Sample records for linear reactivity model

  1. A mechanism for hot-spot generation in a reactive two-dimensional sheared viscous layer

    NASA Astrophysics Data System (ADS)

    Timms, Robert; Purvis, Richard; Curtis, John P.

    2018-05-01

    A two-dimensional model for the non-uniform melting of a thin sheared viscous layer is developed. An asymptotic solution is presented for both a non-reactive and a reactive material. It is shown that the melt front is linearly stable to small perturbations in the non-reactive case, but becomes linearly unstable upon introduction of an Arrhenius source term to model the chemical reaction. Results demonstrate that non-uniform melting acts as a mechanism to generate hot spots that are found to be sufficient to reduce the time to ignition when compared with the corresponding one-dimensional model of melting.

  2. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  3. Contributions of Child's Physiology and Maternal Behavior to Children's Trajectories of Temperamental Reactivity

    ERIC Educational Resources Information Center

    Blandon, Alysia Y.; Calkins, Susan D.; Keane, Susan P.; O'brien, Marion

    2010-01-01

    Trajectories of children's temperamental reactivity (negative affectivity and surgency) were examined in a community sample of 370 children across the ages of 4 to 7 with hierarchical linear modeling. Children's physiological reactivity (respiratory sinus arrhythmia [RSA]), physiological regulation ([delta]RSA), and maternal parenting behavior…

  4. Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.

    PubMed

    Seeboonruang, Uma; Ginn, Timothy R

    2006-03-20

    Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.

  5. Birth weight, current anthropometric markers, and high sensitivity C-reactive protein in Brazilian school children.

    PubMed

    Boscaini, Camile; Pellanda, Lucia Campos

    2015-01-01

    Studies have shown associations of birth weight with increased concentrations of high sensitivity C-reactive protein. This study assessed the relationship between birth weight, anthropometric and metabolic parameters during childhood, and high sensitivity C-reactive protein. A total of 612 Brazilian school children aged 5-13 years were included in the study. High sensitivity C-reactive protein was measured by particle-enhanced immunonephelometry. Nutritional status was assessed by body mass index, waist circumference, and skinfolds. Total cholesterol and fractions, triglycerides, and glucose were measured by enzymatic methods. Insulin sensitivity was determined by the homeostasis model assessment method. Statistical analysis included chi-square test, General Linear Model, and General Linear Model for Gamma Distribution. Body mass index, waist circumference, and skinfolds were directly associated with birth weight (P < 0.001, P = 0.001, and P = 0.015, resp.). Large for gestational age children showed higher high sensitivity C-reactive protein levels (P < 0.001) than small for gestational age. High birth weight is associated with higher levels of high sensitivity C-reactive protein, body mass index, waist circumference, and skinfolds. Large for gestational age altered high sensitivity C-reactive protein and promoted additional risk factor for atherosclerosis in these school children, independent of current nutritional status.

  6. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    NASA Astrophysics Data System (ADS)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  7. Shallow, non-pumped wells: a low-energy alternative for cleaning polluted groundwater.

    PubMed

    Hudak, Paul F

    2013-07-01

    This modeling study evaluated the capability of non-pumped wells with filter media for preventing contaminant plumes from migrating offsite. Linear configurations of non-pumped wells were compared to permeable reactive barriers in simulated shallow homogeneous and heterogeneous aquifers. While permeable reactive barriers enabled faster contaminant removal and shorter distances of contaminant travel, non-pumped wells also prevented offsite contaminant migration. Overall, results of this study suggest that discontinuous, linear configurations of non-pumped wells may be a viable alternative to much more costly permeable reactive barriers for preventing offsite contaminant travel in some shallow aquifers.

  8. Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens

    PubMed Central

    Sokoutis, D.; Willingshofer, E.; Brun, J.‐P.; Gueydan, F.; Cloetingh, S.

    2017-01-01

    Abstract We use lithospheric‐scale analog models to study the reactivation of pre‐existing heterogeneities under oblique shortening and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analog experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non‐reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S. PMID:28670046

  9. A minimally-resolved immersed boundary model for reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar

    2013-12-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.

