and drop jumps (0.35-m box at body weight) at the start of each training week. Performance did not improve linearly or concurrently with loaded CMJ power improving 11% by Week 5 (effect size [ES] 0.93 ± 0.72) in contrast, substantial positive changes were observed for unloaded CMJ power (12%; ES 0.78 ± 0.39), and CMJ velocity (unloaded: 7.1%; ES 0.66 ± 0.34; loaded: 7.5%; ES 0.90 ± 0.41) by week 7. Over the investigation duration, large improvements were observed in unloaded CMJ power (24%; ES 1.45 ± 1.11) and velocity (12%; ES 1.13 ± 0.76). Loaded CMJ power also showed a large improvement (19%; ES 1.49 ± 0.97) but only moderate changes were observed for loaded CMJ velocity (8.4%; ES 1.01 ± 0.67). Jump height changes in either unloaded or loaded CMJ were unclear over the 18-week period. Drop jump performance improved throughout the investigation period with moderate positive changes in reactive strength index observed (35%; ES 0.97 ± 0.69). The adaptation response to a structured resistance training program does not occur linearly in young female athletes. Caution should be taken if assessing jump height only, as this will provide a biased observation to a training response. Frequently assessing CMJ performance can aid program design coaching decisions to ensure improvements are seen past the initial neuromuscular learning phase in performance training.

  5. Validity of linear encoder measurement of sit-to-stand performance power in older people.

    PubMed

    Lindemann, U; Farahmand, P; Klenk, J; Blatzonis, K; Becker, C

    2015-09-01

    To investigate construct validity of linear encoder measurement of sit-to-stand performance power in older people by showing associations with relevant functional performance and physiological parameters. Cross-sectional study. Movement laboratory of a geriatric rehabilitation clinic. Eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). Sit-to-stand performance power and leg power were assessed using a linear encoder and the Nottingham Power Rig, respectively. Gait speed was measured on an instrumented walkway. Maximum quadriceps and hand grip strength were assessed using dynamometers. Mid-thigh muscle cross-sectional area of both legs was measured using magnetic resonance imaging. Associations of sit-to-stand performance power with power assessed by the Nottingham Power Rig, maximum gait speed and muscle cross-sectional area were r=0.646, r=0.536 and r=0.514, respectively. A linear regression model explained 50% of the variance in sit-to-stand performance power including muscle cross-sectional area (p=0.001), maximum gait speed (p=0.002), and power assessed by the Nottingham Power Rig (p=0.006). Construct validity of linear encoder measurement of sit-to-stand power was shown at functional level and morphological level for older women. This measure could be used in routine clinical practice as well as in large-scale studies. DRKS00003622. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  6. Proactive monitoring of a wind turbine array with lidar measurements, SCADA data and a data-driven RANS solver

    NASA Astrophysics Data System (ADS)

    Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.

    2016-12-01

    Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction of power production and wake velocity field associated with the turbine array.

  7. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  8. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  9. A two-phase investment model for optimal allocation of phasor measurement units considering transmission switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui

    2015-02-01

    Ensuring the reliability of an electrical power system requires a wide-area monitoring and full observability of the state variables. Phasor measurement units (PMUs) collect in real time synchronized phasors of voltages and currents which are used for the observability of the power grid. Due to the considerable cost of installing PMUs, it is not possible to equip all buses with PMUs. In this paper, we propose an integer linear programming model to determine the optimal PMU placement plan in two investment phases. In the first phase, PMUs are installed to achieve full observability of the power grid whereas additional PMUsmore » are installed in the second phase to guarantee the N - 1 observability of the power grid. The proposed model also accounts for transmission switching and single contingencies such as failure of a PMU or a transmission line. Results are provided on several IEEE test systems which show that our proposed approach is a promising enhancement to the methods available for the optimal placement of PMUs.« less

  10. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    PubMed

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  11. Study of CMOS-SOI Integrated Temperature Sensing Circuits for On-Chip Temperature Monitoring.

    PubMed

    Malits, Maria; Brouk, Igor; Nemirovsky, Yael

    2018-05-19

    This paper investigates the concepts, performance and limitations of temperature sensing circuits realized in complementary metal-oxide-semiconductor (CMOS) silicon on insulator (SOI) technology. It is shown that the MOSFET threshold voltage ( V t ) can be used to accurately measure the chip local temperature by using a V t extractor circuit. Furthermore, the circuit's performance is compared to standard circuits used to generate an accurate output current or voltage proportional to the absolute temperature, i.e., proportional-to-absolute temperature (PTAT), in terms of linearity, sensitivity, power consumption, speed, accuracy and calibration needs. It is shown that the V t extractor circuit is a better solution to determine the temperature of low power, analog and mixed-signal designs due to its accuracy, low power consumption and no need for calibration. The circuit has been designed using 1 µm partially depleted (PD) CMOS-SOI technology, and demonstrates a measurement inaccuracy of ±1.5 K across 300 K⁻500 K temperature range while consuming only 30 µW during operation.

  12. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2016-02-23

    Wind energy at a high altitude is far more stable and stronger than that near the ground, but it is out of reach of the wind turbine. Herein, we develop an innovative freestanding woven triboelectric nanogenerator flag (WTENG-flag) that can harvest high-altitude wind energy from arbitrary directions. The wind-driven fluttering of the woven unit leads to the current generation by a coupled effect of contact electrification and electrostatic induction. Systematic study is conducted to optimize the structure/material parameters of the WTENG-flag to improve the power output. This 2D WTENG-flag can also be stacked in parallel connections in many layers for a linearly increased output. Finally, a self-powered high-altitude platform with temperature/humidity sensing/telecommunicating capability is demonstrated with the WTENG-flag as a power source. Due to the light weight, low cost, and easy scale-up, this WTENG-flag has great potential for applications in weather/environmental sensing/monitoring systems.

  13. Kepler Observations of Rapid Optical Variability in the BL Lac Object W2r192+42

    NASA Technical Reports Server (NTRS)

    R.Edelson; Mushotzky, R.; Vaughn, S.; Scargle, J.; Gandhi, P.; Malkan, M.; Baumgartner, W.

    2013-01-01

    We present the first Kepler monitoring of a strongly variable BL Lac, W2R1926+42. The light curve covers 181 days with approx. 0.2% errors, 30 minute sampling and >90% duty cycle, showing numerous delta-I/I > 25% flares over timescales as short as a day. The flux distribution is highly skewed and non-Gaussian. The variability shows a strong rms-flux correlation with the clearest evidence to date for non-linearity in this relation. We introduce a method to measure periodograms from the discrete autocorrelation function, an approach that may be well-suited to a wide range of Kepler data. The periodogram is not consistent with a simple power-law, but shows a flattening at frequencies below 7x10(exp -5) Hz. Simple models of the power spectrum, such as a broken power law, do not produce acceptable fits, indicating that the Kepler blazar light curve requires more sophisticated mathematical and physical descriptions than currently in use.

  14. Mapping of power consumption and friction reduction in piezoelectrically-assisted ultrasonic lubrication

    NASA Astrophysics Data System (ADS)

    Dong, Sheng; Dapino, Marcelo J.

    2015-04-01

    Ultrasonic lubrication has been proven effective in reducing dynamic friction. This paper investigates the relationship between friction reduction, power consumption, linear velocity, and normal stress. A modified pin-on-disc tribometer was adopted as the experimental set-up, and a Labview system was utilized for signal generation and data acquisition. Friction reduction was quantified for 0.21 to 5.31 W of electric power, 50 to 200 mm/s of linear velocity, and 23 to 70 MPa of normal stress. Friction reduction near 100% can be achieved under certain conditions. Lower linear velocity and higher electric power result in greater friction reduction, while normal stress has little effect on friction reduction. Contour plots of friction reduction, power consumption, linear velocity, and normal stress were created. An efficiency coefficient was proposed to calculate power requirements for a certain friction reduction or reduced friction for a given electric power.

  15. Design and Implement of Low Ripple and Quasi-digital Power Supply

    NASA Astrophysics Data System (ADS)

    Xiangli, Li; Yanjun, Wei; Hanhong, Qi; Yan, Ma

    A switch linearity hybrid power supply based on single chip microcomputer is designed which merged the merits of the switching and linear power supply. Main circuit includes pre-regulator which works in switching mode and series regulator which works in linear mode. Two-stage regulation mode was adopted in the main circuit of the power. A single chip computer (SCM) and high resolution of series D/A and A/D converters are applied to control and measurement which achieved continuous adjustable and low ripple constant current or voltage power supply

  16. Waveform Design for Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Clerckx, Bruno; Bayguzina, Ekaterina

    2016-12-01

    Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.

  17. Linear air-fuel sensor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less

  18. Overload protection system for power inverter

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  19. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale.

    PubMed

    Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong

    2015-01-01

    A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  1. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    NASA Astrophysics Data System (ADS)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  2. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  3. Concentrating Solar Power Projects - Linear Fresnel Reflector Projects |

    Science.gov Websites

    Kimberlina solar thermal power plant, a linear Fresnel reflector system located near Bakersfield, California Solar Thermal Project eLLO Solar Thermal Project (Llo) IRESEN 1 MWe CSP-ORC pilot project Kimberlina Solar Thermal Power Plant (Kimberlina) Liddell Power Station Puerto Errado 1 Thermosolar Power Plant

  4. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-inducedmore » magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.« less

  5. Linear transmitter design for MSAT terminals

    NASA Technical Reports Server (NTRS)

    Wilkinson, Ross; Macleod, John; Beach, Mark; Bateman, Andrew

    1990-01-01

    One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented.

  6. Spatial heterogeneity in statistical power to detect changes in lake area in Alaskan National Wildlife Refuges

    USGS Publications Warehouse

    Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad

    2013-01-01

    Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.

  7. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  8. Investigation of Ion Beam Production and Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus.

    DTIC Science & Technology

    1984-03-01

    POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983 through March 31, 1984 Submitted to Air Force Office of...AND ACCELERATION USING LINEAR ELECTRON BEAMS AND A PULSE POWERED PLASMA FOCUS Contract No. AFOSR-83-0145 PROGRESS REPORT For the Period April 1, 1983...Acceleration Using Linear Electron Beams and a Pulse Powered Plasma Focus " 01 €,G APRIL 1, 1983 THROUGH MRCH 31, 1984 A. Collective Acceleration and Related

  9. The power grid monitoring promotion of Liaoning December 14th accident

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Gao, Ziji; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Wang, Mingkai; Qu, Zhi; Sun, Chenguang

    2018-02-01

    This paper introduces the main responsibilities of power grid monitoring and the accident of Liaoning Power Grid 500kV Xujia transformer substation at December 14th, 2016. This paper analyzes the problems exposed in this accident from the aspects of abnormal information judgment, fault information collection, auxiliary video monitoring, online monitoring of substation equipment, puts forward the corresponding improvement methods and summarizes the methods of improving the professional level of power grid equipment monitoring.

  10. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  11. Gamma ray monitoring of a AGN and galactic black hole candidates by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Skelton, R. T.; Ling, James C.; Wheaton, William A.; Harmon, Alan; Fishman, G. J.; Meegan, C. A.; Paciesas, William S.; Gruber, Duane E.; Rubin, Brad; Wilson, R. B.

    1992-01-01

    The Compton Gamma-Ray Observatory's Burst and Transient Source Experiment (BATSE) has a powerful capability to provide nearly uninterrupted monitoring in the 25 keV-10 MeV range of both active galactic nuclei (AGN) and galactic black hole candidates (GBHC) such as Cygnus X-1, using the occultation of cosmic sources by the Earth. Since the Crab is detected by the BATSE Large Area Detectors with roughly 25(sigma) significance in the 15-125 keV range in a single rise or set, a variation by a factor of two of a source having one-tenth the strength of Cygnus X-1 should be detectable within a day. Methods of modeling the background are discussed which will increase the accuracy, sensitivity, and reliability of the results beyond those obtainable from a linear background fit with a single rise or set discontinuity.

  12. Macrolichens as biomonitors of air-quality change in western Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenahen, J.R.; Davis, D.D.; Hutnik, R.J.

    2007-07-01

    Species richness of corticolous macrolichens was monitored at one- or two-year intervals on a total of 63 plots from 1997-2003 in a region of west-central Pennsylvania that included four coal-fired power generating stations and an industrial city. Lichen richness significantly increased from an average of 5.7 species/plot in 1997 to 9.3 species/plot in 2003. A linear mean rate of gain in species on regional monitoring plots was 0.56 species/yr. Plots along a major ridge top had a slower but significant gain in richness, and a localized area flanked by the city and two generating stations exhibited less lichen recolonization. Ourmore » results confirm the value of macrolichens as indicators of air quality and the importance of examining temporal as well as spatial changes in lichen richness to ascertain air-quality status.« less

  13. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.

    PubMed

    Insoo Kim; Bhagat, Yusuf A

    2016-08-01

    The standard in noninvasive blood pressure (BP) measurement is an inflatable cuff device based on the oscillometric method, which poses several practical challenges for continuous BP monitoring. Here, we present a novel ultra-wide band RF Doppler radar sensor for next-generation mobile interface for the purpose of characterizing fluid flow speeds, and for ultimately measuring cuffless blood flow in the human wrist. The system takes advantage of the 7.1~10.5 GHz ultra-wide band signals which can reduce transceiver complexity and power consumption overhead. Moreover, results obtained from hardware development, antenna design and human wrist modeling, and subsequent phantom development are reported. Our comprehensive lab bench system setup with a peristaltic pump was capable of characterizing various speed flow components during a linear velocity sweep of 5~62 cm/s. The sensor holds potential for providing estimates of heart rate and blood pressure.

  14. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Technical Reports Server (NTRS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  15. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  16. Computer Power. Part 2: Electrical Power Problems and Their Amelioration.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1989-01-01

    Describes electrical power problems that affect computer users, including spikes, sags, outages, noise, frequency variations, and static electricity. Ways in which these problems may be diagnosed and cured are discussed. Sidebars consider transformers; power distribution units; surge currents/linear and non-linear loads; and sizing the power…

  17. A compact multi-channel fluorescence sensor with ambient light suppression

    NASA Astrophysics Data System (ADS)

    Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas

    2012-03-01

    A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.

  18. In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric

    2015-10-13

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less

  19. Wireless Sensor Network for Electric Transmission Line Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alphenaar, Bruce

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and costmore » effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8).« less

  20. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  1. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  2. Linear transformer driver for pulse generation with fifth harmonic

    DOEpatents

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  3. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  4. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  5. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  6. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  7. Nuclear Science Symposium, 31st and Symposium on Nuclear Power Systems, 16th, Orlando, FL, October 31-November 2, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Biggerstaff, J. A. (Editor)

    1985-01-01

    Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.

  8. Design, Development, And Testing of Umbilical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    2000-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  9. Design, Development,and Testing of Umbillical System Mechanisms for the X-33 Advanced Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Melton, Gregory S.

    1999-01-01

    The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.

  10. Design and test of SX-FEL cavity BPM

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin

    2013-11-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.

  11. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  12. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Dall'Anese, Emiliano

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- frommore » advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.« less

  13. Contribution of vertical strength and power to sprint performance in young male athletes.

    PubMed

    Meylan, C M P; Cronin, J; Oliver, J L; Hopkins, W G; Pinder, S

    2014-08-01

    The purpose of this study was to assess the possible contribution of 1RM leg-press strength and jump peak power to 20-m sprint time in young athletes in three maturity groups based on age relative to predicted age of peak height velocity (PHV): Pre (- 2.5 to -1.0 years; n=25), Mid (- 1.0 to 0.5 years; n=26) and Post (0.5 to 2.0 years; n=15). Allometric scaling factors, representing percent difference in 20-m time per percent difference in strength and peak power, were derived by linear regression and were similar in the three maturity groups (-0.16%/% and -0.20%/% for strength and peak power, respectively). The moderate increase in sprint performance Pre to Mid PHV (5.7%) reduced to small (1.9%) and trivial but unclear (0.9%) magnitudes after adjustment for 1RM and peak power, while the moderate increase Mid to Post PHV (4.6%) were still moderate (3.4 and 3.0%) after adjustment. Thus percent differences in strength or power explained most of the maturity-related improvements in sprint performance before PHV age but only some improvements after PHV age. Factors in addition to strength and power should be identified and monitored for development of speed in athletes during puberty. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Can We Speculate Running Application With Server Power Consumption Trace?

    PubMed

    Li, Yuanlong; Hu, Han; Wen, Yonggang; Zhang, Jun

    2018-05-01

    In this paper, we propose to detect the running applications in a server by classifying the observed power consumption series for the purpose of data center energy consumption monitoring and analysis. Time series classification problem has been extensively studied with various distance measurements developed; also recently the deep learning-based sequence models have been proved to be promising. In this paper, we propose a novel distance measurement and build a time series classification algorithm hybridizing nearest neighbor and long short term memory (LSTM) neural network. More specifically, first we propose a new distance measurement termed as local time warping (LTW), which utilizes a user-specified index set for local warping, and is designed to be noncommutative and nondynamic programming. Second, we hybridize the 1-nearest neighbor (1NN)-LTW and LSTM together. In particular, we combine the prediction probability vector of 1NN-LTW and LSTM to determine the label of the test cases. Finally, using the power consumption data from a real data center, we show that the proposed LTW can improve the classification accuracy of dynamic time warping (DTW) from about 84% to 90%. Our experimental results prove that the proposed LTW is competitive on our data set compared with existed DTW variants and its noncommutative feature is indeed beneficial. We also test a linear version of LTW and find out that it can perform similar to state-of-the-art DTW-based method while it runs as fast as the linear runtime lower bound methods like LB_Keogh for our problem. With the hybrid algorithm, for the power series classification task we achieve an accuracy up to about 93%. Our research can inspire more studies on time series distance measurement and the hybrid of the deep learning models with other traditional models.

