Sample records for linear programming bound

  1. PubMed

    Trinker, Horst

    2011-10-28

    We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859-2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound.

  2. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  3. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    PubMed

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  4. A Partitioning and Bounded Variable Algorithm for Linear Programming

    ERIC Educational Resources Information Center

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  5. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  6. A linear programming approach to characterizing norm bounded uncertainty from experimental data

    NASA Technical Reports Server (NTRS)

    Scheid, R. E.; Bayard, D. S.; Yam, Y.

    1991-01-01

    The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).

  7. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  8. No-signaling quantum key distribution: solution by linear programming

    NASA Astrophysics Data System (ADS)

    Hwang, Won-Young; Bae, Joonwoo; Killoran, Nathan

    2015-02-01

    We outline a straightforward approach for obtaining a secret key rate using only no-signaling constraints and linear programming. Assuming an individual attack, we consider all possible joint probabilities. Initially, we study only the case where Eve has binary outcomes, and we impose constraints due to the no-signaling principle and given measurement outcomes. Within the remaining space of joint probabilities, by using linear programming, we get bound on the probability of Eve correctly guessing Bob's bit. We then make use of an inequality that relates this guessing probability to the mutual information between Bob and a more general Eve, who is not binary-restricted. Putting our computed bound together with the Csiszár-Körner formula, we obtain a positive key generation rate. The optimal value of this rate agrees with known results, but was calculated in a more straightforward way, offering the potential of generalization to different scenarios.

  9. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  10. Discrete Methods and their Applications

    DTIC Science & Technology

    1993-02-03

    problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute

  11. Global optimization algorithm for heat exchanger networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, I.; Grossmann, I.E.

    This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less

  12. Solution Methods for Stochastic Dynamic Linear Programs.

    DTIC Science & Technology

    1980-12-01

    16, No. 11, pp. 652-675, July 1970. [28] Glassey, C.R., "Dynamic linear programs for production scheduling", OR 19, pp. 45-56. 1971 . 129 Glassey, C.R...Huang, C.C., I. Vertinsky, W.T. Ziemba, ’Sharp bounds on the value of perfect information", OR 25, pp. 128-139, 1977. [37 Kall , P., ’Computational... 1971 . [701 Ziemba, W.T., *Computational algorithms for convex stochastic programs with simple recourse", OR 8, pp. 414-431, 1970. 131 UNCLASSI FIED

  13. Computation of non-monotonic Lyapunov functions for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Liu, AnPing

    2017-09-01

    In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1

  14. A linear programming approach to max-sum problem: a review.

    PubMed

    Werner, Tomás

    2007-07-01

    The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.

  15. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  16. Primal Barrier Methods for Linear Programming

    DTIC Science & Technology

    1989-06-01

    A Theoretical Bound Concerning the difficulties introduced by an ill-conditioned H- 1, Dikin [Dik67] and Stewart [Stew87] show for a full-rank A...Dik67] I. I. Dikin (1967). Iterative solution of problems of linear and quadratic pro- gramming, Doklady Akademii Nauk SSSR, Tom 174, No. 4. [Fia79] A. V

  17. Numerical optimization techniques for bound circulation distribution for minimum induced drag of Nonplanar wings: Computer program documentation

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Ku, T. J.

    1981-01-01

    A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes.

  18. Fault detection and initial state verification by linear programming for a class of Petri nets

    NASA Technical Reports Server (NTRS)

    Rachell, Traxon; Meyer, David G.

    1992-01-01

    The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.

  19. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  20. 1-norm support vector novelty detection and its sparseness.

    PubMed

    Zhang, Li; Zhou, WeiDa

    2013-12-01

    This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  2. Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs

    NASA Astrophysics Data System (ADS)

    Alias, Christophe; Darte, Alain; Feautrier, Paul; Gonnord, Laure

    Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters.

  3. Upper Bounds on the Expected Value of a Convex Function Using Gradient and Conjugate Function Information.

    DTIC Science & Technology

    1987-08-01

    of the absolute difference between the random variable and its mean.Gassmann and Ziemba 119861 provide a weaker bound that does not require...2.8284, and EX4tV) -12 EX’iX) = -42. Hence C = -2 -€t* i-4’]= I-- . 1213. £1 2 5 COMPARISONS OF BOUNDS IN IIn Gassmann and Ziemba 11986) extend an idea...solution of the foLLowing Linear program: (see Gassmann, Ziemba (1986),Theorem 1) m m m-GZ=max(XT(vi) I: z. 1=1,Z vo=x io (5.1hk i-l i=i i=1 I I where 0

  4. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  5. A binary linear programming formulation of the graph edit distance.

    PubMed

    Justice, Derek; Hero, Alfred

    2006-08-01

    A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.

  6. A polynomial primal-dual Dikin-type algorithm for linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, B.; Roos, R.; Terlaky, T.

    1994-12-31

    We present a new primal-dual affine scaling method for linear programming. The search direction is obtained by using Dikin`s original idea: minimize the objective function (which is the duality gap in a primal-dual algorithm) over a suitable ellipsoid. The search direction has no obvious relationship with the directions proposed in the literature so far. It guarantees a significant decrease in the duality gap in each iteration, and at the same time drives the iterates to the central path. The method admits a polynomial complexity bound that is better than the one for Monteiro et al.`s original primal-dual affine scaling method.

  7. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  8. Approximate labeling via graph cuts based on linear programming.

    PubMed

    Komodakis, Nikos; Tziritas, Georgios

    2007-08-01

    A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

  9. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound

    NASA Astrophysics Data System (ADS)

    Li, Ruihu; Li, Xueliang; Guo, Luobin

    2015-12-01

    The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code {C}, we show that the parameters of the EAQECC that EA-stabilized by the dual of {C} can be determined by a zero radical quaternary code induced from {C}, and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our [[n,k,d_{ea};c

  10. Performance bounds for nonlinear systems with a nonlinear ℒ2-gain property

    NASA Astrophysics Data System (ADS)

    Zhang, Huan; Dower, Peter M.

    2012-09-01

    Nonlinear ℒ2-gain is a finite gain concept that generalises the notion of conventional (linear) finite ℒ2-gain to admit the application of ℒ2-gain analysis tools of a broader class of nonlinear systems. The computation of tight comparison function bounds for this nonlinear ℒ2-gain property is important in applications such as small gain design. This article presents an approximation framework for these comparison function bounds through the formulation and solution of an optimal control problem. Key to the solution of this problem is the lifting of an ℒ2-norm input constraint, which is facilitated via the introduction of an energy saturation operator. This admits the solution of the optimal control problem of interest via dynamic programming and associated numerical methods, leading to the computation of the proposed bounds. Two examples are presented to demonstrate this approach.

  11. An improved error bound for linear complementarity problems for B-matrices.

    PubMed

    Gao, Lei; Li, Chaoqian

    2017-01-01

    A new error bound for the linear complementarity problem when the matrix involved is a B -matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7):1071-1075, 2009) are provided.

  12. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less

  13. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  14. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  15. Robust Bounded Influence Tests in Linear Models

    DTIC Science & Technology

    1988-11-01

    sensitivity analysis and bounded influence estimation. In: Evaluation of Econometric Models, J. Kmenta and J.B. Ramsey (eds.) Academic Press, New York...1R’OBUST bOUNDED INFLUENCE TESTS IN LINEA’ MODELS and( I’homas P. [lettmansperger* Tim [PennsylvanLa State UJniversity A M i0d fix pu111 rsos.p JJ 1 0...November 1988 ROBUST BOUNDED INFLUENCE TESTS IN LINEAR MODELS Marianthi Markatou The University of Iowa and Thomas P. Hettmansperger* The Pennsylvania

  16. Flight control application of new stability robustness bounds for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, Rama K.

    1993-01-01

    This paper addresses the issue of obtaining bounds on the real parameter perturbations of a linear state-space model for robust stability. Based on Kronecker algebra, new, easily computable sufficient bounds are derived that are much less conservative than the existing bounds since the technique is meant for only real parameter perturbations (in contrast to specializing complex variation case to real parameter case). The proposed theory is illustrated with application to several flight control examples.

  17. An approach of traffic signal control based on NLRSQP algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  18. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  19. Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Shu, J. Y.

    1981-01-01

    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).

  20. Program Monitoring with LTL in EAGLE

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2004-01-01

    We briefly present a rule-based framework called EAGLE, shown to be capable of defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics (MTL), interval logics, forms of quantified temporal logics, and so on. In this paper we focus on a linear temporal logic (LTL) specialization of EAGLE. For an initial formula of size m, we establish upper bounds of O(m(sup 2)2(sup m)log m) and O(m(sup 4)2(sup 2m)log(sup 2) m) for the space and time complexity, respectively, of single step evaluation over an input trace. This bound is close to the lower bound O(2(sup square root m) for future-time LTL presented. EAGLE has been successfully used, in both LTL and metric LTL forms, to test a real-time controller of an experimental NASA planetary rover.

  1. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    NASA Technical Reports Server (NTRS)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  3. Reducing the duality gap in partially convex programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correa, R.

    1994-12-31

    We consider the non-linear minimization program {alpha} = min{sub z{element_of}D, x{element_of}C}{l_brace}f{sub 0}(z, x) : f{sub i}(z, x) {<=} 0, i {element_of} {l_brace}1, ..., m{r_brace}{r_brace} where f{sub i}(z, {center_dot}) are convex functions, C is convex and D is compact. Following Ben-Tal, Eiger and Gershowitz we prove the existence of a partial dual program whose optimum is arbitrarily close to {alpha}. The idea, corresponds to the branching principle in Branch and Bound methods. We describe such a kind of algorithm for obtaining the desired partial dual.

  4. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  5. TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds.

    PubMed

    Yuan, Haitao; Bi, Jing; Tan, Wei; Zhou, MengChu; Li, Bo Hu; Li, Jianqiang

    2017-11-01

    The economy of scale provided by cloud attracts a growing number of organizations and industrial companies to deploy their applications in cloud data centers (CDCs) and to provide services to users around the world. The uncertainty of arriving tasks makes it a big challenge for private CDC to cost-effectively schedule delay bounded tasks without exceeding their delay bounds. Unlike previous studies, this paper takes into account the cost minimization problem for private CDC in hybrid clouds, where the energy price of private CDC and execution price of public clouds both show the temporal diversity. Then, this paper proposes a temporal task scheduling algorithm (TTSA) to effectively dispatch all arriving tasks to private CDC and public clouds. In each iteration of TTSA, the cost minimization problem is modeled as a mixed integer linear program and solved by a hybrid simulated-annealing particle-swarm-optimization. The experimental results demonstrate that compared with the existing methods, the optimal or suboptimal scheduling strategy produced by TTSA can efficiently increase the throughput and reduce the cost of private CDC while meeting the delay bounds of all the tasks.

  6. Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior

    PubMed Central

    Serang, Oliver

    2012-01-01

    Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741

  7. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    PubMed

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  8. Inter and intra-modal deformable registration: continuous deformations meet efficient optimal linear programming.

    PubMed

    Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir

    2007-01-01

    In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.

  9. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  10. Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing.

    PubMed

    Frascaroli, Jacopo; Brivio, Stefano; Covi, Erika; Spiga, Sabina

    2018-05-08

    The development of devices that can modulate their conductance under the application of electrical stimuli constitutes a fundamental step towards the realization of synaptic connectivity in neural networks. Optimization of synaptic functionality requires the understanding of the analogue conductance update under different programming conditions. Moreover, properties of physical devices such as bounded conductance values and state-dependent modulation should be considered as they affect storage capacity and performance of the network. This work provides a study of the conductance dynamics produced by identical pulses as a function of the programming parameters in an HfO 2 memristive device. The application of a phenomenological model that considers a soft approach to the conductance boundaries allows the identification of different operation regimes and to quantify conductance modulation in the analogue region. Device non-linear switching kinetics is recognized as the physical origin of the transition between different dynamics and motivates the crucial trade-off between degree of analog modulation and memory window. Different kinetics for the processes of conductance increase and decrease account for device programming asymmetry. The identification of programming trade-off together with an evaluation of device variations provide a guideline for the optimization of the analogue programming in view of hardware implementation of neural networks.

  11. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  12. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  13. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  14. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and Science Centers. (3) Veterans Upward Bound projects. (Authority: 20 U.S.C. 1070a-11 and 1070a-13) ...) The Upward Bound Program provides Federal grants to projects designed to generate in program...

  15. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  16. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  17. Finite-time H∞ control for linear continuous system with norm-bounded disturbance

    NASA Astrophysics Data System (ADS)

    Meng, Qingyi; Shen, Yanjun

    2009-04-01

    In this paper, the definition of finite-time H∞ control is presented. The system under consideration is subject to time-varying norm-bounded exogenous disturbance. The main aim of this paper is focused on the design a state feedback controller which ensures that the closed-loop system is finite-time bounded (FTB) and reduces the effect of the disturbance input on the controlled output to a prescribed level. A sufficient condition is presented for the solvability of this problem, which can be reduced to a feasibility problem involving linear matrix inequalities (LMIs). A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.

  18. Mathematical properties and bounds on haplotyping populations by pure parsimony.

    PubMed

    Wang, I-Lin; Chang, Chia-Yuan

    2011-06-01

    Although the haplotype data can be used to analyze the function of DNA, due to the significant efforts required in collecting the haplotype data, usually the genotype data is collected and then the population haplotype inference (PHI) problem is solved to infer haplotype data from genotype data for a population. This paper investigates the PHI problem based on the pure parsimony criterion (HIPP), which seeks the minimum number of distinct haplotypes to infer a given genotype data. We analyze the mathematical structure and properties for the HIPP problem, propose techniques to reduce the given genotype data into an equivalent one of much smaller size, and analyze the relations of genotype data using a compatible graph. Based on the mathematical properties in the compatible graph, we propose a maximal clique heuristic to obtain an upper bound, and a new polynomial-sized integer linear programming formulation to obtain a lower bound for the HIPP problem. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  20. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  1. Explicit asymmetric bounds for robust stability of continuous and discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang; Antsaklis, Panos J.

    1993-01-01

    The problem of robust stability in linear systems with parametric uncertainties is considered. Explicit stability bounds on uncertain parameters are derived and expressed in terms of linear inequalities for continuous systems, and inequalities with quadratic terms for discrete-times systems. Cases where system parameters are nonlinear functions of an uncertainty are also examined.

  2. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    ERIC Educational Resources Information Center

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  4. Investigation of empirical damping laws for the space shuttle

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.

    1973-01-01

    An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.

  5. Bin Packing, Number Balancing, and Rescaling Linear Programs

    NASA Astrophysics Data System (ADS)

    Hoberg, Rebecca

    This thesis deals with several important algorithmic questions using techniques from diverse areas including discrepancy theory, machine learning and lattice theory. In Chapter 2, we construct an improved approximation algorithm for a classical NP-complete problem, the bin packing problem. In this problem, the goal is to pack items of sizes si ∈ [0,1] into as few bins as possible, where a set of items fits into a bin provided the sum of the item sizes is at most one. We give a polynomial-time rounding scheme for a standard linear programming relaxation of the problem, yielding a packing that uses at most OPT + O(log OPT) bins. This makes progress towards one of the "10 open problems in approximation algorithms" stated in the book of Shmoys and Williamson. In fact, based on related combinatorial lower bounds, Rothvoss conjectures that theta(logOPT) may be a tight bound on the additive integrality gap of this LP relaxation. In Chapter 3, we give a new polynomial-time algorithm for linear programming. Our algorithm is based on the multiplicative weights update (MWU) method, which is a general framework that is currently of great interest in theoretical computer science. An algorithm for linear programming based on MWU was known previously, but was not polynomial time--we remedy this by alternating between a MWU phase and a rescaling phase. The rescaling methods we introduce improve upon previous methods by reducing the number of iterations needed until one can rescale, and they can be used for any algorithm with a similar rescaling structure. Finally, we note that the MWU phase of the algorithm has a simple interpretation as gradient descent of a particular potential function, and we show we can speed up this phase by walking in a direction that decreases both the potential function and its gradient. In Chapter 4, we show that an approximate oracle for Minkowski's Theorem gives an approximate oracle for the number balancing problem, and conversely. Number balancing is the problem of minimizing | 〈a,x〉 | over x ∈ {-1,0,1}n \\ { 0}, given a ∈ [0,1]n. While an application of the pigeonhole principle shows that there always exists x with | 〈a,x〉| ≤ O(√ n/2n), the best known algorithm only guarantees |〈a,x〉| ≤ 2-ntheta(log n). We show that an oracle for Minkowski's Theorem with approximation factor rho would give an algorithm for NBP that guarantees | 〈a,x〉 | ≤ 2-ntheta(1/rho). In particular, this would beat the bound of Karmarkar and Karp provided rho ≤ O(logn/loglogn). In the other direction, we prove that any polynomial time algorithm for NBP that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

  6. Privacy Impact Assessment for the TRIO Programs Annual Performance Report (APR) System

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    The TRIO Programs Annual Performance Report (APR) System collects individual student records on individuals served by the following Federal TRIO Programs: Upward Bound (which includes regular Upward Bound (UB), Upward Bound Math-Science (UBMS), and Veterans Upward Bound (VUB)); Student Support Services (SSS); and the Ronald E. McNair Post…

  7. Linear ground-water flow, flood-wave response program for programmable calculators

    USGS Publications Warehouse

    Kernodle, John Michael

    1978-01-01

    Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)

  8. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  9. Robustness in linear quadratic feedback design with application to an aircraft control problem

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Sridhar, B.; Toda, M.

    1977-01-01

    Some new results concerning robustness and asymptotic properties of error bounds of a linear quadratic feedback design are applied to an aircraft control problem. An autopilot for the flare control of the Augmentor Wing Jet STOL Research Aircraft (AWJSRA) is designed based on Linear Quadratic (LQ) theory and the results developed in this paper. The variation of the error bounds to changes in the weighting matrices in the LQ design is studied by computer simulations, and appropriate weighting matrices are chosen to obtain a reasonable error bound for variations in the system matrix and at the same time meet the practical constraints for the flare maneuver of the AWJSRA. Results from the computer simulation of a satisfactory autopilot design for the flare control of the AWJSRA are presented.

  10. Implementation of context independent code on a new array processor: The Super-65

    NASA Technical Reports Server (NTRS)

    Colbert, R. O.; Bowhill, S. A.

    1981-01-01

    The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.

  11. Upper Bound on Diffusivity

    NASA Astrophysics Data System (ADS)

    Hartman, Thomas; Hartnoll, Sean A.; Mahajan, Raghu

    2017-10-01

    The linear growth of operators in local quantum systems leads to an effective light cone even if the system is nonrelativistic. We show that the consistency of diffusive transport with this light cone places an upper bound on the diffusivity: D ≲v2τeq. The operator growth velocity v defines the light cone, and τeq is the local equilibration time scale, beyond which the dynamics of conserved densities is diffusive. We verify that the bound is obeyed in various weakly and strongly interacting theories. In holographic models, this bound establishes a relation between the hydrodynamic and leading nonhydrodynamic quasinormal modes of planar black holes. Our bound relates transport data—including the electrical resistivity and the shear viscosity—to the local equilibration time, even in the absence of a quasiparticle description. In this way, the bound sheds light on the observed T -linear resistivity of many unconventional metals, the shear viscosity of the quark-gluon plasma, and the spin transport of unitary fermions.

  12. Distribution-dependent robust linear optimization with applications to inventory control

    PubMed Central

    Kang, Seong-Cheol; Brisimi, Theodora S.

    2014-01-01

    This paper tackles linear programming problems with data uncertainty and applies it to an important inventory control problem. Each element of the constraint matrix is subject to uncertainty and is modeled as a random variable with a bounded support. The classical robust optimization approach to this problem yields a solution with guaranteed feasibility. As this approach tends to be too conservative when applications can tolerate a small chance of infeasibility, one would be interested in obtaining a less conservative solution with a certain probabilistic guarantee of feasibility. A robust formulation in the literature produces such a solution, but it does not use any distributional information on the uncertain data. In this work, we show that the use of distributional information leads to an equally robust solution (i.e., under the same probabilistic guarantee of feasibility) but with a better objective value. In particular, by exploiting distributional information, we establish stronger upper bounds on the constraint violation probability of a solution. These bounds enable us to “inject” less conservatism into the formulation, which in turn yields a more cost-effective solution (by 50% or more in some numerical instances). To illustrate the effectiveness of our methodology, we consider a discrete-time stochastic inventory control problem with certain quality of service constraints. Numerical tests demonstrate that the use of distributional information in the robust optimization of the inventory control problem results in 36%–54% cost savings, compared to the case where such information is not used. PMID:26347579

  13. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE PAGES

    Fierce, Laura; McGraw, Robert L.

    2017-07-26

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  14. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierce, Laura; McGraw, Robert L.

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

  15. Improvements in aircraft extraction programs

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Maine, R. E.

    1976-01-01

    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.

  16. Branch and bound algorithm for accurate estimation of analytical isotropic bidirectional reflectance distribution function models.

    PubMed

    Yu, Chanki; Lee, Sang Wook

    2016-05-20

    We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.

  17. Reduced conservatism in stability robustness bounds by state transformation

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.; Liang, Z.

