Sample records for linear programming problem

  1. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  2. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    PubMed

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  3. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  4. Fundamental solution of the problem of linear programming and method of its determination

    NASA Technical Reports Server (NTRS)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  5. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  6. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  7. EZLP: An Interactive Computer Program for Solving Linear Programming Problems. Final Report.

    ERIC Educational Resources Information Center

    Jarvis, John J.; And Others

    Designed for student use in solving linear programming problems, the interactive computer program described (EZLP) permits the student to input the linear programming model in exactly the same manner in which it would be written on paper. This report includes a brief review of the development of EZLP; narrative descriptions of program features,…

  8. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  9. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

    PubMed

    Bruhn, Peter; Geyer-Schulz, Andreas

    2002-01-01

    In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

  10. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  11. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  12. Linear Programming and Its Application to Pattern Recognition Problems

    NASA Technical Reports Server (NTRS)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  13. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    PubMed

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  14. A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems

    NASA Astrophysics Data System (ADS)

    Ebrahimnejad, Ali

    2015-08-01

    There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.

  15. Fuzzy bi-objective linear programming for portfolio selection problem with magnitude ranking function

    NASA Astrophysics Data System (ADS)

    Kusumawati, Rosita; Subekti, Retno

    2017-04-01

    Fuzzy bi-objective linear programming (FBOLP) model is bi-objective linear programming model in fuzzy number set where the coefficients of the equations are fuzzy number. This model is proposed to solve portfolio selection problem which generate an asset portfolio with the lowest risk and the highest expected return. FBOLP model with normal fuzzy numbers for risk and expected return of stocks is transformed into linear programming (LP) model using magnitude ranking function.

  16. Linear decomposition approach for a class of nonconvex programming problems.

    PubMed

    Shen, Peiping; Wang, Chunfeng

    2017-01-01

    This paper presents a linear decomposition approach for a class of nonconvex programming problems by dividing the input space into polynomially many grids. It shows that under certain assumptions the original problem can be transformed and decomposed into a polynomial number of equivalent linear programming subproblems. Based on solving a series of liner programming subproblems corresponding to those grid points we can obtain the near-optimal solution of the original problem. Compared to existing results in the literature, the proposed algorithm does not require the assumptions of quasi-concavity and differentiability of the objective function, and it differs significantly giving an interesting approach to solving the problem with a reduced running time.

  17. Can Linear Superiorization Be Useful for Linear Optimization Problems?

    PubMed Central

    Censor, Yair

    2017-01-01

    Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? and (ii) How does linear superiorization fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: “yes” and “very well”, respectively. PMID:29335660

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin David.

    When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modularmore » In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.« less

  19. Frequency assignments for HFDF receivers in a search and rescue network

    NASA Astrophysics Data System (ADS)

    Johnson, Krista E.

    1990-03-01

    This thesis applies a multiobjective linear programming approach to the problem of assigning frequencies to high frequency direction finding (HFDF) receivers in a search-and-rescue network in order to maximize the expected number of geolocations of vessels in distress. The problem is formulated as a multiobjective integer linear programming problem. The integrality of the solutions is guaranteed by the totally unimodularity of the A-matrix. Two approaches are taken to solve the multiobjective linear programming problem: (1) the multiobjective simplex method as implemented in ADBASE; and (2) an iterative approach. In this approach, the individual objective functions are weighted and combined in a single additive objective function. The resulting single objective problem is expressed as a network programming problem and solved using SAS NETFLOW. The process is then repeated with different weightings for the objective functions. The solutions obtained from the multiobjective linear programs are evaluated using a FORTRAN program to determine which solution provides the greatest expected number of geolocations. This solution is then compared to the sample mean and standard deviation for the expected number of geolocations resulting from 10,000 random frequency assignments for the network.

  20. Can linear superiorization be useful for linear optimization problems?

    NASA Astrophysics Data System (ADS)

    Censor, Yair

    2017-04-01

    Linear superiorization (LinSup) considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are: (i) does LinSup provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? (ii) How does LinSup fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: ‘yes’ and ‘very well’, respectively.

  1. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  2. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    NASA Astrophysics Data System (ADS)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  3. A sequential linear optimization approach for controller design

    NASA Technical Reports Server (NTRS)

    Horta, L. G.; Juang, J.-N.; Junkins, J. L.

    1985-01-01

    A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.

  4. A New Pattern of Getting Nasty Number in Graphical Method

    NASA Astrophysics Data System (ADS)

    Sumathi, P.; Indhumathi, N.

    2018-04-01

    This paper proposed a new technique of getting nasty numbers using graphical method in linear programming problem and it has been proved for various Linear programming problems. And also some characterisation of nasty numbers is discussed in this paper.

  5. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    NASA Astrophysics Data System (ADS)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  6. High profile students’ growth of mathematical understanding in solving linier programing problems

    NASA Astrophysics Data System (ADS)

    Utomo; Kusmayadi, TA; Pramudya, I.

    2018-04-01

    Linear program has an important role in human’s life. This linear program is learned in senior high school and college levels. This material is applied in economy, transportation, military and others. Therefore, mastering linear program is useful for provision of life. This research describes a growth of mathematical understanding in solving linear programming problems based on the growth of understanding by the Piere-Kieren model. Thus, this research used qualitative approach. The subjects were students of grade XI in Salatiga city. The subjects of this study were two students who had high profiles. The researcher generally chose the subjects based on the growth of understanding from a test result in the classroom; the mark from the prerequisite material was ≥ 75. Both of the subjects were interviewed by the researcher to know the students’ growth of mathematical understanding in solving linear programming problems. The finding of this research showed that the subjects often folding back to the primitive knowing level to go forward to the next level. It happened because the subjects’ primitive understanding was not comprehensive.

  7. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    PubMed

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these problems can be reduced to integer linear programming formulations, which allows an algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results were tested on synthetic and biological samples. Three well-known problems were reduced to a very special case of integer linear programming, which is a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a more detailed biological concept in our model of the reconstruction.

  8. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Generalised Assignment Matrix Methodology in Linear Programming

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2012-01-01

    Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…

  10. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  11. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  12. Linear Programming across the Curriculum

    ERIC Educational Resources Information Center

    Yoder, S. Elizabeth; Kurz, M. Elizabeth

    2015-01-01

    Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

  13. Train repathing in emergencies based on fuzzy linear programming.

    PubMed

    Meng, Xuelei; Cui, Bingmou

    2014-01-01

    Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm.

  14. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  15. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  16. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    ERIC Educational Resources Information Center

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  17. Discrete Methods and their Applications

    DTIC Science & Technology

    1993-02-03

    problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute

  18. Enhanced algorithms for stochastic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, Alamuru S.

    1993-09-01

    In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less

  19. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    PubMed

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  20. The checkpoint ordering problem

    PubMed Central

    Hungerländer, P.

    2017-01-01

    Abstract We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality. PMID:29170574

  1. Sparse Substring Pattern Set Discovery Using Linear Programming Boosting

    NASA Astrophysics Data System (ADS)

    Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki

    In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.

  2. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  3. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  4. VIBRA: An interactive computer program for steady-state vibration response analysis of linear damped structures

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1984-01-01

    An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.

  5. ELAS: A general-purpose computer program for the equilibrium problems of linear structures. Volume 2: Documentation of the program. [subroutines and flow charts

    NASA Technical Reports Server (NTRS)

    Utku, S.

    1969-01-01

    A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.

  6. Numerical methods on some structured matrix algebra problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1996-06-01

    This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less

  7. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  8. A binary linear programming formulation of the graph edit distance.

    PubMed

    Justice, Derek; Hero, Alfred

    2006-08-01

    A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.

  9. Alternative mathematical programming formulations for FSS synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.

    1986-01-01

    A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.

  10. A study of the use of linear programming techniques to improve the performance in design optimization problems

    NASA Technical Reports Server (NTRS)

    Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.

  11. Convergence of a sequence of dual variables at the solution of a completely degenerate problem of linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikin, I.

    1994-12-31

    We survey results about the convergence of the primal affine scaling method at solutions of a completely degenerate problem of linear programming. Moreover we are studying the case when a next approximation is on the boundary of the affine scaling ellipsoid. Convergence of successive approximation to an interior point u of the solution for the dual problem is proved. Coordinates of the vector u are determined only by the input data of the problem; they do not depend of the choice of the starting point.

  12. Interior point techniques for LP and NLP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Y.

    By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.

  13. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  14. Guided Discovery, Visualization, and Technology Applied to the New Curriculum for Secondary Mathematics.

    ERIC Educational Resources Information Center

    Smith, Karan B.

    1996-01-01

    Presents activities which highlight major concepts of linear programming. Demonstrates how technology allows students to solve linear programming problems using exploration prior to learning algorithmic methods. (DDR)

  15. A generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Tian, Wenli; Cao, Chengxuan

    2017-03-01

    A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.

  16. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    NASA Astrophysics Data System (ADS)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  17. Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati

    This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.

  18. A neural network approach to job-shop scheduling.

    PubMed

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  19. A model for managing sources of groundwater pollution

    USGS Publications Warehouse

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  20. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  1. Robust Neighboring Optimal Guidance for the Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Hull, David G.

    1993-01-01

    In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.

  2. Large-scale linear programs in planning and prediction.

    DOT National Transportation Integrated Search

    2017-06-01

    Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...

  3. A class of stochastic optimization problems with one quadratic & several linear objective functions and extended portfolio selection model

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Li, Jun

    2002-09-01

    In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.

  4. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  5. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    PubMed

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  6. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Evaluating forest management policies by parametric linear programing

    Treesearch

    Daniel I. Navon; Richard J. McConnen

    1967-01-01

    An analytical and simulation technique, parametric linear programing explores alternative conditions and devises an optimal management plan for each condition. Its application in solving policy-decision problems in the management of forest lands is illustrated in an example.

  8. A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.

    DTIC Science & Technology

    1987-10-01

    INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works

  9. A novel approach based on preference-based index for interval bilevel linear programming problem.

    PubMed

    Ren, Aihong; Wang, Yuping; Xue, Xingsi

    2017-01-01

    This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.

  10. Control problem for a system of linear loaded differential equations

    NASA Astrophysics Data System (ADS)

    Barseghyan, V. R.; Barseghyan, T. V.

    2018-04-01

    The problem of control and optimal control for a system of linear loaded differential equations is considered. Necessary and sufficient conditions for complete controllability and conditions for the existence of a program control and the corresponding motion are formulated. The explicit form of control action for the control problem is constructed and a method for solving the problem of optimal control is proposed.

  11. Solution of Stochastic Capital Budgeting Problems in a Multidivisional Firm.

    DTIC Science & Technology

    1980-06-01

    linear programming with simple recourse (see, for example, Dantzig (9) or Ziemba (35)) - 12 - and has been applied to capital budgeting problems with...New York, 1972 34. Weingartner, H.M., Mathematical Programming and Analysis of Capital Budgeting Problems, Markham Pub. Co., Chicago, 1967 35. Ziemba

  12. Investigating the linearity assumption between lumber grade mix and yield using design of experiments (DOE)

    Treesearch

    Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas

    2004-01-01

    Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and...

  13. On the Feasibility of a Generalized Linear Program

    DTIC Science & Technology

    1989-03-01

    generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,

  14. E-Learning Technologies: Employing Matlab Web Server to Facilitate the Education of Mathematical Programming

    ERIC Educational Resources Information Center

    Karagiannis, P.; Markelis, I.; Paparrizos, K.; Samaras, N.; Sifaleras, A.

    2006-01-01

    This paper presents new web-based educational software (webNetPro) for "Linear Network Programming." It includes many algorithms for "Network Optimization" problems, such as shortest path problems, minimum spanning tree problems, maximum flow problems and other search algorithms. Therefore, webNetPro can assist the teaching process of courses such…

  15. A Block-LU Update for Large-Scale Linear Programming

    DTIC Science & Technology

    1990-01-01

    linear programming problems. Results are given from runs on the Cray Y -MP. 1. Introduction We wish to use the simplex method [Dan63] to solve the...standard linear program, minimize cTx subject to Ax = b 1< x <U, where A is an m by n matrix and c, x, 1, u, and b are of appropriate dimension. The simplex...the identity matrix. The basis is used to solve for the search direction y and the dual variables 7r in the following linear systems: Bky = aq (1.2) and

  16. Problem Based Learning Technique and Its Effect on Acquisition of Linear Programming Skills by Secondary School Students in Kenya

    ERIC Educational Resources Information Center

    Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice

    2015-01-01

    The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…

  17. Algorithm for solving of two-level hierarchical minimax program control problem of final state the regional socio-economic system in the presence of risks

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.

    2017-10-01

    In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.

  18. Portfolio optimization by using linear programing models based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  19. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  20. Two algorithms for neural-network design and training with application to channel equalization.

    PubMed

    Sweatman, C Z; Mulgrew, B; Gibson, G J

    1998-01-01

    We describe two algorithms for designing and training neural-network classifiers. The first, the linear programming slab algorithm (LPSA), is motivated by the problem of reconstructing digital signals corrupted by passage through a dispersive channel and by additive noise. It constructs a multilayer perceptron (MLP) to separate two disjoint sets by using linear programming methods to identify network parameters. The second, the perceptron learning slab algorithm (PLSA), avoids the computational costs of linear programming by using an error-correction approach to identify parameters. Both algorithms operate in highly constrained parameter spaces and are able to exploit symmetry in the classification problem. Using these algorithms, we develop a number of procedures for the adaptive equalization of a complex linear 4-quadrature amplitude modulation (QAM) channel, and compare their performance in a simulation study. Results are given for both stationary and time-varying channels, the latter based on the COST 207 GSM propagation model.

  1. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  2. Variance approach for multi-objective linear programming with fuzzy random of objective function coefficients

    NASA Astrophysics Data System (ADS)

    Indarsih, Indrati, Ch. Rini

    2016-02-01

    In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.

  3. Novel methods for Solving Economic Dispatch of Security-Constrained Unit Commitment Based on Linear Programming

    NASA Astrophysics Data System (ADS)

    Guo, Sangang

    2017-09-01

    There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.

  4. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  5. Fuzzy Linear Programming and its Application in Home Textile Firm

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2011-06-01

    In this paper, new fuzzy linear programming (FLP) based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameter is established by an analytical approach. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feedback with the decision maker, the implementer and the analyst.

  6. The solution of the optimization problem of small energy complexes using linear programming methods

    NASA Astrophysics Data System (ADS)

    Ivanin, O. A.; Director, L. B.

    2016-11-01

    Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.

  7. Towards lexicographic multi-objective linear programming using grossone methodology

    NASA Astrophysics Data System (ADS)

    Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.

    2016-10-01

    Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.

  8. AN EVALUATION OF HEURISTICS FOR THRESHOLD-FUNCTION TEST-SYNTHESIS,

    DTIC Science & Technology

    Linear programming offers the most attractive procedure for testing and obtaining optimal threshold gate realizations for functions generated in...The design of the experiments may be of general interest to students of automatic problem solving; the results should be of interest in threshold logic and linear programming. (Author)

  9. A computational algorithm for spacecraft control and momentum management

    NASA Technical Reports Server (NTRS)

    Dzielski, John; Bergmann, Edward; Paradiso, Joseph

    1990-01-01

    Developments in the area of nonlinear control theory have shown how coordinate changes in the state and input spaces of a dynamical system can be used to transform certain nonlinear differential equations into equivalent linear equations. These techniques are applied to the control of a spacecraft equipped with momentum exchange devices. An optimal control problem is formulated that incorporates a nonlinear spacecraft model. An algorithm is developed for solving the optimization problem using feedback linearization to transform to an equivalent problem involving a linear dynamical constraint and a functional approximation technique to solve for the linear dynamics in terms of the control. The original problem is transformed into an unconstrained nonlinear quadratic program that yields an approximate solution to the original problem. Two examples are presented to illustrate the results.

  10. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  11. EXPERIMENTS IN THE USE OF PROGRAMED MATERIALS IN TEACHING AN INTRODUCTORY COURSE IN THE BIOLOGICAL SCIENCES AT THE COLLEGE LEVEL.

    ERIC Educational Resources Information Center

    KANTASEWI, NIPHON

    THE PURPOSE OF THE STUDY WAS TO COMPARE THE EFFECTIVENESS OF (1) LECTURE PRESENTATIONS, (2) LINEAR PROGRAM USE IN CLASS WITH AND WITHOUT DISCUSSION, AND (3) LINEAR PROGRAMS USED OUTSIDE OF CLASS WITH INCLASS PROBLEMS OR DISCUSSION. THE 126 COLLEGE STUDENTS ENROLLED IN A BACTERIOLOGY COURSE WERE RANDOMLY ASSIGNED TO THREE GROUPS. IN A SUCCEEDING…

  12. Optimal Facility Location Tool for Logistics Battle Command (LBC)

    DTIC Science & Technology

    2015-08-01

    64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems

  13. LCPT: a program for finding linear canonical transformations. [In MACSYMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Char, B.W.; McNamara, B.

    This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists.

  14. A Test of a Linear Programming Model as an Optimal Solution to the Problem of Combining Methods of Reading Instruction

    ERIC Educational Resources Information Center

    Mills, James W.; And Others

    1973-01-01

    The Study reported here tested an application of the Linear Programming Model at the Reading Clinic of Drew University. Results, while not conclusive, indicate that this approach yields greater gains in speed scores than a traditional approach for this population. (Author)

  15. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  16. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  17. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  18. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  19. SUBOPT: A CAD program for suboptimal linear regulators

    NASA Technical Reports Server (NTRS)

    Fleming, P. J.

    1985-01-01

    An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.

  20. Applying EXCEL Solver to a watershed management goal-programming problem

    Treesearch

    J. E. de Steiguer

    2000-01-01

    This article demonstrates the application of EXCEL® spreadsheet linear programming (LP) solver to a watershed management multiple use goal programming (GP) problem. The data used to demonstrate the application are from a published study for a watershed in northern Colorado. GP has been used by natural resource managers for many years. However, the GP solution by means...