  15. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    PubMed

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    PubMed

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  17. Wideband LTE Power Amplifier with Integrated Novel Analog Pre-Distorter Linearizer for Mobile Wireless Communications

    PubMed Central

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA’s power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics. PMID:25033049

  18. Concentrating Solar Power Projects - Puerto Errado 2 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: April 26, 2013 Project Overview Project Name: Puerto Errado . (Novatec Biosol AG) (15%) Technology: Linear Fresnel reflector Turbine Capacity: Net: 30.0 MW Gross: 30.0 ? Background Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region

  19. Fiber optic sensors and systems at the Federal University of Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Werneck, Marcelo M.; dos Santos, Paulo A. M.; Ferreira, Aldo P.; Maggi, Luis E.; de Carvalho, Carlos R., Jr.; Ribeiro, R. M.

    1998-08-01

    As widely known, fiberoptics (FO) are being used in a large variety of sensors and systems particularly for their small dimensions and low cost, large bandwidth and favorable dielectric properties. These properties have allowed us to develop sensors and systems for general applications and, particularly, for biomedical engineering. The intravascular pressure sensor was designed for small dimensions and high bandwidth. The system is based on light-intensity modulation technique and uses a 2 mm-diameter elastomer membrane as the sensor element and a pigtailed laser as a light source. The optical power output curve was linear for pressures within the range of 0 to 300 mmHg. The real time optical biosensor uses the evanescent field technique for monitoring Escherichia coli growth in culture media. The optical biosensor monitors interactions between the analytic (bacteria) and the evanescent field of an optical fiber passing through it. The FO based high voltage and current sensor is a measuring system designed for monitoring voltage and current in high voltage transmission lines. The linearity of the system is better than 2% in both ranges of 0 to 25 kV and 0 to 1000 A. The optical flowmeter uses a cross-correlation technique that analyses two light beams crossing the flow separated by a fixed distance. The x-ray image sensor uses a scintillating FO array, one FO for each image pixel to form an image of the x-ray field. The systems described in these paper use general-purpose components including optical fibers and optoelectronic devices, which are readily available, and of low cost.

  20. Research progress in fiber optic sensors and systems at the Federal University of Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Werneck, Marcelo M.; Ferreira, Aldo P.; Maggi, Luis E.; De Carvalho, C. C.; Ribeiro, R. M.

    1999-02-01

    As widely known, fiberoptics (FO) are being used in a large variety of sensor an systems particularly for their small dimensions and low cost, large bandwidth and favorable dielectric properties. These properties have allowed us to develop sensor and systems for general applications and, particularly, for biomedical engineering. The intravasculator pressure sensor was designed for small dimensions and high bandwidth. The system is based on light- intensity modulation technique and use a 2 mm-diameter elastomer membrane as the sensor element and a pigtailed laser as a light source. The optical power out put curve was linear for pressures within the range of 0 to 300 mmHg. The real time optical biosensor uses the evanescent field technique for monitoring Escherichia coli growth in culture media. The optical biosensor monitors interactions between the analytic and the evanescent field of an optical fiber passing through it. The FO based high voltage and current sensor is a measuring system designed for monitoring voltage and current in high voltage transmission lines. The linearity of the system is better than 2 percent in both ranges of 0 to 25 kV and 0 to 1000 A. The optical flowmeter uses a cross-correlation technique that analyzes two light beams crossing the flow separated by a fixed distance. The x-ray image sensor uses a scintillating FO array, one FO for each image pixel to form an image of the x-ray field. The systems described in this paper use general-purpose components including optical fibers and optoelectronic devices, which are readily available, and of low cost.

  1. Energy Use and Power Levels in New Monitors and Personal Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay

    2002-07-23

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can usemore » to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC). Cur rent ENERGY STAR monitor and computer criteria do not specify off or on power, but our results suggest opportunities for saving energy in these modes. Also, significant differences between CRT and LCD technology, and between field-measured and manufacturer-reported power levels reveal the need for standard methods and metrics for measuring and comparing monitor power consumption.« less

  2. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  3. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  4. Cosmological N -body simulations with generic hot dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  5. Cosmological N-body simulations with generic hot dark matter

    NASA Astrophysics Data System (ADS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  6. Study on power grid characteristics in summer based on Linear regression analysis

    NASA Astrophysics Data System (ADS)

    Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi

    2018-05-01

    The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.

  7. Measured energy savings and performance of power-managed personal computers and monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, B.; Piette, M.A.; Kinney, K.

    1996-08-01

    Personal computers and monitors are estimated to use 14 billion kWh/year of electricity, with power management potentially saving $600 million/year by the year 2000. The effort to capture these savings is lead by the US Environmental Protection Agency`s Energy Star program, which specifies a 30W maximum demand for the computer and for the monitor when in a {open_quote}sleep{close_quote} or idle mode. In this paper the authors discuss measured energy use and estimated savings for power-managed (Energy Star compliant) PCs and monitors. They collected electricity use measurements of six power-managed PCs and monitors in their office and five from two othermore » research projects. The devices are diverse in machine type, use patterns, and context. The analysis method estimates the time spent in each system operating mode (off, low-, and full-power) and combines these with real power measurements to derive hours of use per mode, energy use, and energy savings. Three schedules are explored in the {open_quotes}As-operated,{close_quotes} {open_quotes}Standardized,{close_quotes} and `Maximum` savings estimates. Energy savings are established by comparing the measurements to a baseline with power management disabled. As-operated energy savings for the eleven PCs and monitors ranged from zero to 75 kWh/year. Under the standard operating schedule (on 20% of nights and weekends), the savings are about 200 kWh/year. An audit of power management features and configurations for several dozen Energy Star machines found only 11% of CPU`s fully enabled and about two thirds of monitors were successfully power managed. The highest priority for greater power management savings is to enable monitors, as opposed to CPU`s, since they are generally easier to configure, less likely to interfere with system operation, and have greater savings. The difficulties in properly configuring PCs and monitors is the largest current barrier to achieving the savings potential from power management.« less

  8. The design and performance of a 2.5-GHz telecommand link for wireless biomedical monitoring.

    PubMed

    Crumley, G C; Evans, N E; Scanlon, W G; Burns, J B; Trouton, T G

    2000-12-01

    This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active, duplex RF biomedical transponder. A 50-ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a (CMOS baseband amplifier consuming 20 microA from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit. For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.

  9. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  10. [Study on the early detection of Sclerotinia of Brassica napus based on combinational-stimulated bands].

    PubMed

    Liu, Fei; Feng, Lei; Lou, Bing-gan; Sun, Guang-ming; Wang, Lian-ping; He, Yong

    2010-07-01

    The combinational-stimulated bands were used to develop linear and nonlinear calibrations for the early detection of sclerotinia of oilseed rape (Brassica napus L.). Eighty healthy and 100 Sclerotinia leaf samples were scanned, and different preprocessing methods combined with successive projections algorithm (SPA) were applied to develop partial least squares (PLS) discriminant models, multiple linear regression (MLR) and least squares-support vector machine (LS-SVM) models. The results indicated that the optimal full-spectrum PLS model was achieved by direct orthogonal signal correction (DOSC), then De-trending and Raw spectra with correct recognition ratio of 100%, 95.7% and 95.7%, respectively. When using combinational-stimulated bands, the optimal linear models were SPA-MLR (DOSC) and SPA-PLS (DOSC) with correct recognition ratio of 100%. All SPA-LSSVM models using DOSC, De-trending and Raw spectra achieved perfect results with recognition of 100%. The overall results demonstrated that it was feasible to use combinational-stimulated bands for the early detection of Sclerotinia of oilseed rape, and DOSC-SPA was a powerful way for informative wavelength selection. This method supplied a new approach to the early detection and portable monitoring instrument of sclerotinia.

  11. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  12. Charge modeling of ionic polymer-metal composites for dynamic curvature sensing

    NASA Astrophysics Data System (ADS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-04-01

    A curvature sensor based on Ionic Polymer-Metal Composite (IPMC) is proposed and characterized for sensing of curvature variation in structures such as inflatable space structures in which using low power and flexible curvature sensor is of high importance for dynamic monitoring of shape at desired points. The linearity of output signal of sensor for calibration, effect of deflection rate at low frequencies and the phase delay between the output signal and the input deformation of IPMC curvature sensor is investigated. An analytical chemo-electro-mechanical model for charge dynamic of IPMC sensor is presented based on Nernst-Planck partial differential equation which can be used to explain the phenomena observed in experiments. The rate dependency of output signal and phase delay between the applied deformation and sensor signal is studied using the proposed model. The model provides a background for predicting the general characteristics of IPMC sensor. It is shown that IPMC sensor exhibits good linearity, sensitivity, and repeatability for dynamic curvature sensing of inflatable structures.

  13. The reliability of isoinertial force-velocity-power profiling and maximal strength assessment in youth.

    PubMed

    Meylan, César M P; Cronin, John B; Oliver, Jon L; Hughes, Michael M G; Jidovtseff, Boris; Pinder, Shane

    2015-03-01

    The purpose of this study was to quantify the inter-session reliability of force-velocity-power profiling and estimated maximal strength in youth. Thirty-six males (11-15 years old) performed a ballistic supine leg press test at five randomized loads (80%, 100%, 120%, 140%, and 160% body mass) on three separate occasions. Peak and mean force, power, velocity, and peak displacement were collected with a linear position transducer attached to the weight stack. Mean values at each load were used to calculate different regression lines and estimate maximal strength, force, velocity, and power. All variables were found reliable (change in the mean [CIM] = - 1 to 14%; coefficient of variation [CV] = 3-18%; intraclass correlation coefficient [ICC] = 0.74-0.99), but were likely to benefit from a familiarization, apart from the unreliable maximal force/velocity ratio (CIM = 0-3%; CV = 23-25%; ICC = 0.35-0.54) and load at maximal power (CIM = - 1 to 2%; CV = 10-13%; ICC = 0.26-0.61). Isoinertial force-velocity-power profiling and maximal strength in youth can be assessed after a familiarization session. Such profiling may provide valuable insight into neuromuscular capabilities during growth and maturation and may be used to monitor specific training adaptations.

  14. Power harvesting for railroad track safety enhancement using vertical track displacement

    NASA Astrophysics Data System (ADS)

    Nelson, Carl A.; Platt, Stephen R.; Hansen, Sean E.; Fateh, Mahmood

    2009-03-01

    A significant portion of railroad infrastructure exists in areas that are relatively remote. Railroad crossings in these areas are typically only marked with reflective signage and do not have warning light systems or crossbars due to the cost of electrical infrastructure. Distributed sensor networks used for railroad track health monitoring applications would be useful in these areas, but the same limitation regarding electrical infrastructure exists. This motivates the search for a long-term, low-maintenance power supply solution for remote railroad deployment. This paper describes the development of a mechanical device for harvesting mechanical power from passing railcar traffic that can be used to supply electrical power to warning light systems at crossings and to remote networks of sensors via rechargeable batteries. The device is mounted to and spans two rail ties such that it directly harnesses the vertical displacement of the rail and attached ties and translates the linear motion into rotational motion. The rotational motion is amplified and mechanically rectified to rotate a PMDC generator that charges a system of batteries. A prototype was built and tested in a laboratory setting for verifying functionality of the design. Results indicate power production capabilities on the order of 10 W per device in its current form. This is sufficient for illuminating high-efficiency LED lights at a railroad crossing or for powering track-health sensor networks.

  15. Evaluating the efficiency of environmental monitoring programs

    USGS Publications Warehouse

    Levine, Carrie R.; Yanai, Ruth D.; Lampman, Gregory G.; Burns, Douglas A.; Driscoll, Charles T.; Lawrence, Gregory B.; Lynch, Jason; Schoch, Nina

    2014-01-01

    Statistical uncertainty analyses can be used to improve the efficiency of environmental monitoring, allowing sampling designs to maximize information gained relative to resources required for data collection and analysis. In this paper, we illustrate four methods of data analysis appropriate to four types of environmental monitoring designs. To analyze a long-term record from a single site, we applied a general linear model to weekly stream chemistry data at Biscuit Brook, NY, to simulate the effects of reducing sampling effort and to evaluate statistical confidence in the detection of change over time. To illustrate a detectable difference analysis, we analyzed a one-time survey of mercury concentrations in loon tissues in lakes in the Adirondack Park, NY, demonstrating the effects of sampling intensity on statistical power and the selection of a resampling interval. To illustrate a bootstrapping method, we analyzed the plot-level sampling intensity of forest inventory at the Hubbard Brook Experimental Forest, NH, to quantify the sampling regime needed to achieve a desired confidence interval. Finally, to analyze time-series data from multiple sites, we assessed the number of lakes and the number of samples per year needed to monitor change over time in Adirondack lake chemistry using a repeated-measures mixed-effects model. Evaluations of time series and synoptic long-term monitoring data can help determine whether sampling should be re-allocated in space or time to optimize the use of financial and human resources.

  16. Device with Functions of Linear Motor and Non-contact Power Collector for Wireless Drive

    NASA Astrophysics Data System (ADS)

    Fujii, Nobuo; Mizuma, Tsuyoshi

    The authors propose a new apparatus with functions of propulsion and non-contact power collection for a future vehicle which can run like an electric vehicle supplied from the onboard battery source in most of the root except near stations. The batteries or power-capacitors are non-contact charged from the winding connected with commercial power on ground in the stations etc. The apparatus has both functions of linear motor and transformer, and the basic configuration is a wound-secondary type linear induction motor (LIM). In the paper, the wound type LIM with the concentrated single-phase winding for the primary member on the ground is dealt from the viewpoint of low cost arrangement. The secondary winding is changed to the single-phase connection for zero thrust in the transformer operation, and the two-phase connection for the linear motor respectively. The change of connection is done by the special converter for charge and linear drive on board. The characteristics are studied analytically.

  17. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  18. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  19. A blood pressure monitor with robust noise reduction system under linear cuff inflation and deflation.

    PubMed

    Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi

    2010-01-01

    We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.

  20. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  1. Concentrating Solar Power Projects - Puerto Errado 1 Thermosolar Power

    Science.gov Websites

    linear Fresnel reflector system. Status Date: September 7, 2011 Photo showing an aerial view at an angle ): Novatec Solar España S.L. (100%) Technology: Linear Fresnel reflector Turbine Capacity: Gross: 1.4 MW Technology: Linear Fresnel reflector Status: Operational Country: Spain City: Calasparra Region: Murcia Lat

  2. Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design

    ERIC Educational Resources Information Center

    Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.

    2009-01-01

    Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…

  3. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  4. Computer program analyzes and monitors electrical power systems (POSIMO)

    NASA Technical Reports Server (NTRS)

    Jaeger, K.

    1972-01-01

    Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.

  5. Phasor Measurement Unit and Its Application in Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less

  6. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  7. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  8. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  9. Reagent for Evaluating Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Performance in Bottom-Up Proteomic Experiments.

    PubMed

    Beri, Joshua; Rosenblatt, Michael M; Strauss, Ethan; Urh, Marjeta; Bereman, Michael S

    2015-12-01

    We present a novel proteomic standard for assessing liquid chromatography-tandem mass spectrometry (LC-MS/MS) instrument performance, in terms of chromatographic reproducibility and dynamic range within a single LC-MS/MS injection. The peptide mixture standard consists of six peptides that were specifically synthesized to cover a wide range of hydrophobicities (grand average hydropathy (GRAVY) scores of -0.6 to 1.9). A combination of stable isotope labeled amino acids ((13)C and (15)N) were inserted to create five isotopologues. By combining these isotopologues at different ratios, they span four orders of magnitude within each distinct peptide sequence. Each peptide, from lightest to heaviest, increases in abundance by a factor of 10. We evaluate several metrics on our quadrupole orbitrap instrument using the 6 × 5 LC-MS/MS reference mixture spiked into a complex lysate background as a function of dynamic range, including mass measurement accuracy (MMA) and the linear range of quantitation of MS1 and parallel reaction monitoring experiments. Detection and linearity of the instrument routinely spanned three orders of magnitude across the gradient (500 fmol to 0.5 fmol on column) and no systematic trend was observed for MMA of targeted peptides as a function of abundance by analysis of variance analysis (p = 0.17). Detection and linearity of the fifth isotopologue (i.e., 0.05 fmol on column) was dependent on the peptide and instrument scan type (MS1 vs PRM). We foresee that this standard will serve as a powerful method to conduct both intra-instrument performance monitoring/evaluation, technology development, and inter-instrument comparisons.

  10. Quantitative representations of an exaggerated anxiety response in the brain of female spider phobics-a parametric fMRI study.

    PubMed

    Zilverstand, Anna; Sorger, Bettina; Kaemingk, Anita; Goebel, Rainer

    2017-06-01

    We employed a novel parametric spider picture set in the context of a parametric fMRI anxiety provocation study, designed to tease apart brain regions involved in threat monitoring from regions representing an exaggerated anxiety response in spider phobics. For the stimulus set, we systematically manipulated perceived proximity of threat by varying a depicted spider's context, size, and posture. All stimuli were validated in a behavioral rating study (phobics n = 20; controls n = 20; all female). An independent group participated in a subsequent fMRI anxiety provocation study (phobics n = 7; controls n = 7; all female), in which we compared a whole-brain categorical to a whole-brain parametric analysis. Results demonstrated that the parametric analysis provided a richer characterization of the functional role of the involved brain networks. In three brain regions-the mid insula, the dorsal anterior cingulate, and the ventrolateral prefrontal cortex-activation was linearly modulated by perceived proximity specifically in the spider phobia group, indicating a quantitative representation of an exaggerated anxiety response. In other regions (e.g., the amygdala), activation was linearly modulated in both groups, suggesting a functional role in threat monitoring. Prefrontal regions, such as dorsolateral prefrontal cortex, were activated during anxiety provocation but did not show a stimulus-dependent linear modulation in either group. The results confirm that brain regions involved in anxiety processing hold a quantitative representation of a pathological anxiety response and more generally suggest that parametric fMRI designs may be a very powerful tool for clinical research in the future, particularly when developing novel brain-based interventions (e.g., neurofeedback training). Hum Brain Mapp 38:3025-3038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Concentrating Solar Power Projects - Liddell Power Station | Concentrating

    Science.gov Websites

    : Linear Fresnel reflector Turbine Capacity: Net: 3.0 MW Gross: 3.0 MW Status: Currently Non-Operational Start Year: 2012 Do you have more information, corrections, or comments? Background Technology: Linear

  12. Analog synthesized fast-variable linear load

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1991-01-01

    A several kilowatt power level, fast-variable linear resistor was synthesized by using analog components to control the conductance of power MOSFETs. Risetimes observed have been as short as 500 ns with respect to the control signal and 1 to 2 microseconds with respect to the power source voltage. A variant configuration of this load that dissipates a constant power set by a control signal is indicated. Replacement of the MOSFETs by static induction transistors (SITs) to increase power handling, speed and radiation hardness is discussed.

