NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.
Tail Biting Trellis Representation of Codes: Decoding and Construction
NASA Technical Reports Server (NTRS)
Shao. Rose Y.; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; STEPANOV, MIKHAIL
2007-01-10
The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes andmore » their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.« less
Astrand, Elaine; Enel, Pierre; Ibos, Guilhem; Dominey, Peter Ford; Baraduc, Pierre; Ben Hamed, Suliann
2014-01-01
Decoding neuronal information is important in neuroscience, both as a basic means to understand how neuronal activity is related to cerebral function and as a processing stage in driving neuroprosthetic effectors. Here, we compare the readout performance of six commonly used classifiers at decoding two different variables encoded by the spiking activity of the non-human primate frontal eye fields (FEF): the spatial position of a visual cue, and the instructed orientation of the animal's attention. While the first variable is exogenously driven by the environment, the second variable corresponds to the interpretation of the instruction conveyed by the cue; it is endogenously driven and corresponds to the output of internal cognitive operations performed on the visual attributes of the cue. These two variables were decoded using either a regularized optimal linear estimator in its explicit formulation, an optimal linear artificial neural network estimator, a non-linear artificial neural network estimator, a non-linear naïve Bayesian estimator, a non-linear Reservoir recurrent network classifier or a non-linear Support Vector Machine classifier. Our results suggest that endogenous information such as the orientation of attention can be decoded from the FEF with the same accuracy as exogenous visual information. All classifiers did not behave equally in the face of population size and heterogeneity, the available training and testing trials, the subject's behavior and the temporal structure of the variable of interest. In most situations, the regularized optimal linear estimator and the non-linear Support Vector Machine classifiers outperformed the other tested decoders. PMID:24466019
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2016-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea
2017-01-01
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. PMID:28167896
Deep Learning Methods for Improved Decoding of Linear Codes
NASA Astrophysics Data System (ADS)
Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair
2018-02-01
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.
Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.
Sajda, Paul
2010-01-01
In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3
NASA Technical Reports Server (NTRS)
Lin, Shu
1998-01-01
Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.
Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie
2016-12-07
A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.
Soft-decision decoding techniques for linear block codes and their error performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu
1996-01-01
The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Code of Federal Regulations, 2011 CFR
2011-10-01
... time periods expire. (4) Display and logging. A visual message shall be developed from any valid header... input. (8) Decoder Programming. Access to decoder programming shall be protected by a lock or other...
Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan
2018-05-15
Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.
Volitional and Real-Time Control Cursor Based on Eye Movement Decoding Using a Linear Decoding Model
Zhang, Cheng
2016-01-01
The aim of this study is to build a linear decoding model that reveals the relationship between the movement information and the EOG (electrooculogram) data to online control a cursor continuously with blinks and eye pursuit movements. First of all, a blink detection method is proposed to reject a voluntary single eye blink or double-blink information from EOG. Then, a linear decoding model of time series is developed to predict the position of gaze, and the model parameters are calibrated by the RLS (Recursive Least Square) algorithm; besides, the assessment of decoding accuracy is assessed through cross-validation procedure. Additionally, the subsection processing, increment control, and online calibration are presented to realize the online control. Finally, the technology is applied to the volitional and online control of a cursor to hit the multiple predefined targets. Experimental results show that the blink detection algorithm performs well with the voluntary blink detection rate over 95%. Through combining the merits of blinks and smooth pursuit movements, the movement information of eyes can be decoded in good conformity with the average Pearson correlation coefficient which is up to 0.9592, and all signal-to-noise ratios are greater than 0. The novel system allows people to successfully and economically control a cursor online with a hit rate of 98%. PMID:28058044
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Multidimensional biochemical information processing of dynamical patterns
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko
2018-02-01
Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.
Multidimensional biochemical information processing of dynamical patterns.
Hasegawa, Yoshihiko
2018-02-01
Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.
Visual coding with a population of direction-selective neurons.
Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas
2015-10-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.
Visual coding with a population of direction-selective neurons
Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas
2015-01-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Cortical Decoding of Individual Finger and Wrist Kinematics for an Upper-Limb Neuroprosthesis
Aggarwal, Vikram; Tenore, Francesco; Acharya, Soumyadipta; Schieber, Marc H.; Thakor, Nitish V.
2010-01-01
Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R=0.76–0.86, MSE=0.04–0.05) and Kalman filter (R=0.68–0.86, MSE=0.04–0.07) performed better than a simple linear regression filter (0.58–0.81, 0.05–0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time. PMID:19964645
Establishing a conceptual framework for handoffs using communication theory.
Mohorek, Matthew; Webb, Travis P
2015-01-01
A significant consequence of the 2003 Accreditation Council for Graduate Medical Education duty hour restrictions has been the dramatic increase in patient care handoffs. Ineffective handoffs have been identified as the third most common cause of medical error. However, research into health care handoffs lacks a unifying foundational structure. We sought to identify a conceptual framework that could be used to critically analyze handoffs. A scholarly review focusing on communication theory as a possible conceptual framework for handoffs was conducted. A PubMed search of published handoff research was also performed, and the literature was analyzed and matched to the most relevant theory for health care handoff models. The Shannon-Weaver Linear Model of Communication was identified as the most appropriate conceptual framework for health care handoffs. The Linear Model describes communication as a linear process. A source encodes a message into a signal, the signal is sent through a channel, and the signal is decoded back into a message at the destination, all in the presence of internal and external noise. The Linear Model identifies 3 separate instances in handoff communication where error occurs: the transmitter (message encoding), channel, and receiver (signal decoding). The Linear Model of Communication is a suitable conceptual framework for handoff research and provides a structured approach for describing handoff variables. We propose the Linear Model should be used as a foundation for further research into interventions to improve health care handoffs. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
47 CFR 79.103 - Closed caption decoder requirements for apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.103 Closed caption decoder requirements... video programming transmitted simultaneously with sound, if such apparatus is manufactured in the United... with built-in closed caption decoder circuitry or capability designed to display closed-captioned video...
Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Moorthy, H. T.
1997-01-01
This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.
Rate-compatible protograph LDPC code families with linear minimum distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all having the linear minimum distance property, and structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds, and families of such codes of different rates can be decoded efficiently using a common decoding architecture.
Sasaki, Ryo; Angelaki, Dora E.
2017-01-01
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. PMID:29030435
Soft-output decoding algorithms in iterative decoding of turbo codes
NASA Technical Reports Server (NTRS)
Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.
1996-01-01
In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.
New Syndrome Decoding Techniques for the (n, K) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.
Simplified Syndrome Decoding of (n, 1) Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.
NASA Astrophysics Data System (ADS)
Farrokhi, Behraz; Erfanian, Abbas
2018-06-01
Objective. The primary concern of this study is to develop a probabilistic regression method that would improve the decoding of the hand movement trajectories from epidural ECoG as well as from subdural ECoG signals. Approach. The model is characterized by the conditional expectation of the hand position given the ECoG signals. The conditional expectation of the hand position is then modeled by a linear combination of the conditional probability density functions defined for each segment of the movement. Moreover, a spatial linear filter is proposed for reducing the dimension of the feature space. The spatial linear filter is applied to each frequency band of the ECoG signals and extract the features with highest decoding performance. Main results. For evaluating the proposed method, a dataset including 28 ECoG recordings from four adult Japanese macaques is used. The results show that the proposed decoding method outperforms the results with respect to the state of the art methods using this dataset. The relative kinematic information of each frequency band is also investigated using mutual information and decoding performance. The decoding performance shows that the best performance was obtained for high gamma bands from 50 to 200 Hz as well as high frequency ECoG band from 200 to 400 Hz for subdural recordings. However, the decoding performance was decreased for these frequency bands using epidural recordings. The mutual information shows that, on average, the high gamma band from 50 to 200 Hz and high frequency ECoG band from 200 to 400 Hz contain significantly more information than the average of the rest of the frequency bands ≤ft( p<0.001 \\right) for both subdural and epidural recordings. The results of high resolution time-frequency analysis show that ERD/ERS patterns in all frequency bands could reveal the dynamics of the ECoG responses during the movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns. Significance. Reliable decoding the kinematic information from the brain signals paves the way for robust control of external devices.
New syndrome decoder for (n, 1) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1983-01-01
The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.
Decoding Area Studies and Interdisciplinary Majors: Building a Framework for Entry-Level Students
ERIC Educational Resources Information Center
MacPherson, Kristina Ruth
2015-01-01
Decoding disciplinary expertise for novices is increasingly part of the undergraduate curriculum. But how might area studies and other interdisciplinary programs, which require integration of courses from multiple disciplines, decode expertise in a similar fashion? Additionally, as a part of decoding area studies and interdisciplines, how might a…
Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C
2017-11-15
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. Copyright © 2017 the authors 0270-6474/17/3711204-16$15.00/0.
A real-time MPEG software decoder using a portable message-passing library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan
1995-12-31
We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.
New syndrome decoding techniques for the (n, k) convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964
Good Trellises for IC Implementation of Viterbi Decoders for Linear Block Codes
NASA Technical Reports Server (NTRS)
Moorthy, Hari T.; Lin, Shu; Uehara, Gregory T.
1997-01-01
This paper investigates trellis structures of linear block codes for the integrated circuit (IC) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper-bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called add-compare-select (ACS)-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the very large scale integration (VISI) complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a nonminimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.
Good trellises for IC implementation of viterbi decoders for linear block codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Moorthy, Hari T.; Uehara, Gregory T.
1996-01-01
This paper investigates trellis structures of linear block codes for the IC (integrated circuit) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called ACS-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the VLSI complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a non-minimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.
Linear-time general decoding algorithm for the surface code
NASA Astrophysics Data System (ADS)
Darmawan, Andrew S.; Poulin, David
2018-05-01
A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.
Protograph based LDPC codes with minimum distance linearly growing with block size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
Beyond Decoding: Literacy and Libraries.
ERIC Educational Resources Information Center
Bookmark, 1992
1992-01-01
This issue contains 21 articles discussing library-sponsored literacy programs, tutoring and programming techniques, and state and national efforts. The articles include: (1) "Beyond Decoding: Literacy and Libraries--Introduction" (Amy Spaulding); (2) "Libraries: Natural Centers for Literacy" (Jacqueline Cook); (3) "Kids…
Impact of Decoding Work within a Professional Program
ERIC Educational Resources Information Center
Yeo, Michelle; Lafave, Mark; Westbrook, Khatija; McAllister, Jenelle; Valdez, Dennis; Eubank, Breda
2017-01-01
This chapter demonstrates how Decoding work can be used productively within a curriculum change process to help make design decisions based on a more nuanced understanding of student learning and the relationship of a professional program to the field.
A software simulation study of a (255,223) Reed-Solomon encoder-decoder
NASA Technical Reports Server (NTRS)
Pollara, F.
1985-01-01
A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT. Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Rate-Compatible Protograph LDPC Codes
NASA Technical Reports Server (NTRS)
Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)
2014-01-01
Digital communication coding methods resulting in rate-compatible low density parity-check (LDPC) codes built from protographs. Described digital coding methods start with a desired code rate and a selection of the numbers of variable nodes and check nodes to be used in the protograph. Constraints are set to satisfy a linear minimum distance growth property for the protograph. All possible edges in the graph are searched for the minimum iterative decoding threshold and the protograph with the lowest iterative decoding threshold is selected. Protographs designed in this manner are used in decode and forward relay channels.
Clery, Stephane; Cumming, Bruce G.
2017-01-01
Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal “noise” correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. SIGNIFICANCE STATEMENT Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early sensory information is not a general decoding strategy used by the brain. PMID:28100751
Fukushima, Makoto; Saunders, Richard C; Fujii, Naotaka; Averbeck, Bruno B; Mishkin, Mortimer
2014-01-01
Vocal production is an example of controlled motor behavior with high temporal precision. Previous studies have decoded auditory evoked cortical activity while monkeys listened to vocalization sounds. On the other hand, there have been few attempts at decoding motor cortical activity during vocal production. Here we recorded cortical activity during vocal production in the macaque with a chronically implanted electrocorticographic (ECoG) electrode array. The array detected robust activity in motor cortex during vocal production. We used a nonlinear dynamical model of the vocal organ to reduce the dimensionality of `Coo' calls produced by the monkey. We then used linear regression to evaluate the information in motor cortical activity for this reduced representation of calls. This simple linear model accounted for circa 65% of the variance in the reduced sound representations, supporting the feasibility of using the dynamical model of the vocal organ for decoding motor cortical activity during vocal production.
Flexible High Speed Codec (FHSC)
NASA Technical Reports Server (NTRS)
Segallis, G. P.; Wernlund, J. V.
1991-01-01
The ongoing NASA/Harris Flexible High Speed Codec (FHSC) program is described. The program objectives are to design and build an encoder decoder that allows operation in either burst or continuous modes at data rates of up to 300 megabits per second. The decoder handles both hard and soft decision decoding and can switch between modes on a burst by burst basis. Bandspreading is low since the code rate is greater than or equal to 7/8. The encoder and a hard decision decoder fit on a single application specific integrated circuit (ASIC) chip. A soft decision applique is implemented using 300 K emitter coupled logic (ECL) which can be easily translated to an ECL gate array.
High-throughput GPU-based LDPC decoding
NASA Astrophysics Data System (ADS)
Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin
2010-08-01
Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.
Identifying musical pieces from fMRI data using encoding and decoding models.
Hoefle, Sebastian; Engel, Annerose; Basilio, Rodrigo; Alluri, Vinoo; Toiviainen, Petri; Cagy, Maurício; Moll, Jorge
2018-02-02
Encoding models can reveal and decode neural representations in the visual and semantic domains. However, a thorough understanding of how distributed information in auditory cortices and temporal evolution of music contribute to model performance is still lacking in the musical domain. We measured fMRI responses during naturalistic music listening and constructed a two-stage approach that first mapped musical features in auditory cortices and then decoded novel musical pieces. We then probed the influence of stimuli duration (number of time points) and spatial extent (number of voxels) on decoding accuracy. Our approach revealed a linear increase in accuracy with duration and a point of optimal model performance for the spatial extent. We further showed that Shannon entropy is a driving factor, boosting accuracy up to 95% for music with highest information content. These findings provide key insights for future decoding and reconstruction algorithms and open new venues for possible clinical applications.
Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.
Manyakov, Nikolay V; Van Hulle, Marc M
2010-04-01
We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.
Delgutte, Bertrand
2015-01-01
At lower levels of sensory processing, the representation of a stimulus feature in the response of a neural population can vary in complex ways across different stimulus intensities, potentially changing the amount of feature-relevant information in the response. How higher-level neural circuits could implement feature decoding computations that compensate for these intensity-dependent variations remains unclear. Here we focused on neurons in the inferior colliculus (IC) of unanesthetized rabbits, whose firing rates are sensitive to both the azimuthal position of a sound source and its sound level. We found that the azimuth tuning curves of an IC neuron at different sound levels tend to be linear transformations of each other. These transformations could either increase or decrease the mutual information between source azimuth and spike count with increasing level for individual neurons, yet population azimuthal information remained constant across the absolute sound levels tested (35, 50, and 65 dB SPL), as inferred from the performance of a maximum-likelihood neural population decoder. We harnessed evidence of level-dependent linear transformations to reduce the number of free parameters in the creation of an accurate cross-level population decoder of azimuth. Interestingly, this decoder predicts monotonic azimuth tuning curves, broadly sensitive to contralateral azimuths, in neurons at higher levels in the auditory pathway. PMID:26490292
Population decoding of motor cortical activity using a generalized linear model with hidden states.
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam
2010-06-15
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam
2010-01-01
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500
NASA Astrophysics Data System (ADS)
Wu, Chia-Hua; Lee, Suiang-Shyan; Lin, Ja-Chen
2017-06-01
This all-in-one hiding method creates two transparencies that have several decoding options: visual decoding with or without translation flipping and computer decoding. In visual decoding, two less-important (or fake) binary secret images S1 and S2 can be revealed. S1 is viewed by the direct stacking of two transparencies. S2 is viewed by flipping one transparency and translating the other to a specified coordinate before stacking. Finally, important/true secret files can be decrypted by a computer using the information extracted from transparencies. The encoding process to hide this information includes the translated-flip visual cryptography, block types, the ways to use polynomial-style sharing, and linear congruential generator. If a thief obtained both transparencies, which are stored in distinct places, he still needs to find the values of keys used in computer decoding to break through after viewing S1 and/or S2 by stacking. However, the thief might just try every other kind of stacking and finally quit finding more secrets; for computer decoding is totally different from stacking decoding. Unlike traditional image hiding that uses images as host media, our method hides fine gray-level images in binary transparencies. Thus, our host media are transparencies. Comparisons and analysis are provided.
Influence of incident angle on the decoding in laser polarization encoding guidance
NASA Astrophysics Data System (ADS)
Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan
2009-07-01
Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.
More than Words: An Early Grades Reading Program Builds Skills and Knowledge
ERIC Educational Resources Information Center
Dubin, Jennifer
2012-01-01
Five years ago, as a way to ensure that students not only learn to decode but also understand what they decode, the Core Knowledge Foundation, the nonprofit that publishes the Core Knowledge curriculum, created a language arts program for kindergarten through second grade. The program includes two 60-minute strands: (1) a "Skills Strand," in which…
47 CFR 79.104 - Closed caption decoder requirements for recording devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) BROADCAST RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.104 Closed caption decoder requirements for recording devices. (a) Effective January 1, 2014, all apparatus designed to record video... the video programming is played back as described in § 79.103(c). (c) All apparatus subject to this...
Neural decoding of treadmill walking from noninvasive electroencephalographic signals
Presacco, Alessandro; Goodman, Ronald; Forrester, Larry
2011-01-01
Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. PMID:21768121
Construction of Protograph LDPC Codes with Linear Minimum Distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
ERIC Educational Resources Information Center
Ayala, Sandra M.
2010-01-01
Ten first grade students, participating in a Tier II response to intervention (RTI) reading program received an intervention of video self modeling to improve decoding skills and sight word recognition. The students were video recorded blending and segmenting decodable words, and reading sight words taken directly from their curriculum…
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Clery, Stephane; Cumming, Bruce G; Nienborg, Hendrikje
2017-01-18
Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal "noise" correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early sensory information is not a general decoding strategy used by the brain. Copyright © 2017 the authors 0270-6474/17/370715-11$15.00/0.
Effects of a Decoding Program on a Child with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Infantino, Josephine; Hempenstall, Kerry
2006-01-01
This case study examined the effects of a parent-presented Direct Instruction decoding program on the reading and language skills of a child with high functioning Autism Spectrum Disorder. Following the 23 hour intervention, reading comprehension, listening comprehension and fluency skills improved to grade level, whilst statistically significant…
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.
Chung, Frank H
2017-05-01
For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.
NASA Astrophysics Data System (ADS)
Al-Mishwat, Ali T.
2016-05-01
PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.
A four-dimensional virtual hand brain-machine interface using active dimension selection.
Rouse, Adam G
2016-06-01
Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.
Simulations of linear and Hamming codes using SageMath
NASA Astrophysics Data System (ADS)
Timur, Tahta D.; Adzkiya, Dieky; Soleha
2018-03-01
Digital data transmission over a noisy channel could distort the message being transmitted. The goal of coding theory is to ensure data integrity, that is, to find out if and where this noise has distorted the message and what the original message was. Data transmission consists of three stages: encoding, transmission, and decoding. Linear and Hamming codes are codes that we discussed in this work, where encoding algorithms are parity check and generator matrix, and decoding algorithms are nearest neighbor and syndrome. We aim to show that we can simulate these processes using SageMath software, which has built-in class of coding theory in general and linear codes in particular. First we consider the message as a binary vector of size k. This message then will be encoded to a vector with size n using given algorithms. And then a noisy channel with particular value of error probability will be created where the transmission will took place. The last task would be decoding, which will correct and revert the received message back to the original message whenever possible, that is, if the number of error occurred is smaller or equal to the correcting radius of the code. In this paper we will use two types of data for simulations, namely vector and text data.
NASA Technical Reports Server (NTRS)
Mccallister, R. D.; Crawford, J. J.
1981-01-01
It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.
Gustafson, Stefan; Ferreira, Janna; Rönnberg, Jerker
2007-08-01
In a longitudinal intervention study, Swedish reading disabled children in grades 2-3 received either a phonological (n = 41) or an orthographic (n = 39) training program. Both programs were computerized and interventions took place in ordinary school settings with trained special instruction teachers. Two comparison groups, ordinary special instruction and normal readers, were also included in the study. Results showed strong average training effects on text reading and general word decoding for both phonological and orthographic training, but not significantly higher improvements than for the comparison groups. The main research finding was a double dissociation: children with pronounced phonological problems improved their general word decoding skill more from phonological than from orthographic training, whereas the opposite was observed for children with pronounced orthographic problems. Thus, in this population of children, training should focus on children's relative weakness rather than their relative strength in word decoding. Copyright (c) 2007 John Wiley & Sons, Ltd.
Continuous movement decoding using a target-dependent model with EMG inputs.
Sachs, Nicholas A; Corbett, Elaine A; Miller, Lee E; Perreault, Eric J
2011-01-01
Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.
NASA Astrophysics Data System (ADS)
Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.
2016-02-01
Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.