    1986-01-01

    This note addresses the issue of 'conservatism' in the time domain stability robustness bounds obtained by the Liapunov approach. A state transformation is employed to improve the upper bounds on the linear time-varying perturbation of an asymptotically stable linear time-invariant system for robust stability. This improvement is due to the variance of the conservatism of the Liapunov approach with respect to the basis of the vector space in which the Liapunov function is constructed. Improved bounds are obtained, using a transformation, on elemental and vector norms of perturbations (i.e., structured perturbations) as well as on a matrix norm of perturbations (i.e., unstructured perturbations). For the case of a diagonal transformation, an algorithm is proposed to find the 'optimal' transformation. Several examples are presented to illustrate the proposed analysis.

  18. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  19. Outward Bound Giwaykiwin: Connecting to Land and Culture through Indigenous Outdoor Education

    ERIC Educational Resources Information Center

    Lowan, Greg

    2007-01-01

    Outward Bound Canada's (OBC) Giwaykiwin Program was founded in 1985 in response to a recognized need for programming specific to students from Indigenous backgrounds. The Giwaykiwin program aims to integrate Outward Bound (OB) and Indigenous philosophies and traditions. Giwaykiwin means "coming home" in Ojibwa and signifies the program's…

  20. A Feasibility Study of Nonlinear Spectroscopic Measurement of Magnetic Nanoparticles Targeted to Cancer Cells.

    PubMed

    Ficko, Bradley W; NDong, Christian; Giacometti, Paolo; Griswold, Karl E; Diamond, Solomon G

    2017-05-01

    Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 μg/ml and five concentrations of cells from 50 to 400 000 count per ml. A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 μg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.

  1. Highly entangled states with almost no secrecy.

    PubMed

    Christandl, Matthias; Schuch, Norbert; Winter, Andreas

    2010-06-18

    In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement.

  2. Entanglement negativity bounds for fermionic Gaussian states

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  3. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  4. Time-response shaping using output to input saturation transformation

    NASA Astrophysics Data System (ADS)

    Chambon, E.; Burlion, L.; Apkarian, P.

    2018-03-01

    For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.

  5. How fast can a black hole rotate?

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen

    2015-11-01

    Kerr black holes (BHs) have their angular momentum, J, bounded by their mass, M: Jc ≤ GM2. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, vH. The vH bound is simply that vH cannot exceed the velocity of light. We verify the vH bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the vH bound.

  6. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Botterud, Audun; Zhou, Zhi

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  7. Fuzzy Energy and Reserve Co-optimization With High Penetration of Renewable Energy

    DOE PAGES

    Liu, Cong; Botterud, Audun; Zhou, Zhi; ...

    2016-10-21

    In this study, we propose a fuzzy-based energy and reserve co-optimization model with consideration of high penetration of renewable energy. Under the assumption of a fixed uncertainty set of renewables, a two-stage robust model is proposed for clearing energy and reserves in the first stage and checking the feasibility and robustness of re-dispatches in the second stage. Fuzzy sets and their membership functions are introduced into the optimization model to represent the satisfaction degree of the variable uncertainty sets. The lower bound of the uncertainty set is expressed as fuzzy membership functions. The solutions are obtained by transforming the fuzzymore » mathematical programming formulation into traditional mixed integer linear programming problems.« less

  8. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less

  9. Convex set and linear mixing model

    NASA Technical Reports Server (NTRS)

    Xu, P.; Greeley, R.

    1993-01-01

    A major goal of optical remote sensing is to determine surface compositions of the earth and other planetary objects. For assessment of composition, single pixels in multi-spectral images usually record a mixture of the signals from various materials within the corresponding surface area. In this report, we introduce a closed and bounded convex set as a mathematical model for linear mixing. This model has a clear geometric implication because the closed and bounded convex set is a natural generalization of a triangle in n-space. The endmembers are extreme points of the convex set. Every point in the convex closure of the endmembers is a linear mixture of those endmembers, which is exactly how linear mixing is defined. With this model, some general criteria for selecting endmembers could be described. This model can lead to a better understanding of linear mixing models.

  10. Design of linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.

    1990-01-01

    Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.

  11. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  12. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  13. Computational efficiency of parallel combinatorial OR-tree searches

    NASA Technical Reports Server (NTRS)

    Li, Guo-Jie; Wah, Benjamin W.

    1990-01-01

    The performance of parallel combinatorial OR-tree searches is analytically evaluated. This performance depends on the complexity of the problem to be solved, the error allowance function, the dominance relation, and the search strategies. The exact performance may be difficult to predict due to the nondeterminism and anomalies of parallelism. The authors derive the performance bounds of parallel OR-tree searches with respect to the best-first, depth-first, and breadth-first strategies, and verify these bounds by simulation. They show that a near-linear speedup can be achieved with respect to a large number of processors for parallel OR-tree searches. Using the bounds developed, the authors derive sufficient conditions for assuring that parallelism will not degrade performance and necessary conditions for allowing parallelism to have a speedup greater than the ratio of the numbers of processors. These bounds and conditions provide the theoretical foundation for determining the number of processors required to assure a near-linear speedup.

  14. Atmospheric, Long Baseline, and Reactor Neutrino Data Constraints on θ13

    NASA Astrophysics Data System (ADS)

    Roa, J. E.; Latimer, D. C.; Ernst, D. J.

    2009-08-01

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on θ13. The recent, more finely binned, Super-K atmospheric data are employed. For L/Eν≳104km/GeV, we previously found significant linear in θ13 terms. This analysis finds θ13 bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in θ13 to produce asymmetric bounds on θ13. Assuming CP conservation, we find θ13=-0.07-0.11+0.18 (90% C.L.).

  15. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.

    PubMed

    Roa, J E; Latimer, D C; Ernst, D J

    2009-08-07

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).

  16. 77 FR 21089 - Notice of Submission for OMB Review; Application for Grants Under the Upward Bound Math and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Upward Bound Math and Science Program AGENCY: Office of Postsecondary Education, Department of Education. SUMMARY: The Upward Bound Math and Science (UBMS) program provides grants to institutions of higher... for success in a program of postsecondary education that lead to careers in math and science. DATES...

  17. Optimal Least-Squares Unidimensional Scaling: Improved Branch-and-Bound Procedures and Comparison to Dynamic Programming

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Stahl, Stephanie

    2005-01-01

    There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…

  18. Tail mean and related robust solution concepts

    NASA Astrophysics Data System (ADS)

    Ogryczak, Włodzimierz

    2014-01-01

    Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.

  19. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    PubMed

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.

  20. Extension of the lower bound of monitor solutions of maximally permissive supervisors to non-α net systems

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Chao, D. Y.

    2016-07-01

    Traditional region-based liveness-enforcing supervisors focus on (1) maximal permissiveness of not losing legal states, (2) structural simplicity of minimal number of monitors, and (3) fast computation. Lately, a number of similar approaches can achieve minimal configuration using efficient linear programming. However, it is unclear as to the relationship between the minimal configuration and the net structure. It is important to explore the structures involved for the fewest monitors required. Once the lower bound is achieved, further iteration to merge (or reduce the number of) monitors is not necessary. The minimal strongly connected resource subnet (i.e., all places are resources) that contains the set of resource places in a basic siphon is an elementary circuit. Earlier, we showed that the number of monitors required for liveness-enforcing and maximal permissiveness equals that of basic siphons for a subclass of Petri nets modelling manufacturing, called α systems. This paper extends this to systems more powerful than the α one so that the number of monitors in a minimal configuration remains to be lower bounded by that of basic siphons. This paper develops the theory behind and shows examples.

  1. Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions

    NASA Astrophysics Data System (ADS)

    Tisdell, Christopher C.

    2017-11-01

    For over 50 years, the learning of teaching of a priori bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to a priori bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving second-order, linear problems with constant co-efficients, we believe it is not pedagogically optimal. Moreover, the Euclidean method becomes pedagogically unwieldy in the proofs involving higher-order cases. The purpose of this work is to propose a simpler pedagogical approach to establish a priori bounds on solutions by considering a different way of measuring the size of a solution to linear problems, which we refer to as the Uber size. The Uber form enables a simplification of pedagogy from the literature and the ideas are accessible to learners who have an understanding of the Fundamental Theorem of Calculus and the exponential function, both usually seen in a first course in calculus. We believe that this work will be of mathematical and pedagogical interest to those who are learning and teaching in the area of differential equations or in any of the numerous disciplines where linear differential equations are used.

  2. Reducing Conservatism of Analytic Transient Response Bounds via Shaping Filters

    NASA Technical Reports Server (NTRS)

    Kwan, Aiyueh; Bedrossian, Nazareth; Jan, Jiann-Woei; Grigoriadis, Karolos; Hua, Tuyen (Technical Monitor)

    1999-01-01

    Recent results show that the peak transient response of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of the system. However, analytically computed peak response bound can be conservative for a class of class bounded energy signals, specifically pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping filters are proposed as a Methodology to reduce the conservatism of peak response analytic bounds. This Methodology was applied to a realistic Space Station assembly operation subject to jet firings. The results indicate that shaping filters indeed reduce the predicted peak response bounds.

  3. Molecular evidence for biodegradation of geomacromolecules

    NASA Astrophysics Data System (ADS)

    Jenisch-Anton, A.; Adam, P.; Michaelis, W.; Connan, J.; Herrmann, D.; Rohmer, M.; Albrecht, P.

    2000-10-01

    The biodegradability of macromolecular organic structures of geological origin was investigated by performing in vitro studies. Cultures of the common Nocardioides simplex were grown, first, on a high molecular weight, asymmetric thioether (1-(phytanylsulfanyl)-octadecane 1) and then on macromolecular fractions isolated from a sulfur-rich oil. Gross data indicate that bacteria convert macromolecular substances to material of higher polarity by oxidizing the abundant thioethers to sulfones and sulfoxides and by introducing new functionalities, such as carboxylic acid, keto or hydroxyl groups. Furthermore, bacteria remineralize the macromolecular structures. Bacterially induced alterations were also studied on a molecular level after chemical desulfurization of the macromolecular structure. Thus, it could be established that the amounts of linear hydrocarbons in the macromolecular structure are decreased relative to branched and cyclic structures due to a preferential bacterial attack of the linear moieties bound to the macromolecules. This is further supported by the detection of S-bound fatty acids resulting from the bacterial oxidation of S-bound n-alkanes. Moreover, N. simplex also degraded sulfur-bound steranes by oxidation of the steroid side-chain leading to S-bound steroid acids.

  4. Upward Bound: In the Beginning.

    ERIC Educational Resources Information Center

    Groutt, John; Hill, Calvin

    2001-01-01

    Describes the early history of the Upward Bound program, including the role of President Johnson's vision, the Task Force on Poverty, the Office of Economic Opportunity, and Community Action Programs; influences on the development of the program; establishment of the program's administrative structure; pilot programs; and early problems leading to…

  5. Robust inference in the negative binomial regression model with an application to falls data.

    PubMed

    Aeberhard, William H; Cantoni, Eva; Heritier, Stephane

    2014-12-01

    A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.

  6. 34 CFR 645.1 - What is the Upward Bound Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... participants the skills and motivation necessary to complete a program of secondary education and to enter and... the following three types of projects: (1) Regular Upward Bound projects. (2) Upward Bound Math and... Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY...

  7. Innovative Adolescent Chemical Dependency Treatment and Its Outcome: A Model Based on Outward Bound Programming.

    ERIC Educational Resources Information Center

    McPeake, John D.; And Others

    1991-01-01

    Describes adolescent chemical dependency treatment model developed at Beech Hill Hospital (New Hampshire) which integrated Twelve Step-oriented alcohol and drug rehabilitation program with experiential education school, Hurricane Island Outward Bound School. Describes Beech Hill Hurricane Island Outward Bound School Adolescent Chemical Dependency…

  8. Evaluating TRIO Programs: A Case Study of Upward Bound Directors and Staff

    ERIC Educational Resources Information Center

    Carr, Yolanda Regina

    2013-01-01

    For over four decades, Upward Bound programs have influenced students' aspirations and goals toward attending college, college enrollment, and overall educational achievement, providing a standard for successful college preparation for historically marginalized students. Although Upward Bound has helped many Americans prepare for and earn their…

  9. Control of linear uncertain systems utilizing mismatched state observers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.

    1972-01-01

    The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.

  10. Hölder Regularity of the 2D Dual Semigeostrophic Equations via Analysis of Linearized Monge-Ampère Equations

    NASA Astrophysics Data System (ADS)

    Le, Nam Q.

    2018-05-01

    We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.

  11. Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques

    NASA Astrophysics Data System (ADS)

    Sharqawy, Mostafa H.

    2016-12-01

    Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.

  12. Validation of the SURE Program, phase 1

    NASA Technical Reports Server (NTRS)

    Dotson, Kelly J.

    1987-01-01

    Presented are the results of the first phase in the validation of the SURE (Semi-Markov Unreliability Range Evaluator) program. The SURE program gives lower and upper bounds on the death-state probabilities of a semi-Markov model. With these bounds, the reliability of a semi-Markov model of a fault-tolerant computer system can be analyzed. For the first phase in the validation, fifteen semi-Markov models were solved analytically for the exact death-state probabilities and these solutions compared to the corresponding bounds given by SURE. In every case, the SURE bounds covered the exact solution. The bounds, however, had a tendency to separate in cases where the recovery rate was slow or the fault arrival rate was fast.

  13. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...

  14. Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics

    NASA Astrophysics Data System (ADS)

    Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo

    2017-12-01

    This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.

  15. Summer Upward Bound, Terre Haute, Indiana. Secondary Program in Compensatory Education, 4.

    ERIC Educational Resources Information Center

    American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.

    Upward Bound was a precollege program geared for high school students with potential who had been handicapped by economic, cultural, and educational deprivation. It involved a full-time summer program and follow-up programs (counseling, cultural activities, and physical education) during the academic year. Students stayed in the program for three…

  16. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    PubMed

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log( n )) and is optimal on the probabilistic tile assembly model (PTAM)- n being an upper bound on the dimensions of a rectangle.

  17. Some comparisons of complexity in dictionary-based and linear computational models.

    PubMed

    Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello

    2011-03-01

    Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Quantum State Tomography via Linear Regression Estimation

    PubMed Central

    Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan

    2013-01-01

    A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519

  19. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  20. Transient response of multidegree-of-freedom linear systems to forcing functions with inequality constraints

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.

    1974-01-01

    Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.

  1. 34 CFR 645.10 - What kinds of projects are supported under the Upward Bound Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... programs of postsecondary education. (b) Upward Bound Math and Science Centers designed to prepare high school students for postsecondary education programs that lead to careers in the fields of math and...

  2. 34 CFR 645.10 - What kinds of projects are supported under the Upward Bound Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... programs of postsecondary education. (b) Upward Bound Math and Science Centers designed to prepare high school students for postsecondary education programs that lead to careers in the fields of math and...

  3. 34 CFR 645.10 - What kinds of projects are supported under the Upward Bound Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... programs of postsecondary education. (b) Upward Bound Math and Science Centers designed to prepare high school students for postsecondary education programs that lead to careers in the fields of math and...

  4. 34 CFR 645.10 - What kinds of projects are supported under the Upward Bound Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... programs of postsecondary education. (b) Upward Bound Math and Science Centers designed to prepare high school students for postsecondary education programs that lead to careers in the fields of math and...

  5. 34 CFR 645.10 - What kinds of projects are supported under the Upward Bound Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... programs of postsecondary education. (b) Upward Bound Math and Science Centers designed to prepare high school students for postsecondary education programs that lead to careers in the fields of math and...

  6. Upward Bound Math-Science: Program Description and Interim Impact Estimates

    ERIC Educational Resources Information Center

    Olsen, Robert; Seftor, Neil; Silva, Tim; Myers, David; DesRoches, David; Young, Julie

    2007-01-01

    To help address continuing disparities in academic achievement and under-representation of disadvantaged groups in math and science majors and careers, the U.S. Department of Education (ED) established a math and science initiative in 1990 within Upward Bound, a federal grant program known as Upward Bound Math-Science (UBMS) designed to provide…

  7. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  8. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Expected performance of m-solution backtracking

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.

    1986-01-01

    This paper derives upper bounds on the expected number of search tree nodes visited during an m-solution backtracking search, a search which terminates after some preselected number m problem solutions are found. The search behavior is assumed to have a general probabilistic structure. The results are stated in terms of node expansion and contraction. A visited search tree node is said to be expanding if the mean number of its children visited by the search exceeds 1 and is contracting otherwise. It is shown that if every node expands, or if every node contracts, then the number of search tree nodes visited by a search has an upper bound which is linear in the depth of the tree, in the mean number of children a node has, and in the number of solutions sought. Also derived are bounds linear in the depth of the tree in some situations where an upper portion of the tree contracts (expands), while the lower portion expands (contracts). While previous analyses of 1-solution backtracking have concluded that the expected performance is always linear in the tree depth, the model allows superlinear expected performance.

  10. Slope Estimation in Noisy Piecewise Linear Functions✩

    PubMed Central

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2014-01-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020

  11. Slope Estimation in Noisy Piecewise Linear Functions.

    PubMed

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  12. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    PubMed

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  13. Steady bound electromagnetic eigenstate arises in a homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector

    NASA Astrophysics Data System (ADS)

    Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin

    2018-04-01

    In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.

  14. Heat kernel for the elliptic system of linear elasticity with boundary conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Justin; Kim, Seick; Brown, Russell

    2014-10-01

    We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

  15. Sampling Based Influence Maximization on Linear Threshold Model

    NASA Astrophysics Data System (ADS)

    Jia, Su; Chen, Ling

    2018-04-01

    A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.

  16. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara

    2013-07-01

    Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.

  17. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  18. Modeling error analysis of stationary linear discrete-time filters

    NASA Technical Reports Server (NTRS)

    Patel, R.; Toda, M.

    1977-01-01

    The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a design can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices is available.

  19. A new S-type eigenvalue inclusion set for tensors and its applications.

    PubMed

    Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing

    2016-01-01

    In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).

  20. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  1. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  2. A Linear Kernel for Co-Path/Cycle Packing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai

    Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.

  3. Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley

    2017-11-01

    The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.

  4. An Investigation of the Outward Bound Final Expedition

    ERIC Educational Resources Information Center

    Bobilya, Andrew J.; Kalisch, Ken; Daniel, Brad

    2011-01-01

    Research of wilderness programs indicates a clear need for additional investigation of specific program components and their influence on participant outcomes. This study examines one component of the Outward Bound wilderness program--the Final Expedition. The Final Expedition is a student-led wilderness expedition and is also referred to as an…

  5. College Bound Program; Summer 1975.

    ERIC Educational Resources Information Center

    Woloshin, Gerald W.

    The principal objectives of the College Bound Summer Program, funded under the Elementary Secondary Education Act Title I, were to improve student's reading and mathematics, increase their ability to do college work, and make the students' transition from junior high to high school easier. Program participants were selected on the basis of either…

  6. Upward Bound/Los Angeles County Probation Department Program Report.

    ERIC Educational Resources Information Center

    Burke, David

    During the summer of 1969, 16 youths from the Los Angeles County Probation Department's facilities participated in the Upward Bound program at the Claremont colleges together with 60 other students from surrounding communities. This program was established to provide the probation department with information useful in establishing similar joint…

  7. Bounds for the Z-spectral radius of nonnegative tensors.

    PubMed

    He, Jun; Liu, Yan-Min; Ke, Hua; Tian, Jun-Kang; Li, Xiang

    2016-01-01

    In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34:1581-1595, 2013), He and Huang (Appl Math Lett 38:110-114, 2014), Li et al. (J Comput Anal Appl 483:182-199, 2015), He (J Comput Anal Appl 20:1290-1301, 2016).

  8. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  9. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  10. The Cooperstown Outward Bound Summer Program: An Informal Look at the Program's Impact on the Lives of Students.

    ERIC Educational Resources Information Center

    Sakofs, Mitchell S.; And Others

    During the summer of 1987, 29 students from the Cooperstown High School in New York received scholarships and participated in an Outward Bound course. This report presents the results of a study assessing the impact of the Outward Bound experience on these students. Data gathering instruments included: the Self Report Survey (SRS), developed by…

  11. Spacecraft Constrained Maneuver Planning Using Positively Invariant Constraint Admissible Sets (Postprint)

    DTIC Science & Technology

    2013-08-14

    Connectivity Graph; Graph Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17...the linearization of the relative motion model given by the Hill- Clohessy - Wiltshire (CWH) equations is used [14]. A. Nonlinear equations of motion...equations can be used to describe the motion of the debris. B. Linearized HCW equations in discrete-time For δr << R, the linearized Hill- Clohessy

  12. Outward Bound Goes to the Inner City.

    ERIC Educational Resources Information Center

    Buchanan, David

    1993-01-01

    A program at the Thompson Island Outward Bound Education Center in Boston (Massachusetts) supplements the traditional program of ropes and rocks with community service, giving urban students opportunities to try out new leadership skills in local neighborhoods. (MLF)

  13. Generalized Bezout's Theorem and its applications in coding theory

    NASA Technical Reports Server (NTRS)

    Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.

  14. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    NASA Astrophysics Data System (ADS)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  15. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  16. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  17. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  18. Upward Bound and Talent Search Work With School Counselors.