  13. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.

  14. Free-piston engine linear generator for hybrid vehicles modeling study

    NASA Astrophysics Data System (ADS)

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  15. Radiologic Monitoring of Faculty and Staff in an Electrophysiology Lab Using a Real-Time Dose Monitoring System

    NASA Astrophysics Data System (ADS)

    Chardenet, Kathleen A.

    Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures (phase 2). Methods: A primary, quantitative crossover study of faculty and staff working in an electrophysiology lab at the University of Michigan Hospitals setting occurred. Participants in the control group was first blinded in phase 1 to their radiation exposure over an 10-week time period. The same group subsequently became the treatment group in phase 2 when over a second 10-week period real-time exposure levels were made available to them. Power analysis, using a 40% decrease in exposure, was calculated using a variance of radiation exposure equal to the mean radiation exposure with 80% power and alpha = .05. Calculations revealed 102 subjects in each treatment and control group were necessary. Results: Using the mixed effect linear model, a significant decrease in radiation levels occurred in phase 2 as compared to phase 1 for the operator role represented by the combined electrophysiologist-fellow role with a P value of .025. Exposure levels in all other provider groups for phase 1 or 2 failed to reach statistical significance. All dose values were low and well below the US maximum allowable yearly dose of 5,000 mrem per year. Conclusion: A real-time radiation dose monitoring system during electrophysiology procedures may significantly lower occupational radiation exposure in health care workers.

  16. Non-linear power spectra in the synchronous gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  17. 1.5  kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier.

    PubMed

    Huang, Long; Ma, Pengfei; Tao, Rumao; Shi, Chen; Wang, Xiaolin; Zhou, Pu

    2015-04-01

    A linearly polarized monolithic fiber laser based on a master oscillator power amplifier structure with a master oscillator and a one-stage power amplifier is reported. We design a homemade oscillator based on the theory that, in the coiled gain fiber, the higher modes and the polarized mode of the fundamental mode along the fast axis are suppressed effectively because of their obviously higher bend loss than that of the polarized mode of the fundamental mode along the slow axis. The oscillator operates at 1080 nm, launching a 30 W seed laser with a high polarization extinction ratio of 19 dB into the power amplifier via a mode field adapter. The power amplifier utilizes Yb-doped polarization-maintaining fiber of 20/400  μm, which produces nearly diffraction-limited output power of about 1.5 kW with an optical-optical efficiency of 81.5% and a polarization extinction ratio of 13.8 dB. Both the M(x)² factor and the M(y)² factor of the collimated beam are measured to be about 1.2. The spectral width of the output power is broadened approximately linearly, and the full width at half maximum of the spectrum at the maximum output power is about 5.8 nm. It is known as the highest linearly polarized output power to the best of our knowledge.

  18. Feasibility of in situ beta ray measurements in underwater environment.

    PubMed

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Tong, Chengde; Yu, Bin; Zhu, Shaohong; Zhu, Jianguo

    2015-05-01

    This paper describes a tubular dual-stator flux-switching permanent-magnet (PM) linear generator for free-piston energy converter. The operating principle, topology, and design considerations of the machine are investigated. Combining the motion characteristic of free-piston Stirling engine, a tubular dual-stator PM linear generator is designed by finite element method. Some major structural parameters, such as the outer and inner radii of the mover, PM thickness, mover tooth width, tooth width of the outer and inner stators, etc., are optimized to improve the machine performances like thrust capability and power density. In comparison with conventional single-stator PM machines like moving-magnet linear machine and flux-switching linear machine, the proposed dual-stator flux-switching PM machine shows advantages in higher mass power density, higher volume power density, and lighter mover.

  20. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.

  1. Linear transformer driver for pulse generation

    DOEpatents

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  2. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency

    DTIC Science & Technology

    2017-03-01

    Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265 Abstract: We report on a multi-octave (100 MHz ‒ 8 GHz), linear nonuniform distributed...amplifier (NDPA) in a MMIC architecture using scaled 120-nm short-gate- length GaN HEMTs. The linear NDPAs were built with six sections in a nonuniform ...MHz ‒ 8 GHz) GaN MMIC nonuniform distributed amplifier (NDPA) with built-in linearization and a gm3 cancellation method in class A and class C

  3. Bone mineral density and correlation factor analysis in normal Taiwanese children.

    PubMed

    Shu, San-Ging

    2007-01-01

    Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.

  4. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  5. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  6. Monitoring and management of tritium from the nuclear power plant effluent

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoe; Liu, Ting; Yang, Lili; Meng, De; Song, Dahu

    2018-01-01

    It is important to regulate tritium nuclides from the nuclear power plant effluent, the paper briefly analyzes the main source of tritium, and the regulatory requirements associated with tritium in our country and the United States. The monitoring methods of tritium from the nuclear power plant effluent are described, and the purpose to give some advice to our national nuclear power plant about the effluent of tritium monitoring and management.

  7. A testing machine for dental air-turbine handpiece characteristics: free-running speed, stall torque, bearing resistance.

    PubMed

    Darvell, Brain W; Dyson, J E

    2005-01-01

    The measurement of performance characteristics of dental air turbine handpieces is of interest with respect to product comparisons, standards specifications and monitoring of bearing longevity in clinical service. Previously, however, bulky and expensive laboratory equipment was required. A portable test machine is described for determining three key characteristics of dental air-turbine handpieces: free-running speed, stall torque and bearing resistance. It relies on a special circuit design for performing a hardware integration of a force signal with respect to rotational position, independent of the rate at which the turbine is allowed to turn during both stall torque and bearing resistance measurements. Free-running speed without the introduction of any imbalance can be readily monitored. From the essential linear relationship between torque and speed, dynamic torque and, hence, power, can then be calculated. In order for these measurements to be performed routinely with the necessary precision of location on the test stage, a detailed procedure for ensuring proper gripping of the handpiece is described. The machine may be used to verify performance claims, standard compliance checks should this be established as appropriate, monitor deterioration with time and usage in the clinical environment and for laboratory investigation of design development.

  8. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  9. A prototype scintillating fibre beam profile monitor for Ion Therapy beams

    NASA Astrophysics Data System (ADS)

    Leverington, B. D.; Dziewiecki, M.; Renner, L.; Runze, R.

    2018-05-01

    A prototype plastic scintillating fibre based beam profile monitor was tested at the Heidelberg Ion Therapy Centre/Heidelberg Ionenstrahl Therapiezentrum (HIT) in 2016 to determine its beam property reconstruction performance and the feasibility of further developing an expanded system. At HIT protons, helium, carbon, and oxygen ions are available for therapy and experiments. The beam can be scanned in two dimensions using fast deflection magnets. A tracking system is used to monitor beam position and to adjust scanning magnet currents online. A new detector system with a finer granularity and without the drift time delay of the current MWPC system with a similar amount of material along the beamline would prove valuable in patient treatment. The sensitive detector components in the tested prototype detector are double-clad Kuraray SCSF-78MJ scintillating fibres with a diameter of 0.250 mm wound as a thin multi-layer ribbon. The scintillation light is detected at the end of the ribbon with Hamamatsu S11865-64 photodiode arrays with a pitch of 0.8 mm. Commercial or readily available readout electronics have been used to evaluate the system feasibility. The results shown in this paper include the linearity with respect to beam intensity, the RMS of the beam intensity as measured by two planes, along with the RMS of the mean position, and the measured beam width RMS. The Signal-to-Noise ratio of the current system is also measured as an indicator of potential performance. Additionally, the non-linear light yield of the scintillating fibres as measured by the photodiode arrays is compared to two models which describe the light yield as a function of the ion stopping power and Lorentz β.

  10. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  11. Linear circuit analysis program for IBM 1620 Monitor 2, 1311/1443 data processing system /CIRCS/

    NASA Technical Reports Server (NTRS)

    Hatfield, J.

    1967-01-01

    CIRCS is modification of IBSNAP Circuit Analysis Program, for use on smaller systems. This data processing system retains the basic dc, transient analysis, and FORTRAN 2 formats. It can be used on the IBM 1620/1311 Monitor I Mod 5 system, and solves a linear network containing 15 nodes and 45 branches.

  12. A design of wireless sensor networks for a power quality monitoring system.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  13. Mechanical design control and implementation of a new movable intensity profile beamline monitor for the TRIUMF parity experiment 497

    NASA Astrophysics Data System (ADS)

    Ries, Thomas C.

    1995-05-01

    Two new movable beam intensity profile monitors have been installed into the TRIUMF Parity Experiment 497 Beamlines. Each unit serves two functions. Firstly, the beam median position, in a plane normal to the beam, is detected by split plate Secondary Emission Monitors. This information is used to lock the beam into the position of the movable monitor to within a few μm's via high band width ferrite core steering magnets operating in tandem in a closed loop servo feedback control system. Secondly, the beam profile and intensity is detected via a multi-wire secondary emission non-movable monitor, where the data provides high precision values regarding centroidal positions and profiles. The centroid position of the beam is statistically determined to an accuracy of ±10 μm from a data record length of 1 second. The design of each device adheres to strict standards of mechanically rigid construction. The split plate SEM accuracy and repeatability is better than 15 μm with an absolute resolution limit of 0.4 μm. Maximum travel is 2 inches in the vertical plane. Since the device is mechanically modular and both degrees of freedom are combined into a single mechanical unit, fast and easy handling is possible for maintenance in radioactive areas. The actuators are dc servo motors with tachometers driven by linear servo power amplifiers. These amplifiers are used in lieu of pulse width modulated amps to eliminate noise produced by the switching circuits. Position sensing is done by variable reluctance type absolute rotary encoders providing 16 bit resolution over the full range of travel. Positioning is done manually using a self centring potentiometer on the control panel that provides a ± velocity command signal to the power amplifiers. This configuration ensures good controllability over a very large range of positioning speeds hence making 0.4 μm incremental positioning possible, as well as, fast relocations over large relative distances. The precision movement and jitter was measured in the laboratory. Examples will be given of the monitor use with beam.

  14. Feature Extraction of Event-Related Potentials Using Wavelets: An Application to Human Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)

    1998-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.

  15. Feature extraction of event-related potentials using wavelets: an application to human performance monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, L. J.; Shensa, M. J.

    1999-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.

  16. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  17. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools

    PubMed Central

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-01-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 gram meter−1 (g m−1) at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws’ blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 RPM generated the greatest amount of dust. All the miter saws generated less dust in the ‘chopping mode’ than in the ‘chopping and sliding’ mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade’s teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. PMID:28395343

  18. The Generation Rate of Respirable Dust from Cutting Fiber Cement Siding Using Different Tools.

    PubMed

    Qi, Chaolong; Echt, Alan; Gressel, Michael G

    2017-03-01

    This article describes the evaluation of the generation rate of respirable dust (GAPS, defined as the mass of respirable dust generated per unit linear length cut) from cutting fiber cement siding using different tools in a laboratory testing system. We used an aerodynamic particle sizer spectrometer (APS) to continuously monitor the real-time size distributions of the dust throughout cutting tests when using a variety of tools, and calculated the generation rate of respirable dust for each testing condition using the size distribution data. The test result verifies that power shears provided an almost dust-free operation with a GAPS of 0.006 g m-1 at the testing condition. For the same power saws, the cuts using saw blades with more teeth generated more respirable dusts. Using the same blade for all four miter saws tested in this study, a positive linear correlation was found between the saws' blade rotating speed and its dust generation rate. In addition, a circular saw running at the highest blade rotating speed of 9068 rpm generated the greatest amount of dust. All the miter saws generated less dust in the 'chopping mode' than in the 'chopping and sliding' mode. For the tested saws, GAPS consistently decreased with the increases of the saw cutting feed rate and the number of board in the stack. All the test results point out that fewer cutting interactions between the saw blade's teeth and the siding board for a unit linear length of cut tend to result in a lower generation rate of respirable dust. These results may help guide optimal operation in practice and future tool development aimed at minimizing dust generation while producing a satisfactory cut. Published by Oxford University Press on behalf of The British Occupational Hygiene Society 2017.

  19. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  20. Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid

    2017-03-01

    The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.

  1. The design of a linear L-band high power amplifier for mobile communication satellites

    NASA Technical Reports Server (NTRS)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  2. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    NASA Astrophysics Data System (ADS)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  3. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  4. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    PubMed

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  5. A Distribution Level Wide Area Monitoring System for the Electric Power Grid–FNET/GridEye

    DOE PAGES

    Liu, Yong; You, Shutang; Yao, Wenxuan; ...

    2017-02-09

    The wide area monitoring system (WAMS) is considered a pivotal component of future electric power grids. As a pilot WAMS that has been operated for more than a decade, the frequency monitoring network FNET/GridEye makes use of hundreds of global positioning system-synchronized phasor measurement sensors to capture the increasingly complicated grid behaviors across the interconnected power systems. In this paper, the FNET/GridEye system is overviewed and its operation experiences in electric power grid wide area monitoring are presented. Particularly, the implementation of a number of data analytics applications will be discussed in details. FNET/GridEye lays a firm foundation for themore » later WAMS operation in the electric power industry.« less

  6. A two-tiered self-powered wireless monitoring system architecture for bridge health management

    NASA Astrophysics Data System (ADS)

    Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward

    2010-04-01

    Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.

  7. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    PubMed

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  8. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  9. Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines

    NASA Astrophysics Data System (ADS)

    Boldea, I.; Nasar, S. A.

    1987-01-01

    The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.

  10. The research and application of the power big data

    NASA Astrophysics Data System (ADS)

    Zhang, Suxiang; Zhang, Dong; Zhang, Yaping; Cao, Jinping; Xu, Huiming

    2017-01-01

    Facing the increasing environment crisis, how to improve energy efficiency is the important problem. Power big data is main support tool to realize demand side management and response. With the promotion of smart power consumption, distributed clean energy and electric vehicles etc get wide application; meanwhile, the continuous development of the Internet of things technology, more applications access the endings in the grid power link, which leads to that a large number of electric terminal equipment, new energy access smart grid, and it will produce massive heterogeneous and multi-state electricity data. These data produce the power grid enterprise's precious wealth, as the power big data. How to transform it into valuable knowledge and effective operation becomes an important problem, it needs to interoperate in the smart grid. In this paper, we had researched the various applications of power big data and integrate the cloud computing and big data technology, which include electricity consumption online monitoring, the short-term power load forecasting and the analysis of the energy efficiency. Based on Hadoop, HBase and Hive etc., we realize the ETL and OLAP functions; and we also adopt the parallel computing framework to achieve the power load forecasting algorithms and propose a parallel locally weighted linear regression model; we study on energy efficiency rating model to comprehensive evaluate the level of energy consumption of electricity users, which allows users to understand their real-time energy consumption situation, adjust their electricity behavior to reduce energy consumption, it provides decision-making basis for the user. With an intelligent industrial park as example, this paper complete electricity management. Therefore, in the future, power big data will provide decision-making support tools for energy conservation and emissions reduction.

  11. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  12. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Monitoring instruments. 12.41 Section 12.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS...

  13. Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Pei

    1996-11-01

    This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.

  14. POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    PubMed Central

    Johnson, Jacqueline L.; Muller, Keith E.; Slaughter, James C.; Gurka, Matthew J.; Gribbin, Matthew J.; Simpson, Sean L.

    2014-01-01

    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts. PMID:25400516

  15. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  16. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE PAGES

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    2016-07-06

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  17. IE Data Processing.

    DTIC Science & Technology

    1984-10-01

    RN4 DMT P6 CAnQ fram P4 Satellite ID-343567656469B Sensor Bias Node Voltages 1 1.27 0. 2 7.54 6.31 3 16.42 15.26 4 28.93 27.87 NmDber of sectors per...Monitor Interoretation Event Yloitor Voltage Change Sensor Operation Mode Cange Duration Frequency 0 20 Elec: Density Cal2 1024 ion: Density 1 K 2, 3of...34"Event monitor voltage decreases linearly fron 500 to 100 during electron sweep. • Event monitor voltage increases linearly from 10 to 500 during

  18. Design and analysis of an unconventional permanent magnet linear machine for energy harvesting

    NASA Astrophysics Data System (ADS)

    Zeng, Peng

    This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof-of-concept unconventional permanent magnet (PM) linear generator is prototyped and tested to verify the simulation results of the FEA model. For the coil windings of 33, 66 and 165 turns, the output power of the machine is tested to have the output power of 65.6 mW, 189.1 mW, and 497.7 mW respectively with the maximum power density of 2.486 mW/cm3.