Sachs, Nicholas A; Ruiz-Torres, Ricardo; Perreault, Eric J; Miller, Lee E
2016-02-01
It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor's proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
To sort or not to sort: the impact of spike-sorting on neural decoding performance
NASA Astrophysics Data System (ADS)
Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie
2014-10-01
Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.
Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C
2011-01-01
Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.
Multineuron spike train analysis with R-convolution linear combination kernel.
Tezuka, Taro
2018-06-01
A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.
Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin
2018-06-01
Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
A four-dimensional virtual hand brain-machine interface using active dimension selection
NASA Astrophysics Data System (ADS)
Rouse, Adam G.
2016-06-01
Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
A four-dimensional virtual hand brain-machine interface using active dimension selection
Rouse, Adam G.
2018-01-01
Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896
NASA Astrophysics Data System (ADS)
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
NASA Astrophysics Data System (ADS)
Liao, Yuxi; She, Xiwei; Wang, Yiwen; Zhang, Shaomin; Zhang, Qiaosheng; Zheng, Xiaoxiang; Principe, Jose C.
2015-12-01
Objective. Representation of movement in the motor cortex (M1) has been widely studied in brain-machine interfaces (BMIs). The electromyogram (EMG) has greater bandwidth than the conventional kinematic variables (such as position, velocity), and is functionally related to the discharge of cortical neurons. As the stochastic information of EMG is derived from the explicit spike time structure, point process (PP) methods will be a good solution for decoding EMG directly from neural spike trains. Previous studies usually assume linear or exponential tuning curves between neural firing and EMG, which may not be true. Approach. In our analysis, we estimate the tuning curves in a data-driven way and find both the traditional functional-excitatory and functional-inhibitory neurons, which are widely found across a rat’s motor cortex. To accurately decode EMG envelopes from M1 neural spike trains, the Monte Carlo point process (MCPP) method is implemented based on such nonlinear tuning properties. Main results. Better reconstruction of EMG signals is shown on baseline and extreme high peaks, as our method can better preserve the nonlinearity of the neural tuning during decoding. The MCPP improves the prediction accuracy (the normalized mean squared error) 57% and 66% on average compared with the adaptive point process filter using linear and exponential tuning curves respectively, for all 112 data segments across six rats. Compared to a Wiener filter using spike rates with an optimal window size of 50 ms, MCPP decoding EMG from a point process improves the normalized mean square error (NMSE) by 59% on average. Significance. These results suggest that neural tuning is constantly changing during task execution and therefore, the use of spike timing methodologies and estimation of appropriate tuning curves needs to be undertaken for better EMG decoding in motor BMIs.
Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram
Naud, Richard; Gerstner, Wulfram
2012-01-01
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction. PMID:23055914
Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter
Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.
2016-01-01
Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549
An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).
Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling
2018-04-17
Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.
Nonlinear decoding of a complex movie from the mammalian retina
Deny, Stéphane; Martius, Georg
2018-01-01
Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463
Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans
Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter
2016-01-01
The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces. DOI: http://dx.doi.org/10.7554/eLife.19089.001 PMID:27855780
NASA Astrophysics Data System (ADS)
Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya
2017-01-01
In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.
Gupta, Rahul; Ashe, James
2009-06-01
Brain-machine interfaces (BMIs) hold a lot of promise for restoring some level of motor function to patients with neuronal disease or injury. Current BMI approaches fall into two broad categories--those that decode discrete properties of limb movement (such as movement direction and movement intent) and those that decode continuous variables (such as position and velocity). However, to enable the prosthetic devices to be useful for common everyday tasks, precise control of the forces applied by the end-point of the prosthesis (e.g., the hand) is also essential. Here, we used linear regression and Kalman filter methods to show that neural activity recorded from the motor cortex of the monkey during movements in a force field can be used to decode the end-point forces applied by the subject successfully and with high fidelity. Furthermore, the models exhibit some generalization to novel task conditions. We also demonstrate how the simultaneous prediction of kinematics and kinetics can be easily achieved using the same framework, without any degradation in decoding quality. Our results represent a useful extension of the current BMI technology, making dynamic control of a prosthetic device a distinct possibility in the near future.
Decoding Signal Processing at the Single-Cell Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, H. Steven
The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al presentmore » compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.« less
Liu, Jing; Duan, Yongrui; Sun, Min
2017-01-01
This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [Formula: see text]. Under the conditions that the objective function is convex and the solution set is nonempty, we establish the convergence results of the proposed method, including the global convergence, the worst-case [Formula: see text] convergence rate in both the ergodic and the non-ergodic senses, where k denotes the iteration counter. Numerical experiments to decode a sparse signal arising in compressed sensing are included to illustrate the efficiency of the new method.
Decoding of finger trajectory from ECoG using deep learning.
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
Decoding of finger trajectory from ECoG using deep learning
NASA Astrophysics Data System (ADS)
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
NASA Technical Reports Server (NTRS)
Rao, T. R. N.; Seetharaman, G.; Feng, G. L.
1996-01-01
With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.
47 CFR 11.34 - Acceptability of the equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Equipment Requirements § 11.34 Acceptability of the equipment. (a) An EAS Encoder used for generating the...) The functions of the EAS decoder, Attention Signal generator and receiver, and the EAS encoder... information on how to install, operate and program an EAS Encoder, EAS Decoder, or combined unit and a list of...
47 CFR 11.34 - Acceptability of the equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Equipment Requirements § 11.34 Acceptability of the equipment. (a) An EAS Encoder used for generating the...) The functions of the EAS decoder, Attention Signal generator and receiver, and the EAS encoder... information on how to install, operate and program an EAS Encoder, EAS Decoder, or combined unit and a list of...
Intermediate Decoding Skills. NetNews. Volume 4, Number 4
ERIC Educational Resources Information Center
LDA of Minnesota, 2004
2004-01-01
Intermediate decoding refers to word analysis skills that are beyond a beginning, one-syllable level as described in an earlier NetNews issue, yet are just as important for building adult level reading proficiency. Research from secondary settings indicates that struggling readers in middle school or high school programs often read between the…
47 CFR 79.101 - Closed caption decoder requirements for analog television receivers.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) BROADCAST RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.101 Closed caption decoder... TV Mode of operation allows the video to be viewed in its original form. The Caption and Text Modes... video over which they are placed. In addition, the user must have the capability to select a black...
Process-Based Remediation of Decoding in Gifted LD Students: Three Case Studies.
ERIC Educational Resources Information Center
Crawford, Shawn; Snart, Fern
1994-01-01
Three gifted males (ages 10-13) with deficits in successive coding participated in a process-based remedial program which combined global training on tasks requiring successive processing and tasks applying successive processing to decoding in reading, and which utilized verbal mediation. Differences in student improvement were related to entry…
Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J
2010-01-01
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583
Surveying multidisciplinary aspects in real-time distributed coding for Wireless Sensor Networks.
Braccini, Carlo; Davoli, Franco; Marchese, Mario; Mongelli, Maurizio
2015-01-27
Wireless Sensor Networks (WSNs), where a multiplicity of sensors observe a physical phenomenon and transmit their measurements to one or more sinks, pertain to the class of multi-terminal source and channel coding problems of Information Theory. In this category, "real-time" coding is often encountered for WSNs, referring to the problem of finding the minimum distortion (according to a given measure), under transmission power constraints, attainable by encoding and decoding functions, with stringent limits on delay and complexity. On the other hand, the Decision Theory approach seeks to determine the optimal coding/decoding strategies or some of their structural properties. Since encoder(s) and decoder(s) possess different information, though sharing a common goal, the setting here is that of Team Decision Theory. A more pragmatic vision rooted in Signal Processing consists of fixing the form of the coding strategies (e.g., to linear functions) and, consequently, finding the corresponding optimal decoding strategies and the achievable distortion, generally by applying parametric optimization techniques. All approaches have a long history of past investigations and recent results. The goal of the present paper is to provide the taxonomy of the various formulations, a survey of the vast related literature, examples from the authors' own research, and some highlights on the inter-play of the different theories.
More on the decoder error probability for Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1987-01-01
The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.
Ventura, Valérie; Todorova, Sonia
2015-05-01
Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use. But this approach ignores the kinematic information provided by individual neurons recorded on the same electrode. The contribution of this letter is a linear decoding model that extracts kinematic information from individual neurons without spike-sorting the electrode signals. The method relies on modeling sample averages of waveform features as functions of kinematics, which is automatic and requires minimal data storage and computation. In offline reconstruction of arm trajectories of a nonhuman primate performing reaching tasks, the proposed method performs as well as decoders based on expertly manually and automatically sorted spikes.
Deep learning with convolutional neural networks for EEG decoding and visualization
Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio
2017-01-01
Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865
Deep learning with convolutional neural networks for EEG decoding and visualization.
Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio
2017-11-01
Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Coding for Parallel Links to Maximize the Expected Value of Decodable Messages
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.; Chang, Christopher S.
2011-01-01
When multiple parallel communication links are available, it is useful to consider link-utilization strategies that provide tradeoffs between reliability and throughput. Interesting cases arise when there are three or more available links. Under the model considered, the links have known probabilities of being in working order, and each link has a known capacity. The sender has a number of messages to send to the receiver. Each message has a size and a value (i.e., a worth or priority). Messages may be divided into pieces arbitrarily, and the value of each piece is proportional to its size. The goal is to choose combinations of messages to send on the links so that the expected value of the messages decodable by the receiver is maximized. There are three parts to the innovation: (1) Applying coding to parallel links under the model; (2) Linear programming formulation for finding the optimal combinations of messages to send on the links; and (3) Algorithms for assisting in finding feasible combinations of messages, as support for the linear programming formulation. There are similarities between this innovation and methods developed in the field of network coding. However, network coding has generally been concerned with either maximizing throughput in a fixed network, or robust communication of a fixed volume of data. In contrast, under this model, the throughput is expected to vary depending on the state of the network. Examples of error-correcting codes that are useful under this model but which are not needed under previous models have been found. This model can represent either a one-shot communication attempt, or a stream of communications. Under the one-shot model, message sizes and link capacities are quantities of information (e.g., measured in bits), while under the communications stream model, message sizes and link capacities are information rates (e.g., measured in bits/second). This work has the potential to increase the value of data returned from spacecraft under certain conditions.
Human Genome Research: Decoding DNA
instructions for making all the protein molecules for all the different kinds of cells of the human body dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with DeLisi played a pivotal role in proposing and initiating the Human Genome Program in 1986. The U.S
NASA Technical Reports Server (NTRS)
Clark, R. T.; Mccallister, R. D.
1982-01-01
The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.
French immersion experience and reading skill development in at-risk readers.
Kruk, Richard S; Reynolds, Kristin A A
2012-06-01
We tracked the developmental influences of exposure to French on developing English phonological awareness, decoding and reading comprehension of English-speaking at-risk readers from Grade 1 to Grade 3. Teacher-nominated at-risk readers were matched with not-at-risk readers in French immersion and English language programs. Exposure to spoken French phonetic and syllabic forms and to written French orthographic and morphological forms by children attending French immersion programs was expected to promote phonological, decoding and reading comprehension achievement. Growth in all outcomes was found, with children in immersion experiencing higher final status in phonological awareness and more rapid growth and higher final status in decoding, using multilevel modeling. At-risk readers in French immersion experienced faster growth and higher final status in reading comprehension. Benefits to reading of exposure to an additional language are discussed in relation to cross-language transfer, phonological grain size and enhanced executive control processes.
Kia, Seyed Mostafa; Pedregosa, Fabian; Blumenthal, Anna; Passerini, Andrea
2017-06-15
The use of machine learning models to discriminate between patterns of neural activity has become in recent years a standard analysis approach in neuroimaging studies. Whenever these models are linear, the estimated parameters can be visualized in the form of brain maps which can aid in understanding how brain activity in space and time underlies a cognitive function. However, the recovered brain maps often suffer from lack of interpretability, especially in group analysis of multi-subject data. To facilitate the application of brain decoding in group-level analysis, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial magnetoencephalography (MEG) decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. Our experimental results demonstrate that the mutli-task joint feature learning framework is capable of recovering more meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. We compare the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. These results can facilitate the usage of brain decoding for the characterization of fine-level distinctive patterns in group-level inference. Considering the importance of group-level analysis, the proposed approach can provide a methodological shift towards more interpretable brain decoding models. Copyright © 2017 Elsevier B.V. All rights reserved.
The Communication Link and Error ANalysis (CLEAN) simulator
NASA Technical Reports Server (NTRS)
Ebel, William J.; Ingels, Frank M.; Crowe, Shane
1993-01-01
During the period July 1, 1993 through December 30, 1993, significant developments to the Communication Link and Error ANalysis (CLEAN) simulator were completed and include: (1) Soft decision Viterbi decoding; (2) node synchronization for the Soft decision Viterbi decoder; (3) insertion/deletion error programs; (4) convolutional encoder; (5) programs to investigate new convolutional codes; (6) pseudo-noise sequence generator; (7) soft decision data generator; (8) RICE compression/decompression (integration of RICE code generated by Pen-Shu Yeh at Goddard Space Flight Center); (9) Markov Chain channel modeling; (10) percent complete indicator when a program is executed; (11) header documentation; and (12) help utility. The CLEAN simulation tool is now capable of simulating a very wide variety of satellite communication links including the TDRSS downlink with RFI. The RICE compression/decompression schemes allow studies to be performed on error effects on RICE decompressed data. The Markov Chain modeling programs allow channels with memory to be simulated. Memory results from filtering, forward error correction encoding/decoding, differential encoding/decoding, channel RFI, nonlinear transponders and from many other satellite system processes. Besides the development of the simulation, a study was performed to determine whether the PCI provides a performance improvement for the TDRSS downlink. There exist RFI with several duty cycles for the TDRSS downlink. We conclude that the PCI does not improve performance for any of these interferers except possibly one which occurs for the TDRS East. Therefore, the usefulness of the PCI is a function of the time spent transmitting data to the WSGT through the TDRS East transponder.
Relative Effectiveness of Reading Intervention Programs for Adults with Low Literacy.
Sabatini, John P; Shore, Jane; Holtzman, Steven; Scarborough, Hollis S
2011-01-01
To compare the efficacy of instructional programs for adult learners with basic reading skills below the seventh grade level, 300 adults were randomly assigned to one of three supplementary tutoring programs designed to strengthen decoding and fluency skills, and gains were examined for the 148 adult students who completed the program. The three intervention programs were based on or adapted from instructional programs that have been shown to benefit children with reading levels similar to those of the adult sample. Each program varied in its relative emphasis on basic decoding versus reading fluency instruction. A repeated measures MANOVA confirmed small to moderate reading gains from pre- to post-testing across a battery of targeted reading measures, but no significant relative differences across interventions. An additional 152 participants who failed to complete the intervention differed initially from those who persisted. Implications for future research and adult literacy instruction are discussed.
Speech Synthesis Using Perceptually Motivated Features
2012-01-23
with others a few years prior (with the concurrence of the project’s program manager. Willard Larkin). The Perceptual Flow of Phonetic Information and...34The Perceptual Flow of Phonetic Processing," consonant confusion matrices are analyzed for patterns of phonetic-feature decoding errors conditioned...decoding) is also observed. From these conditional probability patterns, it is proposed that they reflect a temporal flow of perceptual processing
ERIC Educational Resources Information Center
Baker, Doris Luft; Basaraba, Deni Lee; Smolkowski, Keith; Conry, Jillian; Hautala, Jarkko; Richardson, Ulla; English, Sherril; Cole, Ron
2017-01-01
We explore the potential of a computer-adaptive decoding game in Spanish to increase the decoding skills and oral reading fluency in Spanish and English of bilingual students. Participants were 78 first-grade Spanish-speaking students attending bilingual programs in five classrooms in Texas. Classrooms were randomly assigned to the treatment…
Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin
2016-10-01
An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.
Method and apparatus for data decoding and processing
Hunter, Timothy M.; Levy, Arthur J.
1992-01-01
A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.
Potocki, Anna; Magnan, Annie; Ecalle, Jean
2015-01-01
Four groups of poor readers were identified among a population of students with learning disabilities attending a special class in secondary school: normal readers; specific poor decoders; specific poor comprehenders, and general poor readers (deficits in both decoding and comprehension). These students were then trained with a software program designed to encourage either their word decoding skills or their text comprehension skills. After 5 weeks of training, we observed that the students experiencing word reading deficits and trained with the decoding software improved primarily in the reading fluency task while those exhibiting comprehension deficits and trained with the comprehension software showed improved performance in listening and reading comprehension. But interestingly, the latter software also led to improved performance on the word recognition task. This result suggests that, for these students, training interventions focused at the text level and its comprehension might be more beneficial for reading in general (i.e., for the two components of reading) than word-level decoding trainings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low Cost SoC Design of H.264/AVC Decoder for Handheld Video Player
NASA Astrophysics Data System (ADS)
Wisayataksin, Sumek; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki
We propose a low cost and stand-alone platform-based SoC for H.264/AVC decoder, whose target is practical mobile applications such as a handheld video player. Both low cost and stand-alone solutions are particularly emphasized. The SoC, consisting of RISC core and decoder core, has advantages in terms of flexibility, testability and various I/O interfaces. For decoder core design, the proposed H.264/AVC coprocessor in the SoC employs a new block pipelining scheme instead of a conventional macroblock or a hybrid one, which greatly contribute to reducing drastically the size of the core and its pipelining buffer. In addition, the decoder schedule is optimized to block level which is easy to be programmed. Actually, the core size is reduced to 138 KGate with 3.5 kbyte memory. In our practical development, a single external SDRAM is sufficient for both reference frame buffer and display buffer. Various peripheral interfaces such as a compact flash, a digital broadcast receiver and a LCD driver are also provided on a chip.
Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin
2017-10-28
To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
NASA Astrophysics Data System (ADS)
Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.
2008-12-01
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.
NASA Astrophysics Data System (ADS)
Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.
2016-10-01
Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.
ERIC Educational Resources Information Center
Myerscough, Don; And Others
1996-01-01
Describes an activity whose objectives are to encode and decode messages using linear functions and their inverses; to use modular arithmetic, including use of the reciprocal for simple equation solving; to analyze patterns and make and test conjectures; to communicate procedures and algorithms; and to use problem-solving strategies. (ASK)
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.
Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel
2015-05-15
We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao
2018-02-01
A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.
Bioinspired sensory systems for local flow characterization
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Chen, Kevin; Kanso, Eva
2016-11-01
Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.
Can communication power of separable correlations exceed that of entanglement resource?
Horodecki, Paweł; Tuziemski, Jan; Mazurek, Paweł; Horodecki, Ryszard
2014-04-11
The scenario of remote state preparation with a shared correlated quantum state and one bit of forward communication [B. Dakić et al., Nat. Phys. 8, 666 (2012)] is considered. Optimization of the transmission efficiency is extended to include general encoding and decoding strategies. The importance of the use of linear fidelity is recognized. It is shown that separable states cannot exceed the efficiency of entangled states by means of “local operations plus classical communication” actions limited to 1 bit of forward communication. It is proven however that such a surprising phenomena may naturally occur when the decoding agent has limited resources in the sense that either (i) has to use decoding which is insensitive to the change of the coordinate system in the plane in question (which is the natural choice if the receiver does not know the latter) or (ii) is forced to use bistochastic operations which may be imposed by physically inconvenient local thermodynamical conditions.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
Decoding of top-down cognitive processing for SSVEP-controlled BMI
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-01-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting. PMID:27808125
Decoding of top-down cognitive processing for SSVEP-controlled BMI
NASA Astrophysics Data System (ADS)
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-11-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
Method and System for Temporal Filtering in Video Compression Systems
NASA Technical Reports Server (NTRS)
Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim
2011-01-01
Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame having a second pixel value at a second pixel position, and a third reference frame having a third pixel value at a third pixel position. It determines a first motion vector between the first pixel position and the second pixel position, a second motion vector between the second pixel position and the third pixel position, and a fourth pixel value for a fourth frame based upon a linear or nonlinear combination of the first pixel value, the second pixel value, and the third pixel value. A stationary filtering process determines the estimated pixel values. The parameters of the filter may be predetermined constants.
Constructing and decoding unconventional ubiquitin chains.
Behrends, Christian; Harper, J Wade
2011-05-01
One of the most notable discoveries in the ubiquitin system during the past decade is the extensive use of diverse chain linkages to control signaling networks. Although the utility of Lys48- and Lys63-linked chains in protein turnover and molecular assembly, respectively, are well known, we are only beginning to understand how unconventional chain linkages are formed on target proteins and how such linkages are decoded by specific binding proteins. In this review, we summarize recent efforts to elucidate the machinery and mechanisms controlling assembly of Lys11-linked and linear (or Met1-linked) ubiquitin chains, and describe current models for how these chain types function in immune signaling and cell-cycle control.
Willett, Francis R; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Pandarinath, Chethan; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu
2017-04-01
Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.
Maximum likelihood convolutional decoding (MCD) performance due to system losses
NASA Technical Reports Server (NTRS)
Webster, L.
1976-01-01
A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.
Design and implementation of a channel decoder with LDPC code
NASA Astrophysics Data System (ADS)
Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan
2008-12-01
Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.