    ERIC Educational Resources Information Center

    Schumacher, Dorin

    The set of behaviors and procedures used in working with school counselors participating in the Upward Bound and Talent Search programs at the University of Maine at Orono is described. Areas of concern designed to facilitate the relationship between school counselors and program coordinators include the following: (1) basic program information,…

  19. 77 FR 21089 - Notice of Submission for OMB Review; Application for Grants Under the Veterans Upward Bound Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ...: The Veterans Upward Bound (VUB) program provides grants to institutions of higher education, public... new application because of the implementation of the Higher Education Opportunity Act revisions to the Higher Education Act of 1965, as amended, the authorizing statute for the program. This application will...

  20. Comparing hard and soft prior bounds in geophysical inverse problems

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describes the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.

  1. Comparing hard and soft prior bounds in geophysical inverse problems

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1987-01-01

    In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describeds the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.

  2. The linearized multistage model and the future of quantitative risk assessment.

    PubMed

    Crump, K S

    1996-10-01

    The linearized multistage (LMS) model has for over 15 years been the default dose-response model used by the U.S. Environmental Protection Agency (USEPA) and other federal and state regulatory agencies in the United States for calculating quantitative estimates of low-dose carcinogenic risks from animal data. The LMS model is in essence a flexible statistical model that can describe both linear and non-linear dose-response patterns, and that produces an upper confidence bound on the linear low-dose slope of the dose-response curve. Unlike its namesake, the Armitage-Doll multistage model, the parameters of the LMS do not correspond to actual physiological phenomena. Thus the LMS is 'biological' only to the extent that the true biological dose response is linear at low dose and that low-dose slope is reflected in the experimental data. If the true dose response is non-linear the LMS upper bound may overestimate the true risk by many orders of magnitude. However, competing low-dose extrapolation models, including those derived from 'biologically-based models' that are capable of incorporating additional biological information, have not shown evidence to date of being able to produce quantitative estimates of low-dose risks that are any more accurate than those obtained from the LMS model. Further, even if these attempts were successful, the extent to which more accurate estimates of low-dose risks in a test animal species would translate into improved estimates of human risk is questionable. Thus, it does not appear possible at present to develop a quantitative approach that would be generally applicable and that would offer significant improvements upon the crude bounding estimates of the type provided by the LMS model. Draft USEPA guidelines for cancer risk assessment incorporate an approach similar to the LMS for carcinogens having a linear mode of action. However, under these guidelines quantitative estimates of low-dose risks would not be developed for carcinogens having a non-linear mode of action; instead dose-response modelling would be used in the experimental range to calculate an LED10* (a statistical lower bound on the dose corresponding to a 10% increase in risk), and safety factors would be applied to the LED10* to determine acceptable exposure levels for humans. This approach is very similar to the one presently used by USEPA for non-carcinogens. Rather than using one approach for carcinogens believed to have a linear mode of action and a different approach for all other health effects, it is suggested herein that it would be more appropriate to use an approach conceptually similar to the 'LED10*-safety factor' approach for all health effects, and not to routinely develop quantitative risk estimates from animal data.

  3. An evaluation of exact methods for the multiple subset maximum cardinality selection problem.

    PubMed

    Brusco, Michael J; Köhn, Hans-Friedrich; Steinley, Douglas

    2016-05-01

    The maximum cardinality subset selection problem requires finding the largest possible subset from a set of objects, such that one or more conditions are satisfied. An important extension of this problem is to extract multiple subsets, where the addition of one more object to a larger subset would always be preferred to increases in the size of one or more smaller subsets. We refer to this as the multiple subset maximum cardinality selection problem (MSMCSP). A recently published branch-and-bound algorithm solves the MSMCSP as a partitioning problem. Unfortunately, the computational requirement associated with the algorithm is often enormous, thus rendering the method infeasible from a practical standpoint. In this paper, we present an alternative approach that successively solves a series of binary integer linear programs to obtain a globally optimal solution to the MSMCSP. Computational comparisons of the methods using published similarity data for 45 food items reveal that the proposed sequential method is computationally far more efficient than the branch-and-bound approach. © 2016 The British Psychological Society.

  4. Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning.

    PubMed

    Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai

    2014-07-01

    In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE PAGES

    Lin, Fu; Leyffer, Sven; Munson, Todd

    2016-04-12

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  6. A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fu; Leyffer, Sven; Munson, Todd

    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less

  7. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  8. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models

    PubMed Central

    Rajasekaran, Sanguthevar

    2013-01-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is Ω(log(n)log(log(n))) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing Θ(log(n)log(log(n))) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94, 2009)—which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235–253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log(n)) and is optimal on the probabilistic tile assembly model (PTAM)—n being an upper bound on the dimensions of a rectangle. PMID:24311993

  9. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  10. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  11. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  12. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  13. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  14. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction.

    PubMed

    Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N

    2012-10-01

    Whole cereal grains are a good source of phenolic acids associated with reduced risk of chronic diseases. This paper reports the development and validation of a high-performance liquid chromatography-diode array detection (HPLC-DAD) method for the determination of phenolic acids in cereals in either free or bound form. Extraction of free phenolic acids and clean-up was performed by an optimised solid-phase extraction (SPE) protocol on Oasis HLB cartridges using aqueous methanol as eluant. The mean recovery of analytes ranged between 84% and 106%. Bound phenolic acids were extracted using alkaline hydrolysis with mean recoveries of 80-95%, except for gallic acid, caffeic acid and protocatechuic acid. Both free and bound phenolic extracts were separated on a Nucleosil 100 C18 column, 5 μm (250 mm × 4.6 mm) thermostated at 30 °C, using a linear gradient elution system consisting of 1% (v/v) acetic acid in methanol. Method validation was performed by means of linearity, accuracy, intra-day and inter-day precision and sensitivity. Detection limits ranged between 0.13 and 0.18 μg/g. The method was applied to the analysis of free and bound phenolic acids contents in durum wheat, bread wheat, barley, oat, rice, rye, corn and triticale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. 78 FR 54459 - Agency Information Collection Activities; Submission to the Office of Management and Budget for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Upward Bound Math Science Annual Performance Report AGENCY: Office of Postsecondary Education (OPE... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new...

  16. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  17. On the Duffin-Kemmer-Petiau equation with linear potential in the presence of a minimal length

    NASA Astrophysics Data System (ADS)

    Chargui, Yassine

    2018-04-01

    We point out an erroneous handling in the literature regarding solutions of the (1 + 1)-dimensional Duffin-Kemmer-Petiau equation with linear potentials in the context of quantum mechanics with minimal length. Furthermore, using Brau's approach, we present a perturbative treatment of the effect of the minimal length on bound-state solutions when a Lorentz-scalar linear potential is applied.

  18. Enumeration of Extended m-Regular Linear Stacks.

    PubMed

    Guo, Qiang-Hui; Sun, Lisa H; Wang, Jian

    2016-12-01

    The contact map of a protein fold in the two-dimensional (2D) square lattice has arc length at least 3, and each internal vertex has degree at most 2, whereas the two terminal vertices have degree at most 3. Recently, Chen, Guo, Sun, and Wang studied the enumeration of [Formula: see text]-regular linear stacks, where each arc has length at least [Formula: see text] and the degree of each vertex is bounded by 2. Since the two terminal points in a protein fold in the 2D square lattice may form contacts with at most three adjacent lattice points, we are led to the study of extended [Formula: see text]-regular linear stacks, in which the degree of each terminal point is bounded by 3. This model is closed to real protein contact maps. Denote the generating functions of the [Formula: see text]-regular linear stacks and the extended [Formula: see text]-regular linear stacks by [Formula: see text] and [Formula: see text], respectively. We show that [Formula: see text] can be written as a rational function of [Formula: see text]. For a certain [Formula: see text], by eliminating [Formula: see text], we obtain an equation satisfied by [Formula: see text] and derive the asymptotic formula of the numbers of [Formula: see text]-regular linear stacks of length [Formula: see text].

  19. Thermal Destruction Of CB Contaminants Bound On Building ...

    EPA Pesticide Factsheets

    Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.

  20. Performance analysis of a cascaded coding scheme with interleaved outer code

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.

  1. Performances of One-Round Walks in Linear Congestion Games

    NASA Astrophysics Data System (ADS)

    Bilò, Vittorio; Fanelli, Angelo; Flammini, Michele; Moscardelli, Luca

    We investigate the approximation ratio of the solutions achieved after a one-round walk in linear congestion games. We consider the social functions {Stextsc{um}}, defined as the sum of the players’ costs, and {Mtextsc{ax}}, defined as the maximum cost per player, as a measure of the quality of a given solution. For the social function {Stextsc{um}} and one-round walks starting from the empty strategy profile, we close the gap between the upper bound of 2+sqrt{5}≈ 4.24 given in [8] and the lower bound of 4 derived in [4] by providing a matching lower bound whose construction and analysis require non-trivial arguments. For the social function {Mtextsc{ax}}, for which, to the best of our knowledge, no results were known prior to this work, we show an approximation ratio of Θ(sqrt[4]{n^3}) (resp. Θ(nsqrt{n})), where n is the number of players, for one-round walks starting from the empty (resp. an arbitrary) strategy profile.

  2. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  3. Assigning uncertainties in the inversion of NMR relaxation data.

    PubMed

    Parker, Robert L; Song, Yi-Qaio

    2005-06-01

    Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.

  4. Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions.

    PubMed

    Drouard, Vincent; Horaud, Radu; Deleforge, Antoine; Ba, Sileye; Evangelidis, Georgios

    2017-03-01

    Head-pose estimation has many applications, such as social event analysis, human-robot and human-computer interaction, driving assistance, and so forth. Head-pose estimation is challenging, because it must cope with changing illumination conditions, variabilities in face orientation and in appearance, partial occlusions of facial landmarks, as well as bounding-box-to-face alignment errors. We propose to use a mixture of linear regressions with partially-latent output. This regression method learns to map high-dimensional feature vectors (extracted from bounding boxes of faces) onto the joint space of head-pose angles and bounding-box shifts, such that they are robustly predicted in the presence of unobservable phenomena. We describe in detail the mapping method that combines the merits of unsupervised manifold learning techniques and of mixtures of regressions. We validate our method with three publicly available data sets and we thoroughly benchmark four variants of the proposed algorithm with several state-of-the-art head-pose estimation methods.

  5. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    PubMed Central

    Zhang, Jun

    2016-01-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689

  6. Primal-dual techniques for online algorithms and mechanisms

    NASA Astrophysics Data System (ADS)

    Liaghat, Vahid

    An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.

  7. Neural Decoding and "Inner" Psychophysics: A Distance-to-Bound Approach for Linking Mind, Brain, and Behavior.

    PubMed

    Ritchie, J Brendan; Carlson, Thomas A

    2016-01-01

    A fundamental challenge for cognitive neuroscience is characterizing how the primitives of psychological theory are neurally implemented. Attempts to meet this challenge are a manifestation of what Fechner called "inner" psychophysics: the theory of the precise mapping between mental quantities and the brain. In his own time, inner psychophysics remained an unrealized ambition for Fechner. We suggest that, today, multivariate pattern analysis (MVPA), or neural "decoding," methods provide a promising starting point for developing an inner psychophysics. A cornerstone of these methods are simple linear classifiers applied to neural activity in high-dimensional activation spaces. We describe an approach to inner psychophysics based on the shared architecture of linear classifiers and observers under decision boundary models such as signal detection theory. Under this approach, distance from a decision boundary through activation space, as estimated by linear classifiers, can be used to predict reaction time in accordance with signal detection theory, and distance-to-bound models of reaction time. Our "neural distance-to-bound" approach is potentially quite general, and simple to implement. Furthermore, our recent work on visual object recognition suggests it is empirically viable. We believe the approach constitutes an important step along the path to an inner psychophysics that links mind, brain, and behavior.

  8. Using Multimedia Metadata to Improve Network Efficiency

    DTIC Science & Technology

    2012-09-01

    the north-aligned bounding box. When compared using all angular variations for the direction-of-travel-aligned 3:4 aspect ratio bounding box, the...programs that run the experiment are written in Java . The experiment consists of two distinct programs that communicate via Java sockets (TCP). 1

  9. 34 CFR 645.11 - What services do all Upward Bound projects provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... programs involving elementary or secondary school teachers, faculty members at institutions of higher....11 Section 645.11 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION UPWARD BOUND PROGRAM What Kinds of Projects...

  10. Quantum error correction of continuous-variable states against Gaussian noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph, T. C.

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  11. Posterior propriety for hierarchical models with log-likelihoods that have norm bounds

    DOE PAGES

    Michalak, Sarah E.; Morris, Carl N.

    2015-07-17

    Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less

  12. An extended GS method for dense linear systems

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  13. Contextual Multi-armed Bandits under Feature Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Seyoung; Nam, Jun Hyun; Mo, Sangwoo

    We study contextual multi-armed bandit problems under linear realizability on rewards and uncertainty (or noise) on features. For the case of identical noise on features across actions, we propose an algorithm, coined NLinRel, having O(T⁷/₈(log(dT)+K√d)) regret bound for T rounds, K actions, and d-dimensional feature vectors. Next, for the case of non-identical noise, we observe that popular linear hypotheses including NLinRel are impossible to achieve such sub-linear regret. Instead, under assumption of Gaussian feature vectors, we prove that a greedy algorithm has O(T²/₃√log d)regret bound with respect to the optimal linear hypothesis. Utilizing our theoretical understanding on the Gaussian case,more » we also design a practical variant of NLinRel, coined Universal-NLinRel, for arbitrary feature distributions. It first runs NLinRel for finding the ‘true’ coefficient vector using feature uncertainties and then adjust it to minimize its regret using the statistical feature information. We justify the performance of Universal-NLinRel on both synthetic and real-world datasets.« less

  14. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  15. Mission Operations Planning with Preferences: An Empirical Study

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Khatib, Lina; McGann, Conor

    2006-01-01

    This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.

  16. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  17. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.

    2014-05-01

    Semiempirical quantum-chemical X-ray macromolecular refinement using the program DivCon integrated with PHENIX is described. Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM)more » program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.« less

  18. Outdoor Education Academic Programs in the United States

    ERIC Educational Resources Information Center

    Bell, Brent J.; Seaman, Jayson; Trauntvein, Nate

    2017-01-01

    The growth of outdoor adventure programs developed, in part, from the Outward Bound movement in the 1970s (MacArthur, 1979; Outward Bound, 1968), which created a demand for specialized collegiate training. Since the inaugural conference on outdoor pursuits in higher education at Appalachian State University in 1974 (Smathers, 1974), approximately…

  19. SURBAL: computerized metes and bounds surveying

    Treesearch

    Roger N. Baughman; James H. Patric

    1970-01-01

    A computer program has been developed at West Virginia University for use in metes and bounds surveying. Stations, slope distances, slope angles, and bearings are primary information needed for this program. Other information needed may include magnetic deviation, acceptable closure error, desired map scale, and title designation. SURBAL prints out latitudes and...

  20. 77 FR 76012 - Agency Information Collection Activities; Comment Request; Study of Implementation and Outcomes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... DEPARTMENT OF EDUCATION [Docket No. ED-2012-ICCD-0071] Agency Information Collection Activities; Comment Request; Study of Implementation and Outcomes in Upward Bound and Other TRIO Programs AGENCY... of Collection: Study of Implementation and Outcomes in Upward Bound and other TRIO Programs. OMB...

  1. Interactions of NO and CO with Pd and Pt atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.W.; Carter, E.A.

    1991-03-21

    The authors report ab initio generalized valence bond and correlation-consistent configuration interaction studies of CO and NO interacting with Pd and Pt atoms. They find dramatically different bonding mechanisms for the two ligands, which are easily understood in terms of changes in the electronic structure of the metal and the ligand. CO bonds to both Pd and pt by a {sigma} donor/{pi} back-bonding mechanism, yielding linear geometries. Their calculations predict that the ground ({sup 1}{Sigma}{sup +}) state of PdCO is bound by 27 kcal/mol, while the ground ({sup 1}{Sigma}{sup +}) state of PtCO is bound by only 18.5 kcal/mol. Bymore » contrast, PdNO and PtNO are both bent, with the dominant bonding involving a covalent {sigma} bond between a singly occupied metal d{sigma} orbital and the singly occupied NO 2{pi}* orbital. While the ground ({sup 2}A{prime}) state of PtNO is strongly bound (D{sub e}(Pt-NO) {approximately} 20 kcal/mol), NO binds very weakly to Pd (D{sub e}(Pd-NO) {le} 4 kcal/mol). Linear excited states ({sup 2}{Sigma} and {sup 2}{Pi}) of PtNO and PdNO are predicted to be only weakly bound or unbound. However, corresponding linear cationic states ({sup 1}{Sigma}{sup +} and {sup 3}{Pi}) are strongly bound, but the cationic bent ({sup 1}A{prime}) states are still the ground states of PtNO{sup +} and PdNO{sup +}. These stark contrasts, in which NO binds strongly to Pt but weakly to Pd while CO binds much more strongly to Pd, are due to the preference for closed-shell species to bind strongly to other closed-shell species (e.g., CO to Pd) and for radicals to bind strongly to other radicals (e.g., NO to Pt).« less

  2. General upper bound on single-event upset rate. [due to ionizing radiation in orbiting vehicle avionics

    NASA Technical Reports Server (NTRS)

    Chlouber, Dean; O'Neill, Pat; Pollock, Jim

    1990-01-01

    A technique of predicting an upper bound on the rate at which single-event upsets due to ionizing radiation occur in semiconducting memory cells is described. The upper bound on the upset rate, which depends on the high-energy particle environment in earth orbit and accelerator cross-section data, is given by the product of an upper-bound linear energy-transfer spectrum and the mean cross section of the memory cell. Plots of the spectrum are given for low-inclination and polar orbits. An alternative expression for the exact upset rate is also presented. Both methods rely only on experimentally obtained cross-section data and are valid for sensitive bit regions having arbitrary shape.

  3. Robust stability bounds for multi-delay networked control systems

    NASA Astrophysics Data System (ADS)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  4. Response of discrete linear systems to forcing functions with inequality constraints.

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Riley, T. A.

    1972-01-01

    An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.

  5. Robust Control of Uncertain Systems via Dissipative LQG-Type Controllers

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2000-01-01

    Optimal controller design is addressed for a class of linear, time-invariant systems which are dissipative with respect to a quadratic power function. The system matrices are assumed to be affine functions of uncertain parameters confined to a convex polytopic region in the parameter space. For such systems, a method is developed for designing a controller which is dissipative with respect to a given power function, and is simultaneously optimal in the linear-quadratic-Gaussian (LQG) sense. The resulting controller provides robust stability as well as optimal performance. Three important special cases, namely, passive, norm-bounded, and sector-bounded controllers, which are also LQG-optimal, are presented. The results give new methods for robust controller design in the presence of parametric uncertainties.

  6. Solution of the Generalized Noah's Ark Problem.

    PubMed

    Billionnet, Alain

    2013-01-01

    The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.

  7. Variational bounds on the temperature distribution

    NASA Astrophysics Data System (ADS)

    Kalikstein, Kalman; Spruch, Larry; Baider, Alberto

    1984-02-01

    Upper and lower stationary or variational bounds are obtained for functions which satisfy parabolic linear differential equations. (The error in the bound, that is, the difference between the bound on the function and the function itself, is of second order in the error in the input function, and the error is of known sign.) The method is applicable to a range of functions associated with equalization processes, including heat conduction, mass diffusion, electric conduction, fluid friction, the slowing down of neutrons, and certain limiting forms of the random walk problem, under conditions which are not unduly restrictive: in heat conduction, for example, we do not allow the thermal coefficients or the boundary conditions to depend upon the temperature, but the thermal coefficients can be functions of space and time and the geometry is unrestricted. The variational bounds follow from a maximum principle obeyed by the solutions of these equations.

  8. The Effectiveness of Upward Bound in Preparing Disadvantaged Youth for Postsecondary Education.

    ERIC Educational Resources Information Center

    Steel, Lauri; Schubert, Jane G.

    The effectiveness of Upward Bound (UB), a federally funded program to assist high-ability disadvantaged youth in completing programs in higher education, is addressed in this study. The study sought to determine if participation in UB enhances high school performance and participation in postsecondary education, especially in comparison to non-UB…

  9. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    PubMed

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  10. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients

    PubMed Central

    Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972

  11. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  12. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  13. Einstein-Podolsky-Rosen steering: Its geometric quantification and witness

    NASA Astrophysics Data System (ADS)

    Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco

    2018-02-01

    We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.

  14. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  15. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  16. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  17. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  18. 34 CFR 645.14 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What additional services do Upward Bound Math and... Program? § 645.14 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  19. Why Do Middle School Students Sign Up for Washington's College Bound Scholarship Program? A Mixed Methods Evaluation. CEDR Working Paper. WP #2016-3

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Long, Mark C.; Person, Ann; Rooklyn, Jordan

    2016-01-01

    Why individuals choose not to sign up for social programs, particularly when the costs of sign-up are low and the benefits generous, is a crucial question for policy scholars. In this paper, we show that a substantial share of qualified middle school students fail to sign up for Washington State's College Bound Scholarship program, and this…

  20. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  1. Performance bounds for modal analysis using sparse linear arrays

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Pezeshki, Ali; Scharf, Louis L.; Chi, Yuejie

    2017-05-01

    We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.

  2. Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Kara, Imdat; Derya, Tusan

    2011-09-01

    The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.