  10. Does dissociation of emotional and physiological reactivity predict blood pressure change at 3- and 10-year follow-up?

    PubMed

    Levin, Anna Y; Linden, Wolfgang

    2008-02-01

    One of the major theories of psychosomatic medicine is that pervasive dissociations between physiological reactivity and simultaneous emotion awareness may be an important marker for the long-term development of cardiac problems. Subjective autonomic discrepancy (SAD) scores are proposed as a method of capturing the dissociation between physiological and emotional reactivity and increasing the explanatory power of predictive models of cardiac health outcomes. It was found that SAD scores for blood pressure indices show trait-like stability over a period of 3 years. Although linear 3-year prediction of systolic blood pressure came close to traditional definitions of significance, neither a linear nor a quadratic model was found to show significant prospective validity in predicting ambulatory blood pressure change over a 10-year period. Dissociation between physiological arousal and emotional awareness does not appear to be an important variable in the identification of individuals at risk for later cardiovascular health problems.

  11. Flexible modeling improves assessment of prognostic value of C-reactive protein in advanced non-small cell lung cancer.

    PubMed

    Gagnon, B; Abrahamowicz, M; Xiao, Y; Beauchamp, M-E; MacDonald, N; Kasymjanova, G; Kreisman, H; Small, D

    2010-03-30

    C-reactive protein (CRP) is gaining credibility as a prognostic factor in different cancers. Cox's proportional hazard (PH) model is usually used to assess prognostic factors. However, this model imposes a priori assumptions, which are rarely tested, that (1) the hazard ratio associated with each prognostic factor remains constant across the follow-up (PH assumption) and (2) the relationship between a continuous predictor and the logarithm of the mortality hazard is linear (linearity assumption). We tested these two assumptions of the Cox's PH model for CRP, using a flexible statistical model, while adjusting for other known prognostic factors, in a cohort of 269 patients newly diagnosed with non-small cell lung cancer (NSCLC). In the Cox's PH model, high CRP increased the risk of death (HR=1.11 per each doubling of CRP value, 95% CI: 1.03-1.20, P=0.008). However, both the PH assumption (P=0.033) and the linearity assumption (P=0.015) were rejected for CRP, measured at the initiation of chemotherapy, which kept its prognostic value for approximately 18 months. Our analysis shows that flexible modeling provides new insights regarding the value of CRP as a prognostic factor in NSCLC and that Cox's PH model underestimates early risks associated with high CRP.

  12. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  13. Reactive diffusion in the presence of a diffusion barrier: Experiment and model

    NASA Astrophysics Data System (ADS)

    Mangelinck, D.; Luo, T.; Girardeaux, C.

    2018-05-01

    Reactions in thin films and diffusion barriers are important for applications such as protective coatings, electrical contact, and interconnections. In this work, the effect of a barrier on the kinetics of the formation for a single phase by reactive diffusion is investigated from both experimental and modeling point of views. Two types of diffusion barriers are studied: (i) a thin layer of W deposited between a Ni film and Si substrate and (ii) Ni alloy films, Ni(1%W) and Ni(5%Pt), that form a diffusion barrier during the reaction with the Si substrate. The effect of the barriers on the kinetics of δ-Ni2Si formation is determined by in situ X ray diffraction and compared to models that explain the kinetic slowdown induced by both types of barrier. A linear parabolic growth is found for the deposited barrier with an increasing linear contribution for increasing barrier thickness. On the contrary, the growth is mainly parabolic for the barrier formed by the reaction between an alloy film and the substrate. The permeability of the two types of barrier is determined and discussed. The developed models fit well with the dedicated model experiments, leading to a better understanding of the barrier effect on the reactive diffusion and allowing us to predict the barrier behaviour in various applications.