Romero-Martínez, Ángel; Lila, Marisol; Martínez, Manuela; Pedrón-Rico, Vicente; Moya-Albiol, Luis
2016-01-01
Research assessing the effectiveness of intervention programs for intimate partner violence (IPV) perpetrators has increased considerably in recent years. However, most of it has been focused on the analysis of psychological domains, neglecting neuropsychological variables and the effects of alcohol consumption on these variables. This study evaluated potential neuropsychological changes (emotional decoding, perspective taking, emotional empathy and cognitive flexibility) and their relationship with alcohol consumption in a mandatory intervention program for IPV perpetrators, as well as how these variables affect the risk of IPV recidivism. The sample was composed of 116 individuals with high alcohol (n = 55; HA) and low alcohol (n = 61; LA) consumption according to self-report screening measures who received treatment in a IPV perpetrator intervention program developed in Valencia (Spain). IPV perpetrators with HA consumption were less accurate in decoding emotional facial signals and adopting others’ perspective, and less cognitively flexible than those with LA consumption before the IPV intervention. Further, the effectiveness of the intervention program was demonstrated, with increases being observed in cognitive empathy (emotional decoding and perspective taking) and in cognitive flexibility. Nevertheless, the HA group showed a smaller improvement in these skills and higher risk of IPV recidivism than the LA group. Moreover, improvement in these skills was related to a lower risk of IPV recidivism. The study provides guidance on the targeting of cognitive domains, which are key factors for reducing IPV recidivism. PMID:27043602
47 CFR 79.103 - Closed caption decoder requirements for all apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.103 Closed caption... receive or play back video programming transmitted simultaneously with sound, if such apparatus is... closed-captioned video programming pursuant to the provisions of this section, if technically feasible...
47 CFR 79.103 - Closed caption decoder requirements for all apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.103 Closed caption... receive or play back video programming transmitted simultaneously with sound, if such apparatus is... closed-captioned video programming pursuant to the provisions of this section, if technically feasible...
Decoding negative affect personality trait from patterns of brain activation to threat stimuli.
Fernandes, Orlando; Portugal, Liana C L; Alves, Rita de Cássia S; Arruda-Sanchez, Tiago; Rao, Anil; Volchan, Eliane; Pereira, Mirtes; Oliveira, Letícia; Mourao-Miranda, Janaina
2017-01-15
Pattern recognition analysis (PRA) applied to functional magnetic resonance imaging (fMRI) has been used to decode cognitive processes and identify possible biomarkers for mental illness. In the present study, we investigated whether the positive affect (PA) or negative affect (NA) personality traits could be decoded from patterns of brain activation in response to a human threat using a healthy sample. fMRI data from 34 volunteers (15 women) were acquired during a simple motor task while the volunteers viewed a set of threat stimuli that were directed either toward them or away from them and matched neutral pictures. For each participant, contrast images from a General Linear Model (GLM) between the threat versus neutral stimuli defined the spatial patterns used as input to the regression model. We applied a multiple kernel learning (MKL) regression combining information from different brain regions hierarchically in a whole brain model to decode the NA and PA from patterns of brain activation in response to threat stimuli. The MKL model was able to decode NA but not PA from the contrast images between threat stimuli directed away versus neutral with a significance above chance. The correlation and the mean squared error (MSE) between predicted and actual NA were 0.52 (p-value=0.01) and 24.43 (p-value=0.01), respectively. The MKL pattern regression model identified a network with 37 regions that contributed to the predictions. Some of the regions were related to perception (e.g., occipital and temporal regions) while others were related to emotional evaluation (e.g., caudate and prefrontal regions). These results suggest that there was an interaction between the individuals' NA and the brain response to the threat stimuli directed away, which enabled the MKL model to decode NA from the brain patterns. To our knowledge, this is the first evidence that PRA can be used to decode a personality trait from patterns of brain activation during emotional contexts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Ritchie, J Brendan; Carlson, Thomas A
2016-01-01
A fundamental challenge for cognitive neuroscience is characterizing how the primitives of psychological theory are neurally implemented. Attempts to meet this challenge are a manifestation of what Fechner called "inner" psychophysics: the theory of the precise mapping between mental quantities and the brain. In his own time, inner psychophysics remained an unrealized ambition for Fechner. We suggest that, today, multivariate pattern analysis (MVPA), or neural "decoding," methods provide a promising starting point for developing an inner psychophysics. A cornerstone of these methods are simple linear classifiers applied to neural activity in high-dimensional activation spaces. We describe an approach to inner psychophysics based on the shared architecture of linear classifiers and observers under decision boundary models such as signal detection theory. Under this approach, distance from a decision boundary through activation space, as estimated by linear classifiers, can be used to predict reaction time in accordance with signal detection theory, and distance-to-bound models of reaction time. Our "neural distance-to-bound" approach is potentially quite general, and simple to implement. Furthermore, our recent work on visual object recognition suggests it is empirically viable. We believe the approach constitutes an important step along the path to an inner psychophysics that links mind, brain, and behavior.
Nonlinear, nonbinary cyclic group codes
NASA Technical Reports Server (NTRS)
Solomon, G.
1992-01-01
New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.
Decoding emotional valence from electroencephalographic rhythmic activity.
Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo
2017-07-01
We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.
Coding/decoding and reversibility of droplet trains in microfluidic networks.
Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M
2007-02-09
Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.
47 CFR 79.104 - Closed caption decoder requirements for recording devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.104 Closed... to record video programming transmitted simultaneously with sound, if such apparatus is manufactured...-activate the closed captions as the video programming is played back as described in § 79.103(c). (c) All...
47 CFR 79.104 - Closed caption decoder requirements for recording devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.104 Closed... to record video programming transmitted simultaneously with sound, if such apparatus is manufactured... such that viewers are able to activate and de-activate the closed captions as the video programming is...
Effects of Head Start REDI on Children’s Outcomes One Year Later in Different Kindergarten Contexts
Bierman, Karen L.; Nix, Robert L.; Heinrichs, Brenda S.; Domitrovich, Celene E.; Gest, Scott D.; Welsh, Janet A.; Gill, Sukhdeep
2013-01-01
One year after participating in the REDI (Research-based, Developmentally-Informed) intervention or “usual practice” Head Start, the learning and behavioral outcomes of 356 children (17% Hispanic, 25% African American, 54% girls; mean age 4.59 years at initial assessment) were assessed. In addition, their 202 kindergarten classrooms were evaluated on quality of teacher-student interactions, emphasis on reading instruction, and school-level student achievement. Hierarchical linear analyses revealed that the REDI intervention promoted kindergarten phonemic decoding skills, learning engagement, and competent social problem-solving skills, and reduced aggressive-disruptive behavior. Intervention effects on social competence and inattention were moderated by kindergarten context, with effects strongest when children entered schools with low student achievement. Implications are discussed for developmental models of school readiness and early educational programs. PMID:23647355
Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo
2013-12-01
We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Digital Communications in Spatially Distributed Interference Channels.
1982-12-01
July 1980 through 31 March 1981. This report is organized into five parts. Part I describes an optimum recivr tructure fordgtlcmutatnI ~ tal itiue (over...Jelinek, and J. Raviv , "Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate", IEEE Trans. Inform. Theory, Vol. IT-20, pp. 284-287, March 1974
[Efficacy of decoding training for children with difficulty reading hiragana].
Uchiyama, Hitoshi; Tanaka, Daisuke; Seki, Ayumi; Wakamiya, Eiji; Hirasawa, Noriko; Iketani, Naotake; Kato, Ken; Koeda, Tatsuya
2013-05-01
The present study aimed to clarify the efficacy of decoding training focusing on the correspondence between written symbols and their readings for children with difficulty reading hiragana (Japanese syllabary). Thirty-five children with difficulty reading hiragana were selected from among 367 first-grade elementary school students using a reading aloud test and were then divided into intervention (n=15) and control (n=20) groups. The intervention comprised 5 minutes of decoding training each day for a period of 3 weeks using an original program on a personal computer. Reading time and number of reading errors in the reading aloud test were compared between the groups. The intervention group showed a significant shortening of reading time (F(1,33)=5.40, p<0.05, two-way ANOVA) compared to the control group. However, no significant difference in the number of errors was observed between the two groups. Ten children in the control group who wished to participate in the decoding training were included in an additional study;as a result, improvement of the number of reading errors was observed (t= 2.863, p< 0.05, paired t test), but there was no improvement in reading time. Decoding training was found to be effective for improving both reading time and reading errors in children with difficulty reading hiragana.
Variability in Text Features in Six Grade 1 Basal Reading Programs
ERIC Educational Resources Information Center
Foorman, Barbara R.; Francis, David J.; Davidson, Kevin C.; Harm, Michael W.; Griffin, Jennifer
2004-01-01
California and Texas mandate 75% to 80% decodable texts for first-grade reading programs, yet these percentages have no empirical base. This study examines the text selections in 6 first-grade programs from the perspective of lexical, semantic, and syntactic features. The composition of text differed across the 6 programs with respect to length,…
Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm
NASA Astrophysics Data System (ADS)
Makin, Joseph G.; O'Doherty, Joseph E.; Cardoso, Mariana M. B.; Sabes, Philip N.
2018-04-01
Objective. The aim of this work is to improve the state of the art for motor-control with a brain-machine interface (BMI). BMIs use neurological recording devices and decoding algorithms to transform brain activity directly into real-time control of a machine, archetypically a robotic arm or a cursor. The standard procedure treats neural activity—vectors of spike counts in small temporal windows—as noisy observations of the kinematic state (position, velocity, acceleration) of the fingertip. Inferring the state from the observations then takes the form of a dynamical filter, typically some variant on Kalman’s (KF). The KF, however, although fairly robust in practice, is optimal only when the relationships between variables are linear and the noise is Gaussian, conditions usually violated in practice. Approach. To overcome these limitations we introduce a new filter, the ‘recurrent exponential-family harmonium’ (rEFH), that models the spike counts explicitly as Poisson-distributed, and allows for arbitrary nonlinear dynamics and observation models. Furthermore, the model underlying the filter is acquired through unsupervised learning, which allows temporal correlations in spike counts to be explained by latent dynamics that do not necessarily correspond to the kinematic state of the fingertip. Main results. We test the rEFH on offline reconstruction of the kinematics of reaches in the plane. The rEFH outperforms the standard, as well as three other state-of-the-art, decoders, across three monkeys, two different tasks, most kinematic variables, and a range of bin widths, amounts of training data, and numbers of neurons. Significance. Our algorithm establishes a new state of the art for offline decoding of reaches—in particular, for fingertip velocities, the variable used for control in most online decoders.
A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields
Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano
2014-01-01
We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393
Study of a co-designed decision feedback equalizer, deinterleaver, and decoder
NASA Technical Reports Server (NTRS)
Peile, Robert E.; Welch, Loyd
1990-01-01
A technique that promises better quality data from band limited channels at lower received power in digital transmission systems is presented. Data transmission, in such systems often suffers from intersymbol interference (ISI) and noise. Two separate techniques, channel coding and equalization, have caused considerable advances in the state of communication systems and both concern themselves with removing the undesired effects of a communication channel. Equalizers mitigate the ISI whereas coding schemes are used to incorporate error-correction. In the past, most of the research in these two areas has been carried out separately. However, the individual techniques have strengths and weaknesses that are complementary in many applications: an integrated approach realizes gains in excess to that of a simple juxtaposition. Coding schemes have been successfully used in cascade with linear equalizers which in the absence of ISI provide excellent performance. However, when both ISI and the noise level are relatively high, nonlinear receivers like the decision feedback equalizer (DFE) perform better. The DFE has its drawbacks: it suffers from error propagation. The technique presented here takes advantage of interleaving to integrate the two approaches so that the error propagation in DFE can be reduced with the help of error correction provided by the decoder. The results of simulations carried out for both, binary, and non-binary, channels confirm that significant gain can be obtained by codesigning equalizer and decoder. Although, systems with time-invariant channels and simple DFE having linear filters were looked into, the technique is fairly general and can easily be modified for more sophisticated equalizers to obtain even larger gains.
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
ERIC Educational Resources Information Center
Hamilton, Stephen T.; Freed, Erin M.; Long, Debra L.
2013-01-01
The goal of this study was to examine predictions derived from the Lexical Quality Hypothesis regarding relations among word decoding, working-memory capacity, and the ability to integrate new concepts into a developing discourse representation. Hierarchical Linear Modeling was used to quantify the effects of three text properties (length,…
DESIGN PRINCIPLES FOR AN ON-LINE INFORMATION RETRIEVAL SYSTEM. TECHNICAL REPORT.
ERIC Educational Resources Information Center
LOWE, THOMAS C.
AREAS INVESTIGATED INCLUDE SLOW MEMORY DATA STORAGE, THE PROBLEM OF DECODING FROM AN INDEX TO A SLOW MEMORY ADDRESS, THE STRUCTURE OF DATA LISTS AND DATA LIST OPERATORS, COMMUNICATIONS BETWEEN THE HUMAN USER AND THE SYSTEM, PROCESSING OF RETRIEVAL REQUESTS, AND THE USER'S CONTROL OVER THE RETURN OF INFORMATION RETRIEVED. LINEAR, LINKED AND…
Analysis of the faster-than-Nyquist optimal linear multicarrier system
NASA Astrophysics Data System (ADS)
Marquet, Alexandre; Siclet, Cyrille; Roque, Damien
2017-02-01
Faster-than-Nyquist signalization enables a better spectral efficiency at the expense of an increased computational complexity. Regarding multicarrier communications, previous work mainly relied on the study of non-linear systems exploiting coding and/or equalization techniques, with no particular optimization of the linear part of the system. In this article, we analyze the performance of the optimal linear multicarrier system when used together with non-linear receiving structures (iterative decoding and direct feedback equalization), or in a standalone fashion. We also investigate the limits of the normality assumption of the interference, used for implementing such non-linear systems. The use of this optimal linear system leads to a closed-form expression of the bit-error probability that can be used to predict the performance and help the design of coded systems. Our work also highlights the great performance/complexity trade-off offered by decision feedback equalization in a faster-than-Nyquist context. xml:lang="fr"
NASA Astrophysics Data System (ADS)
Cascio, David M.
1988-05-01
States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.
A maximum likelihood convolutional decoder model vs experimental data comparison
NASA Technical Reports Server (NTRS)
Chen, R. Y.
1979-01-01
This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Lin, Shu
2000-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
An Interactive Concatenated Turbo Coding System
NASA Technical Reports Server (NTRS)
Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc
1999-01-01
This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.
Paralex: An Environment for Parallel Programming in Distributed Systems
1991-12-07
distributed systems is coni- parable to assembly language programming for traditional sequential systems - the user must resort to low-level primitives ...to accomplish data encoding/decoding, communication, remote exe- cution, synchronization , failure detection and recovery. It is our belief that... synchronization . Finally, composing parallel programs by interconnecting se- quential computations allows automatic support for heterogeneity and fault tolerance
Lindamood Phonemic Sequencing (LiPS) [R]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2008
2008-01-01
The Lindamood Phonemic Sequencing (LiPS)[R] program (formerly called the Auditory Discrimination in Depth[R] [ADD] program) is designed to teach students skills to decode words and to identify individual sounds and blends in words. The program is individualized to meet student needs and is often used with students who have learning disabilities or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindstrom, P; Cohen, J D
We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression onmore » the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.« less
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.
2017-04-01
Objective. Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: \\text{MT}=a+b{{log}2}(D/R) (where MT is movement time, D is target distance, R is target radius, and a,~b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R ) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R ). Approach. Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main results. We found that movement times were better described by the equation \\text{MT}=a+bD+c{{R}-2} , which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require non-linear decoding strategies.
Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque
2017-01-01
Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).
Schooling effects on preschoolers’ self-regulation, early literacy, and language growth
Skibbe, Lori E.; Connor, Carol McDonald; Morrison, Frederick J.; Jewkes, Abigail M.
2010-01-01
The present study examined the influence of schooling during children’s first and second years of preschool for children who experienced different amounts of preschool (i.e., one or two years), but who were essentially the same chronological age. Children (n = 76) were tested in the fall and spring of the school year using measures of self-regulation, decoding, letter knowledge, and vocabulary. Using hierarchical linear modeling (HLM), preschool was not associated with children’s development of self-regulation in either year. For decoding and letter knowledge, children finishing their second year of preschool had higher scores, although both groups of children grew similarly during the school year. Thus, our results suggest that the first and second years of preschool are both systematically associated with decoding and letter knowledge gains, and the effects are cumulative (two years predicted greater gains overall than did one year of preschool). Finally, children’s chronological age, and not whether they experienced one versus two years of preschool, predicted children’s vocabulary and self-regulation outcomes. Implications for preschool curricula and instruction are discussed, including the increasing emphasis on literacy learning prior to kindergarten entry and the need to address self-regulation development along with academic learning. PMID:24068856
A Tension between Theory and Practice: Shared Reading Program
ERIC Educational Resources Information Center
Ong, Justina
2014-01-01
This study had two main aims: first, to offer a descriptive account of shared reading program using an evaluative lens and second, to examine whether teachers' perceptions of the importance of phonological awareness, word decoding, and text comprehension in helping young learners develop their reading abilities were indeed emphasized during…
The Unhappy Place: What Libraries Can Do to Welcome Kids Who Struggle with Print
ERIC Educational Resources Information Center
Socol, Ira David
2010-01-01
Librarians love books. They love the feel, the smell, and the look of the page. However, physical volumes have kept the author from reaching the ideas and stories that he wants. An impenetrable pile of pages in linear order, books are difficult to decode, search, and rearrange, and one of the worst information management systems he has…
Optimal Achievable Encoding for Brain Machine Interface
2017-12-22
dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy
From master slave interferometry to complex master slave interferometry: theoretical work
NASA Astrophysics Data System (ADS)
Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian
2018-03-01
A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.
Kamrunnahar, M; Schiff, S J
2011-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
Robustness of neuroprosthetic decoding algorithms.
Serruya, Mijail; Hatsopoulos, Nicholas; Fellows, Matthew; Paninski, Liam; Donoghue, John
2003-03-01
We assessed the ability of two algorithms to predict hand kinematics from neural activity as a function of the amount of data used to determine the algorithm parameters. Using chronically implanted intracortical arrays, single- and multineuron discharge was recorded during trained step tracking and slow continuous tracking tasks in macaque monkeys. The effect of increasing the amount of data used to build a neural decoding model on the ability of that model to predict hand kinematics accurately was examined. We evaluated how well a maximum-likelihood model classified discrete reaching directions and how well a linear filter model reconstructed continuous hand positions over time within and across days. For each of these two models we asked two questions: (1) How does classification performance change as the amount of data the model is built upon increases? (2) How does varying the time interval between the data used to build the model and the data used to test the model affect reconstruction? Less than 1 min of data for the discrete task (8 to 13 neurons) and less than 3 min (8 to 18 neurons) for the continuous task were required to build optimal models. Optimal performance was defined by a cost function we derived that reflects both the ability of the model to predict kinematics accurately and the cost of taking more time to build such models. For both the maximum-likelihood classifier and the linear filter model, increasing the duration between the time of building and testing the model within a day did not cause any significant trend of degradation or improvement in performance. Linear filters built on one day and tested on neural data on a subsequent day generated error-measure distributions that were not significantly different from those generated when the linear filters were tested on neural data from the initial day (p<0.05, Kolmogorov-Smirnov test). These data show that only a small amount of data from a limited number of cortical neurons appears to be necessary to construct robust models to predict kinematic parameters for the subsequent hours. Motor-control signals derived from neurons in motor cortex can be reliably acquired for use in neural prosthetic devices. Adequate decoding models can be built rapidly from small numbers of cells and maintained with daily calibration sessions.
Vector Adaptive/Predictive Encoding Of Speech
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey; Gersho, Allen
1989-01-01
Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.
NASA Technical Reports Server (NTRS)
Dolinar, S.; Belongie, M.
1995-01-01
The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.
Que bonito es leer! (How Nice It Is to Read!).
ERIC Educational Resources Information Center
Villarreal, Abelardo; And Others
This Spanish-language supplementary language arts program focuses on the development of decoding, encoding, comprehension, and interpretation skills, and is oriented toward the Mexican-American child's experience. It is designed for first-grade bilingual programs and as a resource for instruction in Spanish as a second language up to the third…
Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.
2013-01-01
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130
NASA Astrophysics Data System (ADS)
Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe
2017-08-01
Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.
Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.
2016-01-01
Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948
LDPC Codes with Minimum Distance Proportional to Block Size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.
NASA Technical Reports Server (NTRS)
Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.
2012-01-01
A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.
A novel parallel pipeline structure of VP9 decoder
NASA Astrophysics Data System (ADS)
Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan
2018-04-01
To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.
Singer product apertures-A coded aperture system with a fast decoding algorithm
NASA Astrophysics Data System (ADS)
Byard, Kevin; Shutler, Paul M. E.
2017-06-01
A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.
Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More
NASA Technical Reports Server (NTRS)
Kou, Yu; Lin, Shu; Fossorier, Marc
1999-01-01
Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.