  3. On orbital allotments for geostationary satellites

    NASA Technical Reports Server (NTRS)

    Gonsalvez, David J. A.; Reilly, Charles H.; Mount-Campbell, Clark A.

    1986-01-01

    The following satellite synthesis problem is addressed: communication satellites are to be allotted positions on the geostationary arc so that interference does not exceed a given acceptable level by enforcing conservative pairwise satellite separation. A desired location is specified for each satellite, and the objective is to minimize the sum of the deviations between the satellites' prescribed and desired locations. Two mixed integer programming models for the satellite synthesis problem are presented. Four solution strategies, branch-and-bound, Benders' decomposition, linear programming with restricted basis entry, and a switching heuristic, are used to find solutions to example synthesis problems. Computational results indicate the switching algorithm yields solutions of good quality in reasonable execution times when compared to the other solution methods. It is demonstrated that the switching algorithm can be applied to synthesis problems with the objective of minimizing the largest deviation between a prescribed location and the corresponding desired location. Furthermore, it is shown that the switching heuristic can use no conservative, location-dependent satellite separations in order to satisfy interference criteria.

  4. A general method for generating bathymetric data for hydrodynamic computer models

    USGS Publications Warehouse

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  5. A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging

    PubMed Central

    Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

    2010-01-01

    The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897

  6. Cyane Fossae

    NASA Image and Video Library

    2014-07-03

    The linear depressions in this image from NASA 2001 Mars Odyssey spacecraft are called graben. Graben are bounded on both sides by faults, and the central material has shifted downward between the faults.

  7. Capacity planning of link restorable optical networks under dynamic change of traffic

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2005-11-01

    Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.

  8. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  9. Outward Bound--An Adjunctive Psychiatric Therapy: Preliminary Research Findings.

    ERIC Educational Resources Information Center

    Stich, Thomas F.; Sussman, Lewis R.

    According to a small study, Outward Bound can enhance the treatment of hospitalized psychiatric patients. Researchers measured the effect of a therapeutic Outward Bound program of prescribed physical and social tasks on the contentment and self-esteem of seven patients undergoing short-term treatment at the Veterans Administration Hospital in…

  10. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlapmore » matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.« less

  11. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings.

    PubMed

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  12. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.

    PubMed

    Ye, Dan; Chen, Mengmeng; Li, Kui

    2017-11-01

    In this paper, we consider the distributed containment control problem of multi-agent systems with actuator bias faults based on observer method. The objective is to drive the followers into the convex hull spanned by the dynamic leaders, where the input is unknown but bounded. By constructing an observer to estimate the states and bias faults, an effective distributed adaptive fault-tolerant controller is developed. Different from the traditional method, an auxiliary controller gain is designed to deal with the unknown inputs and bias faults together. Moreover, the coupling gain can be adjusted online through the adaptive mechanism without using the global information. Furthermore, the proposed control protocol can guarantee that all the signals of the closed-loop systems are bounded and all the followers converge to the convex hull with bounded residual errors formed by the dynamic leaders. Finally, a decoupled linearized longitudinal motion model of the F-18 aircraft is used to demonstrate the effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Anarchy with linear and bilinear interactions

    NASA Astrophysics Data System (ADS)

    Da Rold, Leandro

    2017-10-01

    Composite Higgs models with anarchic partial compositeness require a scale of new physics O(10-100) TeV, with the bounds being dominated by the dipole moments and ɛ K . The presence of anarchic bilinear interactions can change this picture. We show a solution to the SM flavor puzzle where the electron and the Right-handed quarks of the first generation have negligible linear interactions, and the bilinear interactions account for most of their masses, whereas the other chiral fermions follow a similar pattern to anarchic partial compositeness. We compute the bounds from flavor and CP violation and show that neutron and electron dipole moments, as well as ɛ K and μ → eγ, are compatible with a new physics scale below the TeV. Δ F = 2 operators involving Left-handed quarks and Δ F = 1 operators with d L give the most stringent bounds in this scenario. Their Wilson coefficients have the same origin as in anarchic partial compositeness, requiring the masses of the new states to be larger than O(6-7) TeV.

  14. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. [applied to STOL autopilot design

    NASA Technical Reports Server (NTRS)

    Patel, R. V.; Toda, M.; Sridhar, B.

    1977-01-01

    In connection with difficulties concerning an accurate mathematical representation of a linear quadratic state feedback (LQSF) system, it is often necessary to investigate the robustness (stability) of an LQSF design in the presence of system uncertainty and obtain some quantitative measure of the perturbations which such a design can tolerate. A study is conducted concerning the problem of expressing the robustness property of an LQSF design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices. Bounds are obtained for the general case of nonlinear, time-varying perturbations. It is pointed out that most of the presented results are readily applicable to practical situations for which a designer has estimates of the bounds on the system parameter perturbations. Relations are provided which help the designer to select appropriate weighting matrices in the quadratic performance index to attain a robust design. The developed results are employed in the design of an autopilot logic for the flare maneuver of the Augmentor Wing Jet STOL Research Aircraft.

  15. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  16. A Convex Approach to Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Cox, David E.; Bauer, Frank (Technical Monitor)

    2002-01-01

    The design of control laws for dynamic systems with the potential for actuator failures is considered in this work. The use of Linear Matrix Inequalities allows more freedom in controller design criteria than typically available with robust control. This work proposes an extension of fault-scheduled control design techniques that can find a fixed controller with provable performance over a set of plants. Through convexity of the objective function, performance bounds on this set of plants implies performance bounds on a range of systems defined by a convex hull. This is used to incorporate performance bounds for a variety of soft and hard failures into the control design problem.

  17. An Analysis of the Impact of Outward Bound on Twelve High Schools.

    ERIC Educational Resources Information Center

    Schulze, Joseph R.

    Describing and analyzing the impact of Outward Bound (OB) programs on 12 high schools which reflect OB involvement varying from 1 to 5 years and include urban, suburban, and rural (public, private, boarding, and day) schools, this 1970-71 report is aimed at furthering OB philosophy and method. The report presents OB program: background; evaluation…

  18. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-06-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http://www.fastmultipole.org/). Nature of problem: Numerical solution of the linearized Poisson-Boltzmann equation that describes electrostatic interactions of molecular systems in ionic solutions. Solution method: A novel node-patch scheme is used to discretize the well-conditioned boundary integral equation formulation of the linearized Poisson-Boltzmann equation. Various Krylov subspace solvers can be subsequently applied to solve the resulting linear system, with a bounded number of iterations independent of the number of discretized unknowns. The matrix-vector multiplication at each iteration is accelerated by the adaptive new versions of fast multipole methods. The AFMPB solver requires other stand-alone pre-processing tools for boundary mesh generation, post-processing tools for data analysis and visualization, and can be conveniently coupled with different time stepping methods for dynamics simulation. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/~lubz/afmpb.html and http://mccammon.ucsd.edu/ for updates and changes. Running time: The running time varies with the number of discretized elements ( N) in the system and their distributions. In most cases, it scales linearly as a function of N.

  19. Algorithm for constructing the programmed motion of a bounding vehicle for the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1979-01-01

    The construction of the programmed motion of a multileg bounding vehicle in the flight was studied. An algorithm is given for solving the boundary value problem for constructing this programmed motion. If the motion is shown to be symmetrical, a simplified use of the algorithm can be applied. A method is proposed for nonimpact of the legs during lift-off of the vehicle, and for softness at touchdown. Tables are utilized to construct this programmed motion over a broad set of standard motion conditions.

  20. Perturbations of the Kerr black hole and the boundness of linear waves

    NASA Astrophysics Data System (ADS)

    Eskin, G.

    2010-11-01

    Artificial black holes (also called acoustic or optical black holes) are the black holes for the linear wave equation describing the wave propagation in a moving medium. They attracted a considerable interest of physicists who study them to better understand the black holes in general relativity. We consider the case of stationary axisymmetric metrics and we show that the Kerr black hole is not stable under perturbations in the class of all axisymmetric metrics. We describe families of axisymmetric metrics having black holes that are the perturbations of the Kerr black hole. We also show that the ergosphere can be determined by boundary measurements. Finally, we prove the uniform boundness of the solution in the exterior of the black hole when the event horizon coincides with the ergosphere.

  1. Some Properties and Stability Results for Sector-Bounded LTI Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1994-01-01

    This paper presents necessary and sufficient conditions for a linear, time-invariant (LTI) system to be inside sector (n, b) in terms of linear matrix inequalities in its state-space realization matrices, which represents a generalization of similar conditions for bounded H(sub infinity)-norm systems. Further, a weaker definition of LTI systems strictly inside closed sector (a, b) is proposed, and state-space characterization of such systems is presented. Sector conditions for stability of the negative feedback interconnection of two LTI systems and for stability of LTI systems with feedback nonlinearities are investigated using the Lyapunov function approach. It is shown that the proposed weaker conditions for an LTI system to be strictly inside a sector are sufficient to establish closed-loop stability of these systems.

  2. Eigenenergies of a Relativistic Particle in an Infinite Range Linear Potential Using WKB Method

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    Energy eigenvalues for a non-relativistic particle in a linear potential well are available. In this paper we obtain the eigenenergies for a relativistic spin less particle in a similar potential using an extension of the well-known WKB method treating the potential as the time component of a four-vector potential. Since genuine bound states do…

  3. The Biharmonic Oscillator and Asymmetric Linear Potentials: From Classical Trajectories to Momentum-Space Probability Densities in the Extreme Quantum Limit

    ERIC Educational Resources Information Center

    Ruckle, L. J.; Belloni, M.; Robinett, R. W.

    2012-01-01

    The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…

  4. Characterizations of linear sufficient statistics

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.

    1977-01-01

    A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.

  5. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  6. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.

    PubMed

    Borbulevych, Oleg Y; Plumley, Joshua A; Martin, Roger I; Merz, Kenneth M; Westerhoff, Lance M

    2014-05-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein-ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography.

  7. Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and re-entrant jobs

    NASA Astrophysics Data System (ADS)

    Huang, J. D.; Liu, J. J.; Chen, Q. X.; Mao, N.

    2017-06-01

    Against a background of heat-treatment operations in mould manufacturing, a two-stage flow-shop scheduling problem is described for minimizing makespan with parallel batch-processing machines and re-entrant jobs. The weights and release dates of jobs are non-identical, but job processing times are equal. A mixed-integer linear programming model is developed and tested with small-scale scenarios. Given that the problem is NP hard, three heuristic construction methods with polynomial complexity are proposed. The worst case of the new constructive heuristic is analysed in detail. A method for computing lower bounds is proposed to test heuristic performance. Heuristic efficiency is tested with sets of scenarios. Compared with the two improved heuristics, the performance of the new constructive heuristic is superior.

  8. BBPH: Using progressive hedging within branch and bound to solve multi-stage stochastic mixed integer programs

    DOE PAGES

    Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.

    2016-11-27

    Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.

  9. Multiple layers of transcriptional regulation by PLZF in NKT-cell development.

    PubMed

    Mao, Ai-Ping; Constantinides, Michael G; Mathew, Rebecca; Zuo, Zhixiang; Chen, Xiaoting; Weirauch, Matthew T; Bendelac, Albert

    2016-07-05

    The transcription factor PLZF [promyelocytic leukemia zinc finger, encoded by zinc finger BTB domain containing 16 (Zbtb16)] is induced during the development of innate and innate-like lymphocytes to direct their acquisition of a T-helper effector program, but the molecular mechanisms involved are poorly understood. Using biotinylation-based ChIP-seq and microarray analysis of both natural killer T (NKT) cells and PLZF-transgenic thymocytes, we identified several layers of regulation of the innate-like NKT effector program. First, PLZF bound and regulated genes encoding cytokine receptors as well as homing and adhesion receptors; second, PLZF bound and activated T-helper-specific transcription factor genes that in turn control T-helper-specific programs; finally, PLZF bound and suppressed the transcription of Bach2, a potent general repressor of effector differentiation in naive T cells. These findings reveal the multilayered architecture of the transcriptional program recruited by PLZF and elucidate how a single transcription factor can drive the developmental acquisition of a broad effector program.

  10. Nonlinearization and waves in bounded media: old wine in a new bottle

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; Seymour, Brian R.

    2017-02-01

    We consider problems such as a standing wave in a closed straight tube, a self-sustained oscillation, damped resonance, evolution of resonance and resonance between concentric spheres. These nonlinear problems, and other similar ones, have been solved by a variety of techniques when it is seen that linear theory fails. The unifying approach given here is to initially set up the appropriate linear difference equation, where the difference is the linear travel time. When the linear travel time is replaced by a corrected nonlinear travel time, the nonlinear difference equation yields the required solution.

  11. 34 CFR 645.42 - What are Upward Bound stipends?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What are Upward Bound stipends? 645.42 Section 645.42 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION UPWARD BOUND PROGRAM What Conditions Must Be Met by a Grantee? § 645.42...

  12. 34 CFR 645.12 - How are regular Upward Bound projects organized?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false How are regular Upward Bound projects organized? 645.12 Section 645.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION UPWARD BOUND PROGRAM What Kinds of Projects and Services Does...

  13. City Kids in the Wilderness: A Pilot-Test of Outward Bound for Foster Care Group Home Youth.

    ERIC Educational Resources Information Center

    Fischer, Robert L.; Attah, E. B.

    2001-01-01

    A study examined perceptions of a 7-day Outward Bound program among 23 urban youths, foster parents, and foster care workers from group homes in Atlanta (Georgia). Foster parents reported improved self-esteem and behavior among the teens, but foster care workers reported worse behavior. Negative program impressions lessened among male youths but…

  14. What Factors Predict Middle School Students Sign Up for Washington's College Bound Scholarship Program? A Mixed Methods Evaluation. Working Paper 175

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Long, Mark C.; Person, Ann E.; Rooklyn, Jordan

    2017-01-01

    We investigate factors influencing student sign-ups for Washington State's College Bound Scholarship (CBS) program. We find a substantial share of eligible middle school students fail to sign the CBS, forgoing college financial aid. Student characteristics associated with signing the scholarship parallel characteristics of low-income students who…

  15. Rational design and synthesis of androgen receptor-targeted nonsteroidal anti-androgen ligands for the tumor-specific delivery of a doxorubicin-formaldehyde conjugate.

    PubMed

    Cogan, Peter S; Koch, Tad H

    2003-11-20

    The synthesis and preliminary evaluation of a doxorubicin-formaldehyde conjugate tethered to the nonsteroidal antiandrogen, cyanonilutamide (RU 56279), for the treatment of prostate cancer are reported. The relative ability of the targeting group to bind to the human androgen receptor was studied as a function of tether. The tether served to attach the antiandrogen to the doxorubicin-formaldehyde conjugate via an N-Mannich base of a salicylamide derivative. The salicylamide was selected to serve as a trigger release mechanism to separate the doxorubicin-formaldehyde conjugate from the targeting group after it has bound to the androgen receptor. The remaining part of the tether consisted of a linear group that spanned from the 5-position of the salicylamide to the 3'-position of cyanonilutamide. The structures explored for the linear region of the tether were derivatives of di(ethylene glycol), tri(ethylene glycol), N,N'-disubstituted-piperazine, and 2-butyne-1,4-diol. Relative binding affinity of the tethers bound to the targeting group for human androgen receptor were measured using a (3)H-Mibolerone competition assay and varied from 18% of nilutamide binding for the butynediol-based linear region to less than 1% for one of the piperazine derivatives. The complete targeted drug with the butynediol-based linear region has a relative binding affinity of 10%. This relative binding affinity is encouraging in light of the cocrystal structure of human androgen receptor ligand binding domain bound to the steroid Metribolone which predicts very limited space for a tether connecting the antiandrogen on the inside to the cytotoxin on the outside.

  16. PAPR reduction in FBMC using an ACE-based linear programming optimization

    NASA Astrophysics Data System (ADS)

    van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan

    2014-12-01

    This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as a replacement modulation system for OFDM.

  17. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  18. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE PAGES

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    2017-08-19

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  19. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  20. Using State Merging and State Pruning to Address the Path Explosion Problem Faced by Symbolic Execution

    DTIC Science & Technology

    2014-06-19

    urgent and compelling. Recent efforts in this area automate program analysis techniques using model checking and symbolic execution [2, 5–7]. These...bounded model checking tool for x86 binary programs developed at the Air Force Institute of Technology (AFIT). Jiseki creates a bit-vector logic model based...assume there are n different paths through the function foo . The program could potentially call the function foo a bound number of times, resulting in n

  1. Magnitude error bounds for sampled-data frequency response obtained from the truncation of an infinite series, and compensator improvement program

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.

    1972-01-01

    The frequency response method of analyzing control system performance is discussed, and the difficulty of obtaining the sampled frequency response of the continuous system is considered. An upper bound magnitude error equation is obtained which yields reasonable estimates of the actual error. Finalization of the compensator improvement program is also reported, and the program was used to design compensators for Saturn 5/S1-C dry workshop and Saturn 5/S1-C Skylab.

  2. Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking

    NASA Astrophysics Data System (ADS)

    Cassier, Maxence; Milton, Graeme W.

    2017-07-01

    Using a sum rule, we derive new bounds on Herglotz functions that generalize those given in Bernland et al. [J. Phys. A: Math. Theor. 44(14), 145205 (2011)] and Gustafsson and Sjöberg [New J. Phys. 12(4), 043046 (2010)]. These bounds apply to a wide class of linear passive systems such as electromagnetic passive materials. Among these bounds, we describe the optimal ones and also discuss their meaning in various physical situations like in the case of a transparency window, where we exhibit sharp bounds. Then, we apply these bounds in the context of broadband passive cloaking in the quasistatic regime to refute the following challenging question: is it possible to construct a passive cloaking device that cloaks an object over a whole frequency band? Our rigorous approach, although limited to quasistatics, gives quantitative limitations on the cloaking effect over a finite frequency range by providing inequalities on the polarizability tensor associated with the cloaking device. We emphasize that our results hold for a cloak or object of any geometrical shape.

  3. SURE reliability analysis: Program and mathematics

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; White, Allan L.

    1988-01-01

    The SURE program is a new reliability analysis tool for ultrareliable computer system architectures. The computational methods on which the program is based provide an efficient means for computing accurate upper and lower bounds for the death state probabilities of a large class of semi-Markov models. Once a semi-Markov model is described using a simple input language, the SURE program automatically computes the upper and lower bounds on the probability of system failure. A parameter of the model can be specified as a variable over a range of values directing the SURE program to perform a sensitivity analysis automatically. This feature, along with the speed of the program, makes it especially useful as a design tool.

  4. Sirenum Fossae

    NASA Image and Video Library

    2014-10-21

    The linear depression in the center of this image captured by NASA Mars Odyssey spacecraft is a graben - a fault bounded block of material. The graben crosses the crater and ejecta in the middle of the image.

  5. On the complexity of a combined homotopy interior method for convex programming

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Xu, Qing; Feng, Guochen

    2007-03-01

    In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.

  6. Spacecraft Debris Avoidance Using Positively Invariant Constraint Admissible Sets

    DTIC Science & Technology

    2013-07-11

    Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...spacecraft equilibria in the Clohessy - Wiltshire -Hill (CWH) relative motion frame [2]. The collection of equilibria form a virtual net in the vicinity of...ABBREVIATIONS, AND ACRONYMS CWH Clohessy - Wiltshire -Hill LTV linear time-varying Distribution Statement A: Approved for public release; distribution is unlimited

  7. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, C.; Coe, L.; Rask, Jon; Paradise, Jim; Wynne, J.J.

    2008-01-01

    Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Methods: The investigation further provides a detailed overview of the structure of these two NASA education outreach programs, while providing information regarding selection criteria and program developments over time. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  8. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  9. Education Dept. to End Controversial Study of Upward Bound

    ERIC Educational Resources Information Center

    Field, Kelly

    2008-01-01

    Yielding to pressure from Congress and grant recipients, the U.S. Education Department has agreed to abandon a controversial evaluation of the Upward Bound (UB) college-preparation program. The study, which began last year, was designed to measure whether Upward Bound would have a bigger impact on college-going rates if it were refocused on…

  10. 34 CFR 645.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...

  11. 34 CFR 645.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...

  12. 34 CFR 645.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...

  13. 34 CFR 645.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...

  14. 34 CFR 645.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Upward Bound project, the Secretary reviews each type of project (Regular, Math and Science, or Veterans... need for an Upward Bound Math and Science Center in the proposed target area on the basis of— (i) The... careers in mathematics and science, and who could benefit from an Upward Bound Math and Science program...

  15. Advanced theoretical and experimental studies in automatic control and information systems. [including mathematical programming and game theory

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Polak, E.; Zadeh, L. A.

    1974-01-01

    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.

  16. Quantum Discord for d⊗2 Systems

    PubMed Central

    Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming

    2015-01-01

    We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 106 two-qubit random density matrices, we obtain an average deviation of order 10−4. Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771

  17. Confinement with Perturbation Theory, After All?

    NASA Astrophysics Data System (ADS)

    Hoyer, Paul

    2015-09-01

    I call attention to the possibility that QCD bound states (hadrons) could be derived using rigorous Hamiltonian, perturbative methods. Solving Gauss' law for A 0 with a non-vanishing boundary condition at spatial infinity gives an linear potential for color singlet and qqq states. These states are Poincaré and gauge covariant and thus can serve as initial states of a perturbative expansion, replacing the conventional free in and out states. The coupling freezes at , allowing reasonable convergence. The bound states have a sea of pairs, while transverse gluons contribute only at . Pair creation in the linear A 0 potential leads to string breaking and hadron loop corrections. These corrections give finite widths to excited states, as required by unitarity. Several of these features have been verified analytically in D = 1 + 1 dimensions, and some in D = 3 + 1.