  19. Control scheme for power modulation of a free piston Stirling engine

    DOEpatents

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  20. Improving the Power of GWAS and Avoiding Confounding from Population Stratification with PC-Select

    PubMed Central

    Tucker, George; Price, Alkes L.; Berger, Bonnie

    2014-01-01

    Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does not inflate statistics in the presence of population stratification and improves power over standard linear mixed models. PMID:24788602

  1. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation

    NASA Astrophysics Data System (ADS)

    Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei

    2015-05-01

    A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  2. Local muscle oxygen consumption related to external and joint specific power.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2016-02-01

    The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Endoreversible quantum heat engines in the linear response regime.

    PubMed

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  4. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  5. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity.

    PubMed

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  6. A low noise and high precision linear power supply with thermal foldback protection.

    PubMed

    Carniti, P; Cassina, L; Gotti, C; Maino, M; Pessina, G

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50nV/Hz at 1 Hz and 20nV/Hz white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/(∘)C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  7. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission.

    PubMed

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-12-14

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  8. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission

    PubMed Central

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-01-01

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666

  9. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    PubMed Central

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-01-01

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique. PMID:27517931

  10. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    PubMed

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  11. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    NASA Astrophysics Data System (ADS)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  12. Comparison of power curve monitoring methods

    NASA Astrophysics Data System (ADS)

    Cambron, Philippe; Masson, Christian; Tahan, Antoine; Torres, David; Pelletier, Francis

    2017-11-01

    Performance monitoring is an important aspect of operating wind farms. This can be done through the power curve monitoring (PCM) of wind turbines (WT). In the past years, important work has been conducted on PCM. Various methodologies have been proposed, each one with interesting results. However, it is difficult to compare these methods because they have been developed using their respective data sets. The objective of this actual work is to compare some of the proposed PCM methods using common data sets. The metric used to compare the PCM methods is the time needed to detect a change in the power curve. Two power curve models will be covered to establish the effect the model type has on the monitoring outcomes. Each model was tested with two control charts. Other methodologies and metrics proposed in the literature for power curve monitoring such as areas under the power curve and the use of statistical copulas have also been covered. Results demonstrate that model-based PCM methods are more reliable at the detecting a performance change than other methodologies and that the effectiveness of the control chart depends on the types of shift observed.

  13. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  14. Design of power cable grounding wire anti-theft monitoring system

    NASA Astrophysics Data System (ADS)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  15. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-02-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h-1 to 70 km h-1, the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement.

  16. How does non-linear dynamics affect the baryon acoustic oscillation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do notmore » guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.« less

  17. Monitoring technique for multiple power splitter-passive optical networks using a tunable OTDR and FBGs

    NASA Astrophysics Data System (ADS)

    Hann, Swook; Kim, Dong-Hwan; Park, Chang-Soo

    2006-04-01

    A monitoring technique for multiple power splitter-passive optical networks (PS-PON) is presented. The technique is based on the remote sensing of fiber Bragg grating (FBG) using a tunable OTDR. To monitor the multiple PS-PON, the FBG can be used for a wavelength dependent reflective reference on each branch end of the PS. The FBG helps discern an individual event of the multiple PS-PON for the monitoring in collaborate with information of Rayleigh backscattered power. The multiple PS-PON can be analyzed by the monitoring method at the central office under 10-Gbit/s in-service.

  18. Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Garg, A.; Mondal, K.

    2016-07-01

    The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.

  19. A comprehensive simulation study on classification of RNA-Seq data.

    PubMed

    Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet

    2017-01-01

    RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.

  20. Developing Best Practices for Detecting Change at Marine Renewable Energy Sites

    NASA Astrophysics Data System (ADS)

    Linder, H. L.; Horne, J. K.

    2016-02-01

    In compliance with the National Environmental Policy Act (NEPA), an evaluation of environmental effects is mandatory for obtaining permits for any Marine Renewable Energy (MRE) project in the US. Evaluation includes an assessment of baseline conditions and on-going monitoring during operation to determine if biological conditions change relative to the baseline. Currently, there are no best practices for the analysis of MRE monitoring data. We have developed an approach to evaluate and recommend analytic models used to characterize and detect change in biological monitoring data. The approach includes six steps: review current MRE monitoring practices, identify candidate models to analyze data, fit models to a baseline dataset, develop simulated scenarios of change, evaluate model fit to simulated data, and produce recommendations on the choice of analytic model for monitoring data. An empirical data set from a proposed tidal turbine site at Admiralty Inlet, Puget Sound, Washington was used to conduct the model evaluation. Candidate models that were evaluated included: linear regression, time series, and nonparametric models. Model fit diagnostics Root-Mean-Square-Error and Mean-Absolute-Scaled-Error were used to measure accuracy of predicted values from each model. A power analysis was used to evaluate the ability of each model to measure and detect change from baseline conditions. As many of these models have yet to be applied in MRE monitoring studies, results of this evaluation will generate comprehensive guidelines on choice of model to detect change in environmental monitoring data from MRE sites. The creation of standardized guidelines for model selection enables accurate comparison of change between life stages of a MRE project, within life stages to meet real time regulatory requirements, and comparison of environmental changes among MRE sites.

  1. Analysis of key factors influencing the evaporation performances of an oriented linear cutting copper fiber sintered felt

    NASA Astrophysics Data System (ADS)

    Pan, Minqiang; Zhong, Yujian

    2018-01-01

    Porous structure can effectively enhance the heat transfer efficiency. A kind of micro vaporizer using the oriented linear cutting copper fiber sintered felt is proposed in this work. Multiple long cutting copper fibers are firstly fabricated with a multi-tooth tool and then sintered together in parallel to form uniform thickness metal fiber sintered felts that provided a characteristic of oriented microchannels. The temperature rise response and thermal conversion efficiency are experimentally investigated to evaluate the influences of porosity, surface structure, feed flow rate and input power on the evaporation characteristics. It is indicated that the temperature rise response of water is mainly affected by input power and feed flow rate. High input power and low feed flow rate present better temperature rise response of water. Porosity rather than surface structure plays an important role in the temperature rise response of water at a relatively high input power. The thermal conversion efficiency is dominated by the input power and surface structure. The oriented linear cutting copper fiber sintered felts for three kinds of porosities show better thermal conversion efficiency than that of the oriented linear copper wire sintered felt when the input power is less than 115 W. All the sintered felts have almost the same performance of thermal conversion at a high input power.

  2. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  3. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  4. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  5. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  6. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  7. Linearizing an intermodulation radar transmitter by filtering switched tones

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; Sherbondy, Andrew J.; Ranney, Kenneth I.; Sherbondy, Kelly D.; Martone, Anthony F.

    2017-05-01

    For nonlinear radar, the transmit power required to measure a detectable response from a target is relatively high, and generating that high power is achieved at the cost of linearity. This paper applies the distortion mitigation technique Linearization by Time-Multiplexed Spectrum (LITMUS) to intermodulation radar, a type of nonlinear radar which receives spectral content produced by the mixing of multiple frequencies at a nonlinear target. By implementing LITMUS, an experimental detection system for an intermodulation radar achieves a signal-to-noise ratio up to 20 dB for a total transmit power of approximately 80 mW and nonlinear targets placed at a standoff distance of 2 meters.

  8. Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit

    NASA Technical Reports Server (NTRS)

    Metz, R. N.

    1986-01-01

    Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.

  9. Theoretical and experimental study of a wireless power supply system for moving low power devices in ferromagnetic and conductive medium

    NASA Astrophysics Data System (ADS)

    Safour, Salaheddine; Bernard, Yves

    2017-10-01

    This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.

  10. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  11. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Löwa, Norbert; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non-linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment.

  12. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  13. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present recirculating design utilizes the available laser light more efficiently, making it possible to trap more atoms at a given laser power or the same number of atoms at a lower laser power. The present design is also simpler in that it requires fewer optical fibers, fiber couplings, and collimators, and fewer photodiodes for monitoring beam powers. Additionally, the present design alleviates the difficulty of maintaining constant ratios among power levels of the beams within each "up" or "down" triplet.

  14. Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes

    NASA Astrophysics Data System (ADS)

    Cansizoglu, Hilal; Gao, Yang; Perez, Cesar Bartolo; Ghandiparsi, Soroush; Ponizovskaya Devine, Ekaterina; Cansizoglu, Mehmet F.; Yamada, Toshishige; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif

    2017-08-01

    Photodetectors (PDs) in datacom and computer networks where the link length is up to 300 m, need to handle higher than typical input power used in other communication links. Also, to reduce power consumption due to equalization at high speed (>25Gb/s), the datacom links will use PAM-4 signaling instead of NRZ with stringent receiver linearity requirements. Si PDs with photon-trapping micro/nanostructures are shown to have high linearity in output current verses input optical power. Though there is less silicon material due to the holes, the micro-/nanostructured holes collectively reradiate the light to an in-plane direction of the PD surface and can avoid current crowding in the PD. Consequently, the photocurrent per unit volume remains at a low level contributing to high linearity in the photocurrent. We present the effect of design and lattice patterns of micro/nanostructures on the linearity of ultra-fast silicon PDs designed for high speed multi gigabit data networks.

  15. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  16. Power Amplifier Linearizer for High Frequency Medical Ultrasound Applications

    PubMed Central

    Choi, Hojong; Jung, Hayong; Shung, K. Kirk

    2015-01-01

    Power amplifiers (PAs) are used to produce high-voltage excitation signals to drive ultrasonic transducers. A larger dynamic range of linear PAs allows higher contrast resolution, a highly desirable characteristic in ultrasonic imaging. The linearity of PAs can be improved by reducing the nonlinear harmonic distortion components of high-voltage output signals. In this paper, a linearizer circuit is proposed to reduce output signal harmonics when working in conjunction with a PA. The PA performance with and without the linearizer was measured by comparing the output power 1-dB compression point (OP1dB), and the second- and third-order harmonic distortions (HD2 and HD3, respectively). The results show that the PA with the linearizer circuit had higher OP1dB (31.7 dB) and lower HD2 (−61.0 dB) and HD3 (−42.7 dB) compared to those of the PA alone (OP1dB (27.1 dB), HD2 (−38.2 dB), and HD3 (−36.8 dB)) at 140 MHz. A pulse-echo measurement was also performed to further evaluate the capability of the linearizer circuit. The HD2 of the echo signal received by the transducer using a PA with the linearizer (−24.8 dB) was lower than that obtained for the PA alone (−16.6 dB). The linearizer circuit is capable of improving the linearity performance of PA by lowering harmonic distortions. PMID:26622209

  17. Sparsity-Cognizant Algorithms with Applications to Communications, Signal Processing, and the Smart Grid

    NASA Astrophysics Data System (ADS)

    Zhu, Hao

    Sparsity plays an instrumental role in a plethora of scientific fields, including statistical inference for variable selection, parsimonious signal representations, and solving under-determined systems of linear equations - what has led to the ground-breaking result of compressive sampling (CS). This Thesis leverages exciting ideas of sparse signal reconstruction to develop sparsity-cognizant algorithms, and analyze their performance. The vision is to devise tools exploiting the 'right' form of sparsity for the 'right' application domain of multiuser communication systems, array signal processing systems, and the emerging challenges in the smart power grid. Two important power system monitoring tasks are addressed first by capitalizing on the hidden sparsity. To robustify power system state estimation, a sparse outlier model is leveraged to capture the possible corruption in every datum, while the problem nonconvexity due to nonlinear measurements is handled using the semidefinite relaxation technique. Different from existing iterative methods, the proposed algorithm approximates well the global optimum regardless of the initialization. In addition, for enhanced situational awareness, a novel sparse overcomplete representation is introduced to capture (possibly multiple) line outages, and develop real-time algorithms for solving the combinatorially complex identification problem. The proposed algorithms exhibit near-optimal performance while incurring only linear complexity in the number of lines, which makes it possible to quickly bring contingencies to attention. This Thesis also accounts for two basic issues in CS, namely fully-perturbed models and the finite alphabet property. The sparse total least-squares (S-TLS) approach is proposed to furnish CS algorithms for fully-perturbed linear models, leading to statistically optimal and computationally efficient solvers. The S-TLS framework is well motivated for grid-based sensing applications and exhibits higher accuracy than existing sparse algorithms. On the other hand, exploiting the finite alphabet of unknown signals emerges naturally in communication systems, along with sparsity coming from the low activity of each user. Compared to approaches only accounting for either one of the two, joint exploitation of both leads to statistically optimal detectors with improved error performance.

  18. Analysis of Trinity Power Metrics for Automated Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalenko, Ashley Christine

    This is a presentation from Los Alamos National Laboraotyr (LANL) about the analysis of trinity power metrics for automated monitoring. The following topics are covered: current monitoring efforts, motivation for analysis, tools used, the methodology, work performed during the summer, and future work planned.

  19. Monitoring Statistics Which Have Increased Power over a Reduced Time Range.

    ERIC Educational Resources Information Center

    Tang, S. M.; MacNeill, I. B.

    1992-01-01

    The problem of monitoring trends for changes at unknown times is considered. Statistics that permit one to focus high power on a segment of the monitored period are studied. Numerical procedures are developed to compute the null distribution of these statistics. (Author)

  20. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  1. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The Ada language software development to perform the electrical system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed is described. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electrical power system to be used in the Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 382/20e computers connected through an 802.4 local area network. One of these computers is designated as the control node with the other four acting as subsidiary controllers. The subsidiary controllers are connected to the power control components with a Mil-Std-1553 network. An operator interface is supplied by adding a sixth computer. The power system monitor algorithm is comprised of several functions including: periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data is collected from the switchgear sensors every 100 milliseconds, then passed through a 2 Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The reporting mechanism notifies an operator of any abnormalities in the system. Once per second, the system monitor provides data to the control node for further processing, such as state estimation. The system monitor required a hardware time interrupt to activate the data acquisition function. The execution time of the code was optimized using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities. A summary of the advantages and side effects of this technique are discussed.

  2. An Information Theoretic Framework and Self-organizing Agent- based Sensor Network Architecture for Power Plant Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loparo, Kenneth; Kolacinski, Richard; Threeanaew, Wanchat

    A central goal of the work was to enable both the extraction of all relevant information from sensor data, and the application of information gained from appropriate processing and fusion at the system level to operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the deep connection between information theory and the thermodynamic formalism, 2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment. Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while the generality of current definitions provides sufficient flexibility, the currentmore » architecture frameworks do not inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks often do not make a distinction between ``data'' and ``information.'' This work defines an enterprise architecture for health and condition monitoring of power plant equipment and further provides the appropriate foundation for addressing shortcomings in current architecture definition frameworks through the discovery of the information connectivity between the elements of a power generation plant. That is, to identify the correlative structure between available observations streams using informational measures. The principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on the foraging behavior of ants for eliciting this structure and on measures for characterizing differences between communication topologies. The elicitation algorithms are applied to data streams produced by a detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation algorithm and topology characterization can be based on different informational metrics for detecting connectivity, e.g. mutual information and linear correlation.« less

  3. Test Results from a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results.

  4. Test Results From a High Power Linear Alternator Test Rig

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Hervol, David S.; Gardner, Brent G.

    2010-01-01

    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This report describes the HPLATR, the test program, and the operational results.

  5. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  6. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    NASA Technical Reports Server (NTRS)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  7. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  8. A real time study on condition monitoring of distribution transformer using thermal imager

    NASA Astrophysics Data System (ADS)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  9. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  10. Wireless remote monitoring of critical facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.

    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less

  11. A design for an intelligent monitor and controller for space station electrical power using parallel distributed problem solving

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1990-01-01

    The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.

  12. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... comment draft regulatory guide (DG) DG-1278, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93...

  13. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0212] Monitoring the Effectiveness of Maintenance at... (RG) 1.160, ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources Council (NUMARC) 93-01, ``Industry Guideline for...

  14. 69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. DETAIL OF OPERATIONS AND CHECKOUT (POWER CONTROL AND MONITOR PANEL) AND RANGE SAFETY (DESTRUCT SYSTEM CONTROL MONITOR PANEL) PANELS IN SLC-3E CONTROL ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Health monitoring system for transmission shafts based on adaptive parameter identification

    NASA Astrophysics Data System (ADS)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  16. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  17. Application of laser scanning technique in earthquake protection of Istanbul's historical heritage buildings

    NASA Astrophysics Data System (ADS)

    Çaktı, Eser; Ercan, Tülay; Dar, Emrullah

    2017-04-01

    Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.

  18. Power Laws, Scale Invariance and the Generalized Frobenius Series:

    NASA Astrophysics Data System (ADS)

    Visser, Matt; Yunes, Nicolas

    We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to extend these ideas to situations where fixed points may not exist — either due to "monotone" flow or due to the presence of limit cycles. Monotone flow generically leads to logarithmic deviations from scaling, while limit cycles generally lead to discrete self-similar solutions.

  19. A Low-Cost Point-of-Care Testing System for Psychomotor Symptoms of Depression Affecting Standing Balance: A Preliminary Study in India.

    PubMed

    Dutta, Arindam; Kumar, Robins; Malhotra, Suruchi; Chugh, Sanjay; Banerjee, Alakananda; Dutta, Anirban

    2013-01-01

    The World Health Organization estimated that major depression is the fourth most significant cause of disability worldwide for people aged 65 and older, where depressed older adults reported decreased independence, poor health, poor quality of life, functional decline, disability, and increased chronic medical problems. Therefore, the objectives of this study were (1) to develop a low-cost point-of-care testing system for psychomotor symptoms of depression and (2) to evaluate the system in community dwelling elderly in India. The preliminary results from the cross-sectional study showed a significant negative linear correlation between balance and depression. Here, monitoring quantitative electroencephalography along with the center of pressure for cued response time during functional reach tasks may provide insights into the psychomotor symptoms of depression where average slope of the Theta-Alpha power ratio versus average slope of baseline-normalized response time may be a candidate biomarker, which remains to be evaluated in our future clinical studies. Once validated, the biomarker can be used for monitoring the outcome of a comprehensive therapy program in conjunction with pharmacological interventions. Furthermore, the frequency of falls can be monitored with a mobile phone-based application where the propensity of falls during the periods of psychomotor symptoms of depression can be investigated further.