  1. Stochastic Dynamic Mixed-Integer Programming (SD-MIP)

    DTIC Science & Technology

    2015-05-05

    stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g

  2. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  3. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    PubMed

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  4. Integer Linear Programming in Computational Biology

    NASA Astrophysics Data System (ADS)

    Althaus, Ernst; Klau, Gunnar W.; Kohlbacher, Oliver; Lenhof, Hans-Peter; Reinert, Knut

    Computational molecular biology (bioinformatics) is a young research field that is rich in NP-hard optimization problems. The problem instances encountered are often huge and comprise thousands of variables. Since their introduction into the field of bioinformatics in 1997, integer linear programming (ILP) techniques have been successfully applied to many optimization problems. These approaches have added much momentum to development and progress in related areas. In particular, ILP-based approaches have become a standard optimization technique in bioinformatics. In this review, we present applications of ILP-based techniques developed by members and former members of Kurt Mehlhorn’s group. These techniques were introduced to bioinformatics in a series of papers and popularized by demonstration of their effectiveness and potential.

  5. A Partitioning and Bounded Variable Algorithm for Linear Programming

    ERIC Educational Resources Information Center

    Sheskin, Theodore J.

    2006-01-01

    An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

  6. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  7. Radar Resource Management in a Dense Target Environment

    DTIC Science & Technology

    2014-03-01

    problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search

  8. A linear programming approach to max-sum problem: a review.

    PubMed

    Werner, Tomás

    2007-07-01

    The max-sum labeling problem, defined as maximizing a sum of binary (i.e., pairwise) functions of discrete variables, is a general NP-hard optimization problem with many applications, such as computing the MAP configuration of a Markov random field. We review a not widely known approach to the problem, developed by Ukrainian researchers Schlesinger et al. in 1976, and show how it contributes to recent results, most importantly, those on the convex combination of trees and tree-reweighted max-product. In particular, we review Schlesinger et al.'s upper bound on the max-sum criterion, its minimization by equivalent transformations, its relation to the constraint satisfaction problem, the fact that this minimization is dual to a linear programming relaxation of the original problem, and the three kinds of consistency necessary for optimality of the upper bound. We revisit problems with Boolean variables and supermodular problems. We describe two algorithms for decreasing the upper bound. We present an example application for structural image analysis.

  9. A steady and oscillatory kernel function method for interfering surfaces in subsonic, transonic and supersonic flow. [prediction analysis techniques for airfoils

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.

  10. Linearly Adjustable International Portfolios

    NASA Astrophysics Data System (ADS)

    Fonseca, R. J.; Kuhn, D.; Rustem, B.

    2010-09-01

    We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.

  11. Comparison of Integer Programming (IP) Solvers for Automated Test Assembly (ATA). Research Report. ETS RR-15-05

    ERIC Educational Resources Information Center

    Donoghue, John R.

    2015-01-01

    At the heart of van der Linden's approach to automated test assembly (ATA) is a linear programming/integer programming (LP/IP) problem. A variety of IP solvers are available, ranging in cost from free to hundreds of thousands of dollars. In this paper, I compare several approaches to solving the underlying IP problem. These approaches range from…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less

  13. Communications oriented programming of parallel iterative solutions of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  14. Object matching using a locally affine invariant and linear programming techniques.

    PubMed

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  15. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less

  16. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  17. Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior

    PubMed Central

    Serang, Oliver

    2012-01-01

    Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741

  18. A program for identification of linear systems

    NASA Technical Reports Server (NTRS)

    Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.

    1971-01-01

    A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.

  19. Solving Infeasibility Problems in Computerized Test Assembly.

    ERIC Educational Resources Information Center

    Timminga, Ellen

    1998-01-01

    Discusses problems of diagnosing and repairing infeasible linear-programming models in computerized test assembly. Demonstrates that it is possible to localize the causes of infeasibility, although this is not always easy. (SLD)

  20. VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM

    NASA Technical Reports Server (NTRS)

    White, J. S.

    1994-01-01

    VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@yauza.ru; Pylyov, S. S.

    This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.

  2. Matching by linear programming and successive convexification.

    PubMed

    Jiang, Hao; Drew, Mark S; Li, Ze-Nian

    2007-06-01

    We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.

  3. A computer program to find the kernel of a polynomial operator

    NASA Technical Reports Server (NTRS)

    Gejji, R. R.

    1976-01-01

    This paper presents a FORTRAN program written to solve for the kernel of a matrix of polynomials with real coefficients. It is an implementation of Sain's free modular algorithm for solving the minimal design problem of linear multivariable systems. The structure of the program is discussed, together with some features as they relate to questions of implementing the above method. An example of the use of the program to solve a design problem is included.

  4. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.

    PubMed

    Choi, Sou-Cheng T; Saunders, Michael A

    2014-02-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.

  5. Conjunctive management of multi-reservoir network system and groundwater system

    NASA Astrophysics Data System (ADS)

    Mani, A.; Tsai, F. T. C.

    2015-12-01

    This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.

  6. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  7. A Revised Simplex Method for Test Construction Problems. Research Report 90-5.

    ERIC Educational Resources Information Center

    Adema, Jos J.

    Linear programming models with 0-1 variables are useful for the construction of tests from an item bank. Most solution strategies for these models start with solving the relaxed 0-1 linear programming model, allowing the 0-1 variables to take on values between 0 and 1. Then, a 0-1 solution is found by just rounding, optimal rounding, or a…

  8. Linear programming computational experience with onyx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atrek, E.

    1994-12-31

    ONYX is a linear programming software package based on an efficient variation of the gradient projection method. When fully configured, it is intended for application to industrial size problems. While the computational experience is limited at the time of this abstract, the technique is found to be robust and competitive with existing methodology in terms of both accuracy and speed. An overview of the approach is presented together with a description of program capabilities, followed by a discussion of up-to-date computational experience with the program. Conclusions include advantages of the approach and envisioned future developments.

  9. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  10. Development and applications of algorithms for calculating the transonic flow about harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.

    1984-01-01

    A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.

  11. A recurrent neural network for solving bilevel linear programming problem.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian

    2014-04-01

    In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.

  12. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.

  13. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems

    PubMed Central

    Choi, Sou-Cheng T.; Saunders, Michael A.

    2014-01-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255

  14. Security and Cloud Outsourcing Framework for Economic Dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi

    The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less

  15. Security and Cloud Outsourcing Framework for Economic Dispatch

    DOE PAGES

    Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi; ...

    2017-04-24

    The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less

  16. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  17. A Unique Technique to get Kaprekar Iteration in Linear Programming Problem

    NASA Astrophysics Data System (ADS)

    Sumathi, P.; Preethy, V.

    2018-04-01

    This paper explores about a frivolous number popularly known as Kaprekar constant and Kaprekar numbers. A large number of courses and the different classroom capacities with difference in study periods make the assignment between classrooms and courses complicated. An approach of getting the minimum value of number of iterations to reach the Kaprekar constant for four digit numbers and maximum value is also obtained through linear programming techniques.

  18. Effect of virtual memory on efficient solution of two model problems

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.

    1977-01-01

    Computers with virtual memory architecture allow programs to be written as if they were small enough to be contained in memory. Two types of problems are investigated to show that this luxury can lead to quite an inefficient performance if the programmer does not interact strongly with the characteristics of the operating system when developing the program. The two problems considered are the simultaneous solutions of a large linear system of equations by Gaussian elimination and a model three-dimensional finite-difference problem. The Control Data STAR-100 computer runs are made to demonstrate the inefficiencies of programming the problems in the manner one would naturally do if the problems were indeed, small enough to be contained in memory. Program redesigns are presented which achieve large improvements in performance through changes in the computational procedure and the data base arrangement.

  19. A Problem on Optimal Transportation

    ERIC Educational Resources Information Center

    Cechlarova, Katarina

    2005-01-01

    Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…

  20. On 2- and 3-person games on polyhedral sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belenky, A.S.

    1994-12-31

    Special classes of 3 person games are considered where the sets of players` allowable strategies are polyhedral and the payoff functions are defined as maxima, on a polyhedral set, of certain kind of sums of linear and bilinear functions. Necessary and sufficient conditions, which are easy to verify, for a Nash point in these games are established, and a finite method, based on these conditions, for calculating Nash points is proposed. It is shown that the game serves as a generalization of a model for a problem of waste products evacuation from a territory. The method makes it possible tomore » reduce calculation of a Nash point to solving some linear and quadratic programming problems formulated on the basis of the original 3-person game. A class of 2-person games on connected polyhedral sets is considered, with the payoff function being a sum of two linear functions and one bilinear function. Necessary and sufficient conditions are established for the min-max, the max-min, and for a certain equilibrium. It is shown that the corresponding points can be calculated from auxiliary linear programming problems formulated on the basis of the master game.« less

  1. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.

  2. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems.

    PubMed

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.

  3. Optimal traffic resource allocation and management.

    DOT National Transportation Integrated Search

    2010-05-01

    "In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...

  4. Goal programming for land use planning.

    Treesearch

    Enoch F. Bell

    1976-01-01

    A simple transformation of the linear programing model used in land use planning to a goal programing model allows the multiple goals implied by multiple use management to be explicitly recognized. This report outlines the procedure for accomplishing the transformation and discusses problems with use of goal programing. Of particular concern are the expert opinions...

  5. Fast intersection detection algorithm for PC-based robot off-line programming

    NASA Astrophysics Data System (ADS)

    Fedrowitz, Christian H.

    1994-11-01

    This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.

  6. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

    PubMed

    Cacchiani, V; Hemmelmayr, V C; Tricoire, F

    2014-01-30

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

  7. A set-covering based heuristic algorithm for the periodic vehicle routing problem

    PubMed Central

    Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.

    2014-01-01

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696

  8. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  9. Model checking for linear temporal logic: An efficient implementation

    NASA Technical Reports Server (NTRS)

    Sherman, Rivi; Pnueli, Amir

    1990-01-01

    This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is practically efficient. Two implementations of a linear temporal logic model checker is described. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. An experiment was done with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.

  10. Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2001-01-01

    This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.

  11. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Pavarini, C.

    1974-01-01

    Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

  12. A Centered Projective Algorithm for Linear Programming

    DTIC Science & Technology

    1988-02-01

    zx/l to (PA Karmarkar’s algorithm iterates this procedure. An alternative method, the so-called affine variant (first proposed by Dikin [6] in 1967...trajectories, II. Legendre transform coordinates . central trajectories," manuscripts, to appear in Transactions of the American [6] I.I. Dikin ...34Iterative solution of problems of linear and quadratic programming," Soviet Mathematics Dokladv 8 (1967), 674-675. [7] I.I. Dikin , "On the speed of an

  13. Determination of optimum values for maximizing the profit in bread production: Daily bakery Sdn Bhd

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Sim, Raymond

    2015-02-01

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. An ILP has many applications in industrial production, including job-shop modelling. A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but variables must be constrained to be integer. It concerned with the optimization of a linear function while satisfying a set of linear equality and inequality constraints and restrictions. It has been used to solve optimization problem in many industries area such as banking, nutrition, agriculture, and bakery and so on. The main purpose of this study is to formulate the best combination of all ingredients in producing different type of bread in Daily Bakery in order to gain maximum profit. This study also focuses on the sensitivity analysis due to changing of the profit and the cost of each ingredient. The optimum result obtained from QM software is RM 65,377.29 per day. This study will be benefited for Daily Bakery and also other similar industries. By formulating a combination of all ingredients make up, they can easily know their total profit in producing bread everyday.

  14. Hybrid Genetic Agorithms and Line Search Method for Industrial Production Planning with Non-Linear Fitness Function

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian; Barsoum, Nader

    2008-10-01

    Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.

  15. Discrete Applied Mathematics

    DTIC Science & Technology

    1993-05-31

    program. In paper [28], we give a brief and elementary proof of a result of Hoffman [1952) about approximate solutions to systems, of linear inequalities...UCLA, Vestvood, CA, February 1993. " Linear Problems: Formulation and Solution," International Linear Algebra Society, Pensacola, FL, May 1993. Denise S...thresAold If there is a number h and a linear k-separator w assigning a real number to each vertex so that for any subset S of vertices, the sum of w

  16. Solving Two-Level Optimization Problems with Applications to Robust Design and Energy Markets

    DTIC Science & Technology

    2011-01-01

    additional a transportation system operator (TSO) who manages the congestion and 172 flows. The TSO’s linear program is as follows (where other...were tested are shown in Table 5.11 below. Node 1 Node 2 Producer A Producer B Producer C Producer D Transmission System Operator 174... Systems to Solve Problems that are Not Linear. Operational Research Quarterly , 26, 609–618. 9. Beale, E., & Tomlin, J. (1970). Special Facilities

  17. The application of MINIQUASI to thermal program boundary and initial value problems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.

  18. A tutorial description of an interior point method and its applications to security-constrained economic dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, L.S.; Quintana, V.H.; Vannelli, A.

    This paper deals with the use of Successive Linear Programming (SLP) for the solution of the Security-Constrained Economic Dispatch (SCED) problem. The authors tutorially describe an Interior Point Method (IPM) for the solution of Linear Programming (LP) problems, discussing important implementation issues that really make this method far superior to the simplex method. A study of the convergence of the SLP technique and a practical criterion to avoid oscillatory behavior in the iteration process are also proposed. A comparison of the proposed method with an efficient simplex code (MINOS) is carried out by solving SCED problems on two standard IEEEmore » systems. The results show that the interior point technique is reliable, accurate and more than two times faster than the simplex algorithm.« less

  19. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  20. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  1. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  2. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  3. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  4. Computation of non-monotonic Lyapunov functions for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Liu, AnPing

    2017-09-01

    In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1

  5. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  6. Global optimization algorithm for heat exchanger networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, I.; Grossmann, I.E.

    This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less

  7. MAGDM linear-programming models with distinct uncertain preference structures.

    PubMed

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  8. A Unified Approach to Optimization

    DTIC Science & Technology

    2014-10-02

    employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers

  9. Optimizing the Disposition and Retrograde of United States Air Force Class VII Equipment from Afghanistan

    DTIC Science & Technology

    2014-03-27

    1959). On a linear-programming, combinatorial approach to the traveling - salesman problem . Operations Research, 58-66. Daugherty, P. J., Myers, M. B...1 Problem Statement... Problem Statement As of 01 September 2013, the USAF is tracking 12,571 individual Class VII assets valued at $213.5 million for final disposition

  10. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    ERIC Educational Resources Information Center

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  11. Solution of monotone complementarity and general convex programming problems using a modified potential reduction interior point method

    DOE PAGES

    Huang, Kuo -Ling; Mehrotra, Sanjay

    2016-11-08

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  12. BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.

  13. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less

  14. Engineering calculations for communications satellite systems planning

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.

    1985-01-01

    Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.

  15. Forest management and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buongiorno, J.; Gilless, J.K.

    1987-01-01

    This volume provides a survey of quantitative methods, guiding the reader through formulation and analysis of models that address forest management problems. The authors use simple mathematics, graphics, and short computer programs to explain each method. Emphasizing applications, they discuss linear, integer, dynamic, and goal programming; simulation; network modeling; and econometrics, as these relate to problems of determining economic harvest schedules in even-aged and uneven-aged forests, the evaluation of forest policies, multiple-objective decision making, and more.

  16. Analysing seismic-source mechanisms by linear-programming methods.

    USGS Publications Warehouse

    Julian, B.R.

    1986-01-01

    Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the 6-D space of moment-tensor components. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes. -from Author

  17. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  18. Primal Barrier Methods for Linear Programming

    DTIC Science & Technology

    1989-06-01

    A Theoretical Bound Concerning the difficulties introduced by an ill-conditioned H- 1, Dikin [Dik67] and Stewart [Stew87] show for a full-rank A...Dik67] I. I. Dikin (1967). Iterative solution of problems of linear and quadratic pro- gramming, Doklady Akademii Nauk SSSR, Tom 174, No. 4. [Fia79] A. V

  19. Interior-Point Methods for Linear Programming: A Challenge to the Simplex Method

    DTIC Science & Technology

    1988-07-01

    subsequently found that the method was first proposed by Dikin in 1967 [6]. Search directions are generated by the same system (5). Any hint of quadratic...1982). Inexact Newton methods, SIAM Journal on Numerical Analysis 19, 400-408. [6] I. I. Dikin (1967). Iterative solution of problems of linear and

  20. Observed-Score Equating as a Test Assembly Problem.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Luecht, Richard M.

    1998-01-01

    Derives a set of linear conditions of item-response functions that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly. An example illustrates the use of the model for an item pool from the Law School Admissions Test (LSAT). (SLD)

  1. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  2. A Limitation of the Applicability of Interval Shift Analysis to Program Evaluation

    ERIC Educational Resources Information Center

    Hardy, Roy

    1975-01-01

    Interval Shift Analysis (ISA) is an adaptation of the linear programming model used to determine maximum benefits or minimal losses in quantifiable economics problems. ISA is applied to pre and posttest score distributions for 43 classes of second graders. (RC)

  3. A New Stochastic Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear Vibrations

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.; Turner, Travis L.; Robinson, Jay H.; Rizzi, Stephen A.

    1999-01-01

    In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear sti ness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures.

  4. Split diversity in constrained conservation prioritization using integer linear programming.

    PubMed

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  5. Solving LP Relaxations of Large-Scale Precedence Constrained Problems

    NASA Astrophysics Data System (ADS)

    Bienstock, Daniel; Zuckerberg, Mark

    We describe new algorithms for solving linear programming relaxations of very large precedence constrained production scheduling problems. We present theory that motivates a new set of algorithmic ideas that can be employed on a wide range of problems; on data sets arising in the mining industry our algorithms prove effective on problems with many millions of variables and constraints, obtaining provably optimal solutions in a few minutes of computation.

  6. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  7. Method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kuo -Ling; Mehrotra, Sanjay

    We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less

  9. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    PubMed

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Analysis of Slope Limiters on Irregular Grids

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2005-01-01

    This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.

  11. a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.

    2017-12-01

    We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.

  12. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost

  13. Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.

    2017-09-01

    Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.

  14. Assembling networks of microbial genomes using linear programming.

    PubMed

    Holloway, Catherine; Beiko, Robert G

    2010-11-20

    Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

  15. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  16. Solution of the Generalized Noah's Ark Problem.