  18. Asymptotic stability estimates near an equilibrium point

    NASA Astrophysics Data System (ADS)

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2017-07-01

    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.

  19. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ander, M.E.; Heiken, G.; Eichelberger, J.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed.more » The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.« less

  20. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  1. Minimizing embedding impact in steganography using trellis-coded quantization

    NASA Astrophysics Data System (ADS)

    Filler, Tomáš; Judas, Jan; Fridrich, Jessica

    2010-01-01

    In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.

  2. The SURE reliability analysis program

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1986-01-01

    The SURE program is a new reliability tool for ultrareliable computer system architectures. The program is based on computational methods recently developed for the NASA Langley Research Center. These methods provide an efficient means for computing accurate upper and lower bounds for the death state probabilities of a large class of semi-Markov models. Once a semi-Markov model is described using a simple input language, the SURE program automatically computes the upper and lower bounds on the probability of system failure. A parameter of the model can be specified as a variable over a range of values directing the SURE program to perform a sensitivity analysis automatically. This feature, along with the speed of the program, makes it especially useful as a design tool.

  3. The SURE Reliability Analysis Program

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1986-01-01

    The SURE program is a new reliability analysis tool for ultrareliable computer system architectures. The program is based on computational methods recently developed for the NASA Langley Research Center. These methods provide an efficient means for computing accurate upper and lower bounds for the death state probabilities of a large class of semi-Markov models. Once a semi-Markov model is described using a simple input language, the SURE program automatically computes the upper and lower bounds on the probability of system failure. A parameter of the model can be specified as a variable over a range of values directing the SURE program to perform a sensitivity analysis automatically. This feature, along with the speed of the program, makes it especially useful as a design tool.

  4. A fast numerical method for the valuation of American lookback put options

    NASA Astrophysics Data System (ADS)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  5. A Means-End Investigation of Outcomes Associated with Outward Bound and NOLS Programs

    ERIC Educational Resources Information Center

    Goldenberg, Marni; Pronsolino, Dan

    2008-01-01

    This study compares outcomes associated with participation in Outward Bound (OB) and National Outdoor Leadership Schools (NOLS) courses in the United States. OB and NOLS (two of the largest providers of outdoor adventure education [OAE] courses) combined saw more than 30,000 students in 2006 (NOLS, n.d.; Outward Bound, n.d.). Comparing these two…

  6. Outstanding Books for the College Bound: Titles and Programs for a New Generation

    ERIC Educational Resources Information Center

    Carstensen, Angela, Ed.

    2011-01-01

    Connecting teens to books they'll truly enjoy is the aim of every young adult librarian, and the completely revamped guide "Outstanding Books for the College Bound" will give teen services staff the leg up they need to make it happen. Listing nearly 200 books deemed outstanding for the college bound by the Young Adult Library Services Association…

  7. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  8. Switching Systems: Controllability and Control Design

    DTIC Science & Technology

    2009-04-25

    controllable linear time invariant (LTI) systems ẋ = Ax+Bu are stabilizable and the stabilization can be always done by a...to control the system is bounded. As an application controllability conditions for a class of bimodal linear time invariant (LTI) systems are also...There exist a universal ( finite ) switching sequence σ such that the time varying system ẋ = A(σ)x+ B(σ)u is globally controllable . Proof: The

  9. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  10. On the sparseness of 1-norm support vector machines.

    PubMed

    Zhang, Li; Zhou, Weida

    2010-04-01

    There is some empirical evidence available showing that 1-norm Support Vector Machines (1-norm SVMs) have good sparseness; however, both how good sparseness 1-norm SVMs can reach and whether they have a sparser representation than that of standard SVMs are not clear. In this paper we take into account the sparseness of 1-norm SVMs. Two upper bounds on the number of nonzero coefficients in the decision function of 1-norm SVMs are presented. First, the number of nonzero coefficients in 1-norm SVMs is at most equal to the number of only the exact support vectors lying on the +1 and -1 discriminating surfaces, while that in standard SVMs is equal to the number of support vectors, which implies that 1-norm SVMs have better sparseness than that of standard SVMs. Second, the number of nonzero coefficients is at most equal to the rank of the sample matrix. A brief review of the geometry of linear programming and the primal steepest edge pricing simplex method are given, which allows us to provide the proof of the two upper bounds and evaluate their tightness by experiments. Experimental results on toy data sets and the UCI data sets illustrate our analysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark S.; Wang, Tseng-Chan

    1991-01-01

    An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.

  12. ``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis

    NASA Astrophysics Data System (ADS)

    Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin

    Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.

  13. Age differences in change-of-direction performance and its subelements in female football players.

    PubMed

    Hirose, Norikazu; Nakahori, Chikako

    2015-05-01

    To describe cross-sectional age differences in change-of-direction performance (CODp) in female football players and investigate the relationship between CODp and linear-sprint speed, muscle power, and body size. A sample of 135 well-trained female football players was divided into 8 age groups. Anthropometry (height, body mass, and lean body mass) and athletic performance (10-m sprint speed, 10-m×5-CODp, and 5-step bounding distance) were compared to determine interage differences using ANOVA. Then, the participants were divided into 3 age groups: 12- to 14-y-olds, 15- to 17-y-olds, and ≥18 y-olds. Simple- and multiple-regression analyses were conducted to determine the correlation between CODp and the other measurement variables in each age group. Age-related differences were found for CODp (F=10.41, P<.01), sprint speed (F=3.27, P<.01), and bounding distance (F=4.20, P<.01). Post hoc analysis revealed that the CODp of 17-y-old players was faster than that of 16-y-old players (P<.01), with no interage differences in sprint speed and bounding distance. Sprint speed and bounding distance were weakly correlated with CODp in 15- to ≥18-y-old players, but only sprint speed was correlated with CODp in 12- to 14-y-old players. CODp improves from 16 to 17 y of age in female players. Linear-sprint speed, muscle power, and body size were weakly correlated with the age differences in CODp.

  14. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  15. Atom-field dressed states in slow-light waveguide QED

    NASA Astrophysics Data System (ADS)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  16. Quantum speed limit constraints on a nanoscale autonomous refrigerator

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chiranjib; Misra, Avijit; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2018-06-01

    Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.

  17. An Instructional Note on Linear Programming--A Pedagogically Sound Approach.

    ERIC Educational Resources Information Center

    Mitchell, Richard

    1998-01-01

    Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)

  18. Parameterization of Model Validating Sets for Uncertainty Bound Optimizations. Revised

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Giesy, D. P.

    2000-01-01

    Given measurement data, a nominal model and a linear fractional transformation uncertainty structure with an allowance on unknown but bounded exogenous disturbances, easily computable tests for the existence of a model validating uncertainty set are given. Under mild conditions, these tests are necessary and sufficient for the case of complex, nonrepeated, block-diagonal structure. For the more general case which includes repeated and/or real scalar uncertainties, the tests are only necessary but become sufficient if a collinearity condition is also satisfied. With the satisfaction of these tests, it is shown that a parameterization of all model validating sets of plant models is possible. The new parameterization is used as a basis for a systematic way to construct or perform uncertainty tradeoff with model validating uncertainty sets which have specific linear fractional transformation structure for use in robust control design and analysis. An illustrative example which includes a comparison of candidate model validating sets is given.

  19. The temperature-dependence of adenylate cyclase from baker's yeast.

    PubMed Central

    Londesborough, J; Varimo, K

    1979-01-01

    The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221

  20. Intertwining solutions for magnetic relativistic Hartree type equations

    NASA Astrophysics Data System (ADS)

    Cingolani, Silvia; Secchi, Simone

    2018-05-01

    We consider the magnetic pseudo-relativistic Schrödinger equation where , m  >  0, is an external continuous scalar potential, is a continuous vector potential and is a convolution kernel, is a constant, , . We assume that A and V are symmetric with respect to a closed subgroup G of the group of orthogonal linear transformations of . If for any , the cardinality of the G-orbit of x is infinite, then we prove the existence of infinitely many intertwining solutions assuming that is either linear in x or uniformly bounded. The results are proved by means of a new local realization of the square root of the magnetic laplacian to a local elliptic operator with Neumann boundary condition on a half-space. Moreover we derive an existence result of a ground state intertwining solution for bounded vector potentials, if G admits a finite orbit.

  1. The Impacts of Upward Bound Math-Science on Postsecondary Outcomes 7-9 Years after Scheduled High School Graduation: Final Report

    ERIC Educational Resources Information Center

    Seftor, Neil S.; Calcagno, Juan Carlos

    2010-01-01

    This final report updates the report "Upward Bound Math-Science: Program Description and Interim Impact Estimates" published in 2007 (Olsen et al. 2007). The 2007 interim report contained descriptive findings from a survey of Upward Bound Math-Science (UBMS) grantees from the late 1990s at the time of the study's initiation and impact estimates…

  2. A new performance index for the repetitive motion of mobile manipulators.

    PubMed

    Xiao, Lin; Zhang, Yunong

    2014-02-01

    A mobile manipulator is a robotic device composed of a mobile platform and a stationary manipulator fixed to the platform. To achieve the repetitive motion control of mobile manipulators, the mobile platform and the manipulator have to realize the repetitive motion simultaneously. To do so, a novel quadratic performance index is, for the first time, designed and presented in this paper, of which the effectiveness is analyzed by following a neural dynamics method. Then, a repetitive motion scheme is proposed by combining the criterion, physical constraints, and integrated kinematical equations of mobile manipulators, which is further reformulated as a quadratic programming (QP) subject to equality and bound constraints. In addition, two important Bridge theorems are established to prove that such a QP can be converted equivalently into a linear variational inequality, and then equivalently into a piecewise-linear projection equation (PLPE). A real-time numerical algorithm based on PLPE is thus developed and applied for the online solution of the resultant QP. Two tracking-path tasks demonstrate the effectiveness and accuracy of the repetitive motion scheme. In addition, comparisons between the nonrepetitive and repetitive motion further validate the superiority and novelty of the proposed scheme.

  3. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  4. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-05

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  5. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum.

    PubMed

    Dai, Quxiu; Ma, Liping; Ren, Nanqi; Ning, Ping; Guo, Zhiying; Xie, Longgui; Gao, Haijun

    2018-06-06

    Modified phosphogypsum (MPG) was developed to improve dewaterability of sewage sludge, and dewatering performance, properties of treated sludge, composition and morphology distribution of EPS, dynamic analysis and multiple regression model on bound water release were investigated. The results showed that addition of MPG caused extracellular polymeric substances (EPS) disintegration through charge neutralization. Destruction of EPS promoted the formation of larger sludge flocs and the release of bound water into supernatant. Simultaneously, content of organics with molecular weight between 1000 and 7000 Da in soluble EPS (SB-EPS) increased with increasing of EPS dissolved into the liquid phase. Besides, about 8.8 kg•kg -1 DS of bound water was released after pretreatment with 40%DS MPG dosage. Additionally, a multiple linear regression model for bound water release was established, showing that lower loosely bond EPS (LB-EPS) content and specific resistance of filtration (SRF) may improve dehydration performance, and larger sludge flocs may be beneficial for sludge dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Faults and Flows

    NASA Image and Video Library

    2014-10-20

    Lava flows of Daedalia Planum can be seen at the top and bottom portions of this image from NASA 2001 Mars Odyssey spacecraft. The ridge and linear depression in the central part of the image are part of Mangala Fossa, a fault bounded graben.

  7. Budgeted Interactive Learning

    DTIC Science & Technology

    2017-06-15

    the methodology of reducing the online-algorithm-selecting problem as a contextual bandit problem, which is yet another interactive learning...KH2016a] Kuan-Hao Huang and Hsuan-Tien Lin. Linear upper confidence bound algorithm for contextual bandit problem with piled rewards. In Proceedings

  8. Non-College Bound Student Demonstration Project in Electronics and Laser-ElectroOptics--in Cooperation with Area High Schools, the Private Industry Council, and the Business Labor Council. Final Report.

    ERIC Educational Resources Information Center

    Alfano, Kathleen

    A model program was developed to increase the number of noncollege-bound students who were capable of succeeding in electronics and laser/electro-optics technology (LET) vocational training. The target population was noncollege-bound disadvantaged students, at least 60 percent minorities and women who were historically underrepresented in…

  9. Research on culture-bound syndromes: new directions.

    PubMed

    Guarnaccia, P J; Rogler, L H

    1999-09-01

    The unprecedented inclusion of culture-bound syndromes in DSM-IV provides the opportunity for highlighting the need to study such syndromes and the occasion for developing a research agenda to study them. The growing ethnic and cultural diversity of the U.S. population presents a challenge to the mental health field to develop truly cross-cultural approaches to mental health research and services. In this article, the authors provide a critique of previous analyses of the relationship between culture-bound syndromes and psychiatric diagnoses. They highlight the problems in previous classificatory exercises, which tend to focus on subsuming the culture-bound syndromes into psychiatric categories and fail to fully investigate these syndromes on their own terms. A detailed research program based on four key questions is presented both to understand culture-bound syndromes within their cultural context and to analyze the relationship between these syndromes and psychiatric disorders. Results of over a decade of research on ataques de nervios, a Latino-Caribbean cultural syndrome, are used to illustrate this research program. The four questions focus on the nature of the phenomenon, the social-cultural location of sufferers, the relationship of culture-bound syndromes to psychiatric disorders, and the social and psychiatric history of the syndrome in the life course of the sufferer.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  11. Bounding Averages Rigorously Using Semidefinite Programming: Mean Moments of the Lorenz System

    NASA Astrophysics Data System (ADS)

    Goluskin, David

    2018-04-01

    We describe methods for proving bounds on infinite-time averages in differential dynamical systems. The methods rely on the construction of nonnegative polynomials with certain properties, similarly to the way nonlinear stability can be proved using Lyapunov functions. Nonnegativity is enforced by requiring the polynomials to be sums of squares, a condition which is then formulated as a semidefinite program (SDP) that can be solved computationally. Although such computations are subject to numerical error, we demonstrate two ways to obtain rigorous results: using interval arithmetic to control the error of an approximate SDP solution, and finding exact analytical solutions to relatively small SDPs. Previous formulations are extended to allow for bounds depending analytically on parametric variables. These methods are illustrated using the Lorenz equations, a system with three state variables ( x, y, z) and three parameters (β ,σ ,r). Bounds are reported for infinite-time averages of all eighteen moments x^ly^mz^n up to quartic degree that are symmetric under (x,y)\\mapsto (-x,-y). These bounds apply to all solutions regardless of stability, including chaotic trajectories, periodic orbits, and equilibrium points. The analytical approach yields two novel bounds that are sharp: the mean of z^3 can be no larger than its value of (r-1)^3 at the nonzero equilibria, and the mean of xy^3 must be nonnegative. The interval arithmetic approach is applied at the standard chaotic parameters to bound eleven average moments that all appear to be maximized on the shortest periodic orbit. Our best upper bound on each such average exceeds its value on the maximizing orbit by less than 1%. Many bounds reported here are much tighter than would be possible without computer assistance.

  12. Restricted DCJ-indel model: sorting linear genomes with DCJ and indels

    PubMed Central

    2012-01-01

    Background The double-cut-and-join (DCJ) is a model that is able to efficiently sort a genome into another, generalizing the typical mutations (inversions, fusions, fissions, translocations) to which genomes are subject, but allowing the existence of circular chromosomes at the intermediate steps. In the general model many circular chromosomes can coexist in some intermediate step. However, when the compared genomes are linear, it is more plausible to use the so-called restricted DCJ model, in which we proceed the reincorporation of a circular chromosome immediately after its creation. These two consecutive DCJ operations, which create and reincorporate a circular chromosome, mimic a transposition or a block-interchange. When the compared genomes have the same content, it is known that the genomic distance for the restricted DCJ model is the same as the distance for the general model. If the genomes have unequal contents, in addition to DCJ it is necessary to consider indels, which are insertions and deletions of DNA segments. Linear time algorithms were proposed to compute the distance and to find a sorting scenario in a general, unrestricted DCJ-indel model that considers DCJ and indels. Results In the present work we consider the restricted DCJ-indel model for sorting linear genomes with unequal contents. We allow DCJ operations and indels with the following constraint: if a circular chromosome is created by a DCJ, it has to be reincorporated in the next step (no other DCJ or indel can be applied between the creation and the reincorporation of a circular chromosome). We then develop a sorting algorithm and give a tight upper bound for the restricted DCJ-indel distance. Conclusions We have given a tight upper bound for the restricted DCJ-indel distance. The question whether this bound can be reduced so that both the general and the restricted DCJ-indel distances are equal remains open. PMID:23281630

  13. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  14. QoS support for end users of I/O-intensive applications using shared storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2011-01-19

    I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time,more » a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.« less

  15. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  16. Extremal equilibria for reaction-diffusion equations in bounded domains and applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.

  17. Model Checking A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2012-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV) for a subset of digraphs. Modeling challenges of the protocol and the system are addressed. The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period.

  18. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  19. Northwest Laboratory for Integrated Systems, University of Washington, Semiannual Technical Report Number 1, July 1-November 8, 1991

    DTIC Science & Technology

    1991-11-08

    only simple bounds on delays but also relate the delays in linear inequalities so that tradeoffs are apparent. We model circuits as communicating...set of linear inequalities constraining the variables. These relations provide synthesis tools with information about tradeoffs between circuit delays...available to express the original circuit as a graph of elementary gates and then cover the graph’s fanout-free trees with collections of three-input

  20. Generating moment matching scenarios using optimization techniques

    DOE PAGES

    Mehrotra, Sanjay; Papp, Dávid

    2013-05-16

    An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less

  1. User's manual for LINEAR, a FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.

    1987-01-01

    This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  2. Incorporating Active Runway Crossings in Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2010-01-01

    A mixed integer linear program is presented for deterministically scheduling departure and ar rival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple par king area where any available aircraft can take-off ir respective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput and system delay are used independently. Results indicate improvement over a basic first-come-first-serve rule in both system delay and throughput. Minimizing system delay results in small deviations from optimal throughput, whereas minimizing throughput results in large deviations in system delay. Enhancements for computational efficiency are also presented in the form of reformulating certain constraints and defining additional inequalities for better bounds.

  3. Orbital motion in pre-main sequence binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, G. H.; Prato, L.; Simon, M.

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five othermore » binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.« less

  4. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  5. Compositional Solution Space Quantification for Probabilistic Software Analysis

    NASA Technical Reports Server (NTRS)

    Borges, Mateus; Pasareanu, Corina S.; Filieri, Antonio; d'Amorim, Marcelo; Visser, Willem

    2014-01-01

    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time.

  6. Probabilistic Sensitivity Analysis with Respect to Bounds of Truncated Distributions (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    AFRL-RX-WP-TP-2010-4147 PROBABILISTIC SENSITIVITY ANALYSIS WITH RESPECT TO BOUNDS OF TRUNCATED DISTRIBUTIONS (PREPRINT) H. Millwater and...5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) H. Millwater and Y. Feng 5d. PROJECT...Z39-18 1 Probabilistic Sensitivity Analysis with respect to Bounds of Truncated Distributions H. Millwater and Y. Feng Department of Mechanical

  7. A Study of the National Upward Bound and Talent Search Programs. Final Report. Volume I. Review of the Literature Relevant to the Upward Bound and Talent Search Programs.

    ERIC Educational Resources Information Center

    Davis, Junius A.; Kenyon, Cynthia A.

    In this volume is reported the review of related literature that was conducted during the design phase of the study (July 1973 through January 1974). Its purpose was to provide input for the study design. Chapter 1 is a summary of the findings judged most relevant to three basic questions: (1) Who are the disadvantaged, how are they defined, and…

  8. New Mathematical Strategy Using Branch and Bound Method

    NASA Astrophysics Data System (ADS)

    Tarray, Tanveer Ahmad; Bhat, Muzafar Rasool

    In this paper, the problem of optimal allocation in stratified random sampling is used in the presence of nonresponse. The problem is formulated as a nonlinear programming problem (NLPP) and is solved using Branch and Bound method. Also the results are formulated through LINGO.

  9. Neural networks with local receptive fields and superlinear VC dimension.

    PubMed

    Schmitt, Michael

    2002-04-01

    Local receptive field neurons comprise such well-known and widely used unit types as radial basis function (RBF) neurons and neurons with center-surround receptive field. We study the Vapnik-Chervonenkis (VC) dimension of feedforward neural networks with one hidden layer of these units. For several variants of local receptive field neurons, we show that the VC dimension of these networks is superlinear. In particular, we establish the bound Omega(W log k) for any reasonably sized network with W parameters and k hidden nodes. This bound is shown to hold for discrete center-surround receptive field neurons, which are physiologically relevant models of cells in the mammalian visual system, for neurons computing a difference of gaussians, which are popular in computational vision, and for standard RBF neurons, a major alternative to sigmoidal neurons in artificial neural networks. The result for RBF neural networks is of particular interest since it answers a question that has been open for several years. The results also give rise to lower bounds for networks with fixed input dimension. Regarding constants, all bounds are larger than those known thus far for similar architectures with sigmoidal neurons. The superlinear lower bounds contrast with linear upper bounds for single local receptive field neurons also derived here.