  20. Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Zhang, Xuepan; Huang, Xiaoqi; Cheng, ZhengAi; Zhang, Xinghua; Hou, Xinbin

    2017-11-01

    The concept of space solar power satellite (SSPS) is an advanced system for collecting solar energy in space and transmitting it wirelessly to earth. However, due to the long service life, in-orbit damage may occur in the structural system of SSPS. Therefore, sensor placement layouts for structural health monitoring should be firstly considered in this concept. In this paper, based on genetic algorithm, an optimal sensor placement method for deployable antenna module health monitoring in SSPS is proposed. According to the characteristics of the deployable antenna module, the designs of sensor placement are listed. Furthermore, based on effective independence method and effective interval index, a combined fitness function is defined to maximize linear independence in targeted modes while simultaneously avoiding redundant information at nearby positions. In addition, by considering the reliability of sensors located at deployable mechanisms, another fitness function is constituted. Moreover, the solution process of optimal sensor placement by using genetic algorithm is clearly demonstrated. At last, a numerical example about the sensor placement layout in a deployable antenna module of SSPS is presented, which by synthetically considering all the above mentioned performances. All results can illustrate the effectiveness and feasibility of the proposed sensor placement method in SSPS.

  1. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    PubMed

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  2. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  3. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  4. Calculation and application of energy transaction allocation factors in electric power transmission systems

    NASA Astrophysics Data System (ADS)

    Fradi, Aniss

    The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.

  5. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  6. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  7. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  8. Evaluation of the PV energy production after 12-years of operating

    NASA Astrophysics Data System (ADS)

    Bouchakour, Salim; Arab, Amar Hadj; Abdeladim, Kamel; Boulahchiche, Saliha; Amrouche, Said Ould; Razagui, Abdelhak

    2018-05-01

    This paper presents a simple way to approximately evaluate the photovoltaic (PV) array performance degradation, the studied PV arrays are connected to the local electric grid at the Centre de Developpement des Energies Renouvelables (CDER) in Algiers, Algeria, since June 2004. The used PV module model takes in consideration the module temperature and the effective solar radiance, the electrical characteristics provided by the manufacturer data sheet and the evaluation of the performance coefficient. For the dynamic behavior we use the Linear Reoriented Coordinates Method (LRCM) to estimate the maximum power point (MPP). The performance coefficient is evaluated on the one hand under STC conditions to estimate the dc energy according to the manufacturer data. On the other hand, under real conditions using both the monitored data and the LM optimization algorithm, allowing a good degree of accuracy of estimated dc energy. The application of the developed modeling procedure to the analysis of the monitored data is expected to improve understanding and assessment of the PV performance degradation of the PV arrays after 12 years of operation.

  9. Photoacoustic study on the possible components of total suspended particles

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Huang, Zuohua; Tang, Zhilie

    2006-02-01

    Total suspended particles (TSP) are one of the main atmospheric pollutants. The ingredients are very complex, mainly including black carbon (C),organic compound, inorganic compound and biologic component, which will do great harm to human's health. During environmental monitoring, the airborne suspended particle always is an index for evaluating the quality of atmosphere. In this article, possible mixture of TSP is proposed to determine its ingredients and content by photoacoustic spectroscopy. The normalized photoacoustic (PA) signal of the sulfur powder, mixtures of sulfur and black carbon in different proportions are obtained respectively. Simulation with linear equation says that the PA signal has a certain relationship with the content of sample. The normalized PA spectroscopy of various materials is acquired via examining the sample of the powder of cupric sulfate mixed with nitro compound (2, 5 -methoxybenzoic-4nitro-dehyde), Portland cement, residual particles of automobile exhaust pipe, ash of power plant's stocks. The experimental results have important reference value to the practical analysis of TSP, it also provides new possible methodology to the environmental monitoring.

  10. On the design and assessment of a 2.45 GHz radio telecommand system for remote patient monitoring.

    PubMed

    Crumley, G C; Evans, N E; Burns, J B; Trouton, T G

    1998-12-01

    This paper discusses the design and operational assessment of a minimum-power, 2.45 GHz portable pulse receiver and associated base transmitter comprising the interrogation link in a duplex, cross-band RF transponder designed for short-range, remote patient monitoring. A tangential receiver sensitivity of - 53 dBm was achieved using a 50 ohms microstrip stub-matched zero-bias diode detector and a CMOS baseband amplifier consuming 20 microA from + 3 V. The base transmitter generated an on-off keyed peak output of 0.5 W into 50 ohms. Both linear and right-hand circularly-polarised antennas were employed in system evaluations carried out within an operational Coronary Care Unit ward. For transmitting antenna heights of between 0.3 and 2.2 m above floor level. transponder interrogations were 95% reliable within the 82 m2 area of the ward, falling to an average of 46% in the surrounding rooms and corridors. Separating the polarisation modes, using the circular antenna set gave the higher overall reliability.

  11. Characterization of a multi-module tunable EC-QCL system for mid-infrared biofluid spectroscopy for hospital use and personalized diabetes technology

    NASA Astrophysics Data System (ADS)

    Grafen, M.; Nalpantidis, K.; Ostendorf, A.; Ihrig, D.; Heise, H. M.

    2016-03-01

    Blood glucose monitoring systems are important point-of-care devices for the hospital and personalised diabetes technology. FTIR-spectrometers have been successfully employed for the development of continuous bed-side monitoring systems in combination with micro-dialysis. For implementation in miniaturised portable systems, external-cavity quantum cascade lasers (EC-QCL) are suited. An ultra-broadly tunable pulsed EC-QCL system, covering a spectral range from 1920 to 780 cm-1, has been characterised with regard to the spectral emission profiles and wavenumber scale accuracy. The measurement of glucose in aqueous solution is presented and problems with signal linearity using Peltier-cooled MCT-detectors are discussed. The use of larger optical sample pathlengths for attenuating the laser power in transmission measurements has recently been suggested and implemented, but implications for broad mid-infrared measurements have now been investigated. The utilization of discrete wavenumber variables as an alternative for sweep-tune measurements has also been studied and sparse multivariate calibration models intended for clinical chemistry applications are described for glucose and lactate.

  12. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  13. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  14. Methodological concerns for determining power output in the jump squat.

    PubMed

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p

  15. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    NASA Astrophysics Data System (ADS)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  16. Laser induced white lighting of tungsten filament

    NASA Astrophysics Data System (ADS)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  17. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  18. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  19. Fourier imaging of non-linear structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less

  20. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    PubMed

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Arti; Stawarz, Łukasz; Ostrowski, Michał

    We present the results of our power spectral analysis for the BL Lac object PKS 0735+178, utilizing the Fermi -LAT survey at high-energy γ -rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencies. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (1) the optical variability is consistent with a pure red noise, formore » which the power spectral density can be well approximated by a single power law throughout the entire time domain probed; (2) the slope of power spectral density at high-energy γ -rays (∼1) is significantly flatter than that found at radio and optical frequencies (∼2) within the corresponding time variability range; (3) for the derived power spectra, we did not detect any low-frequency flattening, nor do we see any evidence for cutoffs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the γ -ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998–2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.« less

  2. Broadband linearisation of high-efficiency power amplifiers

    NASA Technical Reports Server (NTRS)

    Kenington, Peter B.; Parsons, Kieran J.; Bennett, David W.

    1993-01-01

    A feedforward-based amplifier linearization technique is presented which is capable of yielding significant improvements in both linearity and power efficiency over conventional amplifier classes (e.g. class-A or class-AB). Theoretical and practical results are presented showing that class-C stages may be used for both the main and error amplifiers yielding practical efficiencies well in excess of 30 percent, with theoretical efficiencies of much greater than 40 percent being possible. The levels of linearity which may be achieved are required for most satellite systems, however if greater linearity is required, the technique may be used in addition to conventional pre-distortion techniques.

  3. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  4. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    NASA Astrophysics Data System (ADS)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  5. Power system distributed oscilation detection based on Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed methods could achieve faster and more reliable results. Subsequently, this claim is tested and approved by test results of IEEE Two-area simulation test system and real power system historian synchrophasor data case studies.

  6. Characteristics of Hydrogen Monitoring Systems for Severe Accident Management at a Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.

    2018-02-01

    One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase approaching to prevent a combustible mixture formation in the containment.

  7. Analysis of broadcasting satellite service feeder link power control and polarization

    NASA Technical Reports Server (NTRS)

    Sullivan, T. M.

    1982-01-01

    Statistical analyses of carrier to interference power ratios (C/Is) were performed in assessing 17.5 GHz feeder links using (1) fixed power and power control, and (2) orthogonal linear and orthogonal circular polarizations. The analysis methods and attenuation/depolarization data base were based on CCIR findings to the greatest possible extent. Feeder links using adaptive power control were found to neither cause or suffer significant C/I degradation relative to that for fixed power feeder links having similar or less stringent availability objectives. The C/Is for sharing between orthogonal linearly polarized feeder links were found to be significantly higher than those for circular polarization only in links to nominally colocated satellites from nominally colocated Earth stations in high attenuation environments.

  8. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency and meteorological parameters (e.g. from the model COSMO-DE) to calculate global irradiance by means of the generated power of individual photovoltaic systems. For the year 2012, our method is tested for PV systems in the Allgäu region (south Germany), the distribution area of the system operator "AllgäuNetz GmbH & Co". The test region includes 215 online-monitored photovoltaic systems and one pyranometer station located at the DWD (Deutscher WetterDienst) weather station Hohenpeißenberg (operated by the German Weather Service). The present talk provides an introduction to the newly developed method along with first results for clear sky scenarios. (1) B. Mayer and A. Kylling (2005): Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. In: Chemistry and Physics Chemistry and Physics. Page: 1855 - 1877

  9. Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations

    NASA Astrophysics Data System (ADS)

    Abdelkefi, Abdessattar

    Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the effects of the linear spring coefficients and electrical load resistance on the flutter speed. Then, the normal form of the Hopf bifurcation ( utter) is derived to characterize the type of instability and determine the effects of the aerodynamic nonlinearities and the nonlinear coefficients of the springs on the system's stability near the bifurcation. This is useful to characterize the effects of different parameters on the system's output and ensure that subcritical or "catastrophic" bifurcation does not take place. Both linear and nonlinear analyses are then used to design and enhance the performance of these harvesters. In the last part, the concept of energy harvesting from vortex-induced vibrations of a circular cylinder is investigated. The power levels that can be generated from these vibrations and the variations of these levels with the freestream velocity are determined. A mathematical model that accounts for the coupled lift force, cylinder motion and generated voltage is presented. Linear analysis of the electromechanical model is performed to determine the effects of the electrical load resistance on the natural frequency of the rigid cylinder and the onset of the synchronization region. The impacts of the nonlinearities on the cylinder's response and energy harvesting are then investigated.

  10. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  11. Power monitoring and control for large scale projects: SKA, a case study

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis

    2016-07-01

    Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.

  12. Study on probability distribution of prices in electricity market: A case study of zhejiang province, china

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Chen, B.; Han, Z. X.; Zhang, F. Q.

    2009-05-01

    The study on probability density function and distribution function of electricity prices contributes to the power suppliers and purchasers to estimate their own management accurately, and helps the regulator monitor the periods deviating from normal distribution. Based on the assumption of normal distribution load and non-linear characteristic of the aggregate supply curve, this paper has derived the distribution of electricity prices as the function of random variable of load. The conclusion has been validated with the electricity price data of Zhejiang market. The results show that electricity prices obey normal distribution approximately only when supply-demand relationship is loose, whereas the prices deviate from normal distribution and present strong right-skewness characteristic. Finally, the real electricity markets also display the narrow-peak characteristic when undersupply occurs.

  13. DIY soundcard based temperature logging system. Part I: design

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2016-11-01

    This paper aims to enable schools to make their own low-cost temperature logging instrument and to learn a something about its calibration in the process. This paper describes how a thermistor can be integrated into a simple potential divider circuit which is powered with the sound output of a computer and monitored by the microphone input. The voltage across a fixed resistor is recorded and scaled to convert it into a temperature reading in the range 0-100 °C. The calibration process is described with reference to fixed points and the effects of non-linearity are highlighted. An optimised calibration procedure is described which enables sub degree resolution and a software program was written which makes it possible to log, display and save temperature changes over a user determined period of time.

  14. Fitting and forecasting coupled dark energy in the non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less

  15. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.

    PubMed

    Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2017-04-01

    Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.

  16. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  17. Study on mathematical model to predict aerated power consumption in a gas-liquid stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Chen, Yiming

    The aerated power consumption characteristics in a transparent tank with diameter of 0.3 m and flat bottom stirred by a Rushton impeller were investigated by means of experimental measurement. The test fluid used was tap water as liquid and air as gas. Based on Weibull model, the complete correlation of aerated power with aerated flow number was established through non-linear fit analysis. The effects of aerated rate and impeller speed on aerated power consumption were made an exploration. Results show that the changeable trend of the aerated power consumption is found to be similar under different impeller speeds and impeller diameters, i.e. the aerated power is close to dropping linear at the beginning of gas input, and then the drop tendency decreases as the aerated rate increases, at the end, the aerated power is a constant on the whole as the aerated rate reaches up the loading state. The non-linear fit curve is done using the software Origin based on the experimental data. The fairly high precision of data fit is obtained, which indicates that the mathematical model established can be used to accurately predict the aerated power consumption, comparatively. The proposed research provides a valuable instruction and reference for the design and enlargement of stirred vessel.

  18. Infrasound Sensor and Porous-Hose Filter Characterization Results

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Harris, J. M.

    2008-12-01

    The Ground-Based Nuclear Explosion Monitoring Research and Development (GNEM R&D) program at Sandia National Laboratories (SNL) is regarded as the primary center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for nuclear explosion monitoring. Over the past year much of our work has focused in the area of infrasound sensor characterization through the continuing development of an infrasound sensor characterization test-bed. Our main areas of focus have been in new sensor characterization and understanding the effects of porous-hose filters for reducing acoustic background signals. Three infrasound sensors were evaluated for characteristics of instrument response, linearity and self-noise. The sensors tested were Chaparral Physics model 2.5 low-gain, New Mexico Tech All-Sensor and the Inter-Mountain Labs model SS avalanche sensor. For the infrasound sensors tested, the test results allow us to conclude that two of the three sensors had sufficiently quiet noise floor to be at or below the Acoustic low-noise model from 0.1 to 7 Hz, which make those sensors suitable to explosion monitoring. The other area of focus has been to understand the characteristics of porous-hose filters used at some monitoring sites. For this, an experiment was designed in which two infrasound sensors were co- located. One sensor was connected to a typical porous-hose spatial filter consisting of eight individual hoses covering a 30m aperture and the second sensor was left open to unimpeded acoustic input. Data were collected for several days, power spectrum computed for two-hour windows and the relative gain of the porous-hose filters were estimated by dividing the power spectrum. The porous-hose filter appears to attenuate less than 3 dB (rel 1 Pa**2/Hz) below 0.1 Hz and as much as 25 dB at 1 Hz and between 20 to 10 dB above 10 Hz. Several more experiments will be designed to address the effects of different characteristics of the individual porous-hoses, such as length, number and geometric arrangement. This work directly impacts the Ground-Based Nuclear Explosion Monitoring mission by providing a facility, equipment, and personnel to give the operational monitoring agencies confidence in deployed instrumentation and capability for mission success.

  19. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  20. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  1. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  2. Self-Powered WSN for Distributed Data Center Monitoring

    PubMed Central

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-01

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135

  3. Self-Powered WSN for Distributed Data Center Monitoring.

    PubMed

    Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide

    2016-01-02

    Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.

  4. G T-Mohr Start-up Reactivity Insertion Transient Analysis Using Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fard, Mehdi Reisi; Blue, Thomas E.; Miller, Don W.

    2006-07-01

    As a part of a Department of Energy-Nuclear Engineering Research Initiative (NERI) Project, we at OSU are investigating SiC semiconductor detectors as neutron power monitors for Generation IV power reactors. As a part of this project, we are investigating the power monitoring requirements for a specific type of Generation IV reactor, namely the GT-MHR. To evaluate the power monitoring requirements for the GT-MHR that are most demanding for a SiC diode power monitor, we have developed a Simulink model to study the transient behavior of the GT-MHR. In this paper, we describe the application of the Simulink code to themore » analysis of a series of Start-up Reactivity Insertion Transients (SURITs). The SURIT is considered to be a limiting protectable accident in terms of establishing the dynamic range of a SiC power monitor because of the low count rate of the detector during the start-up and absence of the reactivity feedback mechanism at the beginning of transient. The SURIT is studied with the ultimate goal of identifying combinations of 1) reactor power scram setpoints and 2) cram initiation times (the time in which a scram must be initiated once the setpoint is exceeded) for which the GT-MHR core is protected in the event of a continuous withdrawal of a control rod bank from the core from low powers. The SURIT is initiated by withdrawing a rod bank when the reactor is cold (300 K) and sub-critical at the BOEC (Beginning of Equilibrium Cycle) condition. Various initial power levels have been considered corresponding to various degrees of sub-criticality and various source strengths. An envelope of response is determined to establish which initial powers correspond to the worst case SURIT. (authors)« less

  5. The Feasibility of Linear Motors and High-Energy Thrusters for Massive Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Stull, M. A.