A Bayesian model averaging method for improving SMT phrase table
NASA Astrophysics Data System (ADS)
Duan, Nan
2013-03-01
Previous methods on improving translation quality by employing multiple SMT models usually carry out as a second-pass decision procedure on hypotheses from multiple systems using extra features instead of using features in existing models in more depth. In this paper, we propose translation model generalization (TMG), an approach that updates probability feature values for the translation model being used based on the model itself and a set of auxiliary models, aiming to alleviate the over-estimation problem and enhance translation quality in the first-pass decoding phase. We validate our approach for translation models based on auxiliary models built by two different ways. We also introduce novel probability variance features into the log-linear models for further improvements. We conclude our approach can be developed independently and integrated into current SMT pipeline directly. We demonstrate BLEU improvements on the NIST Chinese-to-English MT tasks for single-system decodings.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Ge, Jian-Hua
2012-12-01
Single-carrier (SC) transmission with frequency-domain equalization (FDE) is today recognized as an attractive alternative to orthogonal frequency-division multiplexing (OFDM) for communication application with the inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel. In this paper, we investigate an iterative receiver based on minimum mean square error (MMSE) decision feedback equalizer (DFE) with symbol rate and fractional rate samplings in the frequency domain (FD) and serially concatenated trellis coded modulation (SCTCM) decoder. Based on sound speed profiles (SSP) measured in the lake and finite-element ray tracking (Bellhop) method, the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. Performance results show that the proposed iterative receiver can significantly improve the performance and obtain better data transmission than FD linear and adaptive decision feedback equalizers, especially in adopting fractional rate sampling.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface
Kamrunnahar, M.; Schiff, S. J.
2017-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799
Noninvasive EEG correlates of overground and stair walking.
Brantley, Justin A; Luu, Trieu Phat; Ozdemir, Recep; Zhu, Fangshi; Winslow, Anna T; Huang, Helen; Contreras-Vidal, Jose L
2016-08-01
Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.
Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne
2015-01-01
Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on “poor comprehenders” by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills. PMID:25793519
Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne
2015-01-01
Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on "poor comprehenders" by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills.
nSTAT: Open-Source Neural Spike Train Analysis Toolbox for Matlab
Cajigas, I.; Malik, W.Q.; Brown, E.N.
2012-01-01
Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - Generalized Linear Model (PPGLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT – an open source neural spike train analysis toolbox for Matlab®. By adopting an Object-Oriented Programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of peri-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. PMID:22981419
Open Court Reading[c]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2008
2008-01-01
"Open Court Reading"[c] is an elementary basal reading program for grades K-6 developed by SRA/McGraw-Hill. The program is designed to systematically teach decoding, comprehension, inquiry and investigation, and writing in a logical progression. Part 1 of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics,…
ERIC Educational Resources Information Center
Klinzing, Hans Gerhard; Aloisio, Bernadette Gerada
2007-01-01
A research-based program was designed for the improvement of decoding and encoding nonverbal cues as they are important aspects of successful communication and teaching. To extend the scientific base of the program, six correlational studies (N=784) investigated relationships between nonverbal skill and personality dimensions. Low non-significant…
A system for the input and storage of data in the Besm-6 digital computer
NASA Technical Reports Server (NTRS)
Schmidt, K.; Blenke, L.
1975-01-01
Computer programs used for the decoding and storage of large volumes of data on the the BESM-6 computer are described. The following factors are discussed: the programming control language allows the programs to be run as part of a modular programming system used in data processing; data control is executed in a hierarchically built file on magnetic tape with sequential index storage; and the programs are not dependent on the structure of the data.
Architecture for time or transform domain decoding of reed-solomon codes
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)
1989-01-01
Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.
An EXCEL macro for importing log ASCII standard (LAS) files into EXCEL worksheets
NASA Astrophysics Data System (ADS)
Özkaya, Sait Ismail
1996-02-01
An EXCEL 5.0 macro is presented for converting a LAS text file into an EXCEL worksheet. Although EXCEL has commands for importing text files and parsing text lines, LAS files must be decoded line-by-line because three different delimiters are used to separate fields of differing length. The macro is intended to eliminate manual decoding of LAS version 2.0. LAS is a floppy disk format for storage and transfer of log data as text files. LAS was proposed by the Canadian Well Logging Society. The present EXCEL macro decodes different sections of a LAS file, separates, and places the fields into different columns of an EXCEL worksheet. To import a LAS file into EXCEL without errors, the file must not contain any unrecognized symbols, and the data section must be the last section. The program does not check for the presence of mandatory sections or fields as required by LAS rules. Once a file is incorporated into EXCEL, mandatory sections and fields may be inspected visually.
Farquharson, Kelly; Tambyraja, Sherine R; Logan, Jessica; Justice, Laura M; Schmitt, Mary Beth
2015-08-01
The purpose of this study was twofold: (a) to determine the unique contributions in children's language and literacy gains, over 1 academic year, that are attributable to the individual speech-language pathologist (SLP) and (b) to explore possible child- and SLP-level factors that may further explain SLPs' contributions to children's language and literacy gains. Participants were 288 kindergarten and 1st-grade children with language impairment who were currently receiving school-based language intervention from SLPs. Using hierarchical linear modeling, we partitioned the variance in children's gains in language (i.e., grammar, vocabulary) and literacy (i.e., word decoding) that could be attributed to their individual SLP. Results revealed a significant contribution of individual SLPs to children's gains in grammar, vocabulary, and word decoding. Children's fall language scores and grade were significant predictors of SLPs' contributions, although no SLP-level predictors were significant. The present study makes a first step toward incorporating implementation science and suggests that, for children receiving school-based language intervention, variance in child language and literacy gains in an academic year is at least partially attributable to SLPs. Continued work in this area should examine the possible SLP-level characteristics that may further explicate the relative contributions of SLPs.
NASA Astrophysics Data System (ADS)
Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.
2013-04-01
Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J
2013-01-01
Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062
FPGA implementation of low complexity LDPC iterative decoder
NASA Astrophysics Data System (ADS)
Verma, Shivani; Sharma, Sanjay
2016-07-01
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.
NASA Astrophysics Data System (ADS)
Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang
2013-04-01
Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different decoding models. It shows better robustness of identifying the important neurons with noisy signals presented. The low demand of computational resources which, reflected by the fast convergence, indicates the feasibility of the method applied in portable BMI systems. The ascertainment of the important neurons helps to inspect neural patterns visually associated with the movement task. The elimination of irrelevant neurons greatly reduces the computational burden of mBMI systems and maintains the performance with better robustness.
The design plan of a VLSI single chip (255, 223) Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Shao, H. M.; Deutsch, L. J.
1987-01-01
The very large-scale integration (VLSI) architecture of a single chip (255, 223) Reed-Solomon decoder for decoding both errors and erasures is described. A decoding failure detection capability is also included in this system so that the decoder will recognize a failure to decode instead of introducing additional errors. This could happen whenever the received word contains too many errors and erasures for the code to correct. The number of transistors needed to implement this decoder is estimated at about 75,000 if the delay for received message is not included. This is in contrast to the older transform decoding algorithm which needs about 100,000 transistors. However, the transform decoder is simpler in architecture than the time decoder. It is therefore possible to implement a single chip (255, 223) Reed-Solomon decoder with today's VLSI technology. An implementation strategy for the decoder system is presented. This represents the first step in a plan to take advantage of advanced coding techniques to realize a 2.0 dB coding gain for future space missions.
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao
1991-01-01
Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller
NASA Technical Reports Server (NTRS)
Larson, Richard R.
1999-01-01
System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.
The serial message-passing schedule for LDPC decoding algorithms
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Sending Foreign Language Word Processor Files over Networks.
ERIC Educational Resources Information Center
Feustle, Joseph A., Jr.
1992-01-01
Advantages of using online systems are described, and specific techniques for successfully transmitting computer text files are described. Topics covered include Microsoft's Rich TextFile, WordPerfect encoding, text compression, and especially encoding and decoding with UNIX programs. (LB)
Image transmission system using adaptive joint source and channel decoding
NASA Astrophysics Data System (ADS)
Liu, Weiliang; Daut, David G.
2005-03-01
In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.
Increasing Emergent Reading Skills for First Grade Students through Peer Action Program.
ERIC Educational Resources Information Center
Toliver, Mary A.
A program was developed and implemented to help identify, give direction to, and build self-confidence in children who lack emergent reading skills on entering first grade. Objectives were for 80% of the 18 students at a Florida elementary school to recognize the basic concepts about print, and that two or more cueing systems be used to decode or…
Abel, David L.
2011-01-01
Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119
A long constraint length VLSI Viterbi decoder for the DSN
NASA Technical Reports Server (NTRS)
Statman, J. I.; Zimmerman, G.; Pollara, F.; Collins, O.
1988-01-01
A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described.
Decoding small surface codes with feedforward neural networks
NASA Astrophysics Data System (ADS)
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
Multi-stage decoding for multi-level block modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Torgesen, Joseph K; Wagner, Richard K; Rashotte, Carol A; Herron, Jeannine; Lindamood, Patricia
2010-06-01
The relative effectiveness of two computer-assisted instructional programs designed to provide instruction and practice in foundational reading skills was examined. First-grade students at risk for reading disabilities received approximately 80 h of small-group instruction in four 50-min sessions per week from October through May. Approximately half of the instruction was delivered by specially trained teachers to prepare students for their work on the computer, and half was delivered by the computer programs. At the end of first grade, there were no differences in student reading performance between students assigned to the different intervention conditions, but the combined-intervention students performed significantly better than control students who had been exposed to their school's normal reading program. Significant differences were obtained for phonemic awareness, phonemic decoding, reading accuracy, rapid automatic naming, and reading comprehension. A follow-up test at the end of second grade showed a similar pattern of differences, although only differences in phonemic awareness, phonemic decoding, and rapid naming remained statistically reliable.
Adaptive decoding of convolutional codes
NASA Astrophysics Data System (ADS)
Hueske, K.; Geldmacher, J.; Götze, J.
2007-06-01
Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
ERIC Educational Resources Information Center
Giberson, Karl; Brown, Laura
1997-01-01
Presents an activity that begins with a discussion that leads into the rationale behind the techniques used in the Search for Extraterrestrial Intelligence (SETI) program. Students decode a message intended for extraterrestrials and consider a number of topics related to the possible existence of extraterrestrials. (DDR)
A Teaching Model for the Grammar of Television.
ERIC Educational Resources Information Center
Becker, Ann Devaney
1986-01-01
Offers an analytical model to assist teachers and students in decoding social and cultural meaning embedded in the visual track of any given television program. To illustrate the model, the Public Broadcasting System's production of "The Scarlet Letter" is analyzed. (MBR)
Linear methods for reducing EMG contamination in peripheral nerve motor decodes.
Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J
2016-08-01
Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.
Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2013-01-01
The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714
Real-time minimal-bit-error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1974-01-01
A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.
Real-time minimal bit error probability decoding of convolutional codes
NASA Technical Reports Server (NTRS)
Lee, L. N.
1973-01-01
A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.
Serial data correlator/code translator
NASA Technical Reports Server (NTRS)
Morgan, L. E. (Inventor)
1982-01-01
A system for analyzing asynchronous signals containing bits of information for ensuring the validity of said signals, by sampling each bit of information a plurality of times, and feeding the sampled pieces of bits of information into a sequence controlled is described. The sequence controller has a plurality of maps or programs through which the sampled pieces of bits are stepped so as to identify the particular bit of information and determine the validity and phase of the bit. The step in which the sequence controller is clocked is controlled by a storage register. A data decoder decodes the information fed out of the storage register and feeds such information to shift registers for storage.
Bayesian decoding using unsorted spikes in the rat hippocampus
Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.
2013-01-01
A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403
NASA Astrophysics Data System (ADS)
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi
2017-12-01
We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.
Automated selection of brain regions for real-time fMRI brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio
2017-02-01
Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.
Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...
Code of Federal Regulations, 2010 CFR
2010-10-01
... decoders manufactured after August 1, 2003 must provide a means to permit the selective display and logging... upgrade their decoders on an optional basis to include a selective display and logging capability for EAS... decoders after February 1, 2004 must install decoders that provide a means to permit the selective display...
NP-hardness of decoding quantum error-correction codes
NASA Astrophysics Data System (ADS)
Hsieh, Min-Hsiu; Le Gall, François
2011-05-01
Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.
Vadasy, P F; Jenkins, J R; Pool, K
2000-01-01
This study examined the effectiveness of nonprofessional tutors in a phonologically based reading treatment similar to those in which successful reading outcomes have been demonstrated. Participants were 23 first graders at risk for learning disability who received intensive one-to-one tutoring from noncertified tutors for 30 minutes, 4 days a week, for one school year. Tutoring included instruction in phonological skills, letter-sound correspondence, explicit decoding, rime analysis, writing, spelling, and reading phonetically controlled text. At year end, tutored students significantly outperformed untutored control students on measures of reading, spelling, and decoding. Effect sizes ranged from .42 to 1.24. Treatment effects diminished at follow-up at the end of second grade, although tutored students continued to significantly outperform untutored students in decoding and spelling. Findings suggest that phonologically based reading instruction for first graders at risk for learning disability can be delivered by nonteacher tutors. Our discussion addresses the character of reading outcomes associated with tutoring, individual differences in response to treatment, and the infrastructure required for nonprofessional tutoring programs.
Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P
2015-01-01
HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.
Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M
NASA Technical Reports Server (NTRS)
Lee, H.; Divsalar, D.; Weber, C.
1994-01-01
This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-01-01
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. PMID:27901024
Methods for Assessment of Memory Reactivation.
Liu, Shizhao; Grosmark, Andres D; Chen, Zhe
2018-04-13
It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.
Zydziak, Nicolas; Konrad, Waldemar; Feist, Florian; Afonin, Sergii; Weidner, Steffen; Barner-Kowollik, Christopher
2016-11-30
Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequence-defined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy-combining sequential and modular concepts-enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read. We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain.
Bounded-Angle Iterative Decoding of LDPC Codes
NASA Technical Reports Server (NTRS)
Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2009-01-01
Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are discussed. Topics discussed include sorption compression/mechanical expanded hybrid refrigeration, calculated 70-meter antenna performance for offset L-band, systolic arrays and stack decoding, and calibrations of Deep Space Network antennas.
Iterative channel decoding of FEC-based multiple-description codes.
Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B
2012-03-01
Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.
High rate concatenated coding systems using bandwidth efficient trellis inner codes
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1989-01-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
Efficient Decoding of Compressed Data.
ERIC Educational Resources Information Center
Bassiouni, Mostafa A.; Mukherjee, Amar
1995-01-01
Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)
A new VLSI architecture for a single-chip-type Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.
1989-01-01
A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain.
Deconstructing multivariate decoding for the study of brain function.
Hebart, Martin N; Baker, Chris I
2017-08-04
Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.
Real-time SHVC software decoding with multi-threaded parallel processing
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu
2014-09-01
This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.
Error-trellis Syndrome Decoding Techniques for Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
The VLSI design of an error-trellis syndrome decoder for certain convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.
1986-01-01
A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.
Systolic VLSI Reed-Solomon Decoder
NASA Technical Reports Server (NTRS)
Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.
1986-01-01
Decoder for digital communications provides high-speed, pipelined ReedSolomon (RS) error-correction decoding of data streams. Principal new feature of proposed decoder is modification of Euclid greatest-common-divisor algorithm to avoid need for time-consuming computations of inverse of certain Galois-field quantities. Decoder architecture suitable for implementation on very-large-scale integrated (VLSI) chips with negative-channel metaloxide/silicon circuitry.
The VLSI design of error-trellis syndrome decoding for convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.
1985-01-01
A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.
A test of the role of the medial temporal lobe in single-word decoding.
Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph
2011-01-15
The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. Copyright © 2010 Elsevier Inc. All rights reserved.
A Test of the Role of the Medial Temporal Lobe in Single-Word Decoding
Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph
2012-01-01
The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus, nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. PMID:20884357
LDPC-based iterative joint source-channel decoding for JPEG2000.
Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane
2007-02-01
A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.
Belief propagation decoding of quantum channels by passing quantum messages
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2017-07-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
Calhoon, Mary Beth; Petscher, Yaacov
2015-01-01
The purpose of this project was to examine group- and individual-level responses by struggling adolescents readers (6th – 8th grades; N = 155) to three different modalities of the same reading program, Reading Achievement Multi-Component Program (RAMP-UP). The three modalities differ in the combination of reading components (phonological decoding, spelling, fluency, comprehension) that are taught and their organization. Latent change scores were used to examine changes in phonological decoding, fluency, and comprehension for each modality at the group level. In addition, individual students were classified as gainers versus non-gainers (a reading level increase of a year or more vs. less than one year) so that characteristics of gainers and differential sensitivity to instructional modality could be investigated. Findings from both group and individual analyses indicated that reading outcomes were related to modalities of reading instruction. Furthermore, differences in reading gains were seen between students who began treatment with higher reading scores than those with lower reading scores; dependent on modality of treatment. Results, examining group and individual analyses similarities and differences, and the effect the different modalities have on reading outcomes for older struggling readers will be discussed. PMID:25657503
Buffer management for sequential decoding. [block erasure probability reduction
NASA Technical Reports Server (NTRS)
Layland, J. W.
1974-01-01
Sequential decoding has been found to be an efficient means of communicating at low undetected error rates from deep space probes, but erasure or computational overflow remains a significant problem. Erasure of a block occurs when the decoder has not finished decoding that block at the time that it must be output. By drawing upon analogies in computer time sharing, this paper develops a buffer-management strategy which reduces the decoder idle time to a negligible level, and therefore improves the erasure probability of a sequential decoder. For a decoder with a speed advantage of ten and a buffer size of ten blocks, operating at an erasure rate of .01, use of this buffer-management strategy reduces the erasure rate to less than .0001.
NASA Astrophysics Data System (ADS)
Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav
2018-04-01
Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.
A Scalable Architecture of a Structured LDPC Decoder
NASA Technical Reports Server (NTRS)
Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon
2004-01-01
We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.
Multiuser signal detection using sequential decoding
NASA Astrophysics Data System (ADS)
Xie, Zhenhua; Rushforth, Craig K.; Short, Robert T.
1990-05-01
The application of sequential decoding to the detection of data transmitted over the additive white Gaussian noise channel by K asynchronous transmitters using direct-sequence spread-spectrum multiple access is considered. A modification of Fano's (1963) sequential-decoding metric, allowing the messages from a given user to be safely decoded if its Eb/N0 exceeds -1.6 dB, is presented. Computer simulation is used to evaluate the performance of a sequential decoder that uses this metric in conjunction with the stack algorithm. In many circumstances, the sequential decoder achieves results comparable to those obtained using the much more complicated optimal receiver.
Visual perception as retrospective Bayesian decoding from high- to low-level features
Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning
2017-01-01
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108
Closed Captioned TV: A Resource for ESL Literacy Education. ERIC Digest.
ERIC Educational Resources Information Center
Parks, Carolyn
Recent technological, pedagogical, and regulatory developments have heightened awareness and appreciation of the utility of closed captioned television (CCTV) for adult English-as-a-Second-Language (ESL) and literacy instruction. A federal mandate that most televisions provide a closed caption decoder, increased captioning of all program types,…
Wilson Reading System[R]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
Wilson Reading System[R] is a supplemental reading and writing curriculum designed to promote reading accuracy (decoding) and spelling (encoding) skills for students with word-level deficits. The program is designed to teach phonemic awareness, alphabetic principles (sound-symbol relationship), word study, spelling, sight word instruction,…
Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of the Wilson Reading System, which teaches students word structure and language through a carefully sequenced, 12-step system that helps them master decoding and spelling. The program targets the needs of students at all levels (K-12), specifically students with language learning disabilities such as dyslexia;…
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H. Lee; Ganti, Anand; Resnick, David R
2013-10-22
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Design, decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-06-17
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-11-18
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.
Seymour, Kiley J; Clifford, Colin W G
2012-05-01
Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.
A method for decoding the neurophysiological spike-response transform.
Stern, Estee; García-Crescioni, Keyla; Miller, Mark W; Peskin, Charles S; Brezina, Vladimir
2009-11-15
Many physiological responses elicited by neuronal spikes-intracellular calcium transients, synaptic potentials, muscle contractions-are built up of discrete, elementary responses to each spike. However, the spikes occur in trains of arbitrary temporal complexity, and each elementary response not only sums with previous ones, but can itself be modified by the previous history of the activity. A basic goal in system identification is to characterize the spike-response transform in terms of a small number of functions-the elementary response kernel and additional kernels or functions that describe the dependence on previous history-that will predict the response to any arbitrary spike train. Here we do this by developing further and generalizing the "synaptic decoding" approach of Sen et al. (1996). Given the spike times in a train and the observed overall response, we use least-squares minimization to construct the best estimated response and at the same time best estimates of the elementary response kernel and the other functions that characterize the spike-response transform. We avoid the need for any specific initial assumptions about these functions by using techniques of mathematical analysis and linear algebra that allow us to solve simultaneously for all of the numerical function values treated as independent parameters. The functions are such that they may be interpreted mechanistically. We examine the performance of the method as applied to synthetic data. We then use the method to decode real synaptic and muscle contraction transforms.
NASA Astrophysics Data System (ADS)
Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.
2011-08-01
Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.
Phalen, Peter L; Dimaggio, Giancarlo; Popolo, Raffaele; Lysaker, Paul H
2017-09-01
Despite the apparent relevance of persecutory delusions to social relationships, evidence linking these beliefs to social functioning has been inconsistent. In this study, we examined the hypothesis that theory of mind moderates the relationship between persecutory delusions and social functioning. 88 adults with schizophrenia or schizoaffective disorder were assessed concurrently for social functioning, severity of persecutory delusions, and two components of theory of mind: mental state decoding and mental state reasoning. Mental state decoding was assessed using the Eyes Test, mental state reasoning using the Hinting Task, and social functioning assessed with the Social Functioning Scale. Moderation effects were evaluated using linear models and the Johnson-Neyman procedure. Mental state reasoning was found to moderate the relationship between persecutory delusions and social functioning, controlling for overall psychopathology. For participants with reasoning scores in the bottom 78th percentile, persecutory delusions showed a significant negative relationship with social functioning. However, for those participants with mental state reasoning scores in the top 22nd percentile, more severe persecutory delusions were not significantly associated with worse social functioning. Mental state decoding was not a statistically significant moderator. Generalizability is limited as participants were generally men in later phases of illness. Mental state reasoning abilities may buffer the impact of persecutory delusions on social functioning, possibly by helping individuals avoid applying global beliefs of persecution to specific individuals or by allowing for the correction of paranoid inferences. Published by Elsevier Ltd.