  10. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    PubMed

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  11. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  12. College Bound Seniors, 1974-75.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, New York, NY.

    Some one million college bound students, who were high school seniors during 1974-75 previously participated in the College Board's Admissions Testing Program (ATP), which included the Scholarship Aptitude Test (SAT), the Test of Standard Written English, the Student Descriptive Questionnaire, and the ATP Achievement Tests. These tests created a…

  13. Colorado Outward Bound School Rafting Manual.

    ERIC Educational Resources Information Center

    Brown, Al

    River rafting trips at the Colorado Outward Bound School (COBS) present participants with an opportunity for developing self-confidence, self-awareness, and concern for others through challenging and adventuresome group effort, combined with a program of instruction in rafting skills, safety consciousness, and awareness of the natural environment.…

  14. Transfer of Free Polymannose-type Oligosaccharides from the Cytosol to Lysosomes in Cultured Human Hepatocellular Carcinoma HEPG2 Cells

    PubMed Central

    Saint-Pol, Agnès; Bauvy, Chantal; Codogno, Patrice; Moore, Stuart E.H.

    1997-01-01

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes. PMID:9008702

  15. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells.

    PubMed

    Saint-Pol, A; Bauvy, C; Codogno, P; Moore, S E

    1997-01-13

    Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.

  16. Critical bounds on noise and SNR for robust estimation of real-time brain activity from functional near infra-red spectroscopy.

    PubMed

    Aqil, Muhammad; Jeong, Myung Yung

    2018-04-24

    The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infra-red spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. We also derived a lower bound on signal-to-noise-ratio over which the reliable parameters can still be inferred from a channel/voxel. Whilst here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Venus orogenic belt environments - Architecture and origin

    NASA Astrophysics Data System (ADS)

    Head, James W.; Vorder Bruegge, Richard W.; Crumpler, L. S.

    1990-08-01

    Orogenic belt environments (Danu, Akna, Freyja, and Maxwell Montes) in Western Ishtar Terra, Venus, display a range of architectural elements, including (from the center of Western Ishtar outward) an inboard plateau (Lakshmi Planum), the linear orogenic belts themselves, outboard plateaus, steep scarps bounding Ishtar, adjacent linear foredeeps and outboard rises, and outboard low-lying volcanic plains. The main elements of the architecture are interpreted to be due to the convergence, underthrusting, and possible subduction of lowland plains at the margins of a preexisting tessera plateau of thicker crust.

  18. Elementary operators on self-adjoint operators

    NASA Astrophysics Data System (ADS)

    Molnar, Lajos; Semrl, Peter

    2007-03-01

    Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .

  19. Time domain convergence properties of Lyapunov stable penalty methods

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Sunkel, John

    1991-01-01

    Linear hyperbolic partial differential equations are analyzed using standard techniques to show that a sequence of solutions generated by the Liapunov stable penalty equations approaches the solution of the differential-algebraic equations governing the dynamics of multibody problems arising in linear vibrations. The analysis does not require that the system be conservative and does not impose any specific integration scheme. Variational statements are derived which bound the error in approximation by the norm of the constraint violation obtained in the approximate solutions.

  20. [Relations between biomedical variables: mathematical analysis or linear algebra?].

    PubMed

    Hucher, M; Berlie, J; Brunet, M

    1977-01-01

    The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.

  1. Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation

    NASA Astrophysics Data System (ADS)

    Skrzypacz, Piotr

    2017-09-01

    The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.

  2. Boundary Korn Inequality and Neumann Problems in Homogenization of Systems of Elasticity

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Shen, Zhongwei; Song, Liang

    2017-06-01

    This paper is concerned with a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients, arising in the theory of homogenization. We establish uniform optimal regularity estimates for solutions of Neumann problems in a bounded Lipschitz domain with L 2 boundary data. The proof relies on a boundary Korn inequality for solutions of systems of linear elasticity and uses a large-scale Rellich estimate obtained in Shen (Anal PDE, arXiv:1505.00694v2).

  3. A Note on the Disturbance Decoupling Problem for Retarded Systems.

    DTIC Science & Technology

    1984-10-01

    disturbance decoupling problem f or linear control system is to design a feedback control law in such a way that the disturbances do not * influence...and in 141 by Pandolfi who analyses the situation in some detail. HeU concludes that for retarded systems one needs an unbounded feedback control law...ult) 6 JP is the control input, d(t) 6 AR is same disturbance, and z(t) e 3k is the output to be regularted. We assume that L is a bounded linear

  4. Evaluating convex roof entanglement measures.

    PubMed

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  5. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  6. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  7. Stability of multiloop LQ regulators with nonlinearities. I - Regions of attraction. II - Regions of ultimate boundedness

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1986-01-01

    An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.

  8. Interpreting Space-Mission LET Requirements for SEGR in Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Ladbury, R. L.; Batchelor, D. A.; Goldsman, N.; Kim, H. S.; Phan, A. M.

    2010-01-01

    A Technology Computer Aided Design (TCAD) simulation-based method is developed to evaluate whether derating of high-energy heavy-ion accelerator test data bounds the risk for single-event gate rupture (SEGR) from much higher energy on-orbit ions for a mission linear energy transfer (LET) requirement. It is shown that a typical derating factor of 0.75 applied to a single-event effect (SEE) response curve defined by high-energy accelerator SEGR test data provides reasonable on-orbit hardness assurance, although in a high-voltage power MOSFET, it did not bound the risk of failure.

  9. Relativistic many-body bound systems: electromagnetic properties. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danos, M.; Gillet, V.

    1977-04-01

    The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.

  10. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.

    PubMed

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2014-04-11

    This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.

    PubMed

    Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A

    2018-05-15

    Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.

  12. A computer program to calculate zeroes, extrema, and interval integrals for the associated Legendre functions. [for estimation of bounds of truncation error in spherical harmonic expansion of geopotential

    NASA Technical Reports Server (NTRS)

    Payne, M. H.

    1973-01-01

    A computer program is described for the calculation of the zeroes of the associated Legendre functions, Pnm, and their derivatives, for the calculation of the extrema of Pnm and also the integral between pairs of successive zeroes. The program has been run for all n,m from (0,0) to (20,20) and selected cases beyond that for n up to 40. Up to (20,20), the program (written in double precision) retains nearly full accuracy, and indications are that up to (40,40) there is still sufficient precision (4-5 decimal digits for a 54-bit mantissa) for estimation of various bounds and errors involved in geopotential modelling, the purpose for which the program was written.

  13. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other components of the linear management formulation to form a complete linear formulation; the formulation is then solved by use of the simplex algorithm, which is incorporated into the RMS Package. Nonlinear formulations arise for simulated conditions that include water?table (unconfined) aquifers or head?dependent boundary conditions (such as streams, drains, or evapotranspiration from the water table). Nonlinear formulations are solved by sequential linear programming; that is, repeated linearization of the nonlinear features of the management problem. In this approach, response coefficients are recalculated for each iteration of the solution process. Mixed?binary linear (or mildly nonlinear) formulations are solved by use of the branch and bound algorithm, which is also incorporated into the RMS Package. Three sample problems are provided to demonstrate the use of GWM for typical ground?water flow management problems. These sample problems provide examples of how GWM input files are constructed to specify the decision variables, objective function, constraints, and solution process for a GWM run. The GWM Process runs with the MODFLOW?2000 Global and Ground?Water Flow Processes, but in its current form GWM cannot be used with the Observation, Sensitivity, Parameter?Estimation, or Ground?Water Transport Processes. The GWM Process is written with a modular structure so that new objective functions, constraint types, and solution algorithms can be added.

  14. Precision of proportion estimation with binary compressed Raman spectrum.

    PubMed

    Réfrégier, Philippe; Scotté, Camille; de Aguiar, Hilton B; Rigneault, Hervé; Galland, Frédéric

    2018-01-01

    The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.

  15. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ziyang; Yang, Tao; Li, Guoqi

    We study synchronization of coupled linear systems over networks with weak connectivity and time-varying delays. We focus on the case that the internal dynamics are time-varying but non-expansive. Both uniformly connected and infinitely connected communication topologies are considered. A new concept of P-synchronization is introduced and we first show that global asymptotic P-synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of the infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns out that the existence of a uniform time interval for the communicationmore » topology is not necessary and P-synchronization can be achieved when the time varying delays are arbitrarily bounded. Simulations are given to validate the theoretical results.« less

  16. Robust passivity analysis for discrete-time recurrent neural networks with mixed delays

    NASA Astrophysics Data System (ADS)

    Huang, Chuan-Kuei; Shu, Yu-Jeng; Chang, Koan-Yuh; Shou, Ho-Nien; Lu, Chien-Yu

    2015-02-01

    This article considers the robust passivity analysis for a class of discrete-time recurrent neural networks (DRNNs) with mixed time-delays and uncertain parameters. The mixed time-delays that consist of both the discrete time-varying and distributed time-delays in a given range are presented, and the uncertain parameters are norm-bounded. The activation functions are assumed to be globally Lipschitz continuous. Based on new bounding technique and appropriate type of Lyapunov functional, a sufficient condition is investigated to guarantee the existence of the desired robust passivity condition for the DRNNs, which can be derived in terms of a family of linear matrix inequality (LMI). Some free-weighting matrices are introduced to reduce the conservatism of the criterion by using the bounding technique. A numerical example is given to illustrate the effectiveness and applicability.

  17. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  18. An efficient approach to ARMA modeling of biological systems with multiple inputs and delays

    NASA Technical Reports Server (NTRS)

    Perrott, M. H.; Cohen, R. J.

    1996-01-01

    This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.

  19. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    PubMed

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

    ERIC Educational Resources Information Center

    Jarvis, John J.; And Others

    Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

  1. VENVAL : a plywood mill cost accounting program

    Treesearch

    Henry Spelter

    1991-01-01

    This report documents a package of computer programs called VENVAL. These programs prepare plywood mill data for a linear programming (LP) model that, in turn, calculates the optimum mix of products to make, given a set of technologies and market prices. (The software to solve a linear program is not provided and must be obtained separately.) Linear programming finds...

  2. 76 FR 338 - Notice of Proposed Information Collection Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... feasibility of a promising practices study of Upward Bound that uses a rigorous quasi-experimental design. The design and feasibility report will develop a set of design options for conducting a study of Upward Bound and examine their applicability to studies of other TRIO programs. If a rigorous evaluation design...

  3. Ranking Forestry Investments With Parametric Linear Programming

    Treesearch

    Paul A. Murphy

    1976-01-01

    Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.

  4. Economic Analysis of Equal Educational Opportunity Programs.

    ERIC Educational Resources Information Center

    Mela, Ken

    1997-01-01

    Presents methods for assessing the impact and economic viability of federal equal-educational-opportunity programs, particularly in higher education. Techniques for gathering needed data and analyzing them are offered in the context of a hypothetical community college Veterans Upward Bound (VUB) program and two real VUB programs. (MSE)

  5. Investigating Integer Restrictions in Linear Programming

    ERIC Educational Resources Information Center

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  6. Multiprocessor speed-up, Amdahl's Law, and the Activity Set Model of parallel program behavior

    NASA Technical Reports Server (NTRS)

    Gelenbe, Erol

    1988-01-01

    An important issue in the effective use of parallel processing is the estimation of the speed-up one may expect as a function of the number of processors used. Amdahl's Law has traditionally provided a guideline to this issue, although it appears excessively pessimistic in the light of recent experimental results. In this note, Amdahl's Law is amended by giving a greater importance to the capacity of a program to make effective use of parallel processing, but also recognizing the fact that imbalance of the workload of each processor is bound to occur. An activity set model of parallel program behavior is then introduced along with the corresponding parallelism index of a program, leading to upper and lower bounds to the speed-up.

  7. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  8. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    NASA Astrophysics Data System (ADS)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0

  9. Cauchy horizon stability in a collapsing spherical dust cloud: II. Energy bounds for test fields and odd-parity gravitational perturbations

    NASA Astrophysics Data System (ADS)

    Ortiz, Néstor; Sarbach, Olivier

    2018-01-01

    We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.

  10. Adaptive estimation of a time-varying phase with coherent states: Smoothing can give an unbounded improvement over filtering

    NASA Astrophysics Data System (ADS)

    Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.

    2018-04-01

    The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.

  11. Summer Opportunities.

    ERIC Educational Resources Information Center

    Winds of Change, 2002

    2002-01-01

    This directory describes 24 summer internships and cooperative education programs for college students, especially in the science, engineering, and technology fields. A few programs are specifically for American Indians, minority groups, or college-bound high school students. Program entries include a brief description, skills and background…

  12. Consistent searches for SMEFT effects in non-resonant dijet events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alte, Stefan; Konig, Matthias; Shepherd, William

    Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less

  13. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  14. Consistent searches for SMEFT effects in non-resonant dijet events

    DOE PAGES

    Alte, Stefan; Konig, Matthias; Shepherd, William

    2018-01-19

    Here, we investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at ordermore » $$1/\\Lambda^2$$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in previous searches of this nature. Furthermore, it is important to give consistent error estimates for the theoretical predictions of the signal model, particularly in the region of phase space where the probed energy is approaching the cutoff scale of the EFT. There are two linear combinations of operators which contribute to dijet production in the SMEFT with distinct angular behavior; we identify those linear combinations and determine the ability of LHC searches to constrain them simultaneously. Consistently treating the EFT generically leads to weakened bounds on new-physics parameters. These constraints will be a useful input to future global analyses in the SMEFT framework, and the techniques used here to consistently search for EFT effects are directly applicable to other off-resonance signals.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fu-Lin, E-mail: flzhang@tju.edu.cn; Chen, Jing-Ling, E-mail: chenjl@nankai.edu.cn; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit puremore » state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: • We study a set of W-type noise and its linear effect on symmetric pure states. • Its effect on two-qubit entanglement depends only on the initial concurrence. • A lower bound of the effect on 3-tangle is found in terms of initial entanglements. • We obtain the time of three-tangle sudden death for two families of typical states. • These reveal that the bipartite entanglement speeds up the decay of the tripartite one.« less

  16. PLATYPUS: A code for reaction dynamics of weakly-bound nuclei at near-barrier energies within a classical dynamical model

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis

    2011-04-01

    A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The program is suited for a weakly-bound two-body projectile colliding with a stable target. The initial orientation of the segment joining the two breakup fragments is considered to be isotropic. Additional comments: Several source routines from Numerical Recipies, and the Mersenne Twister random number generator package are included to enable independent compilation. Running time: About 75 minutes for input provided, using a PC with 1.5 GHz processor.

  17. Efficacy of two lion conservation programs in Maasailand, Kenya.

    PubMed

    Hazzah, Leela; Dolrenry, Stephanie; Naughton-Treves, Lisa; Naughton, Lisa; Edwards, Charles T T; Mwebi, Ogeto; Kearney, Fiachra; Frank, Laurence

    2014-06-01

    Lion (Panthera leo) populations are in decline throughout most of Africa. The problem is particularly acute in southern Kenya, where Maasai pastoralists have been spearing and poisoning lions at a rate that will ensure near term local extinction. We investigated 2 approaches for improving local tolerance of lions: compensation payments for livestock lost to predators and Lion Guardians, which draws on local cultural values and knowledge to mitigate livestock-carnivore conflict and monitor carnivores. To gauge the overall influence of conservation intervention, we combined both programs into a single conservation treatment variable. Using 8 years of lion killing data, we applied Manski's partial identification approach with bounded assumptions to investigate the effect of conservation treatment on lion killing in 4 contiguous areas. In 3 of the areas, conservation treatment was positively associated with a reduction in lion killing. We then applied a generalized linear model to assess the relative efficacy of the 2 interventions. The model estimated that compensation resulted in an 87-91% drop in the number of lions killed, whereas Lion Guardians (operating in combination with compensation and alone) resulted in a 99% drop in lion killing. © 2014 Society for Conservation Biology.

  18. Folding dynamics of linear emulsion polymers into 3D architectures

    NASA Astrophysics Data System (ADS)

    McMullen, Angus; Bargteil, Dylan; Brujic, Jasna

    Colloidal polymers have been limited to inflexible, solid colloids. Here we show that the fluidity of emulsion droplets allows for the self-assembly of flexible droplet chains, which can subsequently be folded into 3D structures via secondary interactions. We achieve this using DNA-guided interactions, to initially form the chain, and then program its folding pathways. When two emulsion droplets labeled with complementary DNA meet, the balance of hybridization energy and droplet deformation yields an equilibrium patch size. Therefore, the concentration of DNA on the surface determines the number of droplet-droplet bonds in the assembly. We find that 96 % of bound droplets successfully self-assemble into chains. Droplet binding is a stochastic process, following a Poisson distribution of lengths. Since the fluid droplets can rearrange, we compare the dynamics of emulsion chains to that of polymers. We also trigger secondary interactions along the chain, causing the formation of specific loops or compact clusters. This approach will allow us to fold our emulsion polymers into a wide array of soft structures, giving us a powerful biomimetic colloidal system to investigate protein folding on the mesoscopic scale. This work was supported by the NSF MRSEC Program (DMR-0820341).

  19. NMRPipe: a multidimensional spectral processing system based on UNIX pipes.

    PubMed

    Delaglio, F; Grzesiek, S; Vuister, G W; Zhu, G; Pfeifer, J; Bax, A

    1995-11-01

    The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

  20. Endoreversible quantum heat engines in the linear response regime.

    PubMed

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  1. Hyperspherical nuclear motion of H3 + and D3 + in the electronic triplet state, a 3Sigmau +.

    PubMed

    Ferreira, Tiago Mendes; Alijah, Alexander; Varandas, António J C

    2008-02-07

    The potential energy surface of H(3) (+) in the lowest electronic triplet state, a (3)Sigma(u) (+), shows three equivalent minima at linear nuclear configurations. The vibrational levels of H(3) (+) and D(3) (+) on this surface can therefore be described as superimposed linear molecule states. Owing to such a superposition, each vibrational state characterized by quantum numbers of an isolated linear molecule obtains a one- and a two-dimensional component. The energy splittings between the two components have now been rationalized within a hyperspherical picture. It is shown that nuclear motion along the hyperangle phi mainly accounts for the splittings and provides upper bounds. This hyperspherical motion can be considered an extension of the antisymmetric stretching motion of the individual linear molecule.

  2. On the Inefficiency of Equilibria in Linear Bottleneck Congestion Games

    NASA Astrophysics Data System (ADS)

    de Keijzer, Bart; Schäfer, Guido; Telelis, Orestis A.

    We study the inefficiency of equilibrium outcomes in bottleneck congestion games. These games model situations in which strategic players compete for a limited number of facilities. Each player allocates his weight to a (feasible) subset of the facilities with the goal to minimize the maximum (weight-dependent) latency that he experiences on any of these facilities. We derive upper and (asymptotically) matching lower bounds on the (strong) price of anarchy of linear bottleneck congestion games for a natural load balancing social cost objective (i.e., minimize the maximum latency of a facility). We restrict our studies to linear latency functions. Linear bottleneck congestion games still constitute a rich class of games and generalize, for example, load balancing games with identical or uniformly related machines with or without restricted assignments.

  3. Transmit Designs for the MIMO Broadcast Channel With Statistical CSI

    NASA Astrophysics Data System (ADS)

    Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan

    2014-09-01

    We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.

  4. 77 FR 3751 - Extension of Deadlines; Upward Bound Program (Regular Upward Bound (UB))

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... the document published in the Federal Register. Free Internet access to the official edition of the... Federal Relay Service (FRS), toll free, at 1-(800) 877-8339. SUPPLEMENTARY INFORMATION: Background On..., you must have Adobe Acrobat Reader, which is available free at this site. You may also access...

  5. 76 FR 78621 - Applications for New Awards; Upward Bound Program (Regular Upward Bound (UB))

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... high school who in the first year of postsecondary education placed into college-level math and English... education placed into college-level math and English or needed remediation in those subjects. The Department... grants; Veterans UB grants; and UB Math and Science grants. This notice only announces deadlines and...

  6. Sublinear Upper Bounds for Stochastic Programs with Recourse. Revision.

    DTIC Science & Technology

    1987-06-01

    approximation procedures for (1.1) generally rely on discretizations of E (Huang, Ziemba , and Ben-Tal (1977), Kall and Stoyan (1982), Birge and Wets...Wright, Practical optimization (Academic Press, London and New York,1981). C.C. Huang, W. Ziemba , and A. Ben-Tal, "Bounds on the expectation of a con

  7. An Evaluation of Dropouts from Outward Bound Programs for the Unemployed

    ERIC Educational Resources Information Center

    Maxwell, Robert; Perry, Martin; Martin, Andrew John

    2008-01-01

    Outward Bound New Zealand provides 21-day residential motivational intervention courses (Catalyst courses) to long-term unemployed clients approved by the Ministry of Social Development. During the period 2002/03, 20% of participants starting the course dropped out before course completion; which was double the contracted acceptable level set by…

  8. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.

  9. Identifying the proton transfer reaction mechanism via a proton-bound dimeric intermediate for esomeprazoles by a kinetic method combined with density functional theory calculations.