    PubMed

    Billionnet, Alain

    2013-01-01

    The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.

  17. A scalable parallel algorithm for multiple objective linear programs

    NASA Technical Reports Server (NTRS)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  18. Guide to a condensed form of NASTRAN

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1978-01-01

    A limited capability form of NASTRAN level 16 is presented to meet the needs of universities and small consulting firms. The input cards, the programming language of the direct matrix abstraction program, the plotting, the problem definition, and the modules' diagnostic messages are described. Sample problems relating to the analysis of linear static, vibration, and buckling are included. This guide can serve as a handbook for instructional courses in the use of NASTRAN or for users who need only the capability provided by the condensed form.

  19. One cutting plane algorithm using auxiliary functions

    NASA Astrophysics Data System (ADS)

    Zabotin, I. Ya; Kazaeva, K. E.

    2016-11-01

    We propose an algorithm for solving a convex programming problem from the class of cutting methods. The algorithm is characterized by the construction of approximations using some auxiliary functions, instead of the objective function. Each auxiliary function bases on the exterior penalty function. In proposed algorithm the admissible set and the epigraph of each auxiliary function are embedded into polyhedral sets. In connection with the above, the iteration points are found by solving linear programming problems. We discuss the implementation of the algorithm and prove its convergence.

  20. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  1. A comparison of SuperLU solvers on the intel MIC architecture

    NASA Astrophysics Data System (ADS)

    Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.

    2016-10-01

    In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.

  2. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    PubMed Central

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  3. Nonlinear optimization with linear constraints using a projection method

    NASA Technical Reports Server (NTRS)

    Fox, T.

    1982-01-01

    Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.

  4. NEWSUMT: A FORTRAN program for inequality constrained function minimization, users guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1979-01-01

    A computer program written in FORTRAN subroutine form for the solution of linear and nonlinear constrained and unconstrained function minimization problems is presented. The algorithm is the sequence of unconstrained minimizations using the Newton's method for unconstrained function minimizations. The use of NEWSUMT and the definition of all parameters are described.

  5. Optimized Waterspace Management and Scheduling Using Mixed-Integer Linear Programming

    DTIC Science & Technology

    2016-01-01

    Complete [30]. Proposition 4.1 satisfies the first criterion. For the second criterion, we will use the Traveling Salesman Problem (TSP), which has been...A branch and cut algorithm for the symmetric generalized traveling salesman problem , Operations Research 45 (1997) 378–394. [33] J. Silberholz, B...Golden, The generalized traveling salesman problem : A new genetic algorithm ap- proach, Extended Horizons: Advances in Computing, Optimization, and

  6. Addition of higher order plate and shell elements into NASTRAN computer program

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Goglia, G. L.

    1976-01-01

    Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.

  7. Finding fixed satellite service orbital allotments with a k-permutation algorithm

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1990-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.

  8. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  9. Program for solution of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Sloate, H.

    1973-01-01

    A program for the solution of linear and nonlinear first order ordinary differential equations is described and user instructions are included. The program contains a new integration algorithm for the solution of initial value problems which is particularly efficient for the solution of differential equations with a wide range of eigenvalues. The program in its present form handles up to ten state variables, but expansion to handle up to fifty state variables is being investigated.

  10. METLIN-PC: An applications-program package for problems of mathematical programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshenichnyi, B.N.; Sobolenko, L.A.; Sosnovskii, A.A.

    1994-05-01

    The METLIN-PC applications-program package (APP) was developed at the V.M. Glushkov Institute of Cybernetics of the Academy of Sciences of Ukraine on IBM PC XT and AT computers. The present version of the package was written in Turbo Pascal and Fortran-77. The METLIN-PC is chiefly designed for the solution of smooth problems of mathematical programming and is a further development of the METLIN prototype, which was created earlier on a BESM-6 computer. The principal property of the previous package is retained - the applications modules employ a single approach based on the linearization method of B.N. Pschenichnyi. Hence the namemore » {open_quotes}METLIN.{close_quotes}« less

  11. MOFA Software for the COBRA Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griesemer, Marc; Navid, Ali

    MOFA-COBRA is a software code for Matlab that performs Multi-Objective Flux Analysis (MOFA), a solving of linear programming problems. Teh leading software package for conducting different types of analyses using constrain-based models is the COBRA Toolbox for Matlab. MOFA-COBRA is an added tool for COBRA that solves multi-objective problems using a novel algorithm.

  12. Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning

    NASA Astrophysics Data System (ADS)

    Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana

    2018-01-01

    The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.

  13. On solving three-dimensional open-dimension rectangular packing problems

    NASA Astrophysics Data System (ADS)

    Junqueira, Leonardo; Morabito, Reinaldo

    2017-05-01

    In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.

  14. A novel heuristic for optimization aggregate production problem: Evidence from flat panel display in Malaysia

    NASA Astrophysics Data System (ADS)

    Al-Kuhali, K.; Hussain M., I.; Zain Z., M.; Mullenix, P.

    2015-05-01

    Aim: This paper contribute to the flat panel display industry it terms of aggregate production planning. Methodology: For the minimization cost of total production of LCD manufacturing, a linear programming was applied. The decision variables are general production costs, additional cost incurred for overtime production, additional cost incurred for subcontracting, inventory carrying cost, backorder costs and adjustments for changes incurred within labour levels. Model has been developed considering a manufacturer having several product types, which the maximum types are N, along a total time period of T. Results: Industrial case study based on Malaysia is presented to test and to validate the developed linear programming model for aggregate production planning. Conclusion: The model development is fit under stable environment conditions. Overall it can be recommended to adapt the proven linear programming model to production planning of Malaysian flat panel display industry.

  15. Optimal blood glucose level control using dynamic programming based on minimal Bergman model

    NASA Astrophysics Data System (ADS)

    Rettian Anggita Sari, Maria; Hartono

    2018-03-01

    The purpose of this article is to simulate the glucose dynamic and the insulin kinetic of diabetic patient. The model used in this research is a non-linear Minimal Bergman model. Optimal control theory is then applied to formulate the problem in order to determine the optimal dose of insulin in the treatment of diabetes mellitus such that the glucose level is in the normal range for some specific time range. The optimization problem is solved using dynamic programming. The result shows that dynamic programming is quite reliable to represent the interaction between glucose and insulin levels in diabetes mellitus patient.

  16. SAGUARO: a finite-element computer program for partially saturated porous flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Gartling, D.K.; Larson, D.E.

    1983-06-01

    SAGUARO is a finite element computer program designed to calculate two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. Program capabilities, user instructions and a sample problem are presented in this manual.

  17. The Optimal Location of GEODSS Sensors in Canada

    DTIC Science & Technology

    1991-02-01

    nteractive procedures for solving multiobjective transportation problems. A transportation problem is a classical linear programming problem where a...product must be transported from each of m sources to any of n destinations such that one or more objectives are optimized (36:96). The first algorithm...0, k - 1,...,L where z, is the fth element of zk The function z’(x) can now be optimized using any efficient, single-objectivc transportation

  18. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

    2011-01-01

    JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

  19. Capacity planning for waste management systems: an interval fuzzy robust dynamic programming approach.

    PubMed

    Nie, Xianghui; Huang, Guo H; Li, Yongping

    2009-11-01

    This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.

  20. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  1. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  2. A Summary of the Naval Postgraduate School Research Program and Recent Publications

    DTIC Science & Technology

    1990-09-01

    principles to divide the spectrum of MATLAB computer program on a 386-type a wide-band spread-spectrum signal into sub- computer. Because of the high rf...original in time and a large data sample was required. An signal. Effects due the fiber optic pickup array extended version of MATLAB that allows and...application, such as orbital mechanics and weather prediction. Professor Gragg has also developed numerous MATLAB programs for linear programming problems

  3. Analysis Balance Parameter of Optimal Ramp metering

    NASA Astrophysics Data System (ADS)

    Li, Y.; Duan, N.; Yang, X.

    2018-05-01

    Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.

  4. Finite element analysis of periodic transonic flow problems

    NASA Technical Reports Server (NTRS)

    Fix, G. J.

    1978-01-01

    Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate.

  5. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dzielski, John Edward

    1988-01-01

    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  6. Can hydro-economic river basin models simulate water shadow prices under asymmetric access?

    PubMed

    Kuhn, A; Britz, W

    2012-01-01

    Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.

  7. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html.

  8. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  9. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  10. A k-permutation algorithm for Fixed Satellite Service orbital allotments

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.

    1988-01-01

    A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.

  11. Computing Gröbner and Involutive Bases for Linear Systems of Difference Equations

    NASA Astrophysics Data System (ADS)

    Yanovich, Denis

    2018-02-01

    The computation of involutive bases and Gröbner bases for linear systems of difference equations is solved and its importance for physical and mathematical problems is discussed. The algorithm and issues concerning its implementation in C are presented and calculation times are compared with the competing programs. The paper ends with consideration on the parallel version of this implementation and its scalability.

  12. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  13. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  14. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    PubMed Central

    Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time. PMID:25215322

  15. Bin Packing, Number Balancing, and Rescaling Linear Programs

    NASA Astrophysics Data System (ADS)

    Hoberg, Rebecca

    This thesis deals with several important algorithmic questions using techniques from diverse areas including discrepancy theory, machine learning and lattice theory. In Chapter 2, we construct an improved approximation algorithm for a classical NP-complete problem, the bin packing problem. In this problem, the goal is to pack items of sizes si ∈ [0,1] into as few bins as possible, where a set of items fits into a bin provided the sum of the item sizes is at most one. We give a polynomial-time rounding scheme for a standard linear programming relaxation of the problem, yielding a packing that uses at most OPT + O(log OPT) bins. This makes progress towards one of the "10 open problems in approximation algorithms" stated in the book of Shmoys and Williamson. In fact, based on related combinatorial lower bounds, Rothvoss conjectures that theta(logOPT) may be a tight bound on the additive integrality gap of this LP relaxation. In Chapter 3, we give a new polynomial-time algorithm for linear programming. Our algorithm is based on the multiplicative weights update (MWU) method, which is a general framework that is currently of great interest in theoretical computer science. An algorithm for linear programming based on MWU was known previously, but was not polynomial time--we remedy this by alternating between a MWU phase and a rescaling phase. The rescaling methods we introduce improve upon previous methods by reducing the number of iterations needed until one can rescale, and they can be used for any algorithm with a similar rescaling structure. Finally, we note that the MWU phase of the algorithm has a simple interpretation as gradient descent of a particular potential function, and we show we can speed up this phase by walking in a direction that decreases both the potential function and its gradient. In Chapter 4, we show that an approximate oracle for Minkowski's Theorem gives an approximate oracle for the number balancing problem, and conversely. Number balancing is the problem of minimizing | 〈a,x〉 | over x ∈ {-1,0,1}n \\ { 0}, given a ∈ [0,1]n. While an application of the pigeonhole principle shows that there always exists x with | 〈a,x〉| ≤ O(√ n/2n), the best known algorithm only guarantees |〈a,x〉| ≤ 2-ntheta(log n). We show that an oracle for Minkowski's Theorem with approximation factor rho would give an algorithm for NBP that guarantees | 〈a,x〉 | ≤ 2-ntheta(1/rho). In particular, this would beat the bound of Karmarkar and Karp provided rho ≤ O(logn/loglogn). In the other direction, we prove that any polynomial time algorithm for NBP that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

  16. Equations of motion for coupled n-body systems

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1980-01-01

    Computer program, developed to analyze spacecraft attitude dynamics, can be applied to large class of problems involving objects that can be simplified into component parts. Systems of coupled rigid bodies, point masses, symmetric wheels, and elastically flexible bodies can be analyzed. Program derives complete set of non-linear equations of motion in vectordyadic format. Numerical solutions may be printed out. Program is in FORTRAN IV for batch execution and has been implemented on IBM 360.

  17. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints.

    PubMed

    Niedz, Randall P

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses "Microsoft Excel" to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel's Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems- 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line.

  18. Using Microcomputers to Teach Non-Linear Equations at Sixth Form Level.

    ERIC Educational Resources Information Center

    Cheung, Y. L.

    1984-01-01

    Promotes the use of the microcomputer in mathematics instruction, reviewing approaches to teaching nonlinear equations. Examples of computer diagrams are illustrated and compared to textbook samples. An example of a problem-solving program is included. (ML)

  19. A Linear Programming Approach to the Development of Contrail Reduction Strategies Satisfying Operationally Feasible Constraints

    NASA Technical Reports Server (NTRS)

    Wei, Peng; Sridhar, Banavar; Chen, Neil Yi-Nan; Sun, Dengfent

    2012-01-01

    A class of strategies has been proposed to reduce contrail formation in the United States airspace. A 3D grid based on weather data and the cruising altitude level of aircraft is adjusted to avoid the persistent contrail potential area with the consideration to fuel-efficiency. In this paper, the authors introduce a contrail avoidance strategy on 3D grid by considering additional operationally feasible constraints from an air traffic controller's aspect. First, shifting too many aircraft to the same cruising level will make the miles-in-trail at this level smaller than the safety separation threshold. Furthermore, the high density of aircraft at one cruising level may exceed the workload for the traffic controller. Therefore, in our new model we restrict the number of total aircraft at each level. Second, the aircraft count variation for successive intervals cannot be too drastic since the workload to manage climbing/descending aircraft is much larger than managing cruising aircraft. The contrail reduction is formulated as an integer-programming problem and the problem is shown to have the property of total unimodularity. Solving the corresponding relaxed linear programming with the simplex method provides an optimal and integral solution to the problem. Simulation results are provided to illustrate the methodology.

  20. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  1. Graph Structured Program Evolution: Evolution of Loop Structures

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shinichi; Nagao, Tomoharu

    Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.

  2. Improving Strategies via SMT Solving

    NASA Astrophysics Data System (ADS)

    Gawlitza, Thomas Martin; Monniaux, David

    We consider the problem of computing numerical invariants of programs by abstract interpretation. Our method eschews two traditional sources of imprecision: (i) the use of widening operators for enforcing convergence within a finite number of iterations (ii) the use of merge operations (often, convex hulls) at the merge points of the control flow graph. It instead computes the least inductive invariant expressible in the domain at a restricted set of program points, and analyzes the rest of the code en bloc. We emphasize that we compute this inductive invariant precisely. For that we extend the strategy improvement algorithm of Gawlitza and Seidl [17]. If we applied their method directly, we would have to solve an exponentially sized system of abstract semantic equations, resulting in memory exhaustion. Instead, we keep the system implicit and discover strategy improvements using SAT modulo real linear arithmetic (SMT). For evaluating strategies we use linear programming. Our algorithm has low polynomial space complexity and performs for contrived examples in the worst case exponentially many strategy improvement steps; this is unsurprising, since we show that the associated abstract reachability problem is Π2 P -complete.

  3. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    DTIC Science & Technology

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  4. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less

  5. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints

    PubMed Central

    2013-01-01

    Background Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. Methods In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Results Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies. PMID:23368729

  6. Field-Programmable Gate Array Computer in Structural Analysis: An Initial Exploration

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Sobieszczanski-Sobieski, Jaroslaw; Brown, Samuel

    2002-01-01

    This paper reports on an initial assessment of using a Field-Programmable Gate Array (FPGA) computational device as a new tool for solving structural mechanics problems. A FPGA is an assemblage of binary gates arranged in logical blocks that are interconnected via software in a manner dependent on the algorithm being implemented and can be reprogrammed thousands of times per second. In effect, this creates a computer specialized for the problem that automatically exploits all the potential for parallel computing intrinsic in an algorithm. This inherent parallelism is the most important feature of the FPGA computational environment. It is therefore important that if a problem offers a choice of different solution algorithms, an algorithm of a higher degree of inherent parallelism should be selected. It is found that in structural analysis, an 'analog computer' style of programming, which solves problems by direct simulation of the terms in the governing differential equations, yields a more favorable solution algorithm than current solution methods. This style of programming is facilitated by a 'drag-and-drop' graphic programming language that is supplied with the particular type of FPGA computer reported in this paper. Simple examples in structural dynamics and statics illustrate the solution approach used. The FPGA system also allows linear scalability in computing capability. As the problem grows, the number of FPGA chips can be increased with no loss of computing efficiency due to data flow or algorithmic latency that occurs when a single problem is distributed among many conventional processors that operate in parallel. This initial assessment finds the FPGA hardware and software to be in their infancy in regard to the user conveniences; however, they have enormous potential for shrinking the elapsed time of structural analysis solutions if programmed with algorithms that exhibit inherent parallelism and linear scalability. This potential warrants further development of FPGA-tailored algorithms for structural analysis.

  7. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.

    PubMed

    Ren, Shaogang; Zeng, Bo; Qian, Xiaoning

    2013-01-01

    Optimization procedures to identify gene knockouts for targeted biochemical overproduction have been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current optimization methods for targeted bio-productions have been developed under the maximum cell growth assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates. However, it has been shown that knockout mutants in fact reach the steady states with the minimization of metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework--MOMAKnock--which can derive robust knockout strategies under the MOMA flux distribution approximation. In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock. Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with a small E. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock can provide improved targeted productions with more robust knockout strategies.

  8. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovskii, G.M.; Platonov, V.M.; Zhvanetskii, I.B.

    The problem of designing optimum rectification separation systems (r.s.) in two-section columns with heat recovery is discussed. This is an important problem because the cost of the energy consumed can reached 70% of the total cost of the r.s. It is shown that the problem may be reduced to one of integral linear programming, for which well-developed methods of solution are available. It is assumed that: 1) the pressure is constant in all rectification columns, and 2) the streams may exchange heat only once.