  14. Secure provision of reactive power ancillary services in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    El-Samahy, Ismael

    The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is decoupled and assumed to be fixed during the reactive power dispatch procedures; however, the effect of reactive power on real power is considered in the model by calculating the required reduction in real power output of a generator due to an increase in its reactive power supply. In this case, real power generation is allowed to be rescheduled, within given limits, from the already dispatched levels obtained from the energy market clearing process. The proposed dispatch model achieves the main objective of an ISO in a competitive electricity market, which is to provide the required reactive power support from generators at least cost while ensuring a secure operation of the power system. The proposed reactive power procurement and dispatch models capture both the technical and economic aspects of power system operation in competitive electricity markets; however, from an optimization point of view, these models represent non-convex mixed integer non-linear programming (MINLP) problems due to the presence of binary variables associated with the different regions of reactive power operation in a synchronous generator. Such MINLP optimization problems are difficult to solve, especially for an actual power system. A novel Generator Reactive Power Classification (GRPC) algorithm is proposed in this thesis to address this issue, with the advantage of iteratively solving the optimization models as a series of non-linear programming (NLP) sub-problems. The proposed reactive power procurement and dispatch models are implemented and tested on the CIGRE 32-bus system, with several case studies that represent different practical operating scenarios. The developed models are also compared with other approaches for reactive power provision, and the results demonstrate the robustness and effectiveness of the proposed model. The results clearly reveal the main features of the proposed models for optimal provision of reactive power ancillary service, in order to suit the requirements of an ISO under today's stressed system conditions in a competitive market environment.

  15. Assessing the Relationships among Delinquent Male Students' Disruptive and Violent Behavior and Staff's Proactive and Reactive Behavior in a Secure Residential Treatment Center

    ERIC Educational Resources Information Center

    Rozalski, Michael; Drasgow, Erik; Drasgow, Fritz; Yell, Mitchell

    2009-01-01

    The purpose of this study was to examine the relationships among students' disruptive and violent behavior and staff's use of proactive and reactive strategies in a secure residential treatment center serving delinquent adolescent males. One hundred hours of observational data were collected, and linear regression models were used to explore the…

  16. Gene-Environment Contributions to the Development of Infant Vagal Reactivity: The Interaction of Dopamine and Maternal Sensitivity

    ERIC Educational Resources Information Center

    Propper, Cathi; Moore, Ginger A.; Mills-Koonce, W. Roger; Halpern, Carolyn Tucker; Hill-Soderlund, Ashley L.; Calkins, Susan D.; Carbone, Mary Anna; Cox, Martha

    2008-01-01

    This study investigated dopamine receptor genes ("DRD2" and "DRD4") and maternal sensitivity as predictors of infant respiratory sinus arrhythmia (RSA) and RSA reactivity, purported indices of vagal tone and vagal regulation, in a challenge task at 3, 6, and 12 months in 173 infant-mother dyads. Hierarchical linear modeling (HLM) revealed that at…

  17. Flexible modeling improves assessment of prognostic value of C-reactive protein in advanced non-small cell lung cancer

    PubMed Central

    Gagnon, B; Abrahamowicz, M; Xiao, Y; Beauchamp, M-E; MacDonald, N; Kasymjanova, G; Kreisman, H; Small, D

    2010-01-01

    Background: C-reactive protein (CRP) is gaining credibility as a prognostic factor in different cancers. Cox's proportional hazard (PH) model is usually used to assess prognostic factors. However, this model imposes a priori assumptions, which are rarely tested, that (1) the hazard ratio associated with each prognostic factor remains constant across the follow-up (PH assumption) and (2) the relationship between a continuous predictor and the logarithm of the mortality hazard is linear (linearity assumption). Methods: We tested these two assumptions of the Cox's PH model for CRP, using a flexible statistical model, while adjusting for other known prognostic factors, in a cohort of 269 patients newly diagnosed with non-small cell lung cancer (NSCLC). Results: In the Cox's PH model, high CRP increased the risk of death (HR=1.11 per each doubling of CRP value, 95% CI: 1.03–1.20, P=0.008). However, both the PH assumption (P=0.033) and the linearity assumption (P=0.015) were rejected for CRP, measured at the initiation of chemotherapy, which kept its prognostic value for approximately 18 months. Conclusion: Our analysis shows that flexible modeling provides new insights regarding the value of CRP as a prognostic factor in NSCLC and that Cox's PH model underestimates early risks associated with high CRP. PMID:20234