    PubMed

    Cao, Xiaoji; Zhang, Feifei; Zhu, Kundan; Ye, Xuemin; Shen, Lingxiao; Chen, Jiaoyu; Mo, Weimin

    2014-05-15

    Esomeprazole analogs are a class of important proton pump inhibitors for the treatment of gastro-esophageal reflux diseases. Understanding the fragmentation reaction mechanism of the protonated esomeprazole analogs will facilitate the characterization of their complex metabolic fate in humans. In this paper, the kinetic method and theoretical calculations were applied to evaluate the fragmentation of protonated esomeprazole analogs. All collision-induced dissociation (CID) mass spectrometry experiments were carried out using electrospray ionization (ESI) ion trap mass spectrometry in positive ion mode. Also the accurate masses of fragments were measured on by ESI quadrupole time-of-flight (QTOF) MS in positive ion mode. Theoretical calculations were carried out by the density functional theory (DFT) method with the 6-31G(d) basis set in the Gaussian 03 program. In the fragmentation of the protonated esomeprazole analogs, C-S bond breakage is observed, which gives rise to protonated 2-(sulfinylmethylene)pyridines and protonated benzimidazoles. DFT calculations demonstrate that the nitrogen atom of the pyridine part is the thermodynamically most favorable protonation site, and the C-S bond cleavage is triggered by the transfer of this ionizing proton from the nitrogen atom of the pyridine part to the carbon atom of the benzimidazole part to which the sulfinyl is attached. Moreover, with the kinetic plot, the intensity ratios of two protonated product ions yield a linear relationship with the differences in proton affinities of the corresponding neutral molecules, which provides strong experimental evidence that the reaction proceeds via proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complex intermediates. The kinetic method combined with theoretical calculations was successfully applied to probe the proton transfer reaction by proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complexes in the fragmentation of protonated esomeprazole analogs by ESI CID MS, which is a strong evidence that the kinetic method can be applied in identifying a proton-bound dimeric intermediate in the fragmentation of protonated ions. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing

    PubMed Central

    Yang, Changju; Kim, Hyongsuk

    2016-01-01

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186

  11. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

    PubMed

    Yang, Changju; Kim, Hyongsuk

    2016-08-19

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

  12. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  13. TAPESTRY on Display.

    ERIC Educational Resources Information Center

    Rapp, Katie

    1992-01-01

    Describes three programs funded by the Toyota Appreciation Program for Excellence to Science Teachers Reaching Youth (TAPESTRY) program: (1) High School Hawk Watch promotes wildlife awareness student research; (2) Science without Bounds makes science accessible to at-risk and minority students; and (3) Kansas Environmental Monitoring Network…

  14. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  15. Criteria for guaranteed breakdown in two-phase inhomogeneous bodies

    NASA Astrophysics Data System (ADS)

    Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.

    2017-08-01

    Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.

  16. Necessary and sufficient optimality conditions for classical simulations of quantum communication processes

    NASA Astrophysics Data System (ADS)

    Montina, Alberto; Wolf, Stefan

    2014-07-01

    We consider the process consisting of preparation, transmission through a quantum channel, and subsequent measurement of quantum states. The communication complexity of the channel is the minimal amount of classical communication required for classically simulating it. Recently, we reduced the computation of this quantity to a convex minimization problem with linear constraints. Every solution of the constraints provides an upper bound on the communication complexity. In this paper, we derive the dual maximization problem of the original one. The feasible points of the dual constraints, which are inequalities, give lower bounds on the communication complexity, as illustrated with an example. The optimal values of the two problems turn out to be equal (zero duality gap). By this property, we provide necessary and sufficient conditions for optimality in terms of a set of equalities and inequalities. We use these conditions and two reasonable but unproven hypotheses to derive the lower bound n ×2n -1 for a noiseless quantum channel with capacity equal to n qubits. This lower bound can have interesting consequences in the context of the recent debate on the reality of the quantum state.

  17. High frequency poroelastic waves in hydrogels.

    PubMed

    Chiarelli, Piero; Lanatà, Antonio; Carbone, Marina; Domenici, Claudio

    2010-03-01

    In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase in the water volume fraction beta of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When beta tends to 1 (100% of interstitial water) due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at beta=1 is confirmed by the experimental results, showing that it increases in less cross-linked gel samples which own a higher concentration of bounded water.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de; Reeb, David, E-mail: reeb.qit@gmail.com

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transposemore » bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.« less

  19. Lifting primordial non-Gaussianity above the noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welling, Yvette; Woude, Drian van der; Pajer, Enrico, E-mail: welling@strw.leidenuniv.nl, E-mail: D.C.vanderWoude@uu.nl, E-mail: enrico.pajer@gmail.com

    2016-08-01

    Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approachmore » and discuss the details of its implementation in Fisher forecasts.« less

  20. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  1. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  2. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  4. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ziyang; Yang, Tao; Li, Guoqi

    Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less

  5. Dwell time-based stabilisation of switched delay systems using free-weighting matrices

    NASA Astrophysics Data System (ADS)

    Koru, Ahmet Taha; Delibaşı, Akın; Özbay, Hitay

    2018-01-01

    In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the dwell time for stability of switched delay systems. Piecewise Lyapunov-Krasovskii functionals are introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-weighting matrices method to investigate non-switching stability of each candidate subsystems. Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the switched delay system. Once these conditions are represented by a set of linear matrix inequalities , dwell time optimisation problem can be formulated as a standard quasi-convex optimisation problem. Numerical examples are given to illustrate the improvements over previously obtained dwell time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problem with successive linearisation of nonlinear conditions.

  6. Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays

    DOE PAGES

    Meng, Ziyang; Yang, Tao; Li, Guoqi; ...

    2017-09-18

    Here, we study synchronization of coupled linear systems over networks with weak connectivity and nonuniform time-varying delays. We focus on the case where the internal dynamics are time-varying but non-expansive (stable dynamics with a quadratic Lyapunov function). Both uniformly jointly connected and infinitely jointly connected communication topologies are considered. A new concept of quadratic synchronization is introduced. We first show that global asymptotic quadratic synchronization can be achieved over directed networks with uniform joint connectivity and arbitrarily bounded delays. We then study the case of infinitely jointly connected communication topology. In particular, for the undirected communication topologies, it turns outmore » that the existence of a uniform time interval for the jointly connected communication topology is not necessary and quadratic synchronization can be achieved when the time-varying nonuniform delays are arbitrarily bounded. Finally, simulation results are provided to validate the theoretical results.« less

  7. A methodology for computing uncertainty bounds of multivariable systems based on sector stability theory concepts

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1992-01-01

    The application of a sector-based stability theory approach to the formulation of useful uncertainty descriptions for linear, time-invariant, multivariable systems is explored. A review of basic sector properties and sector-based approach are presented first. The sector-based approach is then applied to several general forms of parameter uncertainty to investigate its advantages and limitations. The results indicate that the sector uncertainty bound can be used effectively to evaluate the impact of parameter uncertainties on the frequency response of the design model. Inherent conservatism is a potential limitation of the sector-based approach, especially for highly dependent uncertain parameters. In addition, the representation of the system dynamics can affect the amount of conservatism reflected in the sector bound. Careful application of the model can help to reduce this conservatism, however, and the solution approach has some degrees of freedom that may be further exploited to reduce the conservatism.

  8. Social psychological benefits of a wilderness adventure program

    Treesearch

    Todd Paxton; Leo H. McAvoy

    2000-01-01

    Wilderness-based outdoor adventure programs are intended to produce positive change in participants. There are a significant number of these programs, with Hattie and others (1997) reporting that in 1994 alone, there were over 40,000 students participating in Outward Bound programs. Not all of these programs occur in wilderness, but significant portions of them do. A...

  9. A Mathematical Study on “Additive Technique” Versus “Branch and Bound Technique” for Solving Binary Programming Problem

    NASA Astrophysics Data System (ADS)

    Sufahani, Suliadi; Ghazali Kamardan, M.; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Khalid, Kamil; Ali, Maselan; Khalid, Kamal; Nawawi, MKM; Ahmad, Asmala

    2018-04-01

    A solid body needs adequate supplements from nourishment that we eat each day. Eating pretty much than what our body needs will prompt lack of healthy sustenance (under-nourishment and over-nourishment). In Malaysia, a few reviews have been directed to examine the wholesome status of Malaysians, particularly among youngsters and youths. However there are different methods for taking care of the menu arranging issue and in this paper Binary Programming (BP) is executed. Separately, “Additive Technique (AT)” and “Branch and Bound Technique (BBT)” are utilized as a part of BP. Both methodologies utilize diverse systems and might yield distinctive ideal arrangements. Along these lines, this study expects to build up a scientific model for eating regimen arranging that meets the essential supplement admission and look at the outcomes yield through additive substance and branch and bound methodologies. The information was gathered from different all inclusive schools and furthermore from the Ministry of Education. The model was illuminated by utilizing the Balas Algorithm through AT and Binary Programming through BBT.

  10. Design of robust iterative learning control schemes for systems with polytopic uncertainties and sector-bounded nonlinearities

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2017-01-01

    This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.

  11. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z = (z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y(0)=(y sub 1(0),...,y sub D(0)) knowledge of the statistical distribution of the random errors in y(0). The data space Y containing y(0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x (e.g., energy or dissipation rate), Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. CSI is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface. Neither the heat flow nor the energy bound is strong enough to permit estimation of B(r) at single points on the CMB, but the heat flow bound permits estimation of uniform averages of B(r) over discs on the CMB, and both bounds permit weighted disc-averages with continous weighting kernels. Both bounds also permit estimation of low-degree Gauss coefficients at the CMB. The heat flow bound resolves them up to degree 8 if the crustal field at satellite altitudes must be treated as a systematic error, but can resolve to degree 11 under the most favorable statistical treatment of the crust. These two limits produce circles of confusion on the CMB with diameters of 25 deg and 19 deg respectively.

  12. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE PAGES

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  13. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  14. Robust root clustering for linear uncertain systems using generalized Lyapunov theory

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1993-01-01

    Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.

  15. Relations between the efficiency, power and dissipation for linear irreversible heat engine at maximum trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2018-03-01

    A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \

  16. Very Low-Cost Nutritious Diet Plans Designed by Linear Programming.

    ERIC Educational Resources Information Center

    Foytik, Jerry

    1981-01-01

    Provides procedural details of Linear Programing, developed by the U.S. Department of Agriculture to devise a dietary guide for consumers that minimizes food costs without sacrificing nutritional quality. Compares Linear Programming with the Thrifty Food Plan, which has been a basis for allocating coupons under the Food Stamp Program. (CS)

  17. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    PubMed

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  18. Fuzzy bi-objective linear programming for portfolio selection problem with magnitude ranking function

    NASA Astrophysics Data System (ADS)

    Kusumawati, Rosita; Subekti, Retno

    2017-04-01

    Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.

  19. 12 CFR 370.5 - Participation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Subject to, and to comply with, any FDIC request to provide information relevant to participation in the... guarantee program; and (3) Bound by the FDIC's decisions, in consultation with the appropriate Federal... participating entity in both the debt guarantee program and the transaction account guarantee program, unless...

  20. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  1. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  2. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  3. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  4. The Experiences of Advanced Placement and International Baccalaureate Diploma Program Participants: A Systematic Review of Qualitative Research

    ERIC Educational Resources Information Center

    Park, Kelly; Caine, Vera; Wimmer, Randolph

    2014-01-01

    Enriched high school curricula like the Advanced Placement and International Baccalaureate Diploma programs are endorsed as "pathway programs" for postsecondary-bound students. Program participation is perceived to have benefits that appeal to a broad stakeholder group of universities, administrators, teachers, students, and parents. In…

  5. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  6. Structured Uncertainty Bound Determination From Data for Control and Performance Validation

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.

    2003-01-01

    This report attempts to document the broad scope of issues that must be satisfactorily resolved before one can expect to methodically obtain, with a reasonable confidence, a near-optimal robust closed loop performance in physical applications. These include elements of signal processing, noise identification, system identification, model validation, and uncertainty modeling. Based on a recently developed methodology involving a parameterization of all model validating uncertainty sets for a given linear fractional transformation (LFT) structure and noise allowance, a new software, Uncertainty Bound Identification (UBID) toolbox, which conveniently executes model validation tests and determine uncertainty bounds from data, has been designed and is currently available. This toolbox also serves to benchmark the current state-of-the-art in uncertainty bound determination and in turn facilitate benchmarking of robust control technology. To help clarify the methodology and use of the new software, two tutorial examples are provided. The first involves the uncertainty characterization of a flexible structure dynamics, and the second example involves a closed loop performance validation of a ducted fan based on an uncertainty bound from data. These examples, along with other simulation and experimental results, also help describe the many factors and assumptions that determine the degree of success in applying robust control theory to practical problems.

  7. Exact lower and upper bounds on stationary moments in stochastic biochemical systems

    NASA Astrophysics Data System (ADS)

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Lamperski, Andrew; Singh, Abhyudai

    2017-08-01

    In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions. The method exploits the fact that statistical moments of any positive-valued random variable must satisfy some constraints that are compactly represented through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment equations at steady state in conjunction with constraints on moment matrices provides exact lower and upper bounds on the moments. These results are illustrated by three different examples—the commonly used logistic growth model, stochastic gene expression with auto-regulation and an activator-repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is shown to improve as moment equations are expanded to include higher-order moments. Our results provide avenues for development of approximation methods that provide explicit bounds on moments for nonlinear stochastic systems that are otherwise analytically intractable.

  8. Structure Functions of Bound Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian Kuhn

    2005-04-01

    We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.

  9. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  10. 34 CFR 645.15 - What additional services may Veterans Upward Bound projects provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... projects provide? 645.15 Section 645.15 Education Regulations of the Offices of the Department of Education... Projects and Services Does the Secretary Assist Under This Program? § 645.15 What additional services may Veterans Upward Bound projects provide? In addition to the services that must be provided under § 645.11, a...

  11. 34 CFR 645.15 - What additional services may Veterans Upward Bound projects provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... projects provide? 645.15 Section 645.15 Education Regulations of the Offices of the Department of Education... Projects and Services Does the Secretary Assist Under This Program? § 645.15 What additional services may Veterans Upward Bound projects provide? In addition to the services that must be provided under § 645.11, a...

  12. 34 CFR 645.15 - What additional services may Veterans Upward Bound projects provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... projects provide? 645.15 Section 645.15 Education Regulations of the Offices of the Department of Education... Projects and Services Does the Secretary Assist Under This Program? § 645.15 What additional services may Veterans Upward Bound projects provide? In addition to the services that must be provided under § 645.11, a...

  13. 34 CFR 645.15 - What additional services may Veterans Upward Bound projects provide?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects provide? 645.15 Section 645.15 Education Regulations of the Offices of the Department of Education... Projects and Services Does the Secretary Assist Under This Program? § 645.15 What additional services may Veterans Upward Bound projects provide? In addition to the services that must be provided under § 645.11, a...

  14. An exploratory study of the changes in benefits sought during an outward bound experience

    Treesearch

    Frederick Kacprzynski

    1992-01-01

    Participants in an eight-day Outward Bound program were asked about their motivations for participation before the experience began and at the mid-point of the actual experience. Although more anticipated differences were expected, based on motivational theory, only one of the twelve motivational domains was significantly different at the .001 level.

  15. A Branch-and-Bound Algorithm for Fitting Anti-Robinson Structures to Symmetric Dissimilarity Matrices.

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2002-01-01

    Developed a branch-and-bound algorithm that can be used to seriate a symmetric dissimilarity matrix by identifying a reordering of rows and columns of the matrix optimizing an anti-Robinson criterion. Computational results suggest that with respect to computational efficiency, the approach is generally competitive with dynamic programming. (SLD)

  16. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  17. A Comparison of Linear and Systems Thinking Approaches for Program Evaluation Illustrated Using the Indiana Interdisciplinary GK-12

    ERIC Educational Resources Information Center

    Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa

    2009-01-01

    Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted…

  18. Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons

    NASA Technical Reports Server (NTRS)

    Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.

    1988-01-01

    Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.

  19. A characterization of positive linear maps and criteria of entanglement for quantum states

    NASA Astrophysics Data System (ADS)

    Hou, Jinchuan

    2010-09-01

    Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.

  20. A numerical differentiation library exploiting parallel architectures

    NASA Astrophysics Data System (ADS)

    Voglis, C.; Hadjidoukas, P. E.; Lagaris, I. E.; Papageorgiou, D. G.

    2009-08-01

    We present a software library for numerically estimating first and second order partial derivatives of a function by finite differencing. Various truncation schemes are offered resulting in corresponding formulas that are accurate to order O(h), O(h), and O(h), h being the differencing step. The derivatives are calculated via forward, backward and central differences. Care has been taken that only feasible points are used in the case where bound constraints are imposed on the variables. The Hessian may be approximated either from function or from gradient values. There are three versions of the software: a sequential version, an OpenMP version for shared memory architectures and an MPI version for distributed systems (clusters). The parallel versions exploit the multiprocessing capability offered by computer clusters, as well as modern multi-core systems and due to the independent character of the derivative computation, the speedup scales almost linearly with the number of available processors/cores. Program summaryProgram title: NDL (Numerical Differentiation Library) Catalogue identifier: AEDG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73 030 No. of bytes in distributed program, including test data, etc.: 630 876 Distribution format: tar.gz Programming language: ANSI FORTRAN-77, ANSI C, MPI, OPENMP Computer: Distributed systems (clusters), shared memory systems Operating system: Linux, Solaris Has the code been vectorised or parallelized?: Yes RAM: The library uses O(N) internal storage, N being the dimension of the problem Classification: 4.9, 4.14, 6.5 Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, etc. The parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Restrictions: The library uses only double precision arithmetic. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 15 ms for the serial distribution, 0.6 s for the OpenMP and 4.2 s for the MPI parallel distribution on 2 processors.

  1. The Riesz-Radon-Fréchet problem of characterization of integrals

    NASA Astrophysics Data System (ADS)

    Zakharov, Valerii K.; Mikhalev, Aleksandr V.; Rodionov, Timofey V.

    2010-11-01

    This paper is a survey of results on characterizing integrals as linear functionals. It starts from the familiar result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann-Stieltjes integrals on a closed interval, and is directly connected with Radon's famous theorem (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact subset of {R}^n. After the works of Radon, Fréchet, and Hausdorff, the problem of characterizing integrals as linear functionals took the particular form of the problem of extending Radon's theorem from {R}^n to more general topological spaces with Radon measures. This problem turned out to be difficult, and its solution has a long and rich history. Therefore, it is natural to call it the Riesz-Radon-Fréchet problem of characterization of integrals. Important stages of its solution are associated with such eminent mathematicians as Banach (1937-1938), Saks (1937-1938), Kakutani (1941), Halmos (1950), Hewitt (1952), Edwards (1953), Prokhorov (1956), Bourbaki (1969), and others. Essential ideas and technical tools were developed by A.D. Alexandrov (1940-1943), Stone (1948-1949), Fremlin (1974), and others. Most of this paper is devoted to the contemporary stage of the solution of the problem, connected with papers of König (1995-2008), Zakharov and Mikhalev (1997-2009), and others. The general solution of the problem is presented in the form of a parametric theorem on characterization of integrals which directly implies the characterization theorems of the indicated authors. Bibliography: 60 titles.

  2. Crocodilian perivitelline membrane-bound sperm detection.

    PubMed

    Augustine, Lauren

    2017-05-01

    Advanced reproductive technologies (ART's) are often employed with various taxa to enhance captive breeding programs and maintain genetic diversity. Perivitelline membrane-bound (PVM-bound) sperm detection has previously been demonstrated in avian and chelonian species as a useful technique for breeding management. In the absence of embryotic development within an egg, this technique can detect the presence of sperm trapped on the oocyte membrane confirming breeding, male reproductive status, and pair compatibility. PVM-bound sperm were successfully detected in three clutches of Cuban crocodile (Crocodylus rhombifer) eggs at the Smithsonian's National Zoological Park (NZP) for the first time in any crocodilian species. PVM-bound sperm were detected in fresh and incubated C. rhombifer eggs, as well as eggs that were developing (banded) and those that were not (not banded). The results of this study showed significant differences in average sperm densities per egg between clutches (p = 0.001). Additionally, there was not a significant difference within clutches between eggs that banded and those that did not band (Clutch A, p = 0.505; Clutch B, p = 0.665; Clutch C, p = 0.266). The results of this study demonstrate the necessity to microscopically examine eggs that do not develop (do not band), to determine if sperm is present, which can help animal managers problem solve reproductive shortcomings. PVM-bound sperm detection could be a useful technique in assessing crocodilian breeding programs, as well as have potential uses in studies assessing sperm storage, artificial insemination, and artificial incubation. This article is a U.S. Government work and is in the public domain in the USA.

  3. A no-short scalar hair theorem for rotating Kerr black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-06-01

    If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.

  4. Two Examples of Transformations When There Are Possible Outliers.

    DTIC Science & Technology

    1981-01-01

    potential outliers and, as in Carroll (1980), the influence function of A Is not bounded if k is monotone, A word of caution about "Hampel" is in order...normal linear model fits well. An acceptable analysis would thus estimate X as somewhere near I. As predicted by the influence function calculations in

  5. Power loss of a single electron charge distribution confined in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Department of Physics, Faculty of Science, I. K. Int'l University, Qazvin 34149-16818; Mahmoodi, J.