  10. The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schmuck, Frank Bernhard

    1988-01-01

    Reliable broadcast protocols are important tools in distributed and fault-tolerant programming. They are useful for sharing information and for maintaining replicated data in a distributed system. However, a wide range of such protocols has been proposed. These protocols differ in their fault tolerance and delivery ordering characteristics. There is a tradeoff between the cost of a broadcast protocol and how much ordering it provides. It is, therefore, desirable to employ protocols that support only a low degree of ordering whenever possible. This dissertation presents techniques for deciding how strongly ordered a protocol is necessary to solve a given application problem. It is shown that there are two distinct classes of application problems: problems that can be solved with efficient, asynchronous protocols, and problems that require global ordering. The concept of a linearization function that maps partially ordered sets of events to totally ordered histories is introduced. How to construct an asynchronous implementation that solves a given problem if a linearization function for it can be found is shown. It is proved that in general the question of whether a problem has an asynchronous solution is undecidable. Hence there exists no general algorithm that would automatically construct a suitable linearization function for a given problem. Therefore, an important subclass of problems that have certain commutativity properties are considered. Techniques for constructing asynchronous implementations for this class are presented. These techniques are useful for constructing efficient asynchronous implementations for a broad range of practical problems.

  11. A Survey of Mathematical Programming in the Soviet Union (Bibliography),

    DTIC Science & Technology

    1982-01-01

    ASTAFYEV, N. N., "METHOD OF LINEARIZATION IN CONVEX PROGRAMMING", TR4- Y ZIMN SHKOLY PO MAT PROGRAMMIR I XMEZHN VOPR DROGOBYCH, 72, VOL. 3, 54-73 2...AKADEMIYA KOMMUNLN’NOGO KHOZYAYSTVA (MOSCOW), 72, NO. 93, 70-77 19. GIMELFARB , G, V. MARCHENKO, V. RYBAK, "AUTOMATIC IDENTIFICATION OF IDENTICAL POINTS...DYNAMIC PROGRAMMING (CONTINUED) 25. KOLOSOV, G. Y , "ON ANALYTICAL SOLUTION OF DESIGN PROBLEMS FOR DISTRIBUTED OPTIMAL CONTROL SYSTEMS SUBJECTED TO RANDOM

  12. A green vehicle routing problem with customer satisfaction criteria

    NASA Astrophysics Data System (ADS)

    Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.

    2016-12-01

    This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.

  13. A generalized fuzzy linear programming approach for environmental management problem under uncertainty.

    PubMed

    Fan, Yurui; Huang, Guohe; Veawab, Amornvadee

    2012-01-01

    In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.

  14. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  15. A path following algorithm for the graph matching problem.

    PubMed

    Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe

    2009-12-01

    We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.

  16. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 1.1)

    NASA Technical Reports Server (NTRS)

    Baruah, P. K.; Bussoletti, J. E.; Chiang, D. T.; Massena, W. A.; Nelson, F. D.; Furdon, D. J.; Tsurusaki, K.

    1981-01-01

    The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system.

  17. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  18. An oscillatory kernel function method for lifting surfaces in mixed transonic flow

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    A study was conducted on the use of combined subsonic and supersonic linear theory to obtain economical and yet realistic solutions to unsteady transonic flow problems. With some modification, existing linear theory methods were combined into a single computer program. The method was applied to problems for which measured steady Mach number distributions and unsteady pressure distributions were available. By comparing theory and experiment, the transonic method showed a significant improvement over uniform flow methods. The results also indicated that more exact local Mach number effects and normal shock boundary conditions on the perturbation potential were needed. The validity of these improvements was demonstrated by application to steady flow.

  19. Model predictive control of P-time event graphs

    NASA Astrophysics Data System (ADS)

    Hamri, H.; Kara, R.; Amari, S.

    2016-12-01

    This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.

  20. Aspects of job scheduling

    NASA Technical Reports Server (NTRS)

    Phillips, K.

    1976-01-01

    A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.

  1. Multi-target detection and positioning in crowds using multiple camera surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  2. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  3. FASOR - A second generation shell of revolution code

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.

  4. Problem of two-level hierarchical minimax program control the final state of regional social and economic system with incomplete information

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.

    2016-12-01

    In this article we consider a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding linear or nonlinear discrete-time recurrent vector relations and its control system consist from two levels: basic level (control level I) that is dominating level and auxiliary level (control level II) that is subordinate level. Both levels have different criterions of functioning and united by information and control connections which defined in advance. In this article we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks vectors. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final states of this system with incomplete information and the general scheme for its solving.

  5. Using Simulation Technique to overcome the multi-collinearity problem for estimating fuzzy linear regression parameters.

    NASA Astrophysics Data System (ADS)

    Mansoor Gorgees, Hazim; Hilal, Mariam Mohammed

    2018-05-01

    Fatigue cracking is one of the common types of pavement distresses and is an indicator of structural failure; cracks allow moisture infiltration, roughness, may further deteriorate to a pothole. Some causes of pavement deterioration are: traffic loading; environment influences; drainage deficiencies; materials quality problems; construction deficiencies and external contributors. Many researchers have made models that contain many variables like asphalt content, asphalt viscosity, fatigue life, stiffness of asphalt mixture, temperature and other parameters that affect the fatigue life. For this situation, a fuzzy linear regression model was employed and analyzed by using the traditional methods and our proposed method in order to overcome the multi-collinearity problem. The total spread error was used as a criterion to compare the performance of the studied methods. Simulation program was used to obtain the required results.

  6. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  7. A new method for the prediction of combustion instability

    NASA Astrophysics Data System (ADS)

    Flanagan, Steven Meville

    This dissertation presents a new approach to the prediction of combustion instability in solid rocket motors. Previous attempts at developing computational tools to solve this problem have been largely unsuccessful, showing very poor agreement with experimental results and having little or no predictive capability. This is due primarily to deficiencies in the linear stability theory upon which these efforts have been based. Recent advances in linear instability theory by Flandro have demonstrated the importance of including unsteady rotational effects, previously considered negligible. Previous versions of the theory also neglected corrections to the unsteady flow field of the first order in the mean flow Mach number. This research explores the stability implications of extending the solution to include these corrections. Also, the corrected linear stability theory based upon a rotational unsteady flow field extended to first order in mean flow Mach number has been implemented in two computer programs developed for the Macintosh platform. A quasi one-dimensional version of the program has been developed which is based upon an approximate solution to the cavity acoustics problem. The three-dimensional program applies Greens's Function Discretization (GFD) to the solution for the acoustic mode shapes and frequency. GFD is a recently developed numerical method for finding fully three dimensional solutions for this class of problems. The analysis of complex motor geometries, previously a tedious and time consuming task, has also been greatly simplified through the development of a drawing package designed specifically to facilitate the specification of typical motor geometries. The combination of the drawing package, improved acoustic solutions, and new analysis, results in a tool which is capable of producing more accurate and meaningful predictions than have been possible in the past.

  8. On the complexity of a combined homotopy interior method for convex programming

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Xu, Qing; Feng, Guochen

    2007-03-01

    In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.

  9. An improved technique for determining reflection from semi-infinite atmospheres with linearly anisotropic phase functions. [radiative transfer

    NASA Technical Reports Server (NTRS)

    Fricke, C. L.

    1975-01-01

    A solution to the problem of reflection from a semi-infinite atmosphere is presented, based upon Chandrasekhar's H-function method for linearly anisotropic phase functions. A modification to the Gauss quadrature formula which gives about the same accuracy with 10 points as the conventional Gauss quadrature does with 100 points was developed. A computer program achieving this solution is described and results are presented for several illustrative cases.

  10. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  11. HADY-I, a FORTRAN program for the compressible stability analysis of three-dimensional boundary layers. [on swept and tapered wings

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1981-01-01

    A computer program HADY-I for calculating the linear incompressible or compressible stability characteristics of the laminar boundary layer on swept and tapered wings is described. The eigenvalue problem and its adjoint arising from the linearized disturbance equations with the appropriate boundary conditions are solved numerically using a combination of Newton-Raphson interative scheme and a variable step size integrator based on the Runge-Kutta-Fehlburh fifth-order formulas. The integrator is used in conjunction with a modified Gram-Schmidt orthonormalization procedure. The computer program HADY-I calculates the growth rates of crossflow or streamwise Tollmien-Schlichting instabilities. It also calculates the group velocities of these disturbances. It is restricted to parallel stability calculations, where the boundary layer (meanflow) is assumed to be parallel. The meanflow solution is an input to the program.

  12. Comparisons of linear and nonlinear pyramid schemes for signal and image processing

    NASA Astrophysics Data System (ADS)

    Morales, Aldo W.; Ko, Sung-Jea

    1997-04-01

    Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.

  13. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  14. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  15. A hybrid-stress finite element approach for stress and vibration analysis in linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.

    1987-01-01

    A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.

  16. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming

    NASA Astrophysics Data System (ADS)

    Zhao, Dang-Jun; Song, Zheng-Yu

    2017-08-01

    This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.

  18. Exploring Difference Equations with Spreadsheets.

    ERIC Educational Resources Information Center

    Walsh, Thomas P.

    1996-01-01

    When using spreadsheets to explore real-world problems involving periodic change, students can observe what happens at each period, generate a graph, and learn how changing the starting quantity or constants affects results. Spreadsheet lessons for high school students are presented that explore mathematical modeling, linear programming, and…

  19. The inverse problem: Ocean tides derived from earth tide observations

    NASA Technical Reports Server (NTRS)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  20. Designing Templates for Interactive Tasks in CALL Tutorials.

    ERIC Educational Resources Information Center

    Ruhlmann, Felicitas

    The development of templates for computer-assisted language learning (CALL) is discussed, based on experiences with primarily linear multimedia tutorial programs. Design of templates for multiple-choice questions and interactive tasks in a prototype module is described. Possibilities of enhancing interactivity by introducing problem-oriented…

  1. ARS-Media for Excel

    USDA-ARS?s Scientific Manuscript database

    ARS-Media for Excel is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are genera...

  2. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study

    PubMed Central

    Catanzaro, Daniele; Schäffer, Alejandro A.; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with Synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints. PMID:26353381

  3. Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study.

    PubMed

    Catanzaro, Daniele; Shackney, Stanley E; Schaffer, Alejandro A; Schwartz, Russell

    2016-01-01

    Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.

  4. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  5. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  6. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  7. Modeling an integrated hospital management planning problem using integer optimization approach

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Irvan

    2017-09-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  8. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  9. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-07-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  10. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  11. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  12. Primal-dual techniques for online algorithms and mechanisms

    NASA Astrophysics Data System (ADS)

    Liaghat, Vahid

    An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.

  13. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  14. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  15. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.

  16. Energy efficient LED layout optimization for near-uniform illumination

    NASA Astrophysics Data System (ADS)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  17. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  18. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  19. Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Johnson, Duane

    1996-01-01

    Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.

  20. Stimulation of a turbofan engine for evaluation of multivariable optimal control concepts. [(computerized simulation)

    NASA Technical Reports Server (NTRS)

    Seldner, K.

    1976-01-01

    The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.

  1. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  2. Equicontrollability and the model following problem

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    Equicontrollability and its application to the linear time-invariant model-following problem are discussed. The problem is presented in the form of two systems, the plant and the model. The requirement is to find a controller to apply to the plant so that the resultant compensated plant behaves, in an input-output sense, the same as the model. All systems are assumed to be linear and time-invariant. The basic approach is to find suitable equicontrollable realizations of the plant and model and to utilize feedback so as to produce a controller of minimal state dimension. The concept of equicontrollability is a generalization of control canonical (phase variable) form applied to multivariable systems. It allows one to visualize clearly the effects of feedback and to pinpoint the parameters of a multivariable system which are invariant under feedback. The basic contributions are the development of equicontrollable form; solution of the model-following problem in an entirely algorithmic way, suitable for computer programming; and resolution of questions on system decoupling.

  3. Optimal design of FIR triplet halfband filter bank and application in image coding.

    PubMed

    Kha, H H; Tuan, H D; Nguyen, T Q

    2011-02-01

    This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband filter banks whose filters have optimal frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband filter bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the filter bank is presented.

  4. The program LOPT for least-squares optimization of energy levels

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2011-02-01

    The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.

  5. Trading strategies for distribution company with stochastic distributed energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunyu; Wang, Qi; Wang, Jianhui

    2016-09-01

    This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problemmore » is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.« less

  6. Low-rank regularization for learning gene expression programs.

    PubMed

    Ye, Guibo; Tang, Mengfan; Cai, Jian-Feng; Nie, Qing; Xie, Xiaohui

    2013-01-01

    Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.

  7. Optimum sensitivity derivatives of objective functions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Barthelemy, J.-F. M.; Sobieszczanski-Sobieski, J.

    1983-01-01

    The feasibility of eliminating second derivatives from the input of optimum sensitivity analyses of optimization problems is demonstrated. This elimination restricts the sensitivity analysis to the first-order sensitivity derivatives of the objective function. It is also shown that when a complete first-order sensitivity analysis is performed, second-order sensitivity derivatives of the objective function are available at little additional cost. An expression is derived whose application to linear programming is presented.

  8. The Computer in Educational Decision Making. An Introduction and Guide for School Administrators.

    ERIC Educational Resources Information Center

    Sanders, Susan; And Others

    This text provides educational administrators with a working knowledge of the problem-solving techniques of PERT (planning, evaluation, and review technique), Linear Programming, Queueing Theory, and Simulation. The text includes an introduction to decision-making and operations research, four chapters consisting of indepth explanations of each…

  9. Structural performance analysis and redesign

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1978-01-01

    Program performs stress buckling and vibrational analysis of large, linear, finite-element systems in excess of 50,000 degrees of freedom. Cost, execution time, and storage requirements are kept reasonable through use of sparse matrix solution techniques, and other computational and data management procedures designed for problems of very large size.

  10. Linear Programming Problems for Generalized Uncertainty

    ERIC Educational Resources Information Center

    Thipwiwatpotjana, Phantipa

    2010-01-01

    Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…

  11. Aerodynamic preliminary analysis system. Part 2: User's manual and program description

    NASA Technical Reports Server (NTRS)

    Divan, P.; Dunn, K.; Kojima, J.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple nonplanar surfaces of arbitrary planform and open or closed slender bodies or noncircular contour are analyzed. Longitudinal and lateral-directional static and rotary derivative solutions are generated. The analysis is implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  12. Scilab software as an alternative low-cost computing in solving the linear equations problem

    NASA Astrophysics Data System (ADS)

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  13. Methods, Software and Tools for Three Numerical Applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. R. Jessup

    2000-03-01

    This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).

  14. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media

    USGS Publications Warehouse

    Lappala, E.G.; Healy, R.W.; Weeks, E.P.

    1987-01-01

    This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)

  15. VISCEL: A general-purpose computer program for analysis of linear viscoelastic structures (user's manual), volume 1

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Akyuz, F. A.; Heer, E.

    1972-01-01

    This program, an extension of the linear equilibrium problem solver ELAS, is an updated and extended version of its earlier form (written in FORTRAN 2 for the IBM 7094 computer). A synchronized material property concept utilizing incremental time steps and the finite element matrix displacement approach has been adopted for the current analysis. A special option enables employment of constant time steps in the logarithmic scale, thereby reducing computational efforts resulting from accumulative material memory effects. A wide variety of structures with elastic or viscoelastic material properties can be analyzed by VISCEL. The program is written in FORTRAN 5 language for the Univac 1108 computer operating under the EXEC 8 system. Dynamic storage allocation is automatically effected by the program, and the user may request up to 195K core memory in a 260K Univac 1108/EXEC 8 machine. The physical program VISCEL, consisting of about 7200 instructions, has four distinct links (segments), and the compiled program occupies a maximum of about 11700 words decimal of core storage.

  16. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  17. Water resources planning and management : A stochastic dual dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Pinte, D.; Tilmant, A.

    2008-12-01

    Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14 reservoirs on the Nile river basin.

  18. Numerical method for solution of systems of non-stationary spatially one-dimensional nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Morozov, S. K.; Krasitskiy, O. P.

    1978-01-01

    A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.

  19. Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Kara, Imdat; Derya, Tusan

    2011-09-01

    The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.

  20. Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc; Acosta, Diana M.

    2009-01-01

    The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.

  1. Error Checking and Graphical Representation of Multiple–Complete–Digest (MCD) Restriction-Fragment Maps

    PubMed Central

    Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.

    1999-01-01

    Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487

  2. Pupils' over-reliance on linearity: a scholastic effect?

    PubMed

    Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven

    2007-06-01

    From upper elementary education on, children develop a tendency to over-use linearity. Particularly, it is found that many pupils assume that if a figure enlarges k times, the area enlarges k times too. However, most research was conducted with traditional, school-like word problems. This study examines whether pupils also over-use linearity if non-linear problems are embedded in meaningful, authentic performance tasks instead of traditional, school-like word problems, and whether this experience influences later behaviour. Ninety-three sixth graders from two primary schools in Flanders, Belgium. Pupils received a pre-test with traditional word problems. Those who made a linear error on the non-linear area problem were subjected to individual interviews. They received one new non-linear problem, in the S-condition (again a traditional, scholastic word problem), D-condition (the same word problem with a drawing) or P-condition (a meaningful performance-based task). Shortly afterwards, pupils received a post-test, containing again a non-linear word problem. Most pupils from the S-condition displayed linear reasoning during the interview. Offering drawings (D-condition) had a positive effect, but presenting the problem as a performance task (P-condition) was more beneficial. Linear reasoning was nearly absent in the P-condition. Remarkably, at the post-test, most pupils from all three groups again applied linear strategies. Pupils' over-reliance on linearity seems partly elicited by the school-like word problem format of test items. Pupils perform much better if non-linear problems are offered as performance tasks. However, a single experience does not change performances on a comparable word problem test afterwards.

  3. An electromagnetism-like metaheuristic for open-shop problems with no buffer

    NASA Astrophysics Data System (ADS)

    Naderi, Bahman; Najafi, Esmaeil; Yazdani, Mehdi

    2012-12-01

    This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem.

  4. The integrated model for solving the single-period deterministic inventory routing problem

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Kamarul Irwan Abdul; Abidin, Rahimi; Iteng, Rosman; Lamsali, Hendrik

    2016-08-01

    This paper discusses the problem of efficiently managing inventory and routing problems in a two-level supply chain system. Vendor Managed Inventory (VMI) policy is an integrating decisions between a supplier and his customers. We assumed that the demand at each customer is stationary and the warehouse is implementing a VMI. The objective of this paper is to minimize the inventory and the transportation costs of the customers for a two-level supply chain. The problem is to determine the delivery quantities, delivery times and routes to the customers for the single-period deterministic inventory routing problem (SP-DIRP) system. As a result, a linear mixed-integer program is developed for the solutions of the SP-DIRP problem.