Simultaneous real-time monitoring of multiple cortical systems.
Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin
2014-10-01
Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.
Simultaneous Real-Time Monitoring of Multiple Cortical Systems
Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin
2014-01-01
Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic. PMID:25080161
Classification of different reaching movements from the same limb using EEG
NASA Astrophysics Data System (ADS)
Shiman, Farid; López-Larraz, Eduardo; Sarasola-Sanz, Andrea; Irastorza-Landa, Nerea; Spüler, Martin; Birbaumer, Niels; Ramos-Murguialday, Ander
2017-08-01
Objective. Brain-computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, due to the stochastic nature, poor spatial resolution and signal to noise ratio from electroencephalography (EEG), multidimensional decoding has been the main obstacle to implement non-invasive BCIs in real-live rehabilitation scenarios. This study explores the classification of several functional reaching movements from the same limb using EEG oscillations in order to create a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed four 3D center-out reaching tasks in four different sessions while wearing a passive robotic exoskeleton at their right upper limb. Kinematics data were acquired from the robotic exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into four forward reaching movements (from a starting position towards four target positions), a backward movement (from any of the targets to the starting position and rest). Recalibrating the classifier using data from previous or the same session was also investigated and compared. Main results. Average EEG decoding accuracy were significantly above chance with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, respectively. Furthermore, classification accuracy could be increased when using data from the beginning of each session as training data to recalibrate the classifier. Significance. Our results demonstrate that classification from several functional movements performed by the same limb is possible with acceptable accuracy using EEG oscillations, especially if data from the same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic devices using EEG data. These results have important implications towards assistive and rehabilitative neuroprostheses control in paralyzed patients.
The ribosome as an optimal decoder: a lesson in molecular recognition.
Savir, Yonatan; Tlusty, Tsvi
2013-04-11
The ribosome is a complex molecular machine that, in order to synthesize proteins, has to decode mRNAs by pairing their codons with matching tRNAs. Decoding is a major determinant of fitness and requires accurate and fast selection of correct tRNAs among many similar competitors. However, it is unclear whether the modern ribosome, and in particular its large conformational changes during decoding, are the outcome of adaptation to its task as a decoder or the result of other constraints. Here, we derive the energy landscape that provides optimal discrimination between competing substrates and thereby optimal tRNA decoding. We show that the measured landscape of the prokaryotic ribosome is sculpted in this way. This model suggests that conformational changes of the ribosome and tRNA during decoding are means to obtain an optimal decoder. Our analysis puts forward a generic mechanism that may be utilized broadly by molecular recognition systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Enhanced decoding for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Dolinar, S.; Belongie, M.
1993-01-01
A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.
Multi-stage decoding of multi-level modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.
1991-01-01
Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).
Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A
2017-04-01
Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
NASA Astrophysics Data System (ADS)
Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten
2015-08-01
Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.
A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting
Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao
2014-01-01
We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813
Decoding Facial Expressions: A New Test with Decoding Norms.
ERIC Educational Resources Information Center
Leathers, Dale G.; Emigh, Ted H.
1980-01-01
Describes the development and testing of a new facial meaning sensitivity test designed to determine how specialized are the meanings that can be decoded from facial expressions. Demonstrates the use of the test to measure a receiver's current level of skill in decoding facial expressions. (JMF)
Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A
2017-02-01
Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.
Visual perception as retrospective Bayesian decoding from high- to low-level features.
Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning
2017-10-24
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
Decoding and Encoding Facial Expressions in Preschool-Age Children.
ERIC Educational Resources Information Center
Zuckerman, Miron; Przewuzman, Sylvia J.
1979-01-01
Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…
Multichannel error correction code decoder
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Ivancic, William D.
1993-01-01
A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.
Modeling the impact of common noise inputs on the network activity of retinal ganglion cells
Ahmadian, Yashar; Shlens, Jonathon; Pillow, Jonathan W.; Kulkarni, Jayant; Litke, Alan M.; Chichilnisky, E. J.; Simoncelli, Eero; Paninski, Liam
2013-01-01
Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations. PMID:22203465
Relationship between speed and EEG activity during imagined and executed hand movements
NASA Astrophysics Data System (ADS)
Yuan, Han; Perdoni, Christopher; He, Bin
2010-04-01
The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.
Xu, Wan-Xiang; Wang, Jian; Tang, Hai-Ping; He, Ya-Ping; Zhu, Qian-Xi; Gupta, Satish K.; Gu, Shao-Hua; Huang, Qiang; Ji, Chao-Neng; Liu, Ling-Feng; Li, Gui-Ling; Xu, Cong-Jian; Xie, Yi
2016-01-01
To enable rational multi-epitope vaccine and diagnostic antigen design, it is imperative to delineate complete IgG-epitome of the protein. Here, we describe results of IgG-epitome decoding of three proteins from high-risk (HR-) oncogenic human papillomavirus type 58 (HPV58). To reveal their entire epitomes, employing peptide biosynthetic approach, 30 precise linear B-cell epitopes (BCEs) were mapped on E6, E7 and L1 proteins using rabbits antisera to the respective recombinant proteins. Using sequence alignment based on BCE minimal motif, the specificity and conservativeness of each mapped BCE were delineated mainly among known HR-HPVs, including finding 3 broadly antibody cross-reactive BCEs of L1 that each covers almost all HR-HPVs. Western blots revealed that 13 of the 18 BCEs within L1-epitome were recognized by murine antisera to HPV58 virus-like particles, suggesting that these are antibody accessible BCEs. Also, a highly conserved epitope (YGD/XTL) of E6 was found to exist only in known common HR-HPVs, which could be used as the first peptide reference marker for judging HR-HPVs. Altogether, this study provides systemic and exhaustive information on linear BCEs of HR-HPV58 that will facilitate development of novel multi-epitope diagnostic reagents/chips for testing viral antibodies and ‘universal’ preventive HPV peptide vaccine based on L1 conserved BCEs. PMID:27708433
Error-trellis syndrome decoding techniques for convolutional codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1985-01-01
An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.
High data rate Reed-Solomon encoding and decoding using VLSI technology
NASA Technical Reports Server (NTRS)
Miller, Warner; Morakis, James
1987-01-01
Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.
The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?
Maloney, Ryan T
2015-01-01
Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.
Emotion Decoding and Incidental Processing Fluency as Antecedents of Attitude Certainty.
Petrocelli, John V; Whitmire, Melanie B
2017-07-01
Previous research demonstrates that attitude certainty influences the degree to which an attitude changes in response to persuasive appeals. In the current research, decoding emotions from facial expressions and incidental processing fluency, during attitude formation, are examined as antecedents of both attitude certainty and attitude change. In Experiment 1, participants who decoded anger or happiness during attitude formation expressed their greater attitude certainty, and showed more resistance to persuasion than participants who decoded sadness. By manipulating the emotion decoded, the diagnosticity of processing fluency experienced during emotion decoding, and the gaze direction of the social targets, Experiment 2 suggests that the link between emotion decoding and attitude certainty results from incidental processing fluency. Experiment 3 demonstrated that fluency in processing irrelevant stimuli influences attitude certainty, which in turn influences resistance to persuasion. Implications for appraisal-based accounts of attitude formation and attitude change are discussed.
Decoding Children's Expressions of Affect.
ERIC Educational Resources Information Center
Feinman, Joel A.; Feldman, Robert S.
Mothers' ability to decode the emotional expressions of their male and female children was compared to the decoding ability of non-mothers. Happiness, sadness, fear and anger were induced in children in situations that varied in terms of spontaneous and role-played encoding modes. It was hypothesized that mothers would be more accurate decoders of…
47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...
47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...
Sequential Syndrome Decoding of Convolutional Codes
NASA Technical Reports Server (NTRS)
Reed, I. S.; Truong, T. K.
1984-01-01
The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.
On decoding of multi-level MPSK modulation codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Gupta, Alok Kumar
1990-01-01
The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.
Soltani, Amanallah; Roslan, Samsilah
2013-03-01
Reading decoding ability is a fundamental skill to acquire word-specific orthographic information necessary for skilled reading. Decoding ability and its underlying phonological processing skills have been heavily investigated typically among developing students. However, the issue has rarely been noticed among students with intellectual disability who commonly suffer from reading decoding problems. This study is aimed at determining the contributions of phonological awareness, phonological short-term memory, and rapid automated naming, as three well known phonological processing skills, to decoding ability among 60 participants with mild intellectual disability of unspecified origin ranging from 15 to 23 years old. The results of the correlation analysis revealed that all three aspects of phonological processing are significantly correlated with decoding ability. Furthermore, a series of hierarchical regression analysis indicated that after controlling the effect of IQ, phonological awareness, and rapid automated naming are two distinct sources of decoding ability, but phonological short-term memory significantly contributes to decoding ability under the realm of phonological awareness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meaningful Reading Gains by Adult Literacy Learners
ERIC Educational Resources Information Center
Scarborough, Hollis S.; Sabatini, John P.; Shore, Jane; Cutting, Laurie E.; Pugh, Kenneth; Katz, Leonard
2013-01-01
To obtain a fuller picture of the efficacy of reading instruction programs for adult literacy learners, gains by individual students were examined in a sample (n = 148) in which weak to moderate gains at the group level had been obtained in response to tutoring interventions that focused on strengthening basic decoding and fluency skills of low…
Improving Early Reading and Literacy: A Guide for Developing Research-Based Programs.
ERIC Educational Resources Information Center
St. John, Edward P.; Bardzell, Jeffrey S.
This guide is designed to help school communities make good choices about early literacy intervention. The guide distinguishes between "reading" (a process of learning to decode and comprehend texts) and a broader concept of "literacy" that includes understanding of the value of language and reading (emergent literacy), the…
French Immersion Experience and Reading Skill Development in At-Risk Readers
ERIC Educational Resources Information Center
Kruk, Richard S.; Reynolds, Kristin A. A.
2012-01-01
We tracked the developmental influences of exposure to French on developing English phonological awareness, decoding and reading comprehension of English-speaking at-risk readers from Grade 1 to Grade 3. Teacher-nominated at-risk readers were matched with not-at-risk readers in French immersion and English language programs. Exposure to spoken…
Decoding Fad Diets. Nutrition in Health Promotion Series, Number 20.
ERIC Educational Resources Information Center
Crosser, Gail Hoddlebrink
Nutrition is well-recognized as a necessary component of educational programs for physicians. This is to be valued in that of all factors affecting health in the United States, none is more important than nutrition. This can be argued from various perspectives, including health promotion, disease prevention, and therapeutic management. In all…
ERIC Educational Resources Information Center
Gustafson, Stefan; Falth, Linda; Svensson, Idor; Tjus, Tomas; Heimann, Mikael
2011-01-01
In a longitudinal intervention study, the effects of three intervention strategies on the reading skills of children with reading disabilities in Grade 2 were analyzed. The interventions consisted of computerized training programs: One bottom-up intervention aimed at improving word decoding skills and phonological abilities, the second…
ERIC Educational Resources Information Center
Berman, Naomi; White, Alexandra
2013-01-01
The media plays a significant role in shaping cultural norms and attitudes, concomitantly reinforcing "body" and "beauty" ideals and gender stereotypes. Unrealistic, photoshopped and stereotyped images used by the media, advertising and fashion industries influence young people's body image and impact on their feelings of body…
Comprehensive Occupational Data Analysis Programs 80 (CODAP80) Systems Manual.
1984-01-01
50002 FROM 142407 REPLACE 144802 - 50006 GROUPS 144005 REPORT 144009 / 50007 GVARS 143209 RESET 143220 30003 HEADING 144801 ROw 141608 30005 HIr-SN...144005 30002 DES 141606 FORMAT 44006 30003 NOT 141607 DECODE. 144007 < 30004 ROW 141608 CVLGRP 144008 >8 30005 OVL 141609 REPORT 1440r9 <. 30006 COL
ERIC Educational Resources Information Center
Jose, Kshema
2016-01-01
Current workplace demands newer forms of literacies that go beyond the ability to decode print. These involve not only competence to operate digital tools, but also the ability to create, represent, and share meaning in different modes and formats; ability to interact, collaborate and communicate effectively using digital tools, and engage…
47 CFR 79.101 - Closed caption decoder requirements for analog television receivers.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.101 Closed... display the captioning for whichever channel the user selects. The TV Mode of operation allows the video... and rows. The characters must be displayed clearly separated from the video over which they are placed...
Media Literacy: The School Library Media Center's New Curriculum Baby.
ERIC Educational Resources Information Center
Robinson, Julia
1994-01-01
Defines seven key concepts of media literacy education. Discusses reading visual media as well as print media and computer programs; determining values and ethics; decoding or deconstructing; critical thinking; the promotion of media literacy by interest groups; and educational restructuring with the role of the school library media specialist as…
Grasp movement decoding from premotor and parietal cortex.
Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg
2011-10-05
Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.
United States Air Force Graduate Student Summer Support Program (1987). Program Management Report.
1987-12-01
were briefed on the benefits and research opportunities of the SFRP. The targeted groups within the University community were faculty of the...Effects on Fine Mary C. Robinson Motor Skill and Decoding Tasks 78 Design of a Mechanism to Control Wind Filiberto Santiago Tunnel Turbulence 79 Low...Systems 81 The Integration of Decision Support Jon A. Shupe Problems into Feature Modeling Based Design 89 r 0 82 Optimal Control of the Wing
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.
An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces
Li, Simin; Li, Jie; Li, Zheng
2016-01-01
Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170
Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings
Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan
2017-01-01
Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474
Energetics of codon-anticodon recognition on the small ribosomal subunit.
Almlöf, Martin; Andér, Martin; Aqvist, Johan
2007-01-09
Recent crystal structures of the small ribosomal subunit have made it possible to examine the detailed energetics of codon recognition on the ribosome by computational methods. The binding of cognate and near-cognate anticodon stem loops to the ribosome decoding center, with mRNA containing the Phe UUU and UUC codons, are analyzed here using explicit solvent molecular dynamics simulations together with the linear interaction energy (LIE) method. The calculated binding free energies are in excellent agreement with experimental binding constants and reproduce the relative effects of mismatches in the first and second codon position versus a mismatch at the wobble position. The simulations further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with the Phe UUU codon. It is also found that the ribosome significantly enhances the intrinsic stability differences of codon-anticodon complexes in aqueous solution. Structural analysis of the simulations confirms the previously suggested importance of the universally conserved nucleotides A1492, A1493, and G530 in the decoding process.
NASA Technical Reports Server (NTRS)
Lahmeyer, Charles R. (Inventor)
1987-01-01
A Reed-Solomon decoder with dedicated hardware for five sequential algorithms was designed with overall pipelining by memory swapping between input, processing and output memories, and internal pipelining through the five algorithms. The code definition used in decoding is specified by a keyword received with each block of data so that a number of different code formats may be decoded by the same hardware.
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mo, C. D.
1978-01-01
An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.
Large-Constraint-Length, Fast Viterbi Decoder
NASA Technical Reports Server (NTRS)
Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.
1990-01-01
Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.
Locating and decoding barcodes in fuzzy images captured by smart phones
NASA Astrophysics Data System (ADS)
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles
2016-01-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138
Rate-compatible protograph LDPC code families with linear minimum distance
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Dolinar, Jr., Samuel J. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Digital communication coding methods are shown, which generate certain types of low-density parity-check (LDPC) codes built from protographs. A first method creates protographs having the linear minimum distance property and comprising at least one variable node with degree less than 3. A second method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of certain variable nodes as transmitted or non-transmitted. A third method creates families of protographs of different rates, all structurally identical for all rates except for a rate-dependent designation of the status of certain variable nodes as non-transmitted or set to zero. LDPC codes built from the protographs created by these methods can simultaneously have low error floors and low iterative decoding thresholds.
Validity of the two-level model for Viterbi decoder gap-cycle performance
NASA Technical Reports Server (NTRS)
Dolinar, S.; Arnold, S.
1990-01-01
A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.
Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2013-01-01
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method. PMID:23750314
NASA Astrophysics Data System (ADS)
Shimoda, Kentaro; Nagasaka, Yasuo; Chao, Zenas C.; Fujii, Naotaka
2012-06-01
Brain-machine interface (BMI) technology captures brain signals to enable control of prosthetic or communication devices with the goal of assisting patients who have limited or no ability to perform voluntary movements. Decoding of inherent information in brain signals to interpret the user's intention is one of main approaches for developing BMI technology. Subdural electrocorticography (sECoG)-based decoding provides good accuracy, but surgical complications are one of the major concerns for this approach to be applied in BMIs. In contrast, epidural electrocorticography (eECoG) is less invasive, thus it is theoretically more suitable for long-term implementation, although it is unclear whether eECoG signals carry sufficient information for decoding natural movements. We successfully decoded continuous three-dimensional hand trajectories from eECoG signals in Japanese macaques. A steady quantity of information of continuous hand movements could be acquired from the decoding system for at least several months, and a decoding model could be used for ˜10 days without significant degradation in accuracy or recalibration. The correlation coefficients between observed and predicted trajectories were lower than those for sECoG-based decoding experiments we previously reported, owing to a greater degree of chewing artifacts in eECoG-based decoding than is found in sECoG-based decoding. As one of the safest invasive recording methods available, eECoG provides an acceptable level of performance. With the ease of replacement and upgrades, eECoG systems could become the first-choice interface for real-life BMI applications.
Adaptive distributed video coding with correlation estimation using expectation propagation
NASA Astrophysics Data System (ADS)
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2012-10-01
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.
Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.
Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel
2012-10-15
Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.
Recent advances in coding theory for near error-free communications
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.
1991-01-01
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.
Fast transform decoding of nonsystematic Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.
1989-01-01
A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.
ERIC Educational Resources Information Center
Squires, Katie Ellen
2013-01-01
This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…
Polar Coding with CRC-Aided List Decoding
2015-08-01
TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536
Decoding position, velocity, or goal: does it matter for brain-machine interfaces?
Marathe, A R; Taylor, D M
2011-04-01
Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.
Encoder-Decoder Optimization for Brain-Computer Interfaces
Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam
2015-01-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
Decoding position, velocity, or goal: Does it matter for brain-machine interfaces?
NASA Astrophysics Data System (ADS)
Marathe, A. R.; Taylor, D. M.
2011-04-01
Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.
NASA Astrophysics Data System (ADS)
Liu, Leibo; Chen, Yingjie; Yin, Shouyi; Lei, Hao; He, Guanghui; Wei, Shaojun
2014-07-01
A VLSI architecture for entropy decoder, inverse quantiser and predictor is proposed in this article. This architecture is used for decoding video streams of three standards on a single chip, i.e. H.264/AVC, AVS (China National Audio Video coding Standard) and MPEG2. The proposed scheme is called MPMP (Macro-block-Parallel based Multilevel Pipeline), which is intended to improve the decoding performance to satisfy the real-time requirements while maintaining a reasonable area and power consumption. Several techniques, such as slice level pipeline, MB (Macro-Block) level pipeline, MB level parallel, etc., are adopted. Input and output buffers for the inverse quantiser and predictor are shared by the decoding engines for H.264, AVS and MPEG2, therefore effectively reducing the implementation overhead. Simulation shows that decoding process consumes 512, 435 and 438 clock cycles per MB in H.264, AVS and MPEG2, respectively. Owing to the proposed techniques, the video decoder can support H.264 HP (High Profile) 1920 × 1088@30fps (frame per second) streams, AVS JP (Jizhun Profile) 1920 × 1088@41fps streams and MPEG2 MP (Main Profile) 1920 × 1088@39fps streams when exploiting a 200 MHz working frequency.
Design of convolutional tornado code
NASA Astrophysics Data System (ADS)
Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu
2017-09-01
As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.
Motion Direction Biases and Decoding in Human Visual Cortex
Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy
2014-01-01
Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297
Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert
2013-01-01
Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294
Jones, Michael N.
2017-01-01
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185
Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert
2012-08-01
Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
NASA Astrophysics Data System (ADS)
Lei, Ted Chih-Wei; Tseng, Fan-Shuo
2017-07-01
This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.
2018-06-01
We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .
A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang
2015-11-01
A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.
A Systolic VLSI Design of a Pipeline Reed-solomon Decoder
NASA Technical Reports Server (NTRS)
Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.
1984-01-01
A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.
A VLSI design of a pipeline Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.
1985-01-01
A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.
Coding/decoding two-dimensional images with orbital angular momentum of light.
Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping
2016-04-01
We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.
The Multisyllabic Word Dilemma: Helping Students Build Meaning, Spell, and Read "Big" Words.
ERIC Educational Resources Information Center
Cunningham, Patricia M.