    2011-05-15

    The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

  6. Finding local genome rearrangements.

    PubMed

    Simonaitis, Pijus; Swenson, Krister M

    2018-01-01

    The double cut and join (DCJ) model of genome rearrangement is well studied due to its mathematical simplicity and power to account for the many events that transform gene order. These studies have mostly been devoted to the understanding of minimum length scenarios transforming one genome into another. In this paper we search instead for rearrangement scenarios that minimize the number of rearrangements whose breakpoints are unlikely due to some biological criteria. One such criterion has recently become accessible due to the advent of the Hi-C experiment, facilitating the study of 3D spacial distance between breakpoint regions. We establish a link between the minimum number of unlikely rearrangements required by a scenario and the problem of finding a maximum edge-disjoint cycle packing on a certain transformed version of the adjacency graph. This link leads to a 3/2-approximation as well as an exact integer linear programming formulation for our problem, which we prove to be NP-complete. We also present experimental results on fruit flies, showing that Hi-C data is informative when used as a criterion for rearrangements. A new variant of the weighted DCJ distance problem is addressed that ignores scenario length in its objective function. A solution to this problem provides a lower bound on the number of unlikely moves necessary when transforming one gene order into another. This lower bound aids in the study of rearrangement scenarios with respect to chromatin structure, and could eventually be used in the design of a fixed parameter algorithm with a more general objective function.

  7. The Jeffcott equations in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1987-01-01

    The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.

  8. Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows

    NASA Astrophysics Data System (ADS)

    Tol, Henry; Kotsonis, Marios; de Visser, Coen

    2016-11-01

    A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.

  9. Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality.

    PubMed

    Molina, J; Sued, M; Valdora, M

    2018-06-05

    Generalized linear models are often assumed to fit propensity scores, which are used to compute inverse probability weighted (IPW) estimators. To derive the asymptotic properties of IPW estimators, the propensity score is supposed to be bounded away from zero. This condition is known in the literature as strict positivity (or positivity assumption), and, in practice, when it does not hold, IPW estimators are very unstable and have a large variability. Although strict positivity is often assumed, it is not upheld when some of the covariates are unbounded. In real data sets, a data-generating process that violates the positivity assumption may lead to wrong inference because of the inaccuracy in the estimations. In this work, we attempt to conciliate between the strict positivity condition and the theory of generalized linear models by incorporating an extra parameter, which results in an explicit lower bound for the propensity score. An additional parameter is added to fulfil the overlap assumption in the causal framework. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Optimal trajectories based on linear equations

    NASA Technical Reports Server (NTRS)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  11. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  12. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  13. Optimal Attack Strategies Subject to Detection Constraints Against Cyber-Physical Systems

    DOE PAGES

    Chen, Yuan; Kar, Soummya; Moura, Jose M. F.

    2017-03-31

    This paper studies an attacker against a cyberphysical system (CPS) whose goal is to move the state of a CPS to a target state while ensuring that his or her probability of being detected does not exceed a given bound. The attacker’s probability of being detected is related to the nonnegative bias induced by his or her attack on the CPS’s detection statistic. We formulate a linear quadratic cost function that captures the attacker’s control goal and establish constraints on the induced bias that reflect the attacker’s detection-avoidance objectives. When the attacker is constrained to be detected at the false-alarmmore » rate of the detector, we show that the optimal attack strategy reduces to a linear feedback of the attacker’s state estimate. In the case that the attacker’s bias is upper bounded by a positive constant, we provide two algorithms – an optimal algorithm and a sub-optimal, less computationally intensive algorithm – to find suitable attack sequences. Lastly, we illustrate our attack strategies in numerical examples based on a remotely-controlled helicopter under attack.« less

  14. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells

    NASA Astrophysics Data System (ADS)

    Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse

    2014-02-01

    A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05295h

  15. Mode-of-Action Uncertainty for Dual-Mode Carcinogens:Lower Bounds for Naphthalene-Induced Nasal Tumors in Rats Implied byPBPK and 2-Stage Stochastic Cancer Risk Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogen, K T

    2007-01-30

    As reflected in the 2005 USEPA Guidelines for Cancer Risk Assessment, some chemical carcinogens may have a site-specific mode of action (MOA) that is dual, involving mutation in addition to cell-killing induced hyperplasia. Although genotoxicity may contribute to increased risk at all doses, the Guidelines imply that for dual MOA (DMOA) carcinogens, judgment be used to compare and assess results obtained using separate ''linear'' (genotoxic) vs. ''nonlinear'' (nongenotoxic) approaches to low-level risk extrapolation. However, the Guidelines allow the latter approach to be used only when evidence is sufficient to parameterize a biologically based model that reliably extrapolates risk to lowmore » levels of concern. The Guidelines thus effectively prevent MOA uncertainty from being characterized and addressed when data are insufficient to parameterize such a model, but otherwise clearly support a DMOA. A bounding factor approach--similar to that used in reference dose procedures for classic toxicity endpoints--can address MOA uncertainty in a way that avoids explicit modeling of low-dose risk as a function of administered or internal dose. Even when a ''nonlinear'' toxicokinetic model cannot be fully validated, implications of DMOA uncertainty on low-dose risk may be bounded with reasonable confidence when target tumor types happen to be extremely rare. This concept was illustrated for the rodent carcinogen naphthalene. Bioassay data, supplemental toxicokinetic data, and related physiologically based pharmacokinetic and 2-stage stochastic carcinogenesis modeling results all clearly indicate that naphthalene is a DMOA carcinogen. Plausibility bounds on rat-tumor-type specific DMOA-related uncertainty were obtained using a 2-stage model adapted to reflect the empirical link between genotoxic and cytotoxic effects of the most potent identified genotoxic naphthalene metabolites, 1,2- and 1,4-naphthoquinone. Resulting bounds each provided the basis for a corresponding ''uncertainty'' factor <1 appropriate to apply to estimates of naphthalene risk obtained by linear extrapolation under a default genotoxic MOA assumption. This procedure is proposed as scientifically credible method to address MOA uncertainty for DMOA carcinogens.« less

  16. Linear Programming across the Curriculum

    ERIC Educational Resources Information Center

    Yoder, S. Elizabeth; Kurz, M. Elizabeth

    2015-01-01

    Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

  17. Fundamental solution of the problem of linear programming and method of its determination

    NASA Technical Reports Server (NTRS)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  18. A Sawmill Manager Adapts To Change With Linear Programming

    Treesearch

    George F. Dutrow; James E. Granskog

    1973-01-01

    Linear programming provides guidelines for increasing sawmill capacity and flexibility and for determining stumpagepurchasing strategy. The operator of a medium-sized sawmill implemented improvements suggested by linear programming analysis; results indicate a 45 percent increase in revenue and a 36 percent hike in volume processed.

  19. General College: Provider of Social Services.

    ERIC Educational Resources Information Center

    Hixson, Bruce, Ed.

    1981-01-01

    Three programs in the General College of the University of Minnesota that provide direct social services as well as education to special populations are described: The INSIGHT Program available at Stillwater State Prison; and the Upward Bound and University Day Community programs both offered on the Minneapolis campus. According to Daniel F.…

  20. Upward Bound. Program Objectives, Summer 1971.

    ERIC Educational Resources Information Center

    Wesleyan Univ., Middletown, CT.

    The primary program objectives were as follows: (1) The students will achieve passing grade in the college preparation program; (2) The students will achieve one year academic growth each year as measured by the SCAT and other standardized measurements; (3) The students will achieve the minimum PSAT percentile rank as anticipated for college…

  1. The spinning Kerr-black-hole-mirror bomb: A lower bound on the radius of the reflecting mirror

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-10-01

    The intriguing superradiant amplification phenomenon allows an orbiting scalar field to extract rotational energy from a spinning Kerr black hole. Interestingly, the energy extraction rate can grow exponentially in time if the black-hole-field system is placed inside a reflecting mirror which prevents the field from radiating its energy to infinity. This composed Kerr-black-hole-scalar-field-mirror system, first designed by Press and Teukolsky, has attracted the attention of physicists over the last four decades. Previous numerical studies of this spinning black-hole bomb have revealed the interesting fact that the superradiant instability shuts down if the reflecting mirror is placed too close to the black-hole horizon. In the present study we use analytical techniques to explore the superradiant instability regime of this composed Kerr-black-hole-linearized-scalar-field-mirror system. In particular, it is proved that the lower bound rm/r+ >1/2 (√{ 1 +8M/r- } - 1) provides a necessary condition for the development of the exponentially growing superradiant instabilities in this composed physical system, where rm is the radius of the confining mirror and r± are the horizon radii of the spinning Kerr black hole. We further show that, in the linearized regime, this analytically derived lower bound on the radius of the confining mirror agrees with direct numerical computations of the superradiant instability spectrum which characterizes the spinning black-hole-mirror bomb.

  2. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  3. Dissociation and symptoms of culture-bound syndromes in North America: a preliminary study.

    PubMed

    Ross, Colin A; Schroeder, Elizabeth; Ness, Laura

    2013-01-01

    The aim of this study was to determine whether classical culture-bound syndromes occur among psychiatric inpatients with dissociative disorders in North America. The Dissociative Trance Disorder Interview Schedule, the Dissociative Experiences Scale, and the Dissociative Disorders Interview Schedule were administered to 100 predominantly Caucasian, American, English-speaking trauma program inpatients at a hospital in the United States. The participants reported high rates of childhood physical and/or sexual abuse (87%), dissociative disorders (73%), and membership in the dissociative taxon (78%). They also reported a wide range of possession experiences and exorcism rituals, as well as the classical culture-bound syndromes of latah, bebainan, amok, and pibloktoq. Our data are consistent with the view that possession and classical culture-bound syndromes are predominantly dissociative in nature and not really culture-bound from the perspective of Caucasian, English-speaking America.

  4. Improved Bounds on Violation of the Strong Equivalence Principle

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.

    2002-01-01

    I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.

  5. Readying One's Self: A Grounded Theory Investigation of the LatinoJustice PRLDEF LawBound Program Participants

    ERIC Educational Resources Information Center

    Joseph, Angela Marie Banner

    2011-01-01

    This study was a grounded theory investigation of the LatinoJustice PRLDEF LawBound participants. The research was conducted using the grounded theory method developed by Glaser and Strauss (1967) and Glaser (1978, 1992, 1993, 1996, 1998, 2001, 2003, 2005) to discover an explanatory theory directly from the data. The discovery of the…

  6. Take-up of public insurance and crowd-out of private insurance under recent CHIP expansions to higher income children.

    PubMed

    Gresenz, Carole Roan; Edgington, Sarah E; Laugesen, Miriam; Escarce, José J

    2012-10-01

    To analyze the effects of states' expansions of Children's Health Insurance Program (CHIP) eligibility to children in higher income families on health insurance coverage outcomes. 2002-2009 Current Population Survey linked to multiple secondary data sources. Instrumental variables estimation of linear probability models. Outcomes are whether the child had any public insurance, any private insurance, or no insurance coverage during the year. Among children in families with incomes between two and four times the federal poverty line (FPL), four enrolled in CHIP for every 100 who became eligible. Roughly half of the newly eligible children who took up public insurance were previously uninsured. The upper bound "crowd-out" rate was estimated to be 46 percent. The CHIP expansions to children in higher income families were associated with limited uptake of public coverage. Our results additionally suggest that there was crowd-out of private insurance coverage. © Health Research and Educational Trust.

  7. Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations

    NASA Astrophysics Data System (ADS)

    Phan, Tuoc

    2017-12-01

    This paper studies the Sobolev regularity for weak solutions of a class of singular quasi-linear parabolic problems of the form ut -div [ A (x , t , u , ∇u) ] =div [ F ] with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients A are discontinuous and singular in (x , t)-variables, and dependent on the solution u. Global and interior weighted W 1 , p (ΩT , ω)-regularity estimates are established for weak solutions of these equations, where ω is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for ω = 1, because of the singularity of the coefficients in (x , t)-variables.

  8. Internal null controllability of a linear Schrödinger-KdV system on a bounded interval

    NASA Astrophysics Data System (ADS)

    Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.

    2016-01-01

    The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.

  9. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  10. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  11. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  12. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    PubMed Central

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  13. Timetabling an Academic Department with Linear Programming.

    ERIC Educational Resources Information Center

    Bezeau, Lawrence M.

    This paper describes an approach to faculty timetabling and course scheduling that uses computerized linear programming. After reviewing the literature on linear programming, the paper discusses the process whereby a timetable was created for a department at the University of New Brunswick. Faculty were surveyed with respect to course offerings…

  14. A Comparison of Traditional Worksheet and Linear Programming Methods for Teaching Manure Application Planning.

    ERIC Educational Resources Information Center

    Schmitt, M. A.; And Others

    1994-01-01

    Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchett, Deon L.; Chen, Richard Li-Yang; Phillips, Cynthia A.

    This report summarizes the work performed under the project project Next-Generation Algo- rithms for Assessing Infrastructure Vulnerability and Optimizing System Resilience. The goal of the project was to improve mathematical programming-based optimization technology for in- frastructure protection. In general, the owner of a network wishes to design a network a network that can perform well when certain transportation channels are inhibited (e.g. destroyed) by an adversary. These are typically bi-level problems where the owner designs a system, an adversary optimally attacks it, and then the owner can recover by optimally using the remaining network. This project funded three years ofmore » Deon Burchett's graduate research. Deon's graduate advisor, Professor Jean-Philippe Richard, and his Sandia advisors, Richard Chen and Cynthia Phillips, supported Deon on other funds or volunteer time. This report is, therefore. essentially a replication of the Ph.D. dissertation it funded [12] in a format required for project documentation. The thesis had some general polyhedral research. This is the study of the structure of the feasi- ble region of mathematical programs, such as integer programs. For example, an integer program optimizes a linear objective function subject to linear constraints, and (nonlinear) integrality con- straints on the variables. The feasible region without the integrality constraints is a convex polygon. Careful study of additional valid constraints can significantly improve computational performance. Here is the abstract from the dissertation: We perform a polyhedral study of a multi-commodity generalization of variable upper bound flow models. In particular, we establish some relations between facets of single- and multi- commodity models. We then introduce a new family of inequalities, which generalizes traditional flow cover inequalities to the multi-commodity context. We present encouraging numerical results. We also consider the directed edge-failure resilient network design problem (DRNDP). This problem entails the design of a directed multi-commodity flow network that is capable of fulfilling a specified percentage of demands in the event that any G arcs are destroyed, where G is a constant parameter. We present a formulation of DRNDP and solve it in a branch-column-cut framework. We present computational results.« less

  16. Applications of Goal Programming to Education.

    ERIC Educational Resources Information Center

    Van Dusseldorp, Ralph A.; And Others

    This paper discusses goal programming, a computer-based operations research technique that is basically a modification and extension of linear programming. The authors first discuss the similarities and differences between goal programming and linear programming, then describe the limitations of goal programming and its possible applications for…

  17. A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.

    2018-04-01

    Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.

  18. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  19. On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Martel, G.; Chédot, C.; Réglier, V.; Hideur, A.; Ortaç, B.; Grelu, Ph.

    2007-02-01

    On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.

  20. On the Coriolis effect in acoustic waveguides.

    PubMed

    Wegert, Henry; Reindl, Leonard M; Ruile, Werner; Mayer, Andreas P

    2012-05-01

    Rotation of an elastic medium gives rise to a shift of frequency of its acoustic modes, i.e., the time-period vibrations that exist in it. This frequency shift is investigated by applying perturbation theory in the regime of small ratios of the rotation velocity and the frequency of the acoustic mode. In an expansion of the relative frequency shift in powers of this ratio, upper bounds are derived for the first-order and the second-order terms. The derivation of the theoretical upper bounds of the first-order term is presented for linear vibration modes as well as for stable nonlinear vibrations with periodic time dependence that can be represented by a Fourier series.

  1. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase

    PubMed Central

    Houslay, Miles D.; Tipton, Keith F.

    1973-01-01

    1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O2 concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN3, benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. PMID:4778271

  2. Asymptotics of the evolution semigroup associated with a scalar field in the presence of a non-linear electromagnetic field

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Tamura, Hiroshi

    2018-04-01

    We consider a model describing the coupling of a vector-valued and a scalar homogeneous Markovian random field over R4, interpreted as expressing the interaction between a charged scalar quantum field coupled with a nonlinear quantized electromagnetic field. Expectations of functionals of the random fields are expressed by Brownian bridges. Using this, together with Feynman-Kac-Itô type formulae and estimates on the small time and large time behaviour of Brownian functionals, we prove asymptotic upper and lower bounds on the kernel of the transition semigroup for our model. The upper bound gives faster than exponential decay for large distances of the corresponding resolvent (propagator).

  3. Free surface convection in a bounded cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Vrentas, J. S.; Narayanan, R.; Agrawal, S. S.

    1981-09-01

    Surface tension-driven convection and buoyancy-driven convection in a bounded cylindrical geometry with a free surface are studied for a range of aspect ratios and Nusselt numbers. The thermal convection is in a liquid layer contained in a vertical circular cylinder with a single free boundary, the top surface, which is in contact with an inviscid gas phase. A different method is also developed for analyzing free convection problems using Green's functions, reducing the problem to the solution of an integral equation. Linear theory and some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, the structure of the convective motion, the direction of flow, and the nature of the bifurcation branching.

  4. Bounded Error Schemes for the Wave Equation on Complex Domains

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi; Yefet, Amir

    1998-01-01

    This paper considers the application of the method of boundary penalty terms ("SAT") to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude in the level of the L2-error.

  5. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  6. A new order-theoretic characterisation of the polytime computable functions☆

    PubMed Central

    Avanzini, Martin; Eguchi, Naohi; Moser, Georg

    2015-01-01

    We propose a new order-theoretic characterisation of the class of polytime computable functions. To this avail we define the small polynomial path order (sPOP⁎ for short). This termination order entails a new syntactic method to analyse the innermost runtime complexity of term rewrite systems fully automatically: for any rewrite system compatible with sPOP⁎ that employs recursion up to depth d, the (innermost) runtime complexity is polynomially bounded of degree d. This bound is tight. Thus we obtain a direct correspondence between a syntactic (and easily verifiable) condition of a program and the asymptotic worst-case complexity of the program. PMID:26412933

  7. Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    NASA Technical Reports Server (NTRS)

    Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.

    2017-01-01

    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.

  8. Optimal space communications techniques. [using digital and phase locked systems for signal processing

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.

  9. Synchronized smoldering combustion

    NASA Astrophysics Data System (ADS)

    Mikalsen, R. F.; Hagen, B. C.; Frette, V.

    2018-03-01

    Synchronized, pulsating temperatures are observed experimentally in smoldering fires. The entire sample volume (1.8 l) participates in the pulsations (pulse period 2–4 h). The synchrony lasts up to 25 h and is followed by a spontaneous transition to either disordered combustion or self-extinguishment. The synchronization is obtained when the fuel bed is cooled to the brink of extinguishment. Calculations for adiabatic conditions, including heat generation from combustion (nonlinear in temperature) and heat storage in sample (linear in temperature), predict diverging sample temperature. Experimentally, heat losses to surroundings (linear in temperature) prevent temperatures to increase without bounds and lead to pulsations.

  10. On Large Time Behavior and Selection Principle for a Diffusive Carr-Penrose Model

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph G.; Dabkowski, Michael; Wu, Jingchen

    2016-04-01

    This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.

  11. Efficiency of autonomous soft nanomachines at maximum power.

    PubMed

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  12. Some New Properties of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Fei; Wei, Yunxia

    2017-02-01

    Quantum coherence measures the correlation between different measurement results in a single-system, while entanglement and quantum discord measure the correlation among different subsystems in a multipartite system. In this paper, we focus on the relative entropy form of them, and obtain three new properties of them as follows: 1) General forms of maximally coherent states for the relative entropy coherence, 2) Linear monogamy of the relative entropy entanglement, and 3) Subadditivity of quantum discord. Here, the linear monogamy is defined as there is a small constant as the upper bound on the sum of the relative entropy entanglement in subsystems.

  13. A class of parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.

  14. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  15. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  16. Reservoir Models for Gas Hydrate Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple/linear way. Significant progress has also occurred in recent years with regard to the geologic characterization of reservoir boundaries. Vertical boundaries with overlying clay-rich "seals" are now widely-appreciated to have non-zero permeability, and lateral boundaries are sources of potential lateral fluid flow.

  17. Object matching using a locally affine invariant and linear programming techniques.

    PubMed

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  18. Jump Start: International High School Students From Other Countries Earning Early U.S. College Credits

    ERIC Educational Resources Information Center

    Hu, Jiayi; Hagedorn, Linda Serra

    2015-01-01

    This study analyzes data from one of the larger credit-based college transition programs for international students, the U.S. Bound College Credit Program or USBC2 Program (a pseudonym), mainly offered to high school students around the globe who are planning on attending American colleges or universities. Upon successful program completion, these…

  19. A Study of the National Upward Bound and Talent Search Programs. Final Report. Volume III: Descriptive Study of the Talent Search Program.

    ERIC Educational Resources Information Center

    Pyecha, J. N.; And Others

    The Office of Education's Talent Search program is designed to: (a) identify needy youths with exceptional potential and encourage them to complete secondary school and undertake further education; (b) publicize student financial aid; and (c) encourage dropouts of demonstrated aptitude to reenter educational programs. The Talent Search program…

  20. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states

    PubMed Central

    Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy

    2016-01-01

    The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135

Top