  5. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  6. A hybrid Dantzig-Wolfe, Benders decomposition and column generation procedure for multiple diet production planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Udomsungworagul, A.; Charnsethikul, P.

    2018-03-01

    This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.

  7. Robust nonlinear control of vectored thrust aircraft

    NASA Technical Reports Server (NTRS)

    Doyle, John C.; Murray, Richard; Morris, John

    1993-01-01

    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.

  8. Classification of hyperspectral imagery using MapReduce on a NVIDIA graphics processing unit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, Andres; Rahnemoonfar, Maryam

    2017-04-01

    A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.

  9. Optimization Model for Capacity Management and Bed Scheduling for Hospital

    NASA Astrophysics Data System (ADS)

    Sitepu, Suryati; Mawengkang, Herman; Husein, Ismail

    2018-01-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing.. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  10. A linear programming model for protein inference problem in shotgun proteomics.

    PubMed

    Huang, Ting; He, Zengyou

    2012-11-15

    Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is an important issue in shotgun proteomics. The objective of protein inference is to find a subset of proteins that are truly present in the sample. Although many methods have been proposed for protein inference, several issues such as peptide degeneracy still remain unsolved. In this article, we present a linear programming model for protein inference. In this model, we use a transformation of the joint probability that each peptide/protein pair is present in the sample as the variable. Then, both the peptide probability and protein probability can be expressed as a formula in terms of the linear combination of these variables. Based on this simple fact, the protein inference problem is formulated as an optimization problem: minimize the number of proteins with non-zero probabilities under the constraint that the difference between the calculated peptide probability and the peptide probability generated from peptide identification algorithms should be less than some threshold. This model addresses the peptide degeneracy issue by forcing some joint probability variables involving degenerate peptides to be zero in a rigorous manner. The corresponding inference algorithm is named as ProteinLP. We test the performance of ProteinLP on six datasets. Experimental results show that our method is competitive with the state-of-the-art protein inference algorithms. The source code of our algorithm is available at: https://sourceforge.net/projects/prolp/. zyhe@dlut.edu.cn. Supplementary data are available at Bioinformatics Online.

  11. Level-Set Topology Optimization with Aeroelastic Constraints

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  12. The role of service areas in the optimization of FSS orbital and frequency assignments

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Wang, C. W.; Yamamura, Y.; Reilly, C. H.; Gonsalvez, D. J.

    1985-01-01

    A relationship is derived, on a single-entry interference basis, for the minimum allowable spacing between two satellites as a function of electrical parameters and service-area geometries. For circular beams, universal curves relate the topocentric satellite spacing angle to the service-area separation angle measured at the satellite. The corresponding geocentric spacing depends only weakly on the mean longitude of the two satellites, and this is true also for alliptical antenna beams. As a consequence, if frequency channels are preassigned, the orbital assignment synthesis of a satellite system can be formulated as a mixed-integer programming (MIP) problem or approximated by a linear programming (LP) problem, with the interference protection requirements enforced by constraints while some linear function is optimized. Possible objective-function choices are discussed and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed ideal location set. A test problem is posed consisting of six service areas, each served by one satellite, all using elliptical antenna beams and the same frequency channels. Numerical results are given for the three ideal location prescriptions for both the MIP and LP formulations. The resulting scenarios also satisfy reasonable aggregate interference protection requirements.

  13. The discovery of indicator variables for QSAR using inductive logic programming

    NASA Astrophysics Data System (ADS)

    King, Ross D.; Srinivasan, Ashwin

    1997-11-01

    A central problem in forming accurate regression equations in QSAR studies isthe selection of appropriate descriptors for the compounds under study. Wedescribe a novel procedure for using inductive logic programming (ILP) todiscover new indicator variables (attributes) for QSAR problems, and show thatthese improve the accuracy of the derived regression equations. ILP techniqueshave previously been shown to work well on drug design problems where thereis a large structural component or where clear comprehensible rules arerequired. However, ILP techniques have had the disadvantage of only being ableto make qualitative predictions (e.g. active, inactive) and not to predictreal numbers (regression). We unify ILP and linear regression techniques togive a QSAR method that has the strength of ILP at describing stericstructure, with the familiarity and power of linear regression. We evaluatedthe utility of this new QSAR technique by examining the prediction ofbiological activity with and without the addition of new structural indicatorvariables formed by ILP. In three out of five datasets examined the additionof ILP variables produced statistically better results (P < 0.01) over theoriginal description. The new ILP variables did not increase the overallcomplexity of the derived QSAR equations and added insight into possiblemechanisms of action. We conclude that ILP can aid in the process of drugdesign.

  14. Regularity of the Solution of Elliptic Problems with Piecewise Analytic Data. Part 1. Boundary Value Problems for Linear Ellilptic Equation of Second Order.

    DTIC Science & Technology

    1986-05-01

    neighborhood of the Program PROBE of Noetic Technologies, St. Louis. corners of the domain, place where the type of the boundary condition changes, etc...is studied . , r ° -. o. - *- . ,. .- -*. ... - - . . . ’ , ..- , .- *- , . --s,." . ",-:, "j’ . ], k i-, j!3 ,, :,’ - .A L...Manual. Noetic Technologies Corp., St. Louis, Missouri (1985). 318] Szab’, B. A.: Implementation of a Finite Element Software System with h and p

  15. Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi

    2017-01-01

    This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.

  16. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  17. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 3.0)

    NASA Technical Reports Server (NTRS)

    Purdon, David J.; Baruah, Pranab K.; Bussoletti, John E.; Epton, Michael A.; Massena, William A.; Nelson, Franklin D.; Tsurusaki, Kiyoharu

    1990-01-01

    The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, updating, and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few CAL language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY 1S, 1M, and X-MP computing systems. The system is comprised of a data base management system, a program library, an execution control module, and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a set of CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards. Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points); (2) a complete rewrite of the section on the MAG module; and (3) strict applicability to CRAY computing systems.

  18. Data-driven Modelling for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Angria S, Layla; Dwi Sari, Yunita; Zarlis, Muhammad; Tulus

    2018-01-01

    The rise of the issues with the uncertainty of decision making has become a very warm conversation in operation research. Many models have been presented, one of which is with data-driven modelling (DDM). The purpose of this paper is to extract and recognize patterns in data, and find the best model in decision-making problem under uncertainty by using data-driven modeling approach with linear programming, linear and nonlinear differential equation, bayesian approach. Model criteria tested to determine the smallest error, and it will be the best model that can be used.

  19. Optimal design of neural stimulation current waveforms.

    PubMed

    Halpern, Mark

    2009-01-01

    This paper contains results on the design of electrical signals for delivering charge through electrodes to achieve neural stimulation. A generalization of the usual constant current stimulation phase to a stepped current waveform is presented. The electrode current design is then formulated as the calculation of the current step sizes to minimize the peak electrode voltage while delivering a specified charge in a given number of time steps. This design problem can be formulated as a finite linear program, or alternatively by using techniques for discrete-time linear system design.

  20. User's manual for GAMNAS: Geometric and Material Nonlinear Analysis of Structures

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.; Dattaguru, B.

    1984-01-01

    GAMNAS (Geometric and Material Nonlinear Analysis of Structures) is a two dimensional finite-element stress analysis program. Options include linear, geometric nonlinear, material nonlinear, and combined geometric and material nonlinear analysis. The theory, organization, and use of GAMNAS are described. Required input data and results for several sample problems are included.

  1. ARS-Media: A spreadsheet tool for calculating media recipes based on ion-specific constraints

    USDA-ARS?s Scientific Manuscript database

    ARS-Media is an ion solution calculator that uses Microsoft Excel to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Thus, the recipes are generated using ...

  2. Optimization of a bundle divertor for FED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  3. Error Analysis Of Students Working About Word Problem Of Linear Program With NEA Procedure

    NASA Astrophysics Data System (ADS)

    Santoso, D. A.; Farid, A.; Ulum, B.

    2017-06-01

    Evaluation and assessment is an important part of learning. In evaluation process of learning, written test is still commonly used. However, the tests usually do not following-up by further evaluation. The process only up to grading stage not to evaluate the process and errors which done by students. Whereas if the student has a pattern error and process error, actions taken can be more focused on the fault and why is that happen. NEA procedure provides a way for educators to evaluate student progress more comprehensively. In this study, students’ mistakes in working on some word problem about linear programming have been analyzed. As a result, mistakes are often made students exist in the modeling phase (transformation) and process skills (process skill) with the overall percentage distribution respectively 20% and 15%. According to the observations, these errors occur most commonly due to lack of precision of students in modeling and in hastiness calculation. Error analysis with students on this matter, it is expected educators can determine or use the right way to solve it in the next lesson.

  4. ARS-Media for Excel: A Spreadsheet Tool for Calculating Media Recipes Based on Ion-Specific Constraints

    PubMed Central

    Niedz, Randall P.

    2016-01-01

    ARS-Media for Excel is an ion solution calculator that uses “Microsoft Excel” to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel’s Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems– 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line. PMID:27812202

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderbei, Robert J., E-mail: rvdb@princeton.edu; P Latin-Small-Letter-Dotless-I nar, Mustafa C., E-mail: mustafap@bilkent.edu.tr; Bozkaya, Efe B.

    An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problemmore » as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.« less

  6. Approximate labeling via graph cuts based on linear programming.

    PubMed

    Komodakis, Nikos; Tziritas, Georgios

    2007-08-01

    A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.

  7. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    NASA Technical Reports Server (NTRS)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons with available analytical and numerical results, the stability and high accuracy of these dynamic analysis techniques are established.

  8. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  9. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  10. Analysis of the single-vehicle cyclic inventory routing problem

    NASA Astrophysics Data System (ADS)

    Aghezzaf, El-Houssaine; Zhong, Yiqing; Raa, Birger; Mateo, Manel

    2012-11-01

    The single-vehicle cyclic inventory routing problem (SV-CIRP) consists of a repetitive distribution of a product from a single depot to a selected subset of customers. For each customer, selected for replenishments, the supplier collects a corresponding fixed reward. The objective is to determine the subset of customers to replenish, the quantity of the product to be delivered to each and to design the vehicle route so that the resulting profit (difference between the total reward and the total logistical cost) is maximised while preventing stockouts at each of the selected customers. This problem appears often as a sub-problem in many logistical problems. In this article, the SV-CIRP is formulated as a mixed-integer program with a nonlinear objective function. After a thorough analysis of the structure of the problem and its features, an exact algorithm for its solution is proposed. This exact algorithm requires only solutions of linear mixed-integer programs. Values of a savings-based heuristic for this problem are compared to the optimal values obtained for a set of some test problems. In general, the gap may get as large as 25%, which justifies the effort to continue exploring and developing exact and approximation algorithms for the SV-CIRP.

  11. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  12. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models

    PubMed Central

    Saa, Pedro A.; Nielsen, Lars K.

    2016-01-01

    Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155

  13. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  14. Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem

    NASA Astrophysics Data System (ADS)

    Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang

    2015-09-01

    A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.

  15. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation.

    PubMed

    Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia

    2017-02-15

    This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solving portfolio selection problems with minimum transaction lots based on conditional-value-at-risk

    NASA Astrophysics Data System (ADS)

    Setiawan, E. P.; Rosadi, D.

    2017-01-01

    Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.

  17. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  18. A simple approach to optimal control of invasive species.

    PubMed

    Hastings, Alan; Hall, Richard J; Taylor, Caz M

    2006-12-01

    The problem of invasive species and their control is one of the most pressing applied issues in ecology today. We developed simple approaches based on linear programming for determining the optimal removal strategies of different stage or age classes for control of invasive species that are still in a density-independent phase of growth. We illustrate the application of this method to the specific example of invasive Spartina alterniflora in Willapa Bay, WA. For all such systems, linear programming shows in general that the optimal strategy in any time step is to prioritize removal of a single age or stage class. The optimal strategy adjusts which class is the focus of control through time and can be much more cost effective than prioritizing removal of the same stage class each year.

  19. An approach of traffic signal control based on NLRSQP algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Yuan-Yang; Hu, Yu

    2017-11-01

    This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.

  20. A primary shift rotation nurse scheduling using zero-one linear goal programming.

    PubMed

    Huarng, F

    1999-01-01

    In this study, the author discusses the effect of nurse shift schedules on circadian rhythm and some important ergonomics criteria. The author also reviews and compares different nurse shift scheduling methods via the criteria of flexibility, fairness, continuity in shift assignments, nurses' preferences, and ergonomics principles. In this article, a primary shift rotation system is proposed to provide better continuity in shift assignments to satisfy nurses' preferences. The primary shift rotation system is modeled as a zero-one linear goal programming (LGP) problem. To generate the shift assignment for a unit with 13 nurses, the zero-one LGP model takes less than 3 minutes on average, whereas the head nurses spend approximately 2 to 3 hours on shift scheduling. This study reports the process of implementing the primary shift rotation system.

  1. The Relation of Parental Guilt Induction to Child Internalizing Problems When a Caregiver Has a History of Depression

    PubMed Central

    Rakow, Aaron; McKee, Laura; Coffelt, Nicole; Champion, Jennifer; Fear, Jessica; Compas, Bruce

    2009-01-01

    The purpose of this study was to examine the relation between parental guilt induction and child internalizing problems in families where a caregiver had experienced depression. A total of 107 families, including 146 children (age 9–15), participated. Child-reported parental guilt induction, as well as three more traditionally studied parenting behaviors (warmth/involvement, monitoring, and discipline), were assessed, as was parent-report of child internalizing problem behavior. Linear Mixed Models Analysis indicated parental guilt induction was positively related to child internalizing problems in the context of the remaining three parenting behaviors. Implications of the findings for prevention and intervention parenting programs are considered. PMID:20090863

  2. Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning

    NASA Astrophysics Data System (ADS)

    Schumacher, André; Haanpää, Harri

    We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with ns2 simulations.

  3. Optimal control of LQG problem with an explicit trade-off between mean and variance

    NASA Astrophysics Data System (ADS)

    Qian, Fucai; Xie, Guo; Liu, Ding; Xie, Wenfang

    2011-12-01

    For discrete-time linear-quadratic Gaussian (LQG) control problems, a utility function on the expectation and the variance of the conventional performance index is considered. The utility function is viewed as an overall objective of the system and can perform the optimal trade-off between the mean and the variance of performance index. The nonlinear utility function is first converted into an auxiliary parameters optimisation problem about the expectation and the variance. Then an optimal closed-loop feedback controller for the nonseparable mean-variance minimisation problem is designed by nonlinear mathematical programming. Finally, simulation results are given to verify the algorithm's effectiveness obtained in this article.

  4. Characterizing L1-norm best-fit subspaces

    NASA Astrophysics Data System (ADS)

    Brooks, J. Paul; Dulá, José H.

    2017-05-01

    Fitting affine objects to data is the basis of many tools and methodologies in statistics, machine learning, and signal processing. The L1 norm is often employed to produce subspaces exhibiting a robustness to outliers and faulty observations. The L1-norm best-fit subspace problem is directly formulated as a nonlinear, nonconvex, and nondifferentiable optimization problem. The case when the subspace is a hyperplane can be solved to global optimality efficiently by solving a series of linear programs. The problem of finding the best-fit line has recently been shown to be NP-hard. We present necessary conditions for optimality for the best-fit subspace problem, and use them to characterize properties of optimal solutions.

  5. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  6. Efficient computation of optimal actions.

    PubMed

    Todorov, Emanuel

    2009-07-14

    Optimal choice of actions is a fundamental problem relevant to fields as diverse as neuroscience, psychology, economics, computer science, and control engineering. Despite this broad relevance the abstract setting is similar: we have an agent choosing actions over time, an uncertain dynamical system whose state is affected by those actions, and a performance criterion that the agent seeks to optimize. Solving problems of this kind remains hard, in part, because of overly generic formulations. Here, we propose a more structured formulation that greatly simplifies the construction of optimal control laws in both discrete and continuous domains. An exhaustive search over actions is avoided and the problem becomes linear. This yields algorithms that outperform Dynamic Programming and Reinforcement Learning, and thereby solve traditional problems more efficiently. Our framework also enables computations that were not possible before: composing optimal control laws by mixing primitives, applying deterministic methods to stochastic systems, quantifying the benefits of error tolerance, and inferring goals from behavioral data via convex optimization. Development of a general class of easily solvable problems tends to accelerate progress--as linear systems theory has done, for example. Our framework may have similar impact in fields where optimal choice of actions is relevant.

  7. Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

  8. A computerized compensator design algorithm with launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1976-01-01

    This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.

  9. Transfer-function-parameter estimation from frequency response data: A FORTRAN program

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.

    1975-01-01

    A FORTRAN computer program designed to fit a linear transfer function model to given frequency response magnitude and phase data is presented. A conjugate gradient search is used that minimizes the integral of the absolute value of the error squared between the model and the data. The search is constrained to insure model stability. A scaling of the model parameters by their own magnitude aids search convergence. Efficient computer algorithms result in a small and fast program suitable for a minicomputer. A sample problem with different model structures and parameter estimates is reported.

  10. Comparing genomes with rearrangements and segmental duplications.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  11. Solution of large nonlinear quasistatic structural mechanics problems on distributed-memory multiprocessor computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanford, M.

    1997-12-31

    Most commercially-available quasistatic finite element programs assemble element stiffnesses into a global stiffness matrix, then use a direct linear equation solver to obtain nodal displacements. However, for large problems (greater than a few hundred thousand degrees of freedom), the memory size and computation time required for this approach becomes prohibitive. Moreover, direct solution does not lend itself to the parallel processing needed for today`s multiprocessor systems. This talk gives an overview of the iterative solution strategy of JAS3D, the nonlinear large-deformation quasistatic finite element program. Because its architecture is derived from an explicit transient-dynamics code, it does not ever assemblemore » a global stiffness matrix. The author describes the approach he used to implement the solver on multiprocessor computers, and shows examples of problems run on hundreds of processors and more than a million degrees of freedom. Finally, he describes some of the work he is presently doing to address the challenges of iterative convergence for ill-conditioned problems.« less

  12. Solving Fractional Programming Problems based on Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  13. On orbital allotments for geostationary satellites

    NASA Technical Reports Server (NTRS)

    Gonsalvez, David J. A.; Reilly, Charles H.; Mount-Campbell, Clark A.