1998-01-01
Looks at what is known about multisyllabic words, which is a lot more than educators knew when the previous generation of multisyllabic word instruction was created. Reviews the few studies that have carried out instructional approaches to increase students' ability to decode big words. Outlines a program of instruction, based on what is currently…
Open Court Reading©. What Works Clearinghouse Intervention Report. Updated October 2014
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
"Open Court Reading©" is a reading program for grades K-6 published by McGraw-Hill Education that is designed to teach decoding, comprehension, inquiry, and writing in a three-part logical progression. Part One of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics, fluency, and word knowledge. Part…
Open Court Reading[c]. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Open Court Reading"[c] is a core reading program for grades K-6 developed by SRA/McGraw-Hill that is designed to teach decoding, comprehension, inquiry, and writing in a logical progression. Part 1 of each unit, Preparing to Read, focuses on phonemic awareness, sounds and letters, phonics, fluency, and word knowledge. Part 2, Reading…
Effective Methodology for Teaching Beginning Reading in English to Bilingual Adults.
ERIC Educational Resources Information Center
Sainz, Jo-Ann; Biggins, Maria Goretti
A systematic model for accelerating the process of developing the word decoding skills and building the vocabularies of bilingual adults was used among prison populations in Rockland County, Dutchess County, Suffolk County, and Essex County, New York, as well as in work-study programs in community centers in New York City. Literacy levels of the…
Turning a Molehill into a Mountain? How Reading Curricula Are Failing the Poor Worldwide
ERIC Educational Resources Information Center
Abadzi, Helen
2016-01-01
Reading programs for low-income populations often give disappointing results. Failures may be partly due to a neglect of practice in decoding letters. Visual stimuli are best learned symbol by symbol, with pattern analogies and much practice to unite smaller components and speed up identification. The prerequisite for comprehending volumes of text…
Code of Federal Regulations, 2014 CFR
2014-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.102 Closed... separated from the underlying video by a sufficient number of background pixels to insure the foreground is... the trailing “white” pixels of the last character on a row do not bleed into the underlying video. (i...
Code of Federal Regulations, 2012 CFR
2012-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING... separated from the underlying video by a sufficient number of background pixels to insure the foreground is... the trailing “white” pixels of the last character on a row do not bleed into the underlying video. (i...
Code of Federal Regulations, 2013 CFR
2013-10-01
... COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING... separated from the underlying video by a sufficient number of background pixels to insure the foreground is... the trailing “white” pixels of the last character on a row do not bleed into the underlying video. (i...
47 CFR 79.101 - Closed caption decoder requirements for analog television receivers.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) BROADCAST RADIO SERVICES CLOSED CAPTIONING AND VIDEO DESCRIPTION OF VIDEO PROGRAMMING § 79.101 Closed... user selects. The TV Mode of operation allows the video to be viewed in its original form. The Caption... from the video over which they are placed. In addition, the user must have the capability to select a...
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.
2017-08-01
Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. We show that the implementation of SLECNS based on known equivalentors or traditional correlators is possible if they are based on proposed equivalental two-dimensional functions of image similarity. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalental weighing of input patterns. Real model experiments in Mathcad are demonstrated, which confirm that non-linear processing on equivalent functions allows you to determine the neuron winners and adjust the weight matrix. Experimental results have shown that such models can be successfully used for auto- and hetero-associative recognition. They can also be used to explain some mechanisms known as "focus" and "competing gain-inhibition concept". The SLECNS architecture and hardware implementations of its basic nodes based on multi-channel convolvers and correlators with time integration are proposed. The parameters and performance of such architectures are estimated.
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Viterbi decoding for satellite and space communication.
NASA Technical Reports Server (NTRS)
Heller, J. A.; Jacobs, I. M.
1971-01-01
Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-01-01
Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.
Hagan-Burke, Shanna; Coyne, Michael D; Kwok, Oi-Man; Simmons, Deborah C; Kim, Minjung; Simmons, Leslie E; Skidmore, Susan T; Hernandez, Caitlin L; McSparran Ruby, Maureen
2013-01-01
This exploratory study examined the influences of student, teacher, and setting characteristics on kindergarteners' early reading outcomes and investigated whether those relations were moderated by type of intervention. Participants included 206 kindergarteners identified as at risk for reading difficulties and randomly assigned to one of two supplemental interventions: (a) an experimental explicit, systematic, code-based program or (b) their schools' typical kindergarten reading intervention. Results from separate multilevel structural equation models indicated that among student variables, entry-level alphabet knowledge was positively associated with phonemic and decoding outcomes in both conditions. Entry-level rapid automatized naming also positively influenced decoding outcomes in both conditions. However, its effect on phonemic outcomes was statistically significant only among children in the typical practice comparison condition. Regarding teacher variables, the quality of instruction was associated with significantly higher decoding outcomes in the typical reading intervention condition but had no statistically significant influence on phonemic outcomes in either condition. Among setting variables, instruction in smaller group sizes was associated with better phonemic outcomes in the comparison condition but had no statistically significant influence on outcomes of children in the intervention group. Mode of delivery (i.e., pullout vs. in class) had no statistically significant influence on either outcome variable.
Multiscale decoding for reliable brain-machine interface performance over time.
Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M
2017-07-01
Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.
Decoding the Semantic Content of Natural Movies from Human Brain Activity
Huth, Alexander G.; Lee, Tyler; Nishimoto, Shinji; Bilenko, Natalia Y.; Vu, An T.; Gallant, Jack L.
2016-01-01
One crucial test for any quantitative model of the brain is to show that the model can be used to accurately decode information from evoked brain activity. Several recent neuroimaging studies have decoded the structure or semantic content of static visual images from human brain activity. Here we present a decoding algorithm that makes it possible to decode detailed information about the object and action categories present in natural movies from human brain activity signals measured by functional MRI. Decoding is accomplished using a hierarchical logistic regression (HLR) model that is based on labels that were manually assigned from the WordNet semantic taxonomy. This model makes it possible to simultaneously decode information about both specific and general categories, while respecting the relationships between them. Our results show that we can decode the presence of many object and action categories from averaged blood-oxygen level-dependent (BOLD) responses with a high degree of accuracy (area under the ROC curve > 0.9). Furthermore, we used this framework to test whether semantic relationships defined in the WordNet taxonomy are represented the same way in the human brain. This analysis showed that hierarchical relationships between general categories and atypical examples, such as organism and plant, did not seem to be reflected in representations measured by BOLD fMRI. PMID:27781035
On the decoding process in ternary error-correcting output codes.
Escalera, Sergio; Pujol, Oriol; Radeva, Petia
2010-01-01
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
NASA Technical Reports Server (NTRS)
Layland, J. W.
1974-01-01
An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.
Decoding Humor Experiences from Brain Activity of People Viewing Comedy Movies
Sawahata, Yasuhito; Komine, Kazuteru; Morita, Toshiya; Hiruma, Nobuyuki
2013-01-01
Humans naturally have a sense of humor. Experiencing humor not only encourages social interactions, but also produces positive physiological effects on the human body, such as lowering blood pressure. Recent neuro-imaging studies have shown evidence for distinct mental state changes at work in people experiencing humor. However, the temporal characteristics of these changes remain elusive. In this paper, we objectively measured humor-related mental states from single-trial functional magnetic resonance imaging (fMRI) data obtained while subjects viewed comedy TV programs. Measured fMRI data were labeled on the basis of the lag before or after the viewer’s perception of humor (humor onset) determined by the viewer-reported humor experiences during the fMRI scans. We trained multiple binary classifiers, or decoders, to distinguish between fMRI data obtained at each lag from ones obtained during a neutral state in which subjects were not experiencing humor. As a result, in the right dorsolateral prefrontal cortex and the right temporal area, the decoders showed significant classification accuracies even at two seconds ahead of the humor onsets. Furthermore, given a time series of fMRI data obtained during movie viewing, we found that the decoders with significant performance were also able to predict the upcoming humor events on a volume-by-volume basis. Taking into account the hemodynamic delay, our results suggest that the upcoming humor events are encoded in specific brain areas up to about five seconds before the awareness of experiencing humor. Our results provide evidence that there exists a mental state lasting for a few seconds before actual humor perception, as if a viewer is expecting the future humorous events. PMID:24324656
Testing interconnected VLSI circuits in the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Onyszchuk, I. M.
1991-01-01
The Big Viterbi Decoder (BVD) is a powerful error-correcting hardware device for the Deep Space Network (DSN), in support of the Galileo and Comet Rendezvous Asteroid Flyby (CRAF)/Cassini Missions. Recently, a prototype was completed and run successfully at 400,000 or more decoded bits per second. This prototype is a complex digital system whose core arithmetic unit consists of 256 identical very large scale integration (VLSI) gate-array chips, 16 on each of 16 identical boards which are connected through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques were developed for debugging, testing, and locating faults inside individual chips, on boards, and within the entire decoder. The methods are based upon hierarchical structure in the decoder, and require that chips or boards be wired themselves as Viterbi decoders. The basic procedure consists of sending a small set of known, very noisy channel symbols through a decoder, and matching observables against values computed by a software simulation. Also, tests were devised for finding open and short-circuited wires which connect VLSI chips on the boards and through the backplane.
State-space decoding of primary afferent neuron firing rates
NASA Astrophysics Data System (ADS)
Wagenaar, J. B.; Ventura, V.; Weber, D. J.
2011-02-01
Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.
Utilizing sensory prediction errors for movement intention decoding: A new methodology
Nakamura, Keigo; Ando, Hideyuki
2018-01-01
We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user’s intended movement, and decode a user’s movement intention from his electroencephalography (EEG), by decoding for prediction errors—whether the sensory prediction corresponding to a user’s intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal. PMID:29750195
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
On complexity of trellis structure of linear block codes
NASA Technical Reports Server (NTRS)
Lin, Shu
1990-01-01
The trellis structure of linear block codes (LBCs) is discussed. The state and branch complexities of a trellis diagram (TD) for a LBC is investigated. The TD with the minimum number of states is said to be minimal. The branch complexity of a minimal TD for a LBC is expressed in terms of the dimensions of specific subcodes of the given code. Then upper and lower bounds are derived on the number of states of a minimal TD for a LBC, and it is shown that a cyclic (or shortened cyclic) code is the worst in terms of the state complexity among the LBCs of the same length and dimension. Furthermore, it is shown that the structural complexity of a minimal TD for a LBC depends on the order of its bit positions. This fact suggests that an appropriate permutation of the bit positions of a code may result in an equivalent code with a much simpler minimal TD. Boolean polynomial representation of codewords of a LBC is also considered. This representation helps in study of the trellis structure of the code. Boolean polynomial representation of a code is applied to construct its minimal TD. Particularly, the construction of minimal trellises for Reed-Muller codes and the extended and permuted binary primitive BCH codes which contain Reed-Muller as subcodes is emphasized. Finally, the structural complexity of minimal trellises for the extended and permuted, and double-error-correcting BCH codes is analyzed and presented. It is shown that these codes have relatively simple trellis structure and hence can be decoded with the Viterbi decoding algorithm.
Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990
Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.
ERIC Educational Resources Information Center
Steacy, Laura M.; Elleman, Amy M.; Lovett, Maureen W.; Compton, Donald L.
2016-01-01
In English, gains in decoding skill do not map directly onto increases in word reading. However, beyond the Self-Teaching Hypothesis, little is known about the transfer of decoding skills to word reading. In this study, we offer a new approach to testing specific decoding elements on transfer to word reading. To illustrate, we modeled word-reading…
Comparison of memory thresholds for planar qudit geometries
NASA Astrophysics Data System (ADS)
Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad
2017-11-01
We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.
A high data rate universal lattice decoder on FPGA
NASA Astrophysics Data System (ADS)
Ma, Jing; Huang, Xinming; Kura, Swapna
2005-06-01
This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.
Error-correction coding for digital communications
NASA Astrophysics Data System (ADS)
Clark, G. C., Jr.; Cain, J. B.
This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.
Müller-Putz, G R; Schwarz, A; Pereira, J; Ofner, P
2016-01-01
In this chapter, we give an overview of the Graz-BCI research, from the classic motor imagery detection to complex movement intentions decoding. We start by describing the classic motor imagery approach, its application in tetraplegic end users, and the significant improvements achieved using coadaptive brain-computer interfaces (BCIs). These strategies have the drawback of not mirroring the way one plans a movement. To achieve a more natural control-and to reduce the training time-the movements decoded by the BCI need to be closely related to the user's intention. Within this natural control, we focus on the kinematic level, where movement direction and hand position or velocity can be decoded from noninvasive recordings. First, we review movement execution decoding studies, where we describe the decoding algorithms, their performance, and associated features. Second, we describe the major findings in movement imagination decoding, where we emphasize the importance of estimating the sources of the discriminative features. Third, we introduce movement target decoding, which could allow the determination of the target without knowing the exact movement-by-movement details. Aside from the kinematic level, we also address the goal level, which contains relevant information on the upcoming action. Focusing on hand-object interaction and action context dependency, we discuss the possible impact of some recent neurophysiological findings in the future of BCI control. Ideally, the goal and the kinematic decoding would allow an appropriate matching of the BCI to the end users' needs, overcoming the limitations of the classic motor imagery approach. © 2016 Elsevier B.V. All rights reserved.
Complete Decoding and Reporting of Aviation Routine Weather Reports (METARs)
NASA Technical Reports Server (NTRS)
Lui, Man-Cheung Max
2014-01-01
Aviation Routine Weather Report (METAR) provides surface weather information at and around observation stations, including airport terminals. These weather observations are used by pilots for flight planning and by air traffic service providers for managing departure and arrival flights. The METARs are also an important source of weather data for Air Traffic Management (ATM) analysts and researchers at NASA and elsewhere. These researchers use METAR to correlate severe weather events with local or national air traffic actions that restrict air traffic, as one example. A METAR is made up of multiple groups of coded text, each with a specific standard coding format. These groups of coded text are located in two sections of a report: Body and Remarks. The coded text groups in a U.S. METAR are intended to follow the coding standards set by National Oceanic and Atmospheric Administration (NOAA). However, manual data entry and edits made by a human report observer may result in coded text elements that do not follow the standards, especially in the Remarks section. And contrary to the standards, some significant weather observations are noted only in the Remarks section and not in the Body section of the reports. While human readers can infer the intended meaning of non-standard coding of weather conditions, doing so with a computer program is far more challenging. However such programmatic pre-processing is necessary to enable efficient and faster database query when researchers need to perform any significant historical weather analysis. Therefore, to support such analysis, a computer algorithm was developed to identify groups of coded text anywhere in a report and to perform subsequent decoding in software. The algorithm considers common deviations from the standards and data entry mistakes made by observers. The implemented software code was tested to decode 12 million reports and the decoding process was able to completely interpret 99.93 of the reports. This document presents the deviations from the standards and the decoding algorithm. Storing all decoded data in a database allows users to quickly query a large amount of data and to perform data mining on the data. Users can specify complex query criteria not only on date or airport but also on weather condition. This document also describes the design of a database schema for storing the decoded data, and a Data Warehouse web application that allows users to perform reporting and analysis on the decoded data. Finally, this document presents a case study correlating dust storms reported in METARs from the Phoenix International airport with Ground Stops issued by Air Route Traffic Control Centers (ATCSCC). Blowing widespread dust is one of the weather conditions when dust storm occurs. By querying the database, 294 METARs were found to report blowing widespread dust at the Phoenix airport and 41 of them reported such condition only in the Remarks section of the reports. When METAR is a data source for an ATM research, it is important to include weather conditions not only from the Body section but also from the Remarks section of METARs.
Pefkou, Maria; Arnal, Luc H; Fontolan, Lorenzo; Giraud, Anne-Lise
2017-08-16
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm. SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process. Copyright © 2017 the authors 0270-6474/17/377930-09$15.00/0.
Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Ajiboye, A. Bolu
2017-01-01
Objective Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: MT = a + b log2(D/R ) (where MT is movement time, D is target distance, R is target radius, and a,b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R). Approach Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main Results We found that movement times were better described by the equation MT = a + bD + cR−2, which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require nonlinear decoding strategies. PMID:28177925
Multiformat decoder for a DSP-based IP set-top box
NASA Astrophysics Data System (ADS)
Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.
2007-05-01
Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.
NASA Astrophysics Data System (ADS)
Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas
2013-09-01
The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
Analysis of the possibility of using G.729 codec for steganographic transmission
NASA Astrophysics Data System (ADS)
Piotrowski, Zbigniew; Ciołek, Michał; Dołowski, Jerzy; Wojtuń, Jarosław
2017-04-01
Network steganography is dedicated in particular for those communication services for which there are no bridges or nodes carrying out unintentional attacks on steganographic sequence. In order to set up a hidden communication channel the method of data encoding and decoding was implemented using code books of codec G.729. G.729 codec includes, in its construction, linear prediction vocoder CS-ACELP (Conjugate Structure Algebraic Code Excited Linear Prediction), and by modifying the binary content of the codebook, it is easy to change a binary output stream. The article describes the results of research on the selection of these bits of the codebook codec G.729 which the negation of the least have influence to the loss of quality and fidelity of the output signal. The study was performed with the use of subjective and objective listening tests.
A VHDL Interface for Altera Design Files
1990-01-01
this requirement dictated that all prototype products developed during this research would have to mirror standard VHDL code . In fact, the final... product would have to meet the 20 syntactic and semantic requirements of standard VHDL . The coding style used to create the transformation program was the...Transformed Decoder File ....................... 47 C. Supplemental VHDL Package Source Code ........... 54 Altpk.vhd .................................... 54 D
Supporting Data for Fiscal Year 1994. Budget Estimate Submission
1993-04-01
0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial
The Importance of Cognitive Factors that Guide Escalation of Force Decisions
2012-07-01
L., Mathew, J., Elfenbein, H. A., Sanchez- Burks, J., & Ruark, G. A. (2009). Training Soldiers to decode nonverbal cues in cross - cultural ...procedures for engaging with noncombatants and (potential) combatants has become critical. A research program that explores the psychological ...factors that could influence those situations. Information was gathered from foundational and current psychological theories as well as from
ERIC Educational Resources Information Center
Ray, Elizabeth
This document contains the instructional materials developed and presented in workshops on communications skills improvement at a regional hospital. The workshop was designed to help participants gain skills that enable them to do the following: (1) identify and overcome roadblocks to effective communication; (2) decode "hidden messages"; (3)…
The Effectiveness of One-to-One Tutoring by Community Tutors for At-Risk Beginning Readers.
ERIC Educational Resources Information Center
Vadasy, Patricia F.; Jenkins, Joseph R.; Antil, Lawrence R.; Wayne, Susan K.; O'Connor, Rollanda E.
1997-01-01
Twenty at-risk first graders received 30 minutes of individual instruction from community tutors four days a week for up to 23 weeks. Subjects outperformed the control group on all reading, decoding, spelling and segmenting, and writing measures. Tutors who implemented the program with a high degree of fidelity achieved significant effect sizes in…
Completely Illiterate Adults Can Learn to Decode in 3 Months
ERIC Educational Resources Information Center
Kolinsky, Régine; Leite, Isabel; Carvalho, Cristina; Franco, Ana; Morais, José
2018-01-01
The purpose of this case series was to explore whether adults who did not have the opportunity to acquire reading skills during childhood are able to do so rapidly if trained with an adequate literacy program. After 14 weeks of training with a new, optimized, literacy course based on cognitive research, six out of eight participants became able to…
Miniaturization of flight deflection measurement system
NASA Technical Reports Server (NTRS)
Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)
1990-01-01
A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
NASA Astrophysics Data System (ADS)
Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.
2017-11-01
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.
Catone, William V; Brady, Susan A
2005-06-01
This investigation analyzed goals from the Individual Educational Programs (IEPs) of 54 high school students with diagnosed reading disabilities in basic skills (decoding and/or word identification). Results showed that for 73% of the students, the IEPs written when they were in high school failed to specify any objectives regarding their acute difficulties with basic skills. IEPs from earlier points in the students' educations were also reviewed, as available. For 23 of the students, IEPs were present in the students' files for three time points: elementary school (ES), middle school (MS), and high school (HS). Another 20 students from the sample of 54 had IEPs available for two time points (HS and either MS or ES). Comparisons with the IEPs from younger years showed a pattern of decline from ES to MS to HS in the percentage of IEPs that commented on or set goals pertaining to weaknesses in decoding. These findings suggest that basic skills deficits that persist into the upper grade levels are not being sufficiently targeted for remediation, and help explain why older students frequently fail to resolve their reading problems.
Overview of Decoding across the Disciplines
ERIC Educational Resources Information Center
Boman, Jennifer; Currie, Genevieve; MacDonald, Ron; Miller-Young, Janice; Yeo, Michelle; Zettel, Stephanie
2017-01-01
In this chapter we describe the Decoding the Disciplines Faculty Learning Community at Mount Royal University and how Decoding has been used in new and multidisciplinary ways in the various teaching, curriculum, and research projects that are presented in detail in subsequent chapters.
Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, A.; Divsalar, D.; Yao, K.
2004-01-01
In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.