    A combination of two propulsion technologies, superconducting linear motors using ambient magnetic fields and high- energy particle beam thrusters, may make it possible to develop massive aerospace vehicles the size of aircraft carriers. If certain critical thresholds can be attained, linear motors can enable massive vehicles to fly within the atmosphere and can propel them to orbit. Thrusters can do neither, because power requirements are prohibitive. However, unless superconductors having extremely high critical current densities can be developed, the interplanetary magnetic field is too weak for linear motors to provide sufficient acceleration to reach even nearby planets. On the other hand, high-energy thrusters can provide adequate acceleration using a minimal amount of reaction mass, at achievable levels of power generation. If the requirements for linear motor propulsion can be met, combining the two modes of propulsion could enable huge nuclear powered spacecraft to reach at least the inner planets of the solar system, the asteroid belt, and possibly Jupiter, in reasonably short times under continuous acceleration, opening them to exploration, resource development and colonization.

  6. Measurement of LHCD antenna position in Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Ambulkar, K. K.; Sharma, P. K.; Virani, C. G.; Parmar, P. R.; Thakur, A. L.; Kulkarni, S. V.

    2010-02-01

    To drive plasma current non-inductively in ADITYA tokamak, 120 kW pulsed Lower Hybrid Current Drive (LHCD) system at 3.7 GHz has been designed, fabricated and installed on ADITYA tokamak. In this system, the antenna consists of a grill structure, having two rows, each row comprising of four sub-waveguides. The coupling of LHCD power to the plasma strongly depends on the plasma density near the mouth of grill antenna. Thus the grill antenna has to be precisely positioned for efficient coupling. The movement of mechanical bellow, which contracts or expands up to 50mm, governs the movement of antenna. In order to monitor the position of the antenna precisely, the reference position of the antenna with respect to the machine/plasma position has to be accurately determined. Further a mechanical system or an electronic system to measure the relative movement of the antenna with respect to the reference position is also desired. Also due to poor accessibility inside the ADITYA machine, it is impossible to measure physically the reference position of the grill antenna with respect to machine wall, taken as reference position and hence an alternative method has to be adopted to establish these measurements reliably. In this paper we report the design and development of a mechanism, using which the antenna position measurements are made. It also describes a unique method employing which the measurements of the reference position of the antenna with respect to the inner edge of the tokamak wall is carried out, which otherwise was impossible due to poor accessibility and physical constraints. The position of the antenna is monitored using an electronic scale, which is developed and installed on the bellow. Once the reference position is derived, the linear potentiometer, attached to the bellow, measures the linear distance using position transmitter. The accuracy of measurement obtained in our setup is within +/- 0.5 % and the linearity, along with repeatability is excellent.

  7. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  8. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  9. Towards 24/7 continuous heart rate monitoring.

    PubMed

    Tarniceriu, Adrian; Parak, Jakub; Renevey, Philippe; Nurmi, Marko; Bertschi, Mattia; Delgado-Gonzalo, Ricard; Korhonen, Ilkka

    2016-08-01

    Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.

  10. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  11. Releasable High-Mechanical-Advantage Linear Actuator

    NASA Technical Reports Server (NTRS)

    Young, Gordon H.

    1994-01-01

    Proposed linear actuator includes ball-screw mechanism made to engage or disengage piston as needed. Requires low power to maintain release and no power to maintain engagement. Pins sliding radially in solenoids in yoke engage or disengage slot in piston. With help of optoelectronic feedback, yoke made to follow free piston during disengagement so always in position to "grab" piston.

  12. Educational Resistance in a Runaway World: Poetic Meditations on Power and Surveillance

    ERIC Educational Resources Information Center

    Corbett, Michael

    2008-01-01

    It is becoming clear that standard, linear solutions to the problems of resistant children are problematic because they imagine a world of schooling in which place and power do not matter. Poetry can challenge the typically linear, prescriptive, and modernist assumptions that are central to much educational theory and practice. In this article,…

  13. A highly linear fully integrated powerline filter for biopotential acquisition systems.

    PubMed

    Alzaher, Hussain A; Tasadduq, Noman; Mahnashi, Yaqub

    2013-10-01

    Powerline interference is one of the most dominant problems in detection and processing of biopotential signals. This work presents a new fully integrated notch filter exhibiting high linearity and low power consumption. High filter linearity is preserved utilizing active-RC approach while IC implementation is achieved through replacing passive resistors by R-2R ladders achieving area saving of approximately 120 times. The filter design is optimized for low power operation using an efficient circuit topology and an ultra-low power operational amplifier. Fully differential implementation of the proposed filter shows notch depth of 43 dB (78 dB for 4th-order) with THD of better than -70 dB while consuming about 150 nW from 1.5 V supply.

  14. Electricity Submetering on the Cheap: Stick-on Electricity Meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanzisera, Steven; Lorek, Michael; Pister, Kristofer

    2014-08-17

    We demonstrate a low-cost, 21 x 12 mm prototype Stick-on Electricity Meter (SEM) to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. A SEM sensor is installed on the external face of a circuit breaker to generate voltage and current signals. This allows for the computation of real and apparent power as well as capturing harmonics created by non-linear loads. The prototype sensor is built using commercially available components, resulting in a production cost of under $10 per SEM. With no highvoltage install work requiring an electrician, home owners or other individuals can install the system in amore » few minutes with no safety implications. This leads to an installed system cost that is much lower than traditional submetering technology.. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed SEM sensor. The SEM sensor can resolve breaker power levels below 10W, and it can be used to provide data for non-intrusive load monitoring systems at full sample rate.« less

  15. Dual-point reflective refractometer based on parallel no-core fiber/FBG structure

    NASA Astrophysics Data System (ADS)

    Guo, Cuijuan; Niu, Panpan; Wang, Juan; Zhao, Junfa; Zhang, Cheng

    2018-01-01

    A novel dual-point reflective fiber-optic refractometer based on multimode interference (MMI) effect and fiber Bragg grating (FBG) reflection is proposed and experimentally demonstrated, which adopts parallel structure. Each point of the refractometer consists of a single mode-no core-single mode fiber (SNS) structure cascaded with a FBG. Assisted by the reflection of FBG, refractive index (RI) measurement can be achieved by monitoring the peak power variation of the reflected FBG spectrum. By selecting different length of the no core fiber and center wavelength of the FBG, independent dual-point refractometer is easily realized. Experiment results show that the refractometer has a nonlinear relationship between the surrounding refractive index (SRI) and the peak power of the reflected FBG spectrum in the RI range of 1.3330-1.4086. Linear relationship can be approximately obtained by dividing the measuring range into 1.3330-1.3611 and 1.3764-1.4086. In the RI range of 1.3764-1.4086, the two sensing points have higher RI sensitivities of 319.34 dB/RIU and 211.84 dB/RIU, respectively.

  16. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  18. The Relationship between Crystalline Lens Power and Refractive Error in Older Chinese Adults: The Shanghai Eye Study.

    PubMed

    He, Jiangnan; Lu, Lina; He, Xiangui; Xu, Xian; Du, Xuan; Zhang, Bo; Zhao, Huijuan; Sha, Jida; Zhu, Jianfeng; Zou, Haidong; Xu, Xun

    2017-01-01

    To report calculated crystalline lens power and describe the distribution of ocular biometry and its association with refractive error in older Chinese adults. Random clustering sampling was used to identify adults aged 50 years and above in Xuhui and Baoshan districts of Shanghai. Refraction was determined by subjective refraction that achieved the best corrected vision based on monocular measurement. Ocular biometry was measured by IOL Master. The crystalline lens power of right eyes was calculated using modified Bennett-Rabbetts formula. We analyzed 6099 normal phakic right eyes. The mean crystalline lens power was 20.34 ± 2.24D (range: 13.40-36.08). Lens power, spherical equivalent, and anterior chamber depth changed linearly with age; however, axial length, corneal power and AL/CR ratio did not vary with age. The overall prevalence of hyperopia, myopia, and high myopia was 48.48% (95% CI: 47.23%-49.74%), 22.82% (95% CI: 21.77%-23.88%), and 4.57% (95% CI: 4.05-5.10), respectively. The prevalence of hyperopia increased linearly with age while lens power decreased with age. In multivariate models, refractive error was strongly correlated with axial length, lens power, corneal power, and anterior chamber depth; refractive error was slightly correlated with best corrected visual acuity, age and sex. Lens power, hyperopia, and spherical equivalent changed linearly with age; Moreover, the continuous loss of lens power produced hyperopic shifts in refraction in subjects aged more than 50 years.

  19. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  20. Vibration Monitoring of Power Distribution Poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less

  1. Curriculum-Based Measurement of Oral Reading: Quality of Progress Monitoring Outcomes

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Zopluoglu, Cengiz; Long, Jeffery D.; Monaghen, Barbara D.

    2012-01-01

    Curriculum-based measurement of oral reading (CBM-R) is frequently used to set student goals and monitor student progress. This study examined the quality of growth estimates derived from CBM-R progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for multiple levels of…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less

  3. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As the demand for spectrum for mobile applications increases, operators of hazard networks may need to consider the impact of RF interference on data quality and continuity. UNAVCO's participation ensures that our high precision GNSS community interests are represented in the future spectrum allocation decisions.

  4. Toward a low-cost, low-power, low-complexity DAC-based multilevel (M-ary QAM) coherent transmitter using compact linear optical field modulator

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin

    2017-01-01

    In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.

  5. Robustness of controllability and observability of linear time-varying systems with application to the emergency control of power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastry, S. S.; Desoer, C. A.

    1980-01-01

    Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it ismore » shown that this emergency control is indeed possible in finite time.« less

  6. Continuous emission monitoring and accounting automated systems at an HPP

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Kondrateva, O. E.; Borovkova, A. M.; Seregin, V. A.; Morozov, I. V.

    2015-03-01

    Environmental and industrial emission monitoring at HPP's is a very urgent task today. Industrial monitoring assumes monitoring of emissions of harmful pollutants and optimization of fuel combustion technological processes at HPP's. Environmental monitoring is a system to assess ambient air quality with respect to a number of separate sources of harmful substances in pollution of atmospheric air of the area. Works on creating an industrial monitoring system are carried out at the National Research University Moscow Power Engineering Institute (MPEI) on the basis of the MPEI combined heat and power plant, and environmental monitoring stations are installed in Lefortovo raion, where the CHPP is located.

  7. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  8. Highly Efficient Wireless Powering for Autonomous Structural Health Monitoring and Test/Evaluation Systems

    DTIC Science & Technology

    2016-07-27

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society

  9. Applications of optical measurement technology in pollution gas monitoring at thermal power plants

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yu, Dahai; Ye, Huajun; Yang, Jianhu; Ke, Liang; Han, Shuanglai; Gu, Haitao; Chen, Yingbin

    2011-11-01

    This paper presents the work of using advanced optical measurement techniques to implement stack gas emission monitoring and process control. A system is designed to conduct online measurement of SO2/NOX and mercury emission from stacks and slipping NH3 of de-nitrification process. The system is consisted of SO2/NOX monitoring subsystem, mercury monitoring subsystem, and NH3 monitoring subsystem. The SO2/NOX monitoring subsystem is developed based on the ultraviolet differential optical absorption spectroscopy (UV-DOAS) technique. By using this technique, a linearity error less than +/-1% F.S. is achieved, and the measurement errors resulting from optical path contamination and light fluctuation are removed. Moreover, this subsystem employs in situ extraction and hot-wet line sampling technique to significantly reduce SO2 loss due to condensation and protect gas pipeline from corrosion. The mercury monitoring subsystem is used to measure the concentration of element mercury (Hg0), oxidized mercury (Hg2+), and total gaseous mercury (HgT) in the flue gas exhaust. The measurement of Hg with a low detection limit (0.1μg/m3) and a high sensitivity is realized by using cold vapor atom fluorescence spectroscopy (CVAFS) technique. This subsystem is also equipped with an inertial separation type sampling technique to prevent gas pipeline from being clogged and to reduce speciation mercury measurement error. The NH3 monitoring subsystem is developed to measure the concentration of slipping NH3 and then to help improving the efficiency of de-nitrification. The NH3 concentration as low as 0.1ppm is able to be measured by using the off-axis integrated cavity output spectroscopy (ICOS) and the tunable diode laser absorption spectroscopy (TDLAS) techniques. The problem of trace NH3 sampling loss is solved by applying heating the gas pipelines when the measurement is running.

  10. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    NASA Astrophysics Data System (ADS)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  11. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD).

    PubMed

    Poil, S-S; Bollmann, S; Ghisleni, C; O'Gorman, R L; Klaver, P; Ball, J; Eich-Höchli, D; Brandeis, D; Michels, L

    2014-08-01

    Objective biomarkers for attention-deficit/hyperactivity disorder (ADHD) could improve diagnostics or treatment monitoring of this psychiatric disorder. The resting electroencephalogram (EEG) provides non-invasive spectral markers of brain function and development. Their accuracy as ADHD markers is increasingly questioned but may improve with pattern classification. This study provides an integrated analysis of ADHD and developmental effects in children and adults using regression analysis and support vector machine classification of spectral resting (eyes-closed) EEG biomarkers in order to clarify their diagnostic value. ADHD effects on EEG strongly depend on age and frequency. We observed typical non-linear developmental decreases in delta and theta power for both ADHD and control groups. However, for ADHD adults we found a slowing in alpha frequency combined with a higher power in alpha-1 (8-10Hz) and beta (13-30Hz). Support vector machine classification of ADHD adults versus controls yielded a notable cross validated sensitivity of 67% and specificity of 83% using power and central frequency from all frequency bands. ADHD children were not classified convincingly with these markers. Resting state electrophysiology is altered in ADHD, and these electrophysiological impairments persist into adulthood. Spectral biomarkers may have both diagnostic and prognostic value. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Monitoring and localization of buried plastic natural gas pipes using passive RF tags

    NASA Astrophysics Data System (ADS)

    Mondal, Saikat; Kumar, Deepak; Ghazali, Mohd. Ifwat; Chahal, Prem; Udpa, Lalita; Deng, Yiming

    2018-04-01

    A passive harmonic radio frequency (RF) tag on the pipe with added sensing capabilities is proposed in this paper. Radio frequency identification (RFID) based tagging has already emerged as a potential solution for chemical sensing, location detection, animal tagging, etc. Harmonic transponders are already quite popular compared to conventional RFIDs due to their improved signal to noise ratio (SNR). However, the operating frequency, transmitted power and tag efficiency become critical issues for underground RFIDs. In this paper, a comprehensive on-tag sensing, power budget and frequency analyses is performed for buried harmonic tag design. Accurate tracking of infrastructure burial depth is proposed to reduce the probability of failure of underground pipelines. Burial depth is estimated using phase information of received signals at different frequencies calculated using genetic algorithm (GA) based optimization for post processing. Suitable frequency range is determined for a variety of soil with different moisture content for small tag-antenna size. Different types of harmonic tags such as 1) Schottky diode, 2) Non-linear Transmission Line (NLTL) were compared for underground applications. In this study, the power, frequency and tag design have been optimized to achieve small antenna size, minimum signal loss and simple reader circuit for underground detection at up to 5 feet depth in different soil medium and moisture contents.

  13. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    NASA Astrophysics Data System (ADS)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.

  14. Inherently safe passive gas monitoring system

    DOEpatents

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  15. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  16. Monitoring apparatus and method for battery power supply

    DOEpatents

    Martin, Harry L.; Goodson, Raymond E.

    1983-01-01

    A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

  17. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  18. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.

    PubMed

    Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan

    2016-04-13

    We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.

  19. A methodology based on reduced complexity algorithm for system applications using microprocessors

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.; Yao, K.

    1988-01-01

    The paper considers a methodology on the analysis and design of a minimum mean-square error criterion linear system incorporating a tapped delay line (TDL) where all the full-precision multiplications in the TDL are constrained to be powers of two. A linear equalizer based on the dispersive and additive noise channel is presented. This microprocessor implementation with optimized power of two TDL coefficients achieves a system performance comparable to the optimum linear equalization with full-precision multiplications for an input data rate of 300 baud.

  20. The Processing and Mechanical Properties of High Temperature/ High Performance Composites. Fatigue and Creep. Book 3

    DTIC Science & Technology

    1994-03-01

    bilinear forms of their rates. Setting the partial derivatives of fl with respect to the rates to be zero, one obtains simultaneous linear algebraic ...Figure 3 shows the variation in 8/P with P for one such test. In this case, the degree of linearity is high, with a correlation coefficient, r...each cycle is shown.) The linearity of the data suggests that the traction law can be represented by a power law, with the power law exponent, d log

  1. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  2. Self-calibrating models for dynamic monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin

    1996-01-01

    A method for automatically building qualitative and semi-quantitative models of dynamic systems, and using them for monitoring and fault diagnosis, is developed and demonstrated. The qualitative approach and semi-quantitative method are applied to monitoring observation streams, and to design of non-linear control systems.

  3. Riparian Bird Population Monitoring in Utah, 1992-2001

    Treesearch

    Russell E. Norvell; Frank P. Howe; Jimmie R. Parrish

    2005-01-01

    We report statewide linear and non-linear trends in density from 1992 to 2001 for six common bird species in the riparian areas of Utah. The six species examined here represent over 24 percent of all observations in the period. Four of the six species showed linear declines (Black-headed Grosbeak [Pheucticus melanocephalus], American Goldfinch [

  4. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrically powered spinal fluid pressure monitor. 880.2460 Section 880.2460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Monitoring Devices § 880.2460...

  5. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  6. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  7. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  8. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  9. IceTrendr: a linear time-series approach to monitoring glacier environments using Landsat

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J. M.; Braaten, J.