    1986-01-01

    The following satellite synthesis problem is addressed: communication satellites are to be allotted positions on the geostationary arc so that interference does not exceed a given acceptable level by enforcing conservative pairwise satellite separation. A desired location is specified for each satellite, and the objective is to minimize the sum of the deviations between the satellites' prescribed and desired locations. Two mixed integer programming models for the satellite synthesis problem are presented. Four solution strategies, branch-and-bound, Benders' decomposition, linear programming with restricted basis entry, and a switching heuristic, are used to find solutions to example synthesis problems. Computational results indicate the switching algorithm yields solutions of good quality in reasonable execution times when compared to the other solution methods. It is demonstrated that the switching algorithm can be applied to synthesis problems with the objective of minimizing the largest deviation between a prescribed location and the corresponding desired location. Furthermore, it is shown that the switching heuristic can use no conservative, location-dependent satellite separations in order to satisfy interference criteria.

  14. A Computer Code for Dynamic Stress Analysis of Media-Structure Problems with Nonlinearities (SAMSON). Volume III. User’s Manual.

    DTIC Science & Technology

    NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS

  15. The Role of Evaluation in Determining the Public Value of Extension

    ERIC Educational Resources Information Center

    Franz, Nancy; Arnold, Mary; Baughman, Sarah

    2014-01-01

    Extension has developed a strong evaluation culture across the system for the last 15 years. Yet measures are still limited to the private value of programs, looking at problems in a linear way and at isolated efforts. Across the country, Extension evaluators and administrators need to step up to help answer the "so what?" question about…

  16. Optimal Clustering in Graphs with Weighted Edges: A Unified Approach to the Threshold Problem.

    ERIC Educational Resources Information Center

    Goetschel, Roy; Voxman, William

    1987-01-01

    Relations on a finite set V are viewed as weighted graphs. Using the language of graph theory, two methods of partitioning V are examined: selecting threshold values and applying them to a maximal weighted spanning forest, and using a parametric linear program to obtain a most adhesive partition. (Author/EM)

  17. Measuring Astronomical Distances with Linear Programming

    ERIC Educational Resources Information Center

    Narain, Akshar

    2015-01-01

    A few years ago it was suggested that the distance to celestial bodies could be computed by tracking their position over about 24 hours and then solving a regression problem. One only needed to use inexpensive telescopes, cameras, and astrometry tools, and the experiment could be done from one's backyard. However, it is not obvious to an amateur…

  18. Using linear programming to minimize the cost of nurse personnel.

    PubMed

    Matthews, Charles H

    2005-01-01

    Nursing personnel costs make up a major portion of most hospital budgets. This report evaluates and optimizes the utility of the nurse personnel at the Internal Medicine Outpatient Clinic of Wake Forest University Baptist Medical Center. Linear programming (LP) was employed to determine the effective combination of nurses that would allow for all weekly clinic tasks to be covered while providing the lowest possible cost to the department. Linear programming is a standard application of standard spreadsheet software that allows the operator to establish the variables to be optimized and then requires the operator to enter a series of constraints that will each have an impact on the ultimate outcome. The application is therefore able to quantify and stratify the nurses necessary to execute the tasks. With the report, a specific sensitivity analysis can be performed to assess just how sensitive the outcome is to the stress of adding or deleting a nurse to or from the payroll. The nurse employee cost structure in this study consisted of five certified nurse assistants (CNA), three licensed practicing nurses (LPN), and five registered nurses (RN). The LP revealed that the outpatient clinic should staff four RNs, three LPNs, and four CNAs with 95 percent confidence of covering nurse demand on the floor. This combination of nurses would enable the clinic to: 1. Reduce annual staffing costs by 16 percent; 2. Force each level of nurse to be optimally productive by focusing on tasks specific to their expertise; 3. Assign accountability more efficiently as the nurses adhere to their specific duties; and 4. Ultimately provide a competitive advantage to the clinic as it relates to nurse employee and patient satisfaction. Linear programming can be used to solve capacity problems for just about any staffing situation, provided the model is indeed linear.

  19. Substructure analysis using NICE/SPAR and applications of force to linear and nonlinear structures. [spacecraft masts

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia; Prasad, Venkatesh; Darbhamulla, Siva Prasad; Bhati, Ravinder; Lin, Cai

    1987-01-01

    Parallel computing studies are presented for a variety of structural analysis problems. Included are the substructure planar analysis of rectangular panels with and without a hole, the static analysis of space mast, using NICE/SPAR and FORCE, and substructure analysis of plane rigid-jointed frames using FORCE. The computations are carried out on the Flex/32 MultiComputer using one to eighteen processors. The NICE/SPAR runstream samples are documented for the panel problem. For the substructure analysis of plane frames, a computer program is developed to demonstrate the effectiveness of a substructuring technique when FORCE is enforced. Ongoing research activities for an elasto-plastic stability analysis problem using FORCE, and stability analysis of the focus problem using NICE/SPAR are briefly summarized. Speedup curves for the panel, the mast, and the frame problems provide a basic understanding of the effectiveness of parallel computing procedures utilized or developed, within the domain of the parameters considered. Although the speedup curves obtained exhibit various levels of computational efficiency, they clearly demonstrate the excellent promise which parallel computing holds for the structural analysis problem. Source code is given for the elasto-plastic stability problem and the FORCE program.

  20. Preventing mental health problems in children: the Families in Mind population-based cluster randomised controlled trial

    PubMed Central

    2012-01-01

    Background Externalising and internalising problems affect one in seven school-aged children and are the single strongest predictor of mental health problems into early adolescence. As the burden of mental health problems persists globally, childhood prevention of mental health problems is paramount. Prevention can be offered to all children (universal) or to children at risk of developing mental health problems (targeted). The relative effectiveness and costs of a targeted only versus combined universal and targeted approach are unknown. This study aims to determine the effectiveness, costs and uptake of two approaches to early childhood prevention of mental health problems ie: a Combined universal-targeted approach, versus a Targeted only approach, in comparison to current primary care services (Usual care). Methods/design Three armed, population-level cluster randomised trial (2010–2014) within the universal, well child Maternal Child Health system, attended by more than 80% of families in Victoria, Australia at infant age eight months. Participants were families of eight month old children from nine participating local government areas. Randomised to one of three groups: Combined, Targeted or Usual care. The interventions comprises (a) the Combined universal and targeted program where all families are offered the universal Toddlers Without Tears group parenting program followed by the targeted Family Check-Up one-on-one program or (b) the Targeted Family Check-Up program. The Family Check-Up program is only offered to children at risk of behavioural problems. Participants will be analysed according to the trial arm to which they were randomised, using logistic and linear regression models to compare primary and secondary outcomes. An economic evaluation (cost consequences analysis) will compare incremental costs to all incremental outcomes from a societal perspective. Discussion This trial will inform public health policy by making recommendations about the effectiveness and cost-effectiveness of these early prevention programs. If effective prevention programs can be implemented at the population level, the growing burden of mental health problems could be curbed. Trial registration ISRCTN61137690 PMID:22682229

  1. A non-linear optimization programming model for air quality planning including co-benefits for GHG emissions.

    PubMed

    Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa

    2018-04-15

    This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra

    NASA Astrophysics Data System (ADS)

    Li, Jinglun; Xiao, Wuyun; Ai, Xianyun; Chen, Ye

    2018-04-01

    Two concepts of the nonnegative least squares problem (NNLS) and the linear complementarity problem (LCP) are introduced for the resolution enhancement of the γ spectra. The respective algorithms such as the active set method and the primal-dual interior point method are applied to solve the above two problems. In mathematics, the nonnegative constraint results in the sparsity of the optimal solution of the deconvolution, and it is this sparsity that enhances the resolution. Finally, a comparison in the peak position accuracy and the computation time is made between these two methods and the boosted L_R and Gold methods.

  3. Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

    PubMed

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J

    2018-05-01

    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

  4. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  6. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  7. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  8. HFEM3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J

    Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less

  9. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  10. Optimal control of parametric oscillations of compressed flexible bars

    NASA Astrophysics Data System (ADS)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    In this paper the problem of damping of the linear systems oscillations with piece-wise constant control is solved. The motion of bar construction is reduced to the form described by Hill's differential equation using the Bubnov-Galerkin method. To calculate switching moments of the one-side control the method of sequential linear programming is used. The elements of the fundamental matrix of the Hill's equation are approximated by trigonometric series. Examples of the optimal control of the systems for various initial conditions and different number of control stages have been calculated. The corresponding phase trajectories and transient processes are represented.

  11. Finite elements and the method of conjugate gradients on a concurrent processor

    NASA Technical Reports Server (NTRS)

    Lyzenga, G. A.; Raefsky, A.; Hager, G. H.

    1985-01-01

    An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90 percent for sufficiently large problems.

  12. Finite elements and the method of conjugate gradients on a concurrent processor

    NASA Technical Reports Server (NTRS)

    Lyzenga, G. A.; Raefsky, A.; Hager, B. H.

    1984-01-01

    An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90% for sufficiently large problems.

  13. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems.

    DTIC Science & Technology

    1980-10-01

    faster than previous algorithms. Indeed, with only minor modifications, the standard multigrid programs solve the LCP with essentially the same efficiency... Lemna 2.2. Let Uk be the solution of the LCP (2.3), and let uk > 0 be an approximate solu- tion obtained after one or more Gk projected sweeps. Let...in Figure 3.2, Ivu IIG decreased from .293 10 to .110 10 with the expenditure of (99.039-94.400) = 4.639 work units. While minor variations do arise, a

  14. Optimal dietary patterns designed from local foods to achieve maternal nutritional goals.

    PubMed

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W; Agaba, Morris

    2018-04-04

    Achieving nutritional requirements for pregnant and lactating mothers in rural households while maintaining the intake of local and culture-specific foods can be a difficult task. Deploying a linear goal programming approach can effectively generate optimal dietary patterns that incorporate local and culturally acceptable diets. The primary objective of this study was to determine whether a realistic and affordable diet that achieves nutritional goals for rural pregnant and lactating women can be formulated from locally available foods in Tanzania. A cross sectional study was conducted to assess dietary intakes of 150 pregnant and lactating women using a weighed dietary record (WDR), 24 h dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are frequently consumed in the study population. Dietary survey and market data were then used to define linear programming (LP) model parameters for diet optimisation. All LP analyses were done using linear program solver to generate optimal dietary patterns. Our findings showed that optimal dietary patterns designed from locally available foods would improve dietary adequacy for 15 and 19 selected nutrients in pregnant and lactating women, respectively, but inadequacies remained for iron, zinc, folate, pantothenic acid, and vitamin E, indicating that these are problem nutrients (nutrients that did not achieve 100% of their RNIs in optimised diets) in the study population. These findings suggest that optimal use of local foods can improve dietary adequacy for rural pregnant and lactating women aged 19-50 years. However, additional cost-effective interventions are needed to ensure adequate intakes for the identified problem nutrients.

  15. Gstat: a program for geostatistical modelling, prediction and simulation

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  16. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  17. The role of service areas in the optimization of FSS orbital and frequency assignments

    NASA Technical Reports Server (NTRS)

    Levis, C. A.; Wang, C.-W.; Yamamura, Y.; Reilly, C. H.; Gonsalvez, D. J.

    1986-01-01

    An implicit relationship is derived which relates the topocentric separation of two satellites required for a given level of single-entry protection to the separation and orientation of their service areas. The results are presented explicitly for circular beams and topocentric angles. A computational approach is given for elliptical beams and for use with longitude and latitude variables. It is found that the geocentric separation depends primarily on the service area separation, secondarily on a parameter which characterizes the electrical design, and only slightly on the mean orbital position of the satellites. Both linear programming and mixed integer programming algorithms are implemented. Possible objective function choices are discussed, and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed 'ideal' location set. A test problem involving six service areas is examined with results that are encouraging with respect to applying the linear programming procedure to larger scenarios.

  18. Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination

    NASA Technical Reports Server (NTRS)

    Gray, J. L.; Schwartz, R. J.

    1984-01-01

    A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.

  19. Computer analysis of multicircuit shells of revolution by the field method

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1975-01-01

    The field method, presented previously for the solution of even-order linear boundary value problems defined on one-dimensional open branch domains, is extended to boundary value problems defined on one-dimensional domains containing circuits. This method converts the boundary value problem into two successive numerically stable initial value problems, which may be solved by standard forward integration techniques. In addition, a new method for the treatment of singular boundary conditions is presented. This method, which amounts to a partial interchange of the roles of force and displacement variables, is problem independent with respect to both accuracy and speed of execution. This method was implemented in a computer program to calculate the static response of ring stiffened orthotropic multicircuit shells of revolution to asymmetric loads. Solutions are presented for sample problems which illustrate the accuracy and efficiency of the method.

  20. Distance estimation and collision prediction for on-line robotic motion planning

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1992-01-01

    An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem is incorporated into the framework of an in-line motion-planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning, the deterministic problem where the information about the objects is assumed to be certain is examined. L(1) or L(infinity) norms are used to represent distance and the problem becomes a linear programming problem. The stochastic problem is formulated where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: First, filtering of the distance between the robot and the moving object at the present time. Second, prediction of the minimum distance in the future in order to predict the collision time.

  1. Time Dependent Heterogeneous Vehicle Routing Problem for Catering Service Delivery Problem

    NASA Astrophysics Data System (ADS)

    Azis, Zainal; Mawengkang, Herman

    2017-09-01

    The heterogeneous vehicle routing problem (HVRP) is a variant of vehicle routing problem (VRP) which describes various types of vehicles with different capacity to serve a set of customers with known geographical locations. This paper considers the optimal service deliveries of meals of a catering company located in Medan City, Indonesia. Due to the road condition as well as traffic, it is necessary for the company to use different type of vehicle to fulfill customers demand in time. The HVRP incorporates time dependency of travel times on the particular time of the day. The objective is to minimize the sum of the costs of travelling and elapsed time over the planning horizon. The problem can be modeled as a linear mixed integer program and we address a feasible neighbourhood search approach to solve the problem.

  2. Does the Incredible Years Teacher Classroom Management Training programme have positive effects for young children exhibiting severe externalizing problems in school?: a quasi-experimental pre-post study.

    PubMed

    Kirkhaug, Bente; Drugli, May Britt; Handegård, Bjørn Helge; Lydersen, Stian; Åsheim, Merethe; Fossum, Sturla

    2016-10-26

    Young children exhibiting severe externalizing problems in school are at risk of developing several poor outcomes. School-based intervention programs have been found to be effective for students with different problems, including those with behavioral problems, emotional distress, or social problems. The present study investigated whether the IY-TCM programme, as a universal stand-alone school intervention programme, reduced severe child externalizing problems as reported by the teacher, and evaluated if these children improved their social competence, internalizing problems, academic performances and student- teacher relationship as a result of the IY TCM training. A quasi-experimental pre-post study was conducted, including 21 intervention schools and 22 control schools. Children in 1 st - 3 rd grade (age 6-8 years) assessed by their teacher as having severe externalizing problems on the Sutter-Eyberg Student Behavior Inventory-Revised (SESBI-R) total Intensity score, were included in the study, N = 83 (65 boys and 18 girls). Treatment effects were evaluated using 3- level linear mixed models analysis. In our study we found no differences in change between the two conditions from baseline to follow-up in externalizing problems, social skills, internalizing problems and closeness with teacher. The intervention condition did however show advantageous development in terms of student-teacher conflicts and increased academic performances. The IY Teacher Classroom Management program is not sufficient being a stand-alone universal program in a Norwegian primary school setting, for students with severe externalizing problems. However; some important secondary findings were found. Still, young school children with severe externalizing problems are in need of more comprehensive and tailored interventions.

  3. Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy

    NASA Astrophysics Data System (ADS)

    Magen, Avner; Moharrami, Mohammad

    This work provides a Linear Programming-based Polynomial Time Approximation Scheme (PTAS) for two classical NP-hard problems on graphs when the input graph is guaranteed to be planar, or more generally Minor Free. The algorithm applies a sufficiently large number (some function of when approximation is required) of rounds of the so-called Sherali-Adams Lift-and-Project system. needed to obtain a -approximation, where f is some function that depends only on the graph that should be avoided as a minor. The problem we discuss are the well-studied problems, the and problems. An curious fact we expose is that in the world of minor-free graph, the is harder in some sense than the.

  4. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  5. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  6. Cutting strategies and timber yields for unbalanced even-aged northern hardwood forests

    Treesearch

    William B. Leak; Stanley M. Filip; Stanley M. Filip

    1970-01-01

    The even-aged hardwood forest, with a poorly balanced distribution of age-classes, can cause perplexing problems during the first rotation. What is the best cutting strategy to follow? By using linear programming, we developed some cutting strategies that maximize board-foot production and produce a balanced age distribution by the end of the first rotation. We...

  7. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  8. Coding in Senior School Mathematics with Live Editing

    ERIC Educational Resources Information Center

    Thompson, Ian

    2017-01-01

    In this paper, an example is offered of a problem-solving task for senior secondary school students which was given in the context of a story. As the story unfolds, the task requires progressively more complex forms of linear programming to be applied. Coding in MATLAB is used throughout the task in such a way that it supports the increasing…

  9. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  10. Learning oncogenetic networks by reducing to mixed integer linear programming.

    PubMed

    Shahrabi Farahani, Hossein; Lagergren, Jens

    2013-01-01

    Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.

  11. Waste management with recourse: an inexact dynamic programming model containing fuzzy boundary intervals in objectives and constraints.

    PubMed

    Tan, Q; Huang, G H; Cai, Y P

    2010-09-01

    The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. 2010 Elsevier Ltd. All rights reserved.

  12. Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality.