NASA Astrophysics Data System (ADS)
Choi, Hoseok; Lee, Jeyeon; Park, Jinsick; Lee, Seho; Ahn, Kyoung-ha; Kim, In Young; Lee, Kyoung-Min; Jang, Dong Pyo
2018-02-01
Objective. In arm movement BCIs (brain-computer interfaces), unimanual research has been much more extensively studied than its bimanual counterpart. However, it is well known that the bimanual brain state is different from the unimanual one. Conventional methodology used in unimanual studies does not take the brain stage into consideration, and therefore appears to be insufficient for decoding bimanual movements. In this paper, we propose the use of a two-staged (effector-then-trajectory) decoder, which combines the classification of movement conditions and uses a hand trajectory predicting algorithm for unimanual and bimanual movements, for application in real-world BCIs. Approach. Two micro-electrode patches (32 channels) were inserted over the dura mater of the left and right hemispheres of two rhesus monkeys, covering the motor related cortex for epidural electrocorticograph (ECoG). Six motion sensors (inertial measurement unit) were used to record the movement signals. The monkeys performed three types of arm movement tasks: left unimanual, right unimanual, bimanual. To decode these movements, we used a two-staged decoder, which combines the effector classifier for four states (left unimanual, right unimanual, bimanual movements, and stationary state) and movement predictor using regression. Main results. Using this approach, we successfully decoded both arm positions using the proposed decoder. The results showed that decoding performance for bimanual movements were improved compared to the conventional method, which does not consider the effector, and the decoding performance was significant and stable over a period of four months. In addition, we also demonstrated the feasibility of epidural ECoG signals, which provided an adequate level of decoding accuracy. Significance. These results provide evidence that brain signals are different depending on the movement conditions or effectors. Thus, the two-staged method could be useful if BCIs are used to generalize for both unimanual and bimanual operations in human applications and in various neuro-prosthetics fields.
Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles
2016-07-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.
Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities
NASA Astrophysics Data System (ADS)
Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu
Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.
Online decoding of object-based attention using real-time fMRI.
Niazi, Adnan M; van den Broek, Philip L C; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A J
2014-01-01
Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transparently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder performed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based attention requires a multivariate decoding approach that can detect these distributed patterns of cortical activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Extracting duration information in a picture category decoding task using hidden Markov Models
NASA Astrophysics Data System (ADS)
Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y.; Schoenfeld, Mircea A.; Knight, Robert T.; Rose, Georg
2016-04-01
Objective. Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain-computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. Approach. Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. Main results. Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. Significance. The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations.
Building Bridges from the Decoding Interview to Teaching Practice
ERIC Educational Resources Information Center
Pettit, Jennifer; Rathburn, Melanie; Calvert, Victoria; Lexier, Roberta; Underwood, Margot; Gleeson, Judy; Dean, Yasmin
2017-01-01
This chapter describes a multidisciplinary faculty self-study about reciprocity in service-learning. The study began with each coauthor participating in a Decoding interview. We describe how Decoding combined with collaborative self-study had a positive impact on our teaching practice.
An extended Reed Solomon decoder design
NASA Technical Reports Server (NTRS)
Chen, J.; Owsley, P.; Purviance, J.
1991-01-01
It has previously been shown that the Reed-Solomon (RS) codes can correct errors beyond the Singleton and Rieger Bounds with an arbitrarily small probability of a miscorrect. That is, an (n,k) RS code can correct more than (n-k)/2 errors. An implementation of such an RS decoder is presented in this paper. An existing RS decoder, the AHA4010, is utilized in this work. This decoder is especially useful for errors which are patterned with a long burst plus some random errors.
A high speed sequential decoder
NASA Technical Reports Server (NTRS)
Lum, H., Jr.
1972-01-01
The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.
Neural Decoder for Topological Codes
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Melko, Roger G.
2017-07-01
We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.
Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph
2008-01-01
Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268
Moraitou, Despina; Papantoniou, Georgia; Gkinopoulos, Theofilos; Nigritinou, Magdalini
2013-09-01
Although the ability to recognize emotions through bodily and facial muscular movements is vital to everyday life, numerous studies have found that older adults are less adept at identifying emotions than younger adults. The message gleaned from research has been one of greater decline in abilities to recognize specific negative emotions than positive ones. At the same time, these results raise methodological issues with regard to different modalities in which emotion decoding is measured. The main aim of the present study is to identify the pattern of age differences in the ability to decode basic emotions from naturalistic visual emotional displays. The sample comprised a total of 208 adults from Greece, aged from 18 to 86 years. Participants were examined using the Emotion Evaluation Test, which is the first part of a broader audiovisual tool, The Awareness of Social Inference Test. The Emotion Evaluation Test was designed to examine a person's ability to identify six emotions and discriminate these from neutral expressions, as portrayed dynamically by professional actors. The findings indicate that decoding of basic emotions occurs along the broad affective dimension of uncertainty, and a basic step in emotion decoding involves recognizing whether information presented is emotional or not. Age was found to negatively affect the ability to decode basic negatively valenced emotions as well as pleasant surprise. Happiness decoding is the only ability that was found well-preserved with advancing age. The main conclusion drawn from the study is that the pattern in which emotion decoding from visual cues is affected by normal ageing depends on the rate of uncertainty, which either is related to decoding difficulties or is inherent to a specific emotion. © 2013 The Authors. Psychogeriatrics © 2013 Japanese Psychogeriatric Society.
Decoding Individual Finger Movements from One Hand Using Human EEG Signals
Gonzalez, Jania; Ding, Lei
2014-01-01
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (p<0.05). The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies. PMID:24416360
Expressive body movement responses to music are coherent, consistent, and low dimensional.
Amelynck, Denis; Maes, Pieter-Jan; Martens, Jean Pierre; Leman, Marc
2014-12-01
Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.
Görgen, Kai; Hebart, Martin N; Allefeld, Carsten; Haynes, John-Dylan
2017-12-27
Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods. While these novel approaches provide new insights into neuroimaging data, they often have unexpected properties, generating a growing literature on possible pitfalls. We propose to meet this challenge by adopting a habit of systematic testing of experimental design, analysis procedures, and statistical inference. Specifically, we suggest to apply the analysis method used for experimental data also to aspects of the experimental design, simulated confounds, simulated null data, and control data. We stress the importance of keeping the analysis method the same in main and test analyses, because only this way possible confounds and unexpected properties can be reliably detected and avoided. We describe and discuss this Same Analysis Approach in detail, and demonstrate it in two worked examples using multivariate decoding. With these examples, we reveal two sources of error: A mismatch between counterbalancing (crossover designs) and cross-validation which leads to systematic below-chance accuracies, and linear decoding of a nonlinear effect, a difference in variance. Copyright © 2017 Elsevier Inc. All rights reserved.
Correcting quantum errors with entanglement.
Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu
2006-10-20
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.
2007-12-01
American culture that I would never ever have learnt otherwise (though now that I think of it “tentacle porn ” is Japanese). Also throughout the whole thing...the fact that I was able to tell him most of this in more than one occasion and just thank him yet again... It’s harder to thank family and loved ones... family , but I will do my best to make them proud. xi xii Contents 1 Introduction 1 2 Decoding Information From fMRI Data With Linear Classifiers 11 2.1
Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; ...
2017-01-01
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L
2017-05-29
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hong; Long, Christopher M.; DeRose, Christopher T.
We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.
A low-complexity Reed-Solomon decoder using new key equation solver
NASA Astrophysics Data System (ADS)
Xie, Jun; Yuan, Songxin; Tu, Xiaodong; Zhang, Chongfu
2006-09-01
This paper presents a low-complexity parallel Reed-Solomon (RS) (255,239) decoder architecture using a novel pipelined variable stages recursive Modified Euclidean (ME) algorithm for optical communication. The pipelined four-parallel syndrome generator is proposed. The time multiplexing and resource sharing schemes are used in the novel recursive ME algorithm to reduce the logic gate count. The new key equation solver can be shared by two decoder macro. A new Chien search cell which doesn't need initialization is proposed in the paper. The proposed decoder can be used for 2.5Gb/s data rates device. The decoder is implemented in Altera' Stratixll device. The resource utilization is reduced about 40% comparing to the conventional method.
The modulatory effect of semantic familiarity on the audiovisual integration of face-name pairs.
Li, Yuanqing; Wang, Fangyi; Huang, Biao; Yang, Wanqun; Yu, Tianyou; Talsma, Durk
2016-12-01
To recognize individuals, the brain often integrates audiovisual information from familiar or unfamiliar faces, voices, and auditory names. To date, the effects of the semantic familiarity of stimuli on audiovisual integration remain unknown. In this functional magnetic resonance imaging (fMRI) study, we used familiar/unfamiliar facial images, auditory names, and audiovisual face-name pairs as stimuli to determine the influence of semantic familiarity on audiovisual integration. First, we performed a general linear model analysis using fMRI data and found that audiovisual integration occurred for familiar congruent and unfamiliar face-name pairs but not for familiar incongruent pairs. Second, we decoded the familiarity categories of the stimuli (familiar vs. unfamiliar) from the fMRI data and calculated the reproducibility indices of the brain patterns that corresponded to familiar and unfamiliar stimuli. The decoding accuracy rate was significantly higher for familiar congruent versus unfamiliar face-name pairs (83.2%) than for familiar versus unfamiliar faces (63.9%) and for familiar versus unfamiliar names (60.4%). This increase in decoding accuracy was not observed for familiar incongruent versus unfamiliar pairs. Furthermore, compared with the brain patterns associated with facial images or auditory names, the reproducibility index was significantly improved for the brain patterns of familiar congruent face-name pairs but not those of familiar incongruent or unfamiliar pairs. Our results indicate the modulatory effect that semantic familiarity has on audiovisual integration. Specifically, neural representations were enhanced for familiar congruent face-name pairs compared with visual-only faces and auditory-only names, whereas this enhancement effect was not observed for familiar incongruent or unfamiliar pairs. Hum Brain Mapp 37:4333-4348, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tyson-Parry, Maree M; Sailah, Jessica; Boyes, Mark E; Badcock, Nicholas A
2015-10-01
This research investigated the relationship between the attentional blink (AB) and reading in typical adults. The AB is a deficit in the processing of the second of two rapidly presented targets when it occurs in close temporal proximity to the first target. Specifically, this experiment examined whether the AB was related to both phonological and sight-word reading abilities, and whether the relationship was mediated by accuracy on a single-target rapid serial visual processing task (single-target accuracy). Undergraduate university students completed a battery of tests measuring reading ability, non-verbal intelligence, and rapid automatised naming, in addition to rapid serial visual presentation tasks in which they were required to identify either two (AB task) or one (single target task) target/s (outlined shapes: circle, square, diamond, cross, and triangle) in a stream of random-dot distractors. The duration of the AB was related to phonological reading (n=41, β=-0.43): participants who exhibited longer ABs had poorer phonemic decoding skills. The AB was not related to sight-word reading. Single-target accuracy did not mediate the relationship between the AB and reading, but was significantly related to AB depth (non-linear fit, R(2)=.50): depth reflects the maximal cost in T2 reporting accuracy in the AB. The differential relationship between the AB and phonological versus sight-word reading implicates common resources used for phonemic decoding and target consolidation, which may be involved in cognitive control. The relationship between single-target accuracy and the AB is discussed in terms of cognitive preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin
2012-01-01
Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436
Encoding and Decoding Models in Cognitive Electrophysiology
Holdgraf, Christopher R.; Rieger, Jochem W.; Micheli, Cristiano; Martin, Stephanie; Knight, Robert T.; Theunissen, Frederic E.
2017-01-01
Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses. PMID:29018336
The trellis complexity of convolutional codes
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Lin, W.
1995-01-01
It has long been known that convolutional codes have a natural, regular trellis structure that facilitates the implementation of Viterbi's algorithm. It has gradually become apparent that linear block codes also have a natural, though not in general a regular, 'minimal' trellis structure, which allows them to be decoded with a Viterbi-like algorithm. In both cases, the complexity of the Viterbi decoding algorithm can be accurately estimated by the number of trellis edges per encoded bit. It would, therefore, appear that we are in a good position to make a fair comparison of the Viterbi decoding complexity of block and convolutional codes. Unfortunately, however, this comparison is somewhat muddled by the fact that some convolutional codes, the punctured convolutional codes, are known to have trellis representations that are significantly less complex than the conventional trellis. In other words, the conventional trellis representation for a convolutional code may not be the minimal trellis representation. Thus, ironically, at present we seem to know more about the minimal trellis representation for block than for convolutional codes. In this article, we provide a remedy, by developing a theory of minimal trellises for convolutional codes. (A similar theory has recently been given by Sidorenko and Zyablov). This allows us to make a direct performance-complexity comparison for block and convolutional codes. A by-product of our work is an algorithm for choosing, from among all generator matrices for a given convolutional code, what we call a trellis-minimal generator matrix, from which the minimal trellis for the code can be directly constructed. Another by-product is that, in the new theory, punctured convolutional codes no longer appear as a special class, but simply as high-rate convolutional codes whose trellis complexity is unexpectedly small.
High-speed architecture for the decoding of trellis-coded modulation
NASA Technical Reports Server (NTRS)
Osborne, William P.
1992-01-01
Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. PMID:27898712
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.
Aroudi, Ali; Doclo, Simon
2017-07-01
To decode auditory attention from single-trial EEG recordings in an acoustic scenario with two competing speakers, a least-squares method has been recently proposed. This method however requires the clean speech signals of both the attended and the unattended speaker to be available as reference signals. Since in practice only the binaural signals consisting of a reverberant mixture of both speakers and background noise are available, in this paper we explore the potential of using these (unprocessed) signals as reference signals for decoding auditory attention in different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In addition, we investigate whether it is possible to use these signals instead of the clean attended speech signal for filter training. The experimental results show that using the unprocessed binaural signals for filter training and for decoding auditory attention is feasible with a relatively large decoding performance, although for most acoustic conditions the decoding performance is significantly lower than when using the clean speech signals.
An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Seyedi, Saeid; Navimipour, Nima Jafari
2018-03-01
Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.
Adaptive linearization of phase space. A hydrological case study
NASA Astrophysics Data System (ADS)
Angarita, Hector; Domínguez, Efraín
2013-04-01
Here is presented a method and its implementation to extract transition operators from hydrological signals with significant algorithmic complexity, i.e. signals with an identifiable deterministic component and a non-periodic and irregular part, being the latter a source of uncertainty for the observer. The method assumes that in a system such as a hydrological system, from the perspective of information theory, signals cannot be known to an arbitrary level of precision due to limited observation or coding capabilities. According to the Shannon-Hartley theorem, at a given sampling frequency -fs' there is a theoretical peak capacity C to observe data from a random signal (i.e. the discharge) transmitted through a noisy channel with a signal to noise ratio -SNR. This imposes a limit on the observer capability to completely reconstruct an observed signal if the sampling frequency -fs' is lower than a given threshold -fs', for which a system signal can be completely recovered for any given SNR. Since most hydrological monitoring systems have low monitoring frequency, the observations may contain less information than required to describe the process dynamics and as a result observed signals exhibit some level of uncertainty if compared with the "true" signal. In the proposed approach, a simple local phase-space model, with locally linearized deterministic and stochastic differential equations, is applied to extract system's state transition operators and to probabilistically characterize the signal uncertainty. In order to determine optimality of the local operators, three main elements are considered: i: System state dimensionality, ii. Sampling frequency and, iii. Parameterization window length. Two examples are shown and discussed to illustrate the method. First, the evaluation of the feasibility of real-time forecasting models for levels and fow rates, from hourly to 14-day lead times. The results of this application demonstrate the operational feasibility for simple predictive models for most of the evaluated cases. The second application is the definition of a stage-discharge decoding method based on the dynamics of the water level observed signal. The results indicate that the method leads to a reduction of hysteresis in the decoded flow, which however is not satisfactory as a quadratic bias emerged in the decoded values and needs explanation. Both examples allow to conclude about the optimal sampling frequency of studied variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicklaus, Dennis J.
2013-10-13
We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PVmore » monitors.« less
Hard decoding algorithm for optimizing thresholds under general Markovian noise
NASA Astrophysics Data System (ADS)
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
ERIC Educational Resources Information Center
Gates, Louis
2018-01-01
The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization--this generalization unifies…
Oppositional Decoding as an Act of Resistance.
ERIC Educational Resources Information Center
Steiner, Linda
1988-01-01
Argues that contributors to the "No Comment" feature of "Ms." magazine are engaging in oppositional decoding and speculates on why this is a satisfying group process. Also notes such decoding presents another challenge to the idea that mass media has the same effect on all audiences. (SD)
Higher-order Fourier analysis over finite fields and applications
NASA Astrophysics Data System (ADS)
Hatami, Pooya
Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. We discuss several notions of regularity which allow us to deduce algorithmic versions of various regularity lemmas for polynomials by Green and Tao and by Kaufman and Lovett. We show that our algorithmic regularity lemmas for polynomials imply algorithmic versions of several results relying on regularity, such as decoding Reed-Muller codes beyond the list decoding radius (for certain structured errors), and prescribed polynomial decompositions. Finally, motivated by the definition of Gowers norms, we investigate norms defined by different systems of linear forms. We give necessary conditions on the structure of systems of linear forms that define norms. We prove that such norms can be one of only two types, and assuming that |F p| is sufficiently large, they essentially are equivalent to either a Gowers norm or Lp norms.
Bayer image parallel decoding based on GPU
NASA Astrophysics Data System (ADS)
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
Teaching children with dyslexia to spell in a reading-writers' workshop.
Berninger, Virginia W; Lee, Yen-Ling; Abbott, Robert D; Breznitz, Zvia
2013-04-01
To identify effective treatment for both the spelling and word decoding problems in dyslexia, 24 students with dyslexia in grades 4 to 9 were randomly assigned to treatments A (n=12) or B (n=12) in an after-school reading-writers' workshop at the university (thirty 1-h sessions twice a week over 5 months). First, both groups received step 1 treatment of grapheme-phoneme correspondences (gpc) for oral reading. At step 2, treatment A received gpc training for both oral reading and spelling, and treatment B received gpc training for oral reading and phonological awareness. At step 3, treatment A received orthographic spelling strategy and rapid accelerated reading program (RAP) training, and treatment B continued step 2 training. At step 4, treatment A received morphological strategies and RAP training, and treatment B received orthographic spelling strategy training. Each treatment also had the same integrated reading-writing activities, which many school assignments require. Both groups improved significantly in automatic letter writing, spelling real words, compositional fluency, and oral reading (decoding) rate. Treatment A significantly outperformed treatment B in decoding rate after step 3 orthographic training, which in turn uniquely predicted spelling real words. Letter processing rate increased during step 3 RAP training and correlated significantly with two silent reading fluency measures. Adding orthographic strategies with "working memory in mind" to phonics helps students with dyslexia spell and read English words.
Que bonito es leer! III. Cuaderno de ejercicios (How Nice It Is to Read! III. Workbook).
ERIC Educational Resources Information Center
Dissemination and Assessment Center for Bilingual Education, Austin, TX.
This is the third and last unit in a series designed to provide the Spanish-speaking child with a complete language arts and reading program for grades 1-3. It focuses on the development of decoding, encoding, comprehension, and interpretation skills. This third grade workbook, one component of the language arts unit, contains 22 chapters with…
Code of Federal Regulations, 2014 CFR
2014-10-01
...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...
Code of Federal Regulations, 2013 CFR
2013-10-01
...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...
Code of Federal Regulations, 2012 CFR
2012-10-01
...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...
Hands-On Decoding: Guidelines for Using Manipulative Letters
ERIC Educational Resources Information Center
Pullen, Paige Cullen; Lane, Holly B.
2016-01-01
Manipulative objects have long been an essential tool in the development of mathematics knowledge and skills. A growing body of evidence suggests using manipulative letters for decoding practice is an also an effective method for teaching reading, particularly in improving the phonological and decoding skills of students at risk for reading…
The Contribution of Attentional Control and Working Memory to Reading Comprehension and Decoding
ERIC Educational Resources Information Center
Arrington, C. Nikki; Kulesz, Paulina A.; Francis, David J.; Fletcher, Jack M.; Barnes, Marcia A.
2014-01-01
Little is known about how specific components of working memory, namely, attentional processes including response inhibition, sustained attention, and cognitive inhibition, are related to reading decoding and comprehension. The current study evaluated the relations of reading comprehension, decoding, working memory, and attentional control in…
ERIC Educational Resources Information Center
Gregg, Noel; Hoy, Cheri; Flaherty, Donna Ann; Norris, Peggy; Coleman, Christopher; Davis, Mark; Jordan, Michael
2005-01-01
The vast majority of students with learning disabilities at the postsecondary level demonstrate reading decoding, reading fluency, and writing deficits. Identification of valid and reliable psychometric measures for documenting decoding and spelling disabilities at the postsecondary level is critical for determining appropriate accommodations. The…
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Lin, S.
1984-01-01
Several error control coding techniques for reliable satellite communications were investigated to find algorithms for fast decoding of Reed-Solomon codes in terms of dual basis. The decoding of the (255,223) Reed-Solomon code, which is used as the outer code in the concatenated TDRSS decoder, was of particular concern.
A /31,15/ Reed-Solomon Code for large memory systems
NASA Technical Reports Server (NTRS)
Lim, R. S.
1979-01-01
This paper describes the encoding and the decoding of a (31,15) Reed-Solomon Code for multiple-burst error correction for large memory systems. The decoding procedure consists of four steps: (1) syndrome calculation, (2) error-location polynomial calculation, (3) error-location numbers calculation, and (4) error values calculation. The principal features of the design are the use of a hardware shift register for both high-speed encoding and syndrome calculation, and the use of a commercially available (31,15) decoder for decoding Steps 2, 3 and 4.
Information encoder/decoder using chaotic systems
Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson
1997-01-01
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.
Information encoder/decoder using chaotic systems
Miller, S.L.; Miller, W.M.; McWhorter, P.J.
1997-10-21
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.
Node synchronization schemes for the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Swanson, L.; Arnold, S.
1992-01-01
The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods.
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali
1997-01-01
Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.
A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.; Deutsch, L. J.; Satorius, E. H.; Reed, I. S.
1988-01-01
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation.
NASA Astrophysics Data System (ADS)
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
Convolutional coding at 50 Mbps for the Shuttle Ku-band return link
NASA Technical Reports Server (NTRS)
Batson, B. H.; Huth, G. K.
1976-01-01
Error correcting coding is required for 50 Mbps data link from the Shuttle Orbiter through the Tracking and Data Relay Satellite System (TDRSS) to the ground because of severe power limitations. Convolutional coding has been chosen because the decoding algorithms (sequential and Viterbi) provide significant coding gains at the required bit error probability of one in 10 to the sixth power and can be implemented at 50 Mbps with moderate hardware. While a 50 Mbps sequential decoder has been built, the highest data rate achieved for a Viterbi decoder is 10 Mbps. Thus, five multiplexed 10 Mbps Viterbi decoders must be used to provide a 50 Mbps data rate. This paper discusses the tradeoffs which were considered when selecting the multiplexed Viterbi decoder approach for this application.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza
2016-10-21
Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2 = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.
Electrophysiological difference between mental state decoding and mental state reasoning.
Cao, Bihua; Li, Yiyuan; Li, Fuhong; Li, Hong
2012-06-29
Previous studies have explored the neural mechanism of Theory of Mind (ToM), but the neural correlates of its two components, mental state decoding and mental state reasoning, remain unclear. In the present study, participants were presented with various photographs, showing an actor looking at 1 of 2 objects, either with a happy or an unhappy expression. They were asked to either decode the emotion of the actor (mental state decoding task), predict which object would be chosen by the actor (mental state reasoning task), or judge at which object the actor was gazing (physical task), while scalp potentials were recorded. Results showed that (1) the reasoning task elicited an earlier N2 peak than the decoding task did over the prefrontal scalp sites; and (2) during the late positive component (240-440 ms), the reasoning task elicited a more positive deflection than the other two tasks did at the prefrontal scalp sites. In addition, neither the decoding task nor the reasoning task has no left/right hemisphere difference. These findings imply that mental state reasoning differs from mental state decoding early (210 ms) after stimulus onset, and that the prefrontal lobe is the neural basis of mental state reasoning. Copyright © 2012 Elsevier B.V. All rights reserved.
Reading skills of students with speech sound disorders at three stages of literacy development.
Skebo, Crysten M; Lewis, Barbara A; Freebairn, Lisa A; Tag, Jessica; Avrich Ciesla, Allison; Stein, Catherine M
2013-10-01
The relationship between phonological awareness, overall language, vocabulary, and nonlinguistic cognitive skills to decoding and reading comprehension was examined for students at 3 stages of literacy development (i.e., early elementary school, middle school, and high school). Students with histories of speech sound disorders (SSD) with and without language impairment (LI) were compared to students without histories of SSD or LI (typical language; TL). In a cross-sectional design, students ages 7;0 (years;months) to 17;9 completed tests that measured reading, language, and nonlinguistic cognitive skills. For the TL group, phonological awareness predicted decoding at early elementary school, and overall language predicted reading comprehension at early elementary school and both decoding and reading comprehension at middle school and high school. For the SSD-only group, vocabulary predicted both decoding and reading comprehension at early elementary school, and overall language predicted both decoding and reading comprehension at middle school and decoding at high school. For the SSD and LI group, overall language predicted decoding at all 3 literacy stages and reading comprehension at early elementary school and middle school, and vocabulary predicted reading comprehension at high school. Although similar skills contribute to reading across the age span, the relative importance of these skills changes with children's literacy stages.
Reading Skills of Students With Speech Sound Disorders at Three Stages of Literacy Development
Skebo, Crysten M.; Lewis, Barbara A.; Freebairn, Lisa A.; Tag, Jessica; Ciesla, Allison Avrich; Stein, Catherine M.
2015-01-01
Purpose The relationship between phonological awareness, overall language, vocabulary, and nonlinguistic cognitive skills to decoding and reading comprehension was examined for students at 3 stages of literacy development (i.e., early elementary school, middle school, and high school). Students with histories of speech sound disorders (SSD) with and without language impairment (LI) were compared to students without histories of SSD or LI (typical language; TL). Method In a cross-sectional design, students ages 7;0 (years; months) to 17;9 completed tests that measured reading, language, and nonlinguistic cognitive skills. Results For the TL group, phonological awareness predicted decoding at early elementary school, and overall language predicted reading comprehension at early elementary school and both decoding and reading comprehension at middle school and high school. For the SSD-only group, vocabulary predicted both decoding and reading comprehension at early elementary school, and overall language predicted both decoding and reading comprehension at middle school and decoding at high school. For the SSD and LI group, overall language predicted decoding at all 3 literacy stages and reading comprehension at early elementary school and middle school, and vocabulary predicted reading comprehension at high school. Conclusion Although similar skills contribute to reading across the age span, the relative importance of these skills changes with children’s literacy stages. PMID:23833280
Optimizations of a Hardware Decoder for Deep-Space Optical Communications
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon
2007-01-01
The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.
Word Decoding Development during Phonics Instruction in Children at Risk for Dyslexia.
Schaars, Moniek M H; Segers, Eliane; Verhoeven, Ludo
2017-05-01
In the present study, we examined the early word decoding development of 73 children at genetic risk of dyslexia and 73 matched controls. We conducted monthly curriculum-embedded word decoding measures during the first 5 months of phonics-based reading instruction followed by standardized word decoding measures halfway and by the end of first grade. In kindergarten, vocabulary, phonological awareness, lexical retrieval, and verbal and visual short-term memory were assessed. The results showed that the children at risk were less skilled in phonemic awareness in kindergarten. During the first 5 months of reading instruction, children at risk were less efficient in word decoding and the discrepancy increased over the months. In subsequent months, the discrepancy prevailed for simple words but increased for more complex words. Phonemic awareness and lexical retrieval predicted the reading development in children at risk and controls to the same extent. It is concluded that children at risk are behind their typical peers in word decoding development starting from the very beginning. Furthermore, it is concluded that the disadvantage increased during phonics instruction and that the same predictors underlie the development of word decoding in the two groups of children. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
Kao, Jonathan C; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V
2017-04-01
Communication neural prostheses aim to restore efficient communication to people with motor neurological injury or disease by decoding neural activity into control signals. These control signals are both analog (e.g., the velocity of a computer mouse) and discrete (e.g., clicking an icon with a computer mouse) in nature. Effective, high-performing, and intuitive-to-use communication prostheses should be capable of decoding both analog and discrete state variables seamlessly. However, to date, the highest-performing autonomous communication prostheses rely on precise analog decoding and typically do not incorporate high-performance discrete decoding. In this report, we incorporated a hidden Markov model (HMM) into an intracortical communication prosthesis to enable accurate and fast discrete state decoding in parallel with analog decoding. In closed-loop experiments with nonhuman primates implanted with multielectrode arrays, we demonstrate that incorporating an HMM into a neural prosthesis can increase state-of-the-art achieved bitrate by 13.9% and 4.2% in two monkeys ( ). We found that the transition model of the HMM is critical to achieving this performance increase. Further, we found that using an HMM resulted in the highest achieved peak performance we have ever observed for these monkeys, achieving peak bitrates of 6.5, 5.7, and 4.7 bps in Monkeys J, R, and L, respectively. Finally, we found that this neural prosthesis was robustly controllable for the duration of entire experimental sessions. These results demonstrate that high-performance discrete decoding can be beneficially combined with analog decoding to achieve new state-of-the-art levels of performance.
Coherent-state constellations and polar codes for thermal Gaussian channels
NASA Astrophysics Data System (ADS)
Lacerda, Felipe; Renes, Joseph M.; Scholz, Volkher B.
2017-06-01
Optical communication channels are ultimately quantum mechanical in nature, and we must therefore look beyond classical information theory to determine their communication capacity as well as to find efficient encoding and decoding schemes of the highest rates. Thermal channels, which arise from linear coupling of the field to a thermal environment, are of particular practical relevance; their classical capacity has been recently established, but their quantum capacity remains unknown. While the capacity sets the ultimate limit on reliable communication rates, it does not promise that such rates are achievable by practical means. Here we construct efficiently encodable codes for thermal channels which achieve the classical capacity and the so-called Gaussian coherent information for transmission of classical and quantum information, respectively. Our codes are based on combining polar codes with a discretization of the channel input into a finite "constellation" of coherent states. Encoding of classical information can be done using linear optics.
VLSI chip-set for data compression using the Rice algorithm
NASA Technical Reports Server (NTRS)
Venbrux, J.; Liu, N.
1990-01-01
A full custom VLSI implementation of a data compression encoder and decoder which implements the lossless Rice data compression algorithm is discussed in this paper. The encoder and decoder reside on single chips. The data rates are to be 5 and 10 Mega-samples-per-second for the decoder and encoder respectively.
Training Students to Decode Verbal and Nonverbal Cues: Effects on Confidence and Performance.
ERIC Educational Resources Information Center
Costanzo, Mark
1992-01-01
A study conducted with 105 university students investigated the effectiveness of using previous research findings as a means of teaching students how to interpret verbal and nonverbal behavior (decoding). Practice may be the critical feature for training in decoding. Research findings were successfully converted into educational techniques. (SLD)
Communication Encoding and Decoding in Children from Different Socioeconomic and Racial Groups.
ERIC Educational Resources Information Center
Quay, Lorene C.; And Others
Although lower socioeconomic status (SES) black children have been shown to be inferior to middle-SES white children in communication accuracy, whether the problem is in encoding (production), decoding (comprehension), or both is not clear. To evaluate encoding and decoding separately, tape recordings of picture descriptions were obtained from…
The Impact of Nonverbal Communication in Organizations: A Survey of Perceptions.
ERIC Educational Resources Information Center
Graham, Gerald H.; And Others
1991-01-01
Discusses a survey of 505 respondents from business organizations. Reports that self-described good decoders of nonverbal communication consider nonverbal communication more important than do other decoders. Notes that both men and women perceive women as both better decoders and encoders of nonverbal cues. Recommends paying more attention to…
Does Linguistic Comprehension Support the Decoding Skills of Struggling Readers?
ERIC Educational Resources Information Center
Blick, Michele; Nicholson, Tom; Chapman, James; Berman, Jeanette
2017-01-01
This study investigated the contribution of linguistic comprehension to the decoding skills of struggling readers. Participants were 36 children aged between eight and 12 years, all below average in decoding but differing in linguistic comprehension. The children read passages from the Neale Analysis of Reading Ability and their first 25 miscues…
Role of Gender and Linguistic Diversity in Word Decoding Development
ERIC Educational Resources Information Center
Verhoeven, Ludo; van Leeuwe, Jan
2011-01-01
The purpose of the present study was to investigate the role of gender and linguistic diversity in the growth of Dutch word decoding skills throughout elementary school for a representative sample of children living in the Netherlands. Following a longitudinal design, the children's decoding abilities for (1) regular CVC words, (2) complex…
ERIC Educational Resources Information Center
Padeliadu, Susana; Antoniou, Faye
2014-01-01
Experts widely consider decoding and fluency as the basis of reading comprehension, while at the same time consistently documenting problems in these areas as major characteristics of students with learning disabilities. However, scholars have developed most of the relevant research within phonologically deep languages, wherein decoding problems…
Cognitive Training and Reading Remediation
ERIC Educational Resources Information Center
Mahapatra, Shamita
2015-01-01
Reading difficulties are experienced by children either because they fail to decode the words and thus are unable to comprehend the text or simply fail to comprehend the text even if they are able to decode the words and read them out. Failure in word decoding results from a failure in phonological coding of written information, whereas, reading…
Validation of the Informal Decoding Inventory
ERIC Educational Resources Information Center
McKenna, Michael C.; Walpole, Sharon; Jang, Bong Gee
2017-01-01
This study investigated the reliability and validity of Part 1 of the Informal Decoding Inventory (IDI), a free diagnostic assessment used to plan Tier 2 intervention for first graders with decoding deficits. Part 1 addresses single-syllable words and consists of five subtests that progress in difficulty and that contain real word and pseudoword…
ERIC Educational Resources Information Center
Tingerthal, John Steven
2013-01-01
Using case study methodology and autoethnographic methods, this study examines a process of curricular development known as "Decoding the Disciplines" (Decoding) by documenting the experience of its application in a construction engineering mechanics course. Motivated by the call to integrate what is known about teaching and learning…
Error Control Coding Techniques for Space and Satellite Communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.
1997-01-01
Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.
Comparison of incoming dental school patients with and without disabilities.
Stiefel, D J; Truelove, E L; Martin, M D; Mandel, L S
1997-01-01
A survey of incoming dental school patients compared 64 adult patients (DECOD) and 73 patients without disability (ND), regarding past dental experience, current needs, and basis for selecting the school's clinics. The responses indicated that, for DECOD patients, clinic selection was based largely on Medicaid acceptance, staff experience, and inability of other dentists to manage their disability; for ND patients, selection was based on lower fee structure. Both groups expressed high treatment need, but the rate was lower for DECOD than for ND patients. More DECOD patients reported severe dental anxiety and adverse effects of dental problems on general health. Chart records revealed that clinical findings exceeded perceived need for both DECOD and ND patients. While both groups had high periodontal disease rates (91%), DECOD patients had significantly poorer oral hygiene and less restorative need than ND patients. The findings suggest differences between persons with disabilities and other patient groups in difficulty of access to dental services in the community, reasons for entering the dental school system, and in presenting treatment need and/or treatment planning.
Word and Person Effects on Decoding Accuracy: A New Look at an Old Question
Gilbert, Jennifer K.; Compton, Donald L.; Kearns, Devin M.
2011-01-01
The purpose of this study was to extend the literature on decoding by bringing together two lines of research, namely person and word factors that affect decoding, using a crossed random-effects model. The sample was comprised of 196 English-speaking grade 1 students. A researcher-developed pseudoword list was used as the primary outcome measure. Because grapheme-phoneme correspondence (GPC) knowledge was treated as person and word specific, we are able to conclude that it is neither necessary nor sufficient for a student to know all GPCs in a word before accurately decoding the word. And controlling for word-specific GPC knowledge, students with lower phonemic awareness and slower rapid naming skill have lower predicted probabilities of correct decoding than counterparts with superior skills. By assessing a person-by-word interaction, we found that students with lower phonemic awareness have more difficulty applying knowledge of complex vowel graphemes compared to complex consonant graphemes when decoding unfamiliar words. Implications of the methodology and results are discussed in light of future research. PMID:21743750
Longitudinal Stability and Predictors of Poor Oral Comprehenders and Poor Decoders
Elwér, Åsa; Keenan, Janice M.; Olson, Richard K.; Byrne, Brian; Samuelsson, Stefan
2012-01-01
Two groups of 4th grade children were selected from a population sample (N= 926) to either be Poor Oral Comprehenders (poor oral comprehension but normal word decoding), or Poor Decoders (poor decoding but normal oral comprehension). By examining both groups in the same study with varied cognitive and literacy predictors, and examining them both retrospectively and prospectively, we could assess how distinctive and stable the predictors of each deficit are. Predictors were assessed retrospectively at preschool, at the end of kindergarten, 1st, and 2nd grades. Group effects were significant at all test occasions, including those for preschool vocabulary (worse in poor oral comprehenders) and rapid naming (RAN) (worse in poor decoders). Preschool RAN and Vocabulary prospectively predicted grade 4 group membership (77–79% correct classification) within the selected samples. Reselection in preschool of at-risk poor decoder and poor oral comprehender subgroups based on these variables led to significant but relatively weak prediction of subtype membership at grade 4. Implications of the predictive stability of our results for identification and intervention of these important subgroups are discussed. PMID:23528975
Robust pattern decoding in shape-coded structured light
NASA Astrophysics Data System (ADS)
Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai
2017-09-01
Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.
Zhang, Wuhong; Chen, Lixiang
2016-06-15
Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.
Orientation decoding depends on maps, not columns
Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.
2011-01-01
The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017
Decoder calibration with ultra small current sample set for intracortical brain-machine interface
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping
2018-04-01
Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application of intracortical brain-machine interfaces in clinical practice.
Neural network decoder for quantum error correcting codes
NASA Astrophysics Data System (ADS)
Krastanov, Stefan; Jiang, Liang
Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.
An embedded controller for a 7-degree of freedom prosthetic arm.
Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin
2008-01-01
We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro
2017-01-01
Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.
Couvillon, Margaret J; Riddell Pearce, Fiona C; Harris-Jones, Elisabeth L; Kuepfer, Amanda M; Mackenzie-Smith, Samantha J; Rozario, Laura A; Schürch, Roger; Ratnieks, Francis L W
2012-05-15
Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.
Couvillon, Margaret J.; Riddell Pearce, Fiona C.; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Laura A.; Schürch, Roger; Ratnieks, Francis L. W.
2012-01-01
Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances. PMID:23213438
Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems
Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.
2011-01-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582
Towards a sustainable diet combining economic, environmental and nutritional objectives.
Donati, Michele; Menozzi, Davide; Zighetti, Camilla; Rosi, Alice; Zinetti, Anna; Scazzina, Francesca
2016-11-01
Foods consumed and dietary patterns are strong determinants of health status. Diet and nutrition have a key role in health promotion and maintenance during the entire lifetime, but what we choose to eat and drink greatly affects the environmental impact on ecosystems as well as monetary resources. Some studies suggest that a healthy diet with a low environmental impact is not necessarily more expensive. This paper aims to identify a healthy, greener and cheaper diet based on current consumption patterns. Dietary information was collected from 104 young adults in the last year of high school in Parma (Italy). Diet was monitored with 7-day dietary records. Subsequently, food items were decoded to obtain nutritional, economic and environmental impact data. An optimization tool based on mathematical programming (Multi-Objective Linear Programming) was used to identify sustainable diet. Three different 7-day diets were identified, based on nutrition recommendations for the healthy Italian adult population, characterized by different targets and optimizing different impacts: first the diet at the lowest cost (Minimum Cost Diet - MCD), then the Environmentally Sustainable Diet (ESD) obtained by minimizing the three environmental indicators (CO2e emissions, H2O consumption and amount of land to regenerate the resources - m(2)). Finally, the Sustainable Diet (SD) was identified by integrating environmental and economic sustainability objectives. Lastly, suggestions and recommendations for communication campaigns and other interventions to achieve sustainable diet are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.
Closed-Loop Estimation of Retinal Network Sensitivity by Local Empirical Linearization
2018-01-01
Abstract Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to understand information processing by sensory neurons, where we linearize their collective response locally in stimulus space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses, adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to characterize experimentally the sensitivity of neural systems to external stimuli locally, quantify experimentally the capacity of neural networks to encode sensory information, and relate their activity to behavior. PMID:29379871
A Longitudinal Analysis of English Language Learners' Word Decoding and Reading Comprehension
ERIC Educational Resources Information Center
Nakamoto, Jonathan; Lindsey, Kim A.; Manis, Franklin R.
2007-01-01
This longitudinal investigation examined word decoding and reading comprehension measures from first grade through sixth grade for a sample of Spanish-speaking English language learners (ELLs). The sample included 261 children (average age of 7.2 years; 120 boys; 141 girls) at the initial data collection in first grade. The ELLs' word decoding and…
Influence of First Language Orthographic Experience on Second Language Decoding and Word Learning
ERIC Educational Resources Information Center
Hamada, Megumi; Koda, Keiko
2008-01-01
This study examined the influence of first language (L1) orthographic experiences on decoding and semantic information retention of new words in a second language (L2). Hypotheses were that congruity in L1 and L2 orthographic experiences determines L2 decoding efficiency, which, in turn, affects semantic information encoding and retention.…
The Role of Phonological Decoding in Second Language Word-Meaning Inference
ERIC Educational Resources Information Center
Hamada, Megumi; Koda, Keiko
2010-01-01
Two hypotheses were tested: Similarity between first language (L1) and second language (L2) orthographic processing facilitates L2-decoding efficiency; and L2-decoding efficiency contributes to word-meaning inference to different degrees among L2 learners with diverse L1 orthographic backgrounds. The participants were college-level English as a…
ERIC Educational Resources Information Center
Soltani, Amanallah; Roslan, Samsilah
2013-01-01
Reading decoding ability is a fundamental skill to acquire word-specific orthographic information necessary for skilled reading. Decoding ability and its underlying phonological processing skills have been heavily investigated typically among developing students. However, the issue has rarely been noticed among students with intellectual…
Decoding Information in the Human Hippocampus: A User's Guide
ERIC Educational Resources Information Center
Chadwick, Martin J.; Bonnici, Heidi M.; Maguire, Eleanor A.
2012-01-01
Multi-voxel pattern analysis (MVPA), or "decoding", of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded,…
ERIC Educational Resources Information Center
Atkinson, Michael L.; Allen, Vernon L.
This experiment was designed to investigate the generality-specificity of the accuracy of both encoders and decoders across different types of nonverbal behavior. It was expected that encoders and decoders would exhibit generality in their behavior--i.e., the same level of accuracy--on the dimension of behavior content…