    2017-12-01

    Arctic glaciers in Alaska and Canada have experienced some of the greatest ice mass loss of any region in recent decades. A challenge to understanding these changing ecosystems, however, is developing globally-consistent, multi-decadal monitoring of glacier ice. We present a toolset and approach that captures, labels, and maps glacier change for use in climate science, hydrology, and Earth science education using Landsat Time Series (LTS). The core step is "temporal segmentation," wherein a yearly LTS is cleaned using pre-processing steps, converted to a snow/ice index, and then simplified into the salient shape of the change trajectory ("temporal signature") using linear segmentation. Such signatures can be characterized as simple `stable' or `transition of glacier ice to rock' to more complex multi-year changes like `transition of glacier ice to debris-covered glacier ice to open water to bare rock to vegetation'. This pilot study demonstrates the potential for interactively mapping, visualizing, and labeling glacier changes. What is truly innovative is that IceTrendr not only maps the changes but also uses expert knowledge to label the changes and such labels can be applied to other glaciers exhibiting statistically similar temporal signatures. Our key findings are that the IceTrendr concept and software can provide important functionality for glaciologists and educators interested in studying glacier changes during the Landsat TM timeframe (1984-present). Issues of concern with using dense Landsat time-series approaches for glacier monitoring include many missing images during the period 1984-1995 and that automated cloud mask are challenged and require the user to manually identify cloud-free images. IceTrendr is much more than just a simple "then and now" approach to glacier mapping. This process is a means of integrating the power of computing, remote sensing, and expert knowledge to "tell the story" of glacier changes.

  10. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  11. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  12. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    NASA Astrophysics Data System (ADS)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  13. Study on Safety Monitoring System for Submarine Power Cable on the Basis of AIS and Radar Technology

    NASA Astrophysics Data System (ADS)

    Jie, Wang; Yao-Tian, Fan

    Through analyzing the risks of submarine power cable, the highest risk to damage the cable identified is from ship. Based on concept of Vessel Traffic Management Information Systems, the three core sub-systems of safety monitoring system for submarine power cable were studied and described, also some suggestions were given.

  14. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  15. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    PubMed

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  16. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection.

    PubMed

    Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A

    2008-06-23

    In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.

  17. Electric converters of electromagnetic strike machine with capacitor supply

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    The application of pulse linear electromagnetic engines in small power strike machines (energy impact is 0.01...1.0 kJ), where the characteristic mode of rare beats (pulse seismic vibrator, the arch crash device bins bulk materials), is quite effective. At the same time, the technical and economic performance of such machines is largely determined by the ability of the power source to provide a large instantaneous power of the supply pulses in the winding of the linear electromagnetic motor. The use of intermediate energy storage devices in power systems of rare-shock LEME makes it possible to obtain easily large instantaneous powers, forced energy conversion, and increase the performance of the machine. A capacitor power supply of a pulsed source of seismic waves is proposed for the exploration of shallow depths. The sections of the capacitor storage (CS) are connected to the winding of the linear electromagnetic motor by thyristor dischargers, the sequence of activation of which is determined by the control device. The charge of the capacitors to the required voltage is made directly from the battery source, or through the converter from a battery source with a smaller number of batteries.

  18. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  19. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  20. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  1. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  2. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  3. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  4. Off-Site Monitoring of Nuclear Fuel Reprocessing Plants for Nuclear Weapons Proliferation

    DTIC Science & Technology

    1980-01-01

    of commercial nuclear power reactors by the collection of cesium and neodynium radionuclides and the use-of isotopic correlation techniques.Both...Both Goodwin (ref 1) and Clark (ref 2) investigated off-site monitoring of commercial nuclear power reactoze by the collection of cesium and neodynium...manner than that which is used for power production.Economical generation of electrical power requires a long sus- tained fission cycle whereas Pu-239

  5. The US Navy’s Helicopter Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Diagnostics and Prognostics Life Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and Experiences

    DTIC Science & Technology

    2000-02-01

    HIDS] Program: Power Drive Train Crack Detection Diagnostics and Prognostics ife Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and...and Prognostics , Life Usage Monitoring , and Damage Tolerance; Techniques, Methodologies, and Experiences Andrew Hess Harrison Chin William Hardman...continuing program and deployed engine monitoring systems in fixed to evaluate helicopter diagnostic, prognostic , and wing aircraft, notably on the A

  6. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    PubMed

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  7. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring

    PubMed Central

    Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence

    2017-01-01

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087

  8. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  9. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cellmore » circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.« less

  10. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    PubMed

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  11. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  12. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equationsmore » that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.« less

  13. Efficient calculation of cosmological neutrino clustering in the non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archidiacono, Maria; Hannestad, Steen, E-mail: archi@phys.au.dk, E-mail: sth@phys.au.dk

    2016-06-01

    We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to l =2 in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than ∼ 5% for masses up to ∼ 1 eV and k ∼< 10 h /Mpc. The matter power spectrum can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum canmore » be reliably calculated even in the non-linear regime by using the non-linear gravitational potential, sourced by dark matter overdensities, as it is derived from semi-analytic methods based on N -body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from N -body simulations that include cold dark matter and neutrinos as independent particles with different properties.« less

  14. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Architectures for wrist-worn energy harvesting

    NASA Astrophysics Data System (ADS)

    Rantz, R.; Halim, M. A.; Xue, T.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S.

    2018-04-01

    This paper reports the simulation-based analysis of six dynamical structures with respect to their wrist-worn vibration energy harvesting capability. This work approaches the problem of maximizing energy harvesting potential at the wrist by considering multiple mechanical substructures; rotational and linear motion-based architectures are examined. Mathematical models are developed and experimentally corroborated. An optimization routine is applied to the proposed architectures to maximize average power output and allow for comparison. The addition of a linear spring element to the structures has the potential to improve power output; for example, in the case of rotational structures, a 211% improvement in power output was estimated under real walking excitation. The analysis concludes that a sprung rotational harvester architecture outperforms a sprung linear architecture by 66% when real walking data is used as input to the simulations.

  16. Development of an inconel self powered neutron detector for in-core reactor monitoring

    NASA Astrophysics Data System (ADS)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  17. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  18. Pathfinder-Plus aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  19. Spatially explicit power analysis for occupancy-based monitoring of wolverine populations in the U.S

    Treesearch

    Martha M. Ellis; Jacob S. Ivan; Michael K. Schwartz

    2014-01-01

    Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a...

  20. Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser assisted by multiple four-wave mixing processes in a ring cavity

    NASA Astrophysics Data System (ADS)

    Shirazi, M. R.; Mohamed Taib, J.; De La Rue, R. M.; Harun, S. W.; Ahmad, H.

    2015-03-01

    Dynamic characteristics of a multi-wavelength Brillouin-Raman fiber laser (MBRFL) assisted by four-wave mixing have been investigated through the development of Stokes and anti-Stokes lines under different combinations of Brillouin and Raman pump power levels and different Raman pumping schemes in a ring cavity. For a Stokes line of order higher than three, the threshold power was less than the saturation power of its last-order Stokes line. By increasing the Brillouin pump power, the nth order anti-Stokes and the (n+4)th order Stokes power levels were unexpectedly increased almost the same before the Stokes line threshold power. It was also found out that the SBS threshold reduction (SBSTR) depended linearly on the gain factor for the 1st and 2nd Stokes lines, as the first set. This relation for the 3rd and 4th Stokes lines as the second set, however, was almost linear with the same slope before SBSTR -6 dB, then, it approached to the linear relation in the first set when the gain factor was increased to 50 dB. Therefore, the threshold power levels of Stokes lines for a given Raman gain can be readily estimated only by knowing the threshold power levels in which there is no Raman amplification.

  1. Monitoring in Situ Anaerobic Alkylbenzene Biodegradation Based on Mass Spectrometric Detection of Unique Metabolites or Real-Time PCR Detection of a Catabolic Gene

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Kane, S. R.

    2002-12-01

    Monitored natural attenuation (MNA) can be a cost-effective and viable approach for remediation of hydrocarbon-contaminated groundwater. However, regulatory acceptance of the approach is often contingent on monitoring that can convincingly demonstrate the role of microbial degradation. Recent advances in anaerobic hydrocarbon biochemistry, analytical chemistry, and molecular biology have fostered the development of powerful new techniques that can be applied to MNA of BTEX (benzene, toluene, ethylbenzene, and xylenes). Here we report two independent methods that have been developed to monitor in situ, anaerobic biodegradation of toluene and xylenes. A method has been developed for rapid, sensitive, and highly selective detection of distinctive indicators of anaerobic alkylbenzene metabolism. The target metabolites, benzylsuccinic acid (BS) and methylbenzylsuccinic acid (MeBS) isomers, have no known sources other than anaerobic toluene or xylene degradation; thus, their mere presence in groundwater provides definitive evidence of in situ metabolism. The method, which involves small sample size (<1 mL) and no extraction/concentration steps, relies on isotope dilution liquid chromatography/tandem mass spectrometry (LC/MS/MS) with selected reaction monitoring. Detection limits for benzylsuccinates were determined to be ca. 0.3 μg/L and accuracy and precision were favorable in a groundwater matrix. The LC/MS/MS method was used to characterize geographic and temporal distributions of benzylsuccinates in an anaerobic, hydrocarbon-contaminated aquifer. BS was never detected and MeBS isomers were detected in the three wells with the highest concentrations of BTEX; MeBS concentrations ranged from <0.3 to 205 μg/L. A strong linear correlation was found between concentrations of total MeBS isomers and their parent compounds, xylenes. A monitoring method based on real-time Polymerase Chain Reaction (PCR) analysis has been developed to specifically quantify populations of anaerobic methylbenzene-degrading bacteria in aquifer sediment. The method targets a catabolic gene (bssA) associated with the first step of anaerobic toluene and xylene degradation. The method proved to be sensitive (detection limit ca. 5 gene copies) and had a linear range of > 7 orders of magnitude. In microcosm experiments involving toluene degradation under denitrifying conditions, population trends were generally consistent with observed toluene degradation activity. In the microcosms with the most rapid toluene degradation, numbers of bssA copies increased 100- to 1000-fold over the first four days of incubation, during which time most of the toluene had been consumed. These results were supported by slot blot analyses with unamplified DNA and by cloning and sequencing of putative bssA amplicons.

  2. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  3. Relations between the efficiency, power and dissipation for linear irreversible heat engine at maximum trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2018-03-01

    A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \

  4. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  5. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  6. Thought suppression across time: Change in frequency and duration of thought recurrence.

    PubMed

    Lambert, Ann E; Hu, Yueqin; Magee, Joshua C; Beadel, Jessica R; Teachman, Bethany A

    2014-01-01

    Some studies have found that trying to suppress thoughts increases their long-term recurrence, a phenomenon associated with psychopathology, particularly obsessive-compulsive disorder. However, effect sizes in thought suppression studies have often been small and inconsistent. The present study sought to improve thought suppression conceptualization and measurement by examining two distinct dimensions of thought recurrence - frequency and duration of a thought's return - and how they evolve over time. After a thought focus period, 100 adults were assigned to either suppress or monitor the recurrence of an unpleasant thought for 4 min. Then, during a second four-minute period, all participants were asked to monitor the thought's recurrence. Hierarchical linear modeling indicated that thought frequency declined across time and the rate of decline slowed as time went on. Initially, the extent of thought duration remained short and stable for those asked to suppress, and increased linearly over time for those asked to monitor. Later, this pattern reversed. Duration increased linearly for those initially asked to suppress but was short and stable for those who initially monitored. Accounting for change over time and means of measuring recurrence (frequency vs. duration) may help elucidate past mixed findings, and improve thought suppression research methodology.

  7. Remote Monitoring of Near-Surface Soil Moisture Dynamics In Unstable Slopes Using a Low-Power Autonomous Resistivity Imaging System

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Gunn, D.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Kuras, O.; Inauen, C.; Hutchinson, D.; Butler, S.

    2016-12-01

    ERT monitoring has been demonstrated in numerous studies as an effective means of imaging near surface processes for applications as diverse as permafrost studies and contaminated land assessment. A limiting factor in applying time-lapse ERT for long-term studies in remote locations has been the availability of cost-effective ERT measurement systems designed specifically for monitoring applications. Typically, monitoring is undertaken using repeated manual data collection, or by building conventional survey instruments into a monitoring setup. The latter often requires high power and is therefore difficult to operate remotely without access to mains electricity. We describe the development of a low-power resistivity imaging system designed specifically for remote monitoring, taking advantage of, e.g., solar power and data telemetry. Here, we present the results of two field deployments. The system has been installed on an active railway cutting to provide insights into the effect of vegetation on the moisture dynamics in unstable infrastructure slopes and to gather subsurface information for pro-active remediation measures. The system, comprising 255 electrodes, acquires 4596 reciprocal measurement pairs twice daily during standard operation. In case of severe weather events, the measurement schedule is reactively changed, to gather high temporal resolution data to image rainfall infiltration processes. The system has also been installed along a leaking and marginally stable canal embankment; a less favourable location for remote monitoring, with limited solar power and poor mobile reception. Nevertheless, the acquired data indicated the effectiveness of remedial actions on the canal. The ERT results showed that one leak was caused by the canal and fixed during remediation, while two other "leaks" were shown to be effects of groundwater dynamics. The availability of cost-effective, low-power ERT monitoring instrumentation, combined with an automated workflow of data processing and visualisation, has the potential to contribute to a step-change in the management and early warning of slope instability.

  8. Ultra Low Power Signal Oriented Approach for Wireless Health Monitoring

    PubMed Central

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios. PMID:22969379

  9. Ultra low power signal oriented approach for wireless health monitoring.

    PubMed

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  10. The Relationship between Crystalline Lens Power and Refractive Error in Older Chinese Adults: The Shanghai Eye Study

    PubMed Central

    He, Jiangnan; Lu, Lina; He, Xiangui; Xu, Xian; Du, Xuan; Zhang, Bo; Zhao, Huijuan; Sha, Jida; Zhu, Jianfeng; Zou, Haidong; Xu, Xun

    2017-01-01

    Purpose To report calculated crystalline lens power and describe the distribution of ocular biometry and its association with refractive error in older Chinese adults. Methods Random clustering sampling was used to identify adults aged 50 years and above in Xuhui and Baoshan districts of Shanghai. Refraction was determined by subjective refraction that achieved the best corrected vision based on monocular measurement. Ocular biometry was measured by IOL Master. The crystalline lens power of right eyes was calculated using modified Bennett-Rabbetts formula. Results We analyzed 6099 normal phakic right eyes. The mean crystalline lens power was 20.34 ± 2.24D (range: 13.40–36.08). Lens power, spherical equivalent, and anterior chamber depth changed linearly with age; however, axial length, corneal power and AL/CR ratio did not vary with age. The overall prevalence of hyperopia, myopia, and high myopia was 48.48% (95% CI: 47.23%–49.74%), 22.82% (95% CI: 21.77%–23.88%), and 4.57% (95% CI: 4.05–5.10), respectively. The prevalence of hyperopia increased linearly with age while lens power decreased with age. In multivariate models, refractive error was strongly correlated with axial length, lens power, corneal power, and anterior chamber depth; refractive error was slightly correlated with best corrected visual acuity, age and sex. Conclusion Lens power, hyperopia, and spherical equivalent changed linearly with age; Moreover, the continuous loss of lens power produced hyperopic shifts in refraction in subjects aged more than 50 years. PMID:28114313

  11. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    PubMed

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  12. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations

    DTIC Science & Technology

    2008-02-01

    Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates

  13. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  14. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  15. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    NASA Astrophysics Data System (ADS)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  16. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  17. Fiber optic sensors for nuclear power plant applications

    NASA Astrophysics Data System (ADS)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana

    2012-05-01

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  18. Recent testing of a micro autonomous positioning system for multi-object instrumentation

    NASA Astrophysics Data System (ADS)

    Cochrane, W. A.; Atkinson, D. C.; Bailie, T. E. C.; Dickson, C.; Lim, T.; Luo, X.; Montgomery, D. M.; Schnetler, H.; Taylor, W. D.; Wilson, B.

    2012-09-01

    A multiple pick off mirror positioning sub-system has been developed as a solution for the deployment of mirrors within multi-object instrumentation such as the EAGLE instrument in the European Extremely Large Telescope (E-ELT). The positioning sub-system is a two wheeled differential steered friction drive robot with a footprint of approximately 20 x 20 mm. Controlled by RF communications there are two versions of the robot that exist. One is powered by a single cell lithium ion battery and the other utilises a power floor system. The robots use two brushless DC motors with 125:1 planetary gear heads for positioning in the coarse drive stages. A unique power floor allows the robots to be positioned at any location in any orientation on the focal plane. The design, linear repeatability tests, metrology and power continuity of the robot will be evaluated and presented in this paper. To gather photons from the objects of interest it is important to position POMs within a sphere of confusion of less than 10 μm, with an angular alignment better than 1 mrad. The robots potential of meeting these requirements will be described through the open-loop repeatability tests conducted with a Faro laser beam tracker. Tests have involved sending the robot step commands and automatically taking continuous measurements every three seconds. Currently the robot is capable of repeatedly travelling 233 mm within 0.307 mm at 5 mm/s. An analysis of the power floors reliability through the continuous monitoring of the voltage across the tracks with a Pico logger will also be presented.