    PubMed

    Forti, Mauro; Nistri, Paolo; Quincampoix, Marc

    2006-11-01

    This paper considers a class of neural networks (NNs) for solving linear programming (LP) problems, convex quadratic programming (QP) problems, and nonconvex QP problems where an indefinite quadratic objective function is subject to a set of affine constraints. The NNs are characterized by constraint neurons modeled by ideal diodes with vertical segments in their characteristic, which enable to implement an exact penalty method. A new method is exploited to address convergence of trajectories, which is based on a nonsmooth Lojasiewicz inequality for the generalized gradient vector field describing the NN dynamics. The method permits to prove that each forward trajectory of the NN has finite length, and as a consequence it converges toward a singleton. Furthermore, by means of a quantitative evaluation of the Lojasiewicz exponent at the equilibrium points, the following results on convergence rate of trajectories are established: (1) for nonconvex QP problems, each trajectory is either exponentially convergent, or convergent in finite time, toward a singleton belonging to the set of constrained critical points; (2) for convex QP problems, the same result as in (1) holds; moreover, the singleton belongs to the set of global minimizers; and (3) for LP problems, each trajectory converges in finite time to a singleton belonging to the set of global minimizers. These results, which improve previous results obtained via the Lyapunov approach, are true independently of the nature of the set of equilibrium points, and in particular they hold even when the NN possesses infinitely many nonisolated equilibrium points.

  13. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  14. Optimising the extraction rate of a non-durable non-renewable resource in a monopolistic market: a mathematical programming approach.

    PubMed

    Corominas, Albert; Fossas, Enric

    2015-01-01

    We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.

  15. Dynamic Programming and Transitive Closure on Linear Pipelines.

    DTIC Science & Technology

    1984-05-01

    four partitions. 2.0 - 1.9 1.0t N. N 3N N -8 4 24 Figure41 An ideal solution to small problem sizes is to design an algorithm on an array where the...12 References [1] A.V. Aho, J. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms, Addison-Wesley, (1974). - " [2] R. Aubusson...K.E. Batcher, " Design of a Massively Parallel Processor," IEEE-TC, Vol. C-9, No. 9, (September, 1980), pp. 83-840. [4] K.Q. Brown, "Dynamic Programming

  16. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    PubMed

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  17. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  18. Treatment for preschool children with interpersonal sexual behavior problems: a pilot study.

    PubMed

    Silovsky, Jane F; Niec, Larissa; Bard, David; Hecht, Debra B

    2007-01-01

    This pilot study evaluated a 12-week group treatment program for preschool children with interpersonal sexual behavior problems (SBP; N = 85; 53 completed at least 8 sessions). Many children presented with co-occurring trauma symptoms and disruptive behaviors. In intent-to-treat analysis, a significant linear reduction in SBP due to number of treatment sessions attended was found, an effect that was independent of linear reductions affiliated with elapsed time. Under the assumption that treatment can have an incremental impact, more than one third of the variance was accounted for by treatment effects, with female and older children most favorably impacted. Caregivers reported increase in knowledge, satisfaction, and usefulness of treatment. In addition to replication, future research is needed to examine (a) effects of environment change and time on SBP, (b) stability of treatment effects, and (c) best practices to integrate evidence-based treatments for comorbid conditions.

  19. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details

    USGS Publications Warehouse

    Torak, L.J.

    1993-01-01

    A MODular Finite-Element, digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water-flow. The modular structure of MODFE places the computationally independent tasks that are performed routinely by digital-computer programs simulating ground-water flow into separate subroutines, which are executed from the main program by control statements. Each subroutine consists of complete sets of computations, or modules, which are identified by comment statements, and can be modified by the user without affecting unrelated computations elsewhere in the program. Simulation capabilities can be added or modified by either adding or modifying subroutines that perform specific computational tasks, and the modular-program structure allows the user to create versions of MODFE that contain only the simulation capabilities that pertain to the ground-water problem of interest. MODFE is written in a Fortran programming language that makes it virtually device independent and compatible with desk-top personal computers and large mainframes. MODFE uses computer storage and execution time efficiently by taking advantage of symmetry and sparseness within the coefficient matrices of the finite-element equations. Parts of the matrix coefficients are computed and stored as single-subscripted variables, which are assembled into a complete coefficient just prior to solution. Computer storage is reused during simulation to decrease storage requirements. Descriptions of subroutines that execute the computational steps of the modular-program structure are given in tables that cross reference the subroutines with particular versions of MODFE. Programming details of linear and nonlinear hydrologic terms are provided. Structure diagrams for the main programs show the order in which subroutines are executed for each version and illustrate some of the linear and nonlinear versions of MODFE that are possible. Computational aspects of changing stresses and boundary conditions with time and of mass-balance and error terms are given for each hydrologic feature. Program variables are listed and defined according to their occurrence in the main programs and in subroutines. Listings of the main programs and subroutines are given.

  20. Structural Optimization for Reliability Using Nonlinear Goal Programming

    NASA Technical Reports Server (NTRS)

    El-Sayed, Mohamed E.

    1999-01-01

    This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.

  1. CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.

    PubMed

    Zahery, Mahsa; Maes, Hermine H; Neale, Michael C

    2017-08-01

    We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.

  2. Involving youth in program decision-making: how common and what might it do for youth?

    PubMed

    Akiva, Thomas; Cortina, Kai S; Smith, Charles

    2014-11-01

    The strategy of sharing program decision-making with youth in youth programs, a specific form of youth-adult partnership, is widely recommended in practitioner literature; however, empirical study is relatively limited. We investigated the prevalence and correlates of youth program decision-making practices (e.g., asking youth to help decide what activities are offered), using single-level and multilevel methods with a cross-sectional dataset of 979 youth attending 63 multipurpose after-school programs (average age of youth = 11.4, 53 % female). The prevalence of such practices was relatively high, particularly for forms that involved low power sharing such as involving youth in selecting the activities a program offers. Hierarchical linear modeling revealed positive associations between youth program decision-making practices and youth motivation to attend programs. We also found positive correlations between decision-making practices and youth problem-solving efficacy, expression efficacy, and empathy. Significant interactions with age suggest that correlations with problem solving and empathy are more pronounced for older youth. Overall, the findings suggest that involving youth in program decision-making is a promising strategy for promoting youth motivation and skill building, and in some cases this is particularly the case for older (high school-age) youth.

  3. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    PubMed Central

    Narayanamoorthy, S.; Kalyani, S.

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713

  4. Advanced Computational Methods for Security Constrained Financial Transmission Rights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria

    Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulationmore » of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.« less

  5. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  6. A numerical method for the prediction of high-speed boundary-layer transition using linear theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1975-01-01

    A method is described of estimating the location of transition in an arbitrary laminar boundary layer on the basis of linear stability theory. After an examination of experimental evidence for the relation between linear stability theory and transition, a discussion is given of the three essential elements of a transition calculation: (1) the interaction of the external disturbances with the boundary layer; (2) the growth of the disturbances in the boundary layer; and (3) a transition criterion. The computer program which carried out these three calculations is described. The program is first tested by calculating the effect of free-stream turbulence on the transition of the Blasius boundary layer, and is then applied to the problem of transition in a supersonic wind tunnel. The effects of unit Reynolds number and Mach number on the transition of an insulated flat-plate boundary layer are calculated on the basis of experimental data on the intensity and spectrum of free-stream disturbances. Reasonable agreement with experiment is obtained in the Mach number range from 2 to 4.5.

  7. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  8. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    PubMed

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  9. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    PubMed Central

    Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144

  10. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  11. Optimal image alignment with random projections of manifolds: algorithm and geometric analysis.

    PubMed

    Kokiopoulou, Effrosyni; Kressner, Daniel; Frossard, Pascal

    2011-06-01

    This paper addresses the problem of image alignment based on random measurements. Image alignment consists of estimating the relative transformation between a query image and a reference image. We consider the specific problem where the query image is provided in compressed form in terms of linear measurements captured by a vision sensor. We cast the alignment problem as a manifold distance minimization problem in the linear subspace defined by the measurements. The transformation manifold that represents synthesis of shift, rotation, and isotropic scaling of the reference image can be given in closed form when the reference pattern is sparsely represented over a parametric dictionary. We show that the objective function can then be decomposed as the difference of two convex functions (DC) in the particular case where the dictionary is built on Gaussian functions. Thus, the optimization problem becomes a DC program, which in turn can be solved globally by a cutting plane method. The quality of the solution is typically affected by the number of random measurements and the condition number of the manifold that describes the transformations of the reference image. We show that the curvature, which is closely related to the condition number, remains bounded in our image alignment problem, which means that the relative transformation between two images can be determined optimally in a reduced subspace.

  12. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  13. Effects of cognitive-behavioral therapy on improving anxiety symptoms, behavioral problems and parenting stress in Taiwanese children with anxiety disorders and their mothers.

    PubMed

    Yen, Cheng-Fang; Chen, Yu-Min; Cheng, Jen-Wen; Liu, Tai-Ling; Huang, Tzu-Yu; Wang, Peng-Wei; Yang, Pinchen; Chou, Wen-Jiun

    2014-06-01

    The aims of this intervention study were to examine the effects of individual cognitive-behavioral therapy (CBT) based on the modified Coping Cat Program on improving anxiety symptoms and behavioral problems in Taiwanese children with anxiety disorders and parenting stress perceived by their mothers. A total of 24 children with anxiety disorders in the treatment group completed the 17-session individual CBT based on the modified Coping Cat Program, and 26 children in the control group received the treatment as usual intervention. The Taiwanese version of the MASC (MASC-T), the Child Behavior Checklist for Ages 6-18 (CBCL/6-18) and the Chinese version of the Parenting Stress Index (C-PSI) were applied to assess the severities of anxiety symptoms, behavioral problems and parenting stress, respectively. The effects of CBT on improving anxiety symptoms, behavioral problems and parenting stress were examined by using linear mixed-effect model with maximum likelihood estimation. The results indicated that the CBT significantly improved the severities of MASC-T Physical Symptoms and Social Anxiety subscales, CBCL/6-18 DSM-oriented Anxiety Problem subscale, and C-PSI Child domains Mood and Adaptability subscales. Individual CBT based on the modified Coping Cat Program can potentially improve anxiety symptoms in Taiwanese children with anxiety disorders and some child domains of parenting stress perceived by their mothers.

  14. An algorithm for the solution of dynamic linear programs

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1989-01-01

    The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.

  15. Distance estimation and collision prediction for on-line robotic motion planning

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1991-01-01

    An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.

  16. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  17. Uplink Packet-Data Scheduling in DS-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Choi, Young Woo; Kim, Seong-Lyun

    In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.

  18. A User’s Manual for Linear Control Programs on IBM/360.

    DTIC Science & Technology

    1979-12-01

    problems is presented in the following paragraphs. However, the theory on which the subprogram is based is not given. The user who wishes to learn more...21-22, of the system (N < 10), 23-24, 25-26 dimension of the Fandom input vector (L < 10), number of measurements (M < 10) 2 t (NxN) matrix (one row

  19. Optimum use of air tankers in initial attack: selection, basing, and transfer rules

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1982-01-01

    Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...

  20. Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix.

    PubMed

    Zheng, Yuanjie; Daniel, Ebenezer; Hunter, Allan A; Xiao, Rui; Gao, Jianbin; Li, Hongsheng; Maguire, Maureen G; Brainard, David H; Gee, James C

    2014-08-01

    Retinal image alignment is fundamental to many applications in diagnosis of eye diseases. In this paper, we address the problem of landmark matching based retinal image alignment. We propose a novel landmark matching formulation by enforcing sparsity in the correspondence matrix and offer its solutions based on linear programming. The proposed formulation not only enables a joint estimation of the landmark correspondences and a predefined transformation model but also combines the benefits of the softassign strategy (Chui and Rangarajan, 2003) and the combinatorial optimization of linear programming. We also introduced a set of reinforced self-similarities descriptors which can better characterize local photometric and geometric properties of the retinal image. Theoretical analysis and experimental results with both fundus color images and angiogram images show the superior performances of our algorithms to several state-of-the-art techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  2. Output-Feedback Control of Unknown Linear Discrete-Time Systems With Stochastic Measurement and Process Noise via Approximate Dynamic Programming.

    PubMed

    Wang, Jun-Sheng; Yang, Guang-Hong

    2017-07-25

    This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.

  3. A minimization method on the basis of embedding the feasible set and the epigraph

    NASA Astrophysics Data System (ADS)

    Zabotin, I. Ya; Shulgina, O. N.; Yarullin, R. S.

    2016-11-01

    We propose a conditional minimization method of the convex nonsmooth function which belongs to the class of cutting-plane methods. During constructing iteration points a feasible set and an epigraph of the objective function are approximated by the polyhedral sets. In this connection, auxiliary problems of constructing iteration points are linear programming problems. In optimization process there is some opportunity of updating sets which approximate the epigraph. These updates are performed by periodically dropping of cutting planes which form embedding sets. Convergence of the proposed method is proved, some realizations of the method are discussed.

  4. Optimizing decentralized production-distribution planning problem in a multi-period supply chain network under uncertainty

    NASA Astrophysics Data System (ADS)

    Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi

    2017-09-01

    Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.

  5. Three essays on multi-level optimization models and applications

    NASA Astrophysics Data System (ADS)

    Rahdar, Mohammad

    The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation problem in each node and decreasing the number of iterations. Computational experiments show that the proposed algorithm is faster than the existing ones.

  6. A review of some problems in global-local stress analysis

    NASA Technical Reports Server (NTRS)

    Nelson, Richard B.

    1989-01-01

    The various types of local-global finite-element problems point out the need to develop a new generation of software. First, this new software needs to have a complete analysis capability, encompassing linear and nonlinear analysis of 1-, 2-, and 3-dimensional finite-element models, as well as mixed dimensional models. The software must be capable of treating static and dynamic (vibration and transient response) problems, including the stability effects of initial stress, and the software should be able to treat both elastic and elasto-plastic materials. The software should carry a set of optional diagnostics to assist the program user during model generation in order to help avoid obvious structural modeling errors. In addition, the program software should be well documented so the user has a complete technical reference for each type of element contained in the program library, including information on such topics as the type of numerical integration, use of underintegration, and inclusion of incompatible modes, etc. Some packaged information should also be available to assist the user in building mixed-dimensional models. An important advancement in finite-element software should be in the development of program modularity, so that the user can select from a menu various basic operations in matrix structural analysis.

  7. Using genetic algorithms to determine near-optimal pricing, investment and operating strategies in the electric power industry

    NASA Astrophysics Data System (ADS)

    Wu, Dongjun

    Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.

  8. Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style

    NASA Astrophysics Data System (ADS)

    Hardiani, N.; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.

  9. Reduze - Feynman integral reduction in C++

    NASA Astrophysics Data System (ADS)

    Studerus, C.

    2010-07-01

    Reduze is a computer program for reducing Feynman integrals to master integrals employing a Laporta algorithm. The program is written in C++ and uses classes provided by the GiNaC library to perform the simplifications of the algebraic prefactors in the system of equations. Reduze offers the possibility to run reductions in parallel. Program summaryProgram title:Reduze Catalogue identifier: AEGE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:: yes No. of lines in distributed program, including test data, etc.: 55 433 No. of bytes in distributed program, including test data, etc.: 554 866 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Unix/Linux Number of processors used: The number of processors is problem dependent. More than one possible but not arbitrary many. RAM: Depends on the complexity of the system. Classification: 4.4, 5 External routines: CLN ( http://www.ginac.de/CLN/), GiNaC ( http://www.ginac.de/) Nature of problem: Solving large systems of linear equations with Feynman integrals as unknowns and rational polynomials as prefactors. Solution method: Using a Gauss/Laporta algorithm to solve the system of equations. Restrictions: Limitations depend on the complexity of the system (number of equations, number of kinematic invariants). Running time: Depends on the complexity of the system.

  10. A Fortran 90 Hartree-Fock program for one-dimensional periodic π-conjugated systems using Pariser-Parr-Pople model

    NASA Astrophysics Data System (ADS)

    Kondayya, Gundra; Shukla, Alok

    2012-03-01

    Pariser-Parr-Pople (P-P-P) model Hamiltonian is employed frequently to study the electronic structure and optical properties of π-conjugated systems. In this paper we describe a Fortran 90 computer program which uses the P-P-P model Hamiltonian to solve the Hartree-Fock (HF) equation for infinitely long, one-dimensional, periodic, π-electron systems. The code is capable of computing the band structure, as also the linear optical absorption spectrum, by using the tight-binding and the HF methods. Furthermore, using our program the user can solve the HF equation in the presence of a finite external electric field, thereby, allowing the simulation of gated systems. We apply our code to compute various properties of polymers such as trans-polyacetylene, poly- para-phenylene, and armchair and zigzag graphene nanoribbons, in the infinite length limit. Program summaryProgram title: ppp_bulk.x Catalogue identifier: AEKW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 464 No. of bytes in distributed program, including test data, etc.: 2 046 933 Distribution format: tar.gz Programming language: Fortran 90 Computer: PCs and workstations Operating system: Linux, Code was developed and tested on various recent versions of 64-bit Fedora including Fedora 14 (kernel version 2.6.35.12-90). Classification: 7.3 External routines: This program needs to link with LAPACK/BLAS libraries compiled with the same compiler as the program. For the Intel Fortran Compiler we used the ACML library version 4.4.0, while for the gfortran compiler we used the libraries supplied with the Fedora distribution. Nature of problem: The electronic structure of one-dimensional periodic π-conjugated systems is an intense area of research at present because of the tremendous interest in the physics of conjugated polymers and graphene nanoribbons. The computer program described in this paper provides an efficient way of solving the Hartree-Fock equations for such systems within the P-P-P model. In addition to the Bloch orbitals, band structure, and the density of states, the program can also compute quantities such as the linear absorption spectrum, and the electro-absorption spectrum of these systems. Solution method: For a one-dimensional periodic π-conjugated system lying in the xy-plane, the single-particle Bloch orbitals are expressed as linear combinations of p-orbitals of individual atoms. Then using various parameters defining the P-P-P Hamiltonian, the Hartree-Fock equations are set up as a matrix eigenvalue problem in the k-space. Thereby, its solutions are obtained in a self-consistent manner, using the iterative diagonalizing technique at several k points. The band structure and the corresponding Bloch orbitals thus obtained are used to perform a variety of calculations such as the density of states, linear optical absorption spectrum, electro-absorption spectrum, etc. Running time: Most of the examples provided take only a few seconds to run. For a large system, however, depending on the system size, the run time may be a few minutes to a few hours.

  11. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.

    PubMed

    Marchese Robinson, Richard L; Palczewska, Anna; Palczewski, Jan; Kidley, Nathan

    2017-08-28

    The ability to interpret the predictions made by quantitative structure-activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package ( https://r-forge.r-project.org/R/?group_id=1725 ) for the R statistical programming language and the Python program HeatMapWrapper [ https://doi.org/10.5281/zenodo.495163 ] for heat map generation.

  12. ADS: A FORTRAN program for automated design synthesis: Version 1.10

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1985-01-01

    A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis - Version 1.10) is a FORTRAN program for solution of nonlinear constrained optimization problems. The program is segmented into three levels: strategy, optimizer, and one-dimensional search. At each level, several options are available so that a total of over 100 possible combinations can be created. Examples of available strategies are sequential unconstrained minimization, the Augmented Lagrange Multiplier method, and Sequential Linear Programming. Available optimizers include variable metric methods and the Method of Feasible Directions as examples, and one-dimensional search options include polynomial interpolation and the Golden Section method as examples. Emphasis is placed on ease of use of the program. All information is transferred via a single parameter list. Default values are provided for all internal program parameters such as convergence criteria, and the user is given a simple means to over-ride these, if desired.

  13. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration.

    PubMed

    Xia, Youshen; Sun, Changyin; Zheng, Wei Xing

    2012-05-01

    There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.

  14. An Instructional Note on Linear Programming--A Pedagogically Sound Approach.

    ERIC Educational Resources Information Center

    Mitchell, Richard

    1998-01-01

    Discusses the place of linear programming in college curricula and the advantages of using linear-programming software. Lists important characteristics of computer software used in linear programming for more effective teaching and learning. (ASK)

  15. Variational Quantum Tomography with Incomplete Information by Means of Semidefinite Programs

    NASA Astrophysics Data System (ADS)

    Maciel, Thiago O.; Cesário, André T.; Vianna, Reinaldo O.

    We introduce a new method to reconstruct unknown quantum states out of incomplete and noisy information. The method is a linear convex optimization problem, therefore with a unique minimum, which can be efficiently solved with Semidefinite Programs. Numerical simulations indicate that the estimated state does not overestimate purity, and neither the expectation value of optimal entanglement witnesses. The convergence properties of the method are similar to compressed sensing approaches, in the sense that, in order to reconstruct low rank states, it needs just a fraction of the effort corresponding to an informationally complete measurement.

  16. A new mother-child play activity program to decrease parenting stress and improve child cognitive abilities: a cluster randomized controlled trial.

    PubMed

    Tachibana, Yoshiyuki; Fukushima, Ai; Saito, Hitomi; Yoneyama, Satoshi; Ushida, Kazuo; Yoneyama, Susumu; Kawashima, Ryuta

    2012-01-01

    We propose a new play activity intervention program for mothers and children. Our interdisciplinary program integrates four fields of child-related sciences: neuroscience, preschool pedagogy, developmental psychology, and child and maternal psychiatry. To determine the effect of this intervention on child and mother psychosocial problems related to parenting stress and on the children's cognitive abilities, we performed a cluster randomized controlled trial. Participants were 238 pairs of mothers and typically developing preschool children (ages 4-6 years old) from Wakakusa kindergarten in Japan. The pairs were asked to play at home for about 10 min a day, 5 days a week for 3 months. Participants were randomly assigned to the intervention or control group by class unit. The Parenting Stress Index (PSI) (for mothers), the Goodenough Draw-a-Man intelligence test (DAM), and the new S-S intelligence test (NS-SIT) (for children) were administered prior to and 3 months after the intervention period. Pre-post changes in test scores were compared between the groups using a linear mixed-effects model analysis. The primary outcomes were the Total score on the child domain of the PSI (for child psychosocial problems related to parenting stress), Total score on the parent domain of the PSI (for maternal psychosocial problems related to parenting stress), and the score on the DAM (for child cognitive abilities). The results of the PSI suggested that the program may reduce parenting stress. The results of the cognitive tests suggested that the program may improve the children's fluid intelligence, working memory, and processing speed. Our intervention program may ameliorate the children's psychosocial problems related to parenting stress and increase their cognitive abilities. UMIN Clinical Trials Registry UMIN000002265.

  17. A New Mother-Child Play Activity Program to Decrease Parenting Stress and Improve Child Cognitive Abilities: A Cluster Randomized Controlled Trial

    PubMed Central

    Tachibana, Yoshiyuki; Fukushima, Ai; Saito, Hitomi; Yoneyama, Satoshi; Ushida, Kazuo; Yoneyama, Susumu; Kawashima, Ryuta

    2012-01-01

    Background We propose a new play activity intervention program for mothers and children. Our interdisciplinary program integrates four fields of child-related sciences: neuroscience, preschool pedagogy, developmental psychology, and child and maternal psychiatry. To determine the effect of this intervention on child and mother psychosocial problems related to parenting stress and on the children's cognitive abilities, we performed a cluster randomized controlled trial. Methodology/Principal Findings Participants were 238 pairs of mothers and typically developing preschool children (ages 4–6 years old) from Wakakusa kindergarten in Japan. The pairs were asked to play at home for about 10 min a day, 5 days a week for 3 months. Participants were randomly assigned to the intervention or control group by class unit. The Parenting Stress Index (PSI) (for mothers), the Goodenough Draw-a-Man intelligence test (DAM), and the new S-S intelligence test (NS-SIT) (for children) were administered prior to and 3 months after the intervention period. Pre–post changes in test scores were compared between the groups using a linear mixed-effects model analysis. The primary outcomes were the Total score on the child domain of the PSI (for child psychosocial problems related to parenting stress), Total score on the parent domain of the PSI (for maternal psychosocial problems related to parenting stress), and the score on the DAM (for child cognitive abilities). The results of the PSI suggested that the program may reduce parenting stress. The results of the cognitive tests suggested that the program may improve the children's fluid intelligence, working memory, and processing speed. Conclusions/Significance Our intervention program may ameliorate the children's psychosocial problems related to parenting stress and increase their cognitive abilities. Trial Registration UMIN Clinical Trials Registry UMIN000002265 PMID:22848340

  18. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  19. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  20. Comparison of some optimal control methods for the design of turbine blades

    NASA Technical Reports Server (NTRS)

    Desilva, B. M. E.; Grant, G. N. C.

    1977-01-01

    This paper attempts a comparative study of some numerical methods for the optimal control design of turbine blades whose vibration characteristics are approximated by Timoshenko beam idealizations with shear and incorporating simple boundary conditions. The blade was synthesized using the following methods: (1) conjugate gradient minimization of the system Hamiltonian in function space incorporating penalty function transformations, (2) projection operator methods in a function space which includes the frequencies of vibration and the control function, (3) epsilon-technique penalty function transformation resulting in a highly nonlinear programming problem, (4) finite difference discretization of the state equations again resulting in a nonlinear program, (5) second variation methods with complex state differential equations to include damping effects resulting in systems of inhomogeneous matrix Riccatti equations some of which are stiff, (6) quasi-linear methods based on iterative linearization of the state and adjoint equation. The paper includes a discussion of some substantial computational difficulties encountered in the implementation of these techniques together with a resume of work presently in progress using a differential dynamic programming approach.

  1. Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources

    DTIC Science & Technology

    2012-10-01

    of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for

  2. The Event Based Language and Its Multiple Processor Implementations.

    DTIC Science & Technology

    1980-01-01

    10 6.1 "Recursive" Linear Fibonacci ................................................ 105 6.2 The Readers Writers Problem...kinds. Examples of such systems are: C.mmp [Wu-72], Pluribus [He-73], Data Flow [ De -75], the boolean n-cube parallel machine [Su-77], and the MuNet [Wa...concurrency within programs; therefore, we hate concentrated on two types of systems which seem suitable: a processor network, and a data flow processor [ De -77

  3. Combinatorial approaches to gene recognition.

    PubMed

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.

  4. Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239

  5. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    PubMed

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  6. A Sequential Linear Quadratic Approach for Constrained Nonlinear Optimal Control with Adaptive Time Discretization and Application to Higher Elevation Mars Landing Problem

    NASA Astrophysics Data System (ADS)

    Sandhu, Amit

    A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.

  7. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  8. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    NASA Astrophysics Data System (ADS)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  9. Optimization, Monotonicity and the Determination of Nash Equilibria — An Algorithmic Analysis

    NASA Astrophysics Data System (ADS)

    Lozovanu, D.; Pickl, S. W.; Weber, G.-W.

    2004-08-01

    This paper is concerned with the optimization of a nonlinear time-discrete model exploiting the special structure of the underlying cost game and the property of inverse matrices. The costs are interlinked by a system of linear inequalities. It is shown that, if the players cooperate, i.e., minimize the sum of all the costs, they achieve a Nash equilibrium. In order to determine Nash equilibria, the simplex method can be applied with respect to the dual problem. An introduction into the TEM model and its relationship to an economic Joint Implementation program is given. The equivalence problem is presented. The construction of the emission cost game and the allocation problem is explained. The assumption of inverse monotony for the matrices leads to a new result in the area of such allocation problems. A generalization of such problems is presented.

  10. An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks

    NASA Astrophysics Data System (ADS)

    Lin, Geng; Guan, Jian; Feng, Huibin

    2018-06-01

    The positive influence dominating set problem is a variant of the minimum dominating set problem, and has lots of applications in social networks. It is NP-hard, and receives more and more attention. Various methods have been proposed to solve the positive influence dominating set problem. However, most of the existing work focused on greedy algorithms, and the solution quality needs to be improved. In this paper, we formulate the minimum positive influence dominating set problem as an integer linear programming (ILP), and propose an ILP based memetic algorithm (ILPMA) for solving the problem. The ILPMA integrates a greedy randomized adaptive construction procedure, a crossover operator, a repair operator, and a tabu search procedure. The performance of ILPMA is validated on nine real-world social networks with nodes up to 36,692. The results show that ILPMA significantly improves the solution quality, and is robust.

  11. MILP model for integrated balancing and sequencing mixed-model two-sided assembly line with variable launching interval and assignment restrictions

    NASA Astrophysics Data System (ADS)

    Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.

    2017-09-01

    This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.

  12. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  13. Optimal pre-scheduling of problem remappings

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    A large class of scientific computational problems can be characterized as a sequence of steps where a significant amount of computation occurs each step, but the work performed at each step is not necessarily identical. Two good examples of this type of computation are: (1) regridding methods which change the problem discretization during the course of the computation, and (2) methods for solving sparse triangular systems of linear equations. Recent work has investigated a means of mapping such computations onto parallel processors; the method defines a family of static mappings with differing degrees of importance placed on the conflicting goals of good load balance and low communication/synchronization overhead. The performance tradeoffs are controllable by adjusting the parameters of the mapping method. To achieve good performance it may be necessary to dynamically change these parameters at run-time, but such changes can impose additional costs. If the computation's behavior can be determined prior to its execution, it can be possible to construct an optimal parameter schedule using a low-order-polynomial-time dynamic programming algorithm. Since the latter can be expensive, the performance is studied of the effect of a linear-time scheduling heuristic on one of the model problems, and it is shown to be effective and nearly optimal.

  14. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  15. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  16. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer programming formulation, the solution of which generates feasible and near-optimal routes for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is used to solve practical problems in the southwestern portion of United States in which the solutions are within 1% of the corresponding lower bounds.

  17. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  18. Systems identification using a modified Newton-Raphson method: A FORTRAN program

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.; Iliff, K. W.

    1972-01-01

    A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.

  19. Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.

  20. LP and NLP decomposition without a master problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, D.; Lan, B.

    We describe a new algorithm for decomposition of linear programs and a class of convex nonlinear programs, together with theoretical properties and some test results. Its most striking feature is the absence of a master problem; the subproblems pass primal and dual proposals directly to one another. The algorithm is defined for multi-stage LPs or NLPs, in which the constraints link the current stage`s variables to earlier stages` variables. This problem class is general enough to include many problem structures that do not immediately suggest stages, such as block diagonal problems. The basic algorithmis derived for two-stage problems and extendedmore » to more than two stages through nested decomposition. The main theoretical result assures convergence, to within any preset tolerance of the optimal value, in a finite number of iterations. This asymptotic convergence result contrasts with the results of limited tests on LPs, in which the optimal solution is apparently found exactly, i.e., to machine accuracy, in a small number of iterations. The tests further suggest that for LPs, the new algorithm is faster than the simplex method applied to the whole problem, as long as the stages are linked loosely; that the speedup over the simpex method improves as the number of stages increases; and that the algorithm is more reliable than nested Dantzig-Wolfe or Benders` methods in its improvement over the simplex method.« less

  1. MM Algorithms for Geometric and Signomial Programming

    PubMed Central

    Lange, Kenneth; Zhou, Hua

    2013-01-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545

  2. MM Algorithms for Geometric and Signomial Programming.

    PubMed

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  3. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1990-01-01

    It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.

  4. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  5. On the Genealogy of Asexual Diploids

    NASA Astrophysics Data System (ADS)

    Lam, Fumei; Langley, Charles H.; Song, Yun S.

    Given molecular genetic data from diploid individuals that, at present, reproduce mostly or exclusively asexually without recombination, an important problem in evolutionary biology is detecting evidence of past sexual reproduction (i.e., meiosis and mating) and recombination (both meiotic and mitotic). However, currently there is a lack of computational tools for carrying out such a study. In this paper, we formulate a new problem of reconstructing diploid genealogies under the assumption of no sexual reproduction or recombination, with the ultimate goal being to devise genealogy-based tools for testing deviation from these assumptions. We first consider the infinite-sites model of mutation and develop linear-time algorithms to test the existence of an asexual diploid genealogy compatible with the infinite-sites model of mutation, and to construct one if it exists. Then, we relax the infinite-sites assumption and develop an integer linear programming formulation to reconstruct asexual diploid genealogies with the minimum number of homoplasy (back or recurrent mutation) events. We apply our algorithms on simulated data sets with sizes of biological interest.

  6. A diffusion model of protected population on bilocal habitat with generalized resource

    NASA Astrophysics Data System (ADS)

    Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.

    2017-11-01

    A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.

  7. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  8. A comparison of mixed-integer linear programming models for workforce scheduling with position-dependent processing times

    NASA Astrophysics Data System (ADS)

    Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.

    2018-06-01

    Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.

  9. On stochastic control and optimal measurement strategies. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kramer, L. C.

    1971-01-01

    The control of stochastic dynamic systems is studied with particular emphasis on those which influence the quality or nature of the measurements which are made to effect control. Four main areas are discussed: (1) the meaning of stochastic optimality and the means by which dynamic programming may be applied to solve a combined control/measurement problem; (2) a technique by which it is possible to apply deterministic methods, specifically the minimum principle, to the study of stochastic problems; (3) the methods described are applied to linear systems with Gaussian disturbances to study the structure of the resulting control system; and (4) several applications are considered.

  10. Why Clothes Don't Fall Apart: Tension Transmission in Staple Yarns

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.; Ball, Robin C.; Goldstein, Raymond E.

    2018-04-01

    The problem of how staple yarns transmit tension is addressed within abstract models in which the Amontons-Coulomb friction laws yield a linear programing (LP) problem for the tensions in the fiber elements. We find there is a percolation transition such that above the percolation threshold the transmitted tension is in principle unbounded. We determine that the mean slack in the LP constraints is a suitable order parameter to characterize this supercritical state. We argue the mechanism is generic, and in practical terms, it corresponds to a switch from a ductile to a brittle failure mode accompanied by a significant increase in mechanical strength.

  11. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  12. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  13. A new method for determining acoustic-liner admittance in a rectangular duct with grazing flow from experimental data

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1984-01-01

    A method is developed for determining acoustic liner admittance in a rectangular duct with grazing flow. The axial propagation constant, cross mode order, and mean flow profile is measured. These measured data are then input into an analytical program which determines the unknown admittance value. The analytical program is based upon a finite element discretization of the acoustic field and a reposing of the unknown admittance value as a linear eigenvalue problem on the admittance value. Gaussian elimination is employed to solve this eigenvalue problem. The method used is extendable to grazing flows with boundary layers in both transverse directions of an impedance tube (or duct). Predicted admittance values are compared both with exact values that can be obtained for uniform mean flow profiles and with those from a Runge Kutta integration technique for cases involving a one dimensional boundary layer.

  14. Gradient design for liquid chromatography using multi-scale optimization.

    PubMed

    López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C

    2018-01-26

    In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ  ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    NASA Astrophysics Data System (ADS)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  16. ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network

    PubMed Central

    Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2013-01-01

    Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984

  17. An Analysis of the Multiple Objective Capital Budgeting Problem via Fuzzy Linear Integer (0-1) Programming.

    DTIC Science & Technology

    1980-05-31

    34 International Journal of Man- Machine Studies , Vol. 9, No. 1, 1977, pp. 1-68. [16] Zimmermann, H. J., Theory and Applications of Fuzzy Sets, Institut...Boston, Inc., Hingham, MA, 1978. [18] Yager, R. R., "Multiple Objective Decision-Making Using Fuzzy Sets," International Journal of Man- Machine Studies ...Professor of Industria Engineering ... iv t TABLE OF CONTENTS page ABSTRACT .. .. . ...... . .... ...... ........ iii LIST OF TABLES

  18. On the Maximum-Weight Clique Problem.

    DTIC Science & Technology

    1985-06-01

    hypergeometric distribution", Discrete Math . 25, 285-287 .* CHVATAL, V. (1983), Linear Programming, W.H. Freeman, New York/San Francisco. COOK, S.A. (1971...Annals Discrete Math . 21, 325-356 GROTSCHEL, M., L. LOVASZ, and A. SCHRIJVER ((1984b), "Relaxations of Vertex Packing", Preprint No. 35...de Grenoble. See also N. Sbihi, "Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile", Discrete Math . 19 (1980), 53

  19. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1987-01-01

    The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.

  20. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1976-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

Top