  19. The power to detect trends in Missouri River fish populations within the Pallid Sturgeon Population Assessment Program

    USGS Publications Warehouse

    Bryan, Janice L.; Wildhaber, Mark L.; Gladish, Dan; Holan, Scott; Ellerseick, Mark

    2010-01-01

    As with all large rivers in the United States, the Missouri River has been altered, with approximately 32.5 percent of the main stem length impounded and 32.5 percent channelized. These physical alterations to the environment have had effects on the fisheries, but studies examining the effects of alterations have been localized and for short periods of time. In response to the U.S. Fish and Wildlife Service biological opinion, the U.S. Army Corps of Engineers initiated monitoring of the fish community of the Missouri River in 2003. The goal of the Pallid Sturgeon Population Assessment Program is to provide information to detect changes in populations and habitat preferences with time for pallid sturgeon (Scaphirhynchus albus) and native target species in the Missouri River Basin. To determine statistical power of the Pallid Sturgeon Population Assessment Program, a power analysis was conducted using a normal linear mixed model with variance component estimates based on the first 3 years of data (2003 to 2005). In cases where 3 years of data were unavailable, estimates were obtained using those data. It was determined that at least 20 years of data, sampling 12 bends with 8 subsamples per bend, would be required to detect a 5 percent annual decline in most of the target fish populations. Power varied between Zones. Zone 1 (upstream from Lake Sakakawea) did not have any species/gear type combinations with adequate power, whereas Zone 3 (downstream from Gavins Point Dam) had 19 species/gear type combinations with adequate power. With a slight increase in the sampling effort to 12 subsamples per bend, the Pallid Sturgeon Population Assessment Program has adequate power to detect declines in shovelnose sturgeon (S. platorynchus) throughout the entire Missouri River because of large catch rates. The lowest level of non-occurrence (in other words, zero catches) at the bend level for pallid sturgeon was 0.58 using otter trawls in Zone 1. Consequently, the power of the pallid sturgeon models was not as high as other species at the current level of sampling, but an increase in the sampling effort to 16 subsamples for each of 24 bends for 20 years would generate adequate power for the pallid sturgeon in all Zones. Since gear types are selective in their species efficiency, the strength of the Pallid Sturgeon Population Assessment Program approach is using multiple gears that have statistical power to detect population trends at the same time in different fish species within the Missouri River. As often is the case with monitoring studies involving endangered species, the data used to conduct the analyses exhibit some departures from the parametric model assumptions; however, preliminary simulations indicate that the results of this study are appropriate.

  20. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Endreny, Theodore A.; Hassett, James M.

    2006-11-01

    TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright

  1. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-05

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  2. Linear signal noise summer accurately determines and controls S/N ratio

    NASA Technical Reports Server (NTRS)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  3. New Techniques for Exciting Linearly Tapered Slot Antennas with Coplanar Waveguide

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.; Perl, T. D.

    1992-01-01

    Two new techniques for exciting a linearly tapered slot antenna (LTSA) with coplanar waveguide (CPW) are introduced. In the first approach, an air bridge is used to couple power from a CPW to an LTSA. In the second approach, power is electromagnetically coupled from a finite CPW (FCPW) to an LTSA. Measured results at 18 GHz show excellent return loss and radiation patterns.

  4. Toward Control of Universal Scaling in Critical Dynamics

    DTIC Science & Technology

    2016-01-27

    program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely

  5. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, C.; Filliatre, P.; Izarra, G. de

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of anmore » SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under-core structures. We verify that they comply with the main objective, that is the neutron power and flux distribution monitoring. HTFC placed in these two regions can detect an inadvertent control rod withdrawal that is a postulated initiating event for safety demonstration. Secondly, we show that the HTFC reliability is enhanced thanks to a more robust physical design and the fact that it has been justified that the mineral insulation is insensitive to any increase in temperature. Indeed, the HTFC insulation is subject to partial discharges at high temperature when the electric field between their electrodes is greater than about 200 V/mm or so. These discharges give rise to signals similar to the neutron pulses generated by a fission chamber itself, which may bias the HTFC count rate at start-up only. However, as displayed in Figure 1, we have experimentally verified that one can discriminate neutron pulses from partial discharges using online estimation of pulse width. Thirdly, we propose to estimate the count rate of a HTFC using the third order cumulant of its signal that is described by a filtered Poisson process. For such a statistic process, it is known that any cumulant, also called cumulative moment, is proportional to the process intensity that is here the count rate of a fission chamber. One recalls that the so-called Campbelling mode of such a detector is actually based on the signal variance, which is the second-order cumulant as well. The use of this extended Campbelling mode based on the third-order cumulant will permit to ensure the HTFC response linearity over the entire neutron flux range using a signal processing technique that is simple enough to satisfy design constraints on electric devices important for nuclear safety. We also show that this technique, named high order Campbelling method (HOC), is significantly more robust than another technique based on the change in the HTFC filling gas, which consists in adding a few percent of nitrogen. Finally, we also present an experimental campaign devoted to the required calibration process of the so-called HOC method. The Campbelling results show a good agreement with the simple pulse counting estimation at low count rates. It is also shown that the HOC technique provides a linear estimation of the count rates at higher power levels as well.« less

  6. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preynas, M.; Goniche, M.; Hillairet, J.

    2014-02-12

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have beenmore » performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.« less

  7. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    NASA Technical Reports Server (NTRS)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  8. 1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less

  9. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  10. Computer-aided design studies of the homopolar linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Dawson, G. E.; Eastham, A. R.; Ong, R.

    1984-09-01

    The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.

  11. Using variance components to estimate power in a hierarchically nested sampling design improving monitoring of larval Devils Hole pupfish

    USGS Publications Warehouse

    Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey

    2013-01-01

    We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.

  12. 33. VIEW OF FOUR OF SEVEN MONITORS SUSPENDED FROM CEILING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF FOUR OF SEVEN MONITORS SUSPENDED FROM CEILING OF SLC-3W CONTROL ROOM NEAR NORTH WALL. LEFT TO RIGHT ABOVE THE MONITORS: DIGITAL GREENWICH MEAN TIME CLOCK, COMPLEX SAFETY WARNING LIGHTS FOR SLC-3W (PAD-2) AND LOB (THE GREEN LIGHT ON THE BOTTOM OF EACH STACK IS ILLUMINATED), AND DIGITAL COUNTDOWN AND HOLD CLOCKS. LEFT TO RIGHT BELOW THE MONITORS: INDICATOR LIGHTS SHOWING WHICH PAD OR VEHICLE FACILITIES ARE RECEIVING POWER FROM POWER PLANT 4 ON SOUTH VAFB, LIGHTS TO INDICATE IF POWER PLANT 4 IS ON OR OFF LINE, DIGITAL COUNTDOWN CLOCK, AND MILITARY-TIME CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey

    NASA Astrophysics Data System (ADS)

    Tang, Jiayu; Kayo, Issha; Takada, Masahiro

    2011-09-01

    We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power spectrum amplitudes more significantly at larger k, at lower redshifts and for more massive haloes. We find that adding the non-linearity correction term to the simulation Pδθ(k) can fairly well reproduce the reconstructed Pδθ(k) for haloes up to k≃ 0.2 h Mpc-1.

  14. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE PAGES

    Yang, Hualei; Yang, Xi; Heskel, Mary; ...

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  15. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

    PubMed

    Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem

    2018-02-15

    The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

  16. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hualei; Yang, Xi; Heskel, Mary

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  17. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.

  18. Imprints of dark energy on cosmic structure formation - I. Realistic quintessence models and the non-linear matter power spectrum

    NASA Astrophysics Data System (ADS)

    Alimi, J.-M.; Füzfa, A.; Boucher, V.; Rasera, Y.; Courtin, J.; Corasaniti, P.-S.

    2010-01-01

    Quintessence has been proposed to account for dark energy (DE) in the Universe. This component causes a typical modification of the background cosmic expansion, which, in addition to its clustering properties, can leave a potentially distinctive signature on large-scale structures. Many previous studies have investigated this topic, particularly in relation to the non-linear regime of structure formation. However, no careful pre-selection of viable quintessence models with high precision cosmological data was performed. Here we show that this has led to a misinterpretation (and underestimation) of the imprint of quintessence on the distribution of large-scale structures. To this purpose, we perform a likelihood analysis of the combined Supernova Ia UNION data set and Wilkinson Microwave Anisotropy Probe 5-yr data to identify realistic quintessence models. These are specified by different model parameter values, but still statistically indistinguishable from the vanilla Λ cold dark matter (ΛCDM). Differences are especially manifest in the predicted amplitude and shape of the linear matter power spectrum though these remain within the uncertainties of the Sloan Digital Sky Survey data. We use these models as a benchmark for studying the clustering properties of dark matter haloes by performing a series of high-resolution N-body simulations. In this first paper, we specifically focus on the non-linear matter power spectrum. We find that realistic quintessence models allow for relevant differences of the dark matter distribution with respect to the ΛCDM scenario well into the non-linear regime, with deviations of up to 40 per cent in the non-linear power spectrum. Such differences are shown to depend on the nature of DE, as well as the scale and epoch considered. At small scales (k ~ 1-5hMpc-1, depending on the redshift), the structure formation process is about 20 per cent more efficient than in ΛCDM. We show that these imprints are a specific record of the cosmic structure formation history in DE cosmologies and therefore cannot be accounted for in standard fitting functions of the non-linear matter power spectrum.

  19. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.« less

  20. Creep and creep rupture of laminated graphite/epoxy composites. Ph.D. Thesis. Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Morris, D. H.; Brinson, H. F.

    1981-01-01

    An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.

  1. Two-Photon Imaging with Diffractive Optical Elements

    PubMed Central

    Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael

    2009-01-01

    Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390

  2. Improved Speed Control System for the 87,000 HP Wind Tunnel Drive

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  3. Characterization of delamination onset and growth in a composite laminate

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1981-01-01

    The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.

  4. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    NASA Astrophysics Data System (ADS)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-01

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  5. Improved speed control system for the 87,000 HP wind tunnel drive

    NASA Astrophysics Data System (ADS)

    Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.

    1995-01-01

    This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.

  6. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  7. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    NASA Astrophysics Data System (ADS)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  8. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2016-12-09

    This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Prospective Study of Age-dependent Changes in Propofol-induced Electroencephalogram Oscillations in Children.

    PubMed

    Lee, Johanna M; Akeju, Oluwaseun; Terzakis, Kristina; Pavone, Kara J; Deng, Hao; Houle, Timothy T; Firth, Paul G; Shank, Erik S; Brown, Emery N; Purdon, Patrick L

    2017-08-01

    In adults, frontal electroencephalogram patterns observed during propofol-induced unconsciousness consist of slow oscillations (0.1 to 1 Hz) and coherent alpha oscillations (8 to 13 Hz). Given that the nervous system undergoes significant changes during development, anesthesia-induced electroencephalogram oscillations in children may differ from those observed in adults. Therefore, we investigated age-related changes in frontal electroencephalogram power spectra and coherence during propofol-induced unconsciousness. We analyzed electroencephalogram data recorded during propofol-induced unconsciousness in patients between 0 and 21 yr of age (n = 97), using multitaper spectral and coherence methods. We characterized power and coherence as a function of age using multiple linear regression analysis and within four age groups: 4 months to 1 yr old (n = 4), greater than 1 to 7 yr old (n = 16), greater than 7 to 14 yr old (n = 30), and greater than 14 to 21 yr old (n = 47). Total electroencephalogram power (0.1 to 40 Hz) peaked at approximately 8 yr old and subsequently declined with increasing age. For patients greater than 1 yr old, the propofol-induced electroencephalogram structure was qualitatively similar regardless of age, featuring slow and coherent alpha oscillations. For patients under 1 yr of age, frontal alpha oscillations were not coherent. Neurodevelopmental processes that occur throughout childhood, including thalamocortical development, may underlie age-dependent changes in electroencephalogram power and coherence during anesthesia. These age-dependent anesthesia-induced electroencephalogram oscillations suggest a more principled approach to monitoring brain states in pediatric patients.

  10. Solid-tumor mortality in the vicinity of uranium cycle facilities and nuclear power plants in Spain.

    PubMed Central

    López-Abente, G; Aragonés, N; Pollán, M

    2001-01-01

    To ascertain solid tumor mortality in towns near Spain's four nuclear power plants and four nuclear fuel facilities from 1975 to 1993, we conducted a mortality study based on 12,245 cancer deaths in 283 towns situated within a 30-km radius of the above installations. As nonexposed areas, we used 275 towns lying within a 50- to 100-km radius of each installation, matched by population size and sociodemographic characteristics (income level, proportion of active population engaged in farming, proportion of unemployed, percentage of illiteracy, and province). Using log-linear models, we examined relative risk for each area and trends in risk with increasing proximity to an installation. The results reveal a pattern of solid-tumor mortality in the vicinity of uranium cycle facilities, basically characterized by excess lung [relative risk (RR) 1.12, 95% confidence interval (CI), 1.02-1.25] and renal cancer mortality (RR 1.37, 95% CI, 1.07-1.76). Besides the effects of natural radiation, these results could well be evincing the influence on public health exerted by the environmental impact of mining. No such well-defined pattern appeared in the vicinity of nuclear power plants. Monitoring of cancer incidence and mortality is recommended in areas surrounding nuclear fuel facilities and nuclear power plants, and more specific studies are called for in areas adjacent to installations that have been fully operational for longer periods. In this regard, it is important to use dosimetric information in all future studies. PMID:11485872

  11. Design and experimental study of a velocity amplified electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Klein, Jackson A.; Zuo, Lei

    2017-04-01

    Dedicated sensors are widely used throughout many industries to monitor everyday operations, maintain safety and report performance characteristics. In order to adopt a more sustainable solution, intensive research is being conducted for self-powered sensing. To enable sensors to power themselves, harvesting energy from environmental vibration has been widely studied, however, its overall effectiveness remains questionable due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester in which a metal compliant mechanism frame is used to house both a linear electromagnetic generator and proof mass. Due to the compliant mechanism, the proposed energy harvester is capable of amplifying machine vibration velocity for a dedicated electromagnetic generator, largely increasing the energy density. The harvester prototype is also fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 in (25.4μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. In addition, a mathematical model is created based on the pseudo-rigid-body dynamics and the analysis matches closely with experiments. The proposed harvester was designed using vibration data from nuclear power plants. Further steps for improving such a design are given for broader applications.

  12. Comparison of an Endotracheal Cardiac Output Monitor to a Pulmonary Artery Catheter

    DTIC Science & Technology

    2017-12-04

    of a FDA approved device, the CONMED endotracheal cardiac output monitor (ECOM) ™ apparatus, by comparing it to the Edwards Vig ilance II monitor...and Use Committee (FWH 20140100A). Results Using GraphPad Prism® to conduct non-linear fit analyses comparing the slopes of the curves for ECOM

  13. Individual differences in long-range time representation.

    PubMed

    Agostino, Camila S; Caetano, Marcelo S; Balci, Fuat; Claessens, Peter M E; Zana, Yossi

    2017-04-01

    On the basis of experimental data, long-range time representation has been proposed to follow a highly compressed power function, which has been hypothesized to explain the time inconsistency found in financial discount rate preferences. The aim of this study was to evaluate how well linear and power function models explain empirical data from individual participants tested in different procedural settings. The line paradigm was used in five different procedural variations with 35 adult participants. Data aggregated over the participants showed that fitted linear functions explained more than 98% of the variance in all procedures. A linear regression fit also outperformed a power model fit for the aggregated data. An individual-participant-based analysis showed better fits of a linear model to the data of 14 participants; better fits of a power function with an exponent β > 1 to the data of 12 participants; and better fits of a power function with β < 1 to the data of the remaining nine participants. Of the 35 volunteers, the null hypothesis β = 1 was rejected for 20. The dispersion of the individual β values was approximated well by a normal distribution. These results suggest that, on average, humans perceive long-range time intervals not in a highly compressed, biased manner, but rather in a linear pattern. However, individuals differ considerably in their subjective time scales. This contribution sheds new light on the average and individual psychophysical functions of long-range time representation, and suggests that any attribution of deviation from exponential discount rates in intertemporal choice to the compressed nature of subjective time must entail the characterization of subjective time on an individual-participant basis.

  14. New strategies for SHM based on a multichannel wireless AE node

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery; Ley, Obdulia

    2014-03-01

    This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.

  15. Recent Advances in Design of Low Cost Film Concentrator and Low Pressure Free Piston Stirling Engines for Solar Power

    NASA Technical Reports Server (NTRS)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-01-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  16. Power Transfer in Physical Systems.

    ERIC Educational Resources Information Center

    Kaeck, Jack A.

    1990-01-01

    Explores the power transfer using (1) a simple electric circuit consisting of a power source with internal resistance; (2) two different mechanical systems (gravity driven and constant force driven); (3) ecological examples; and (4) a linear motor. (YP)

  17. 0.5 V 5.8 GHz highly linear current-reuse voltage-controlled oscillator with back-gate tuning technique

    NASA Astrophysics Data System (ADS)

    Ikeda, Sho; Lee, Sang-Yeop; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this paper, we present a voltage-controlled oscillator (VCO), which achieves highly linear frequency tuning under a low supply voltage of 0.5 V. To obtain the linear frequency tuning of a VCO, the high linearity of the threshold voltage of a varactor versus its back-gate voltage is utilized. This enables the linear capacitance tuning of the varactor; thus, a highly linear VCO can be achieved. In addition, to decrease the power consumption of the VCO, a current-reuse structure is employed as a cross-coupled pair. The proposed VCO was fabricated using a 65 nm Si complementary metal oxide semiconductor (CMOS) process. It shows the ratio of the maximum VCO gain (KVCO) to the minimum one to be 1.28. The dc power consumption is 0.33 mW at a supply voltage of 0.5 V. The measured phase noise at 10 MHz offset is -123 dBc/Hz at an output frequency of 5.8 GHz.

  18. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit.

    PubMed

    Chen, Guanyu; Yu, Yu; Ye, Mengyuan; Zhang, Xinliang

    2016-06-27

    A flexible monitor suitable for the discrimination of on-chip transmitted mode division multiplexed (MDM) and wavelength division multiplexed (WDM) signals is proposed and fabricated. By selectively extracting part of the incoming signals through the tunable wavelength and mode dependent drop filter, the in-line and switchable monitor can discriminate the wavelength, mode and power information of the transmitted signals. Being different from a conventional mode and wavelength demultiplexer, the monitor is specifically designed to ensure a flexible in-line monitoring. For demonstration, three mode and three wavelength multiplexed signals are successfully processed. Assisted by the integrated photodetectors (PDs), both the measured photo currents and eye diagrams validate the performance of the proposed device. The bit error ratio (BER) measurement results show less than 0.4 dB power penalty between different modes and ~2 dB power penalty for single wavelength and WDM cases under 10-9 BER level.

  19. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  20. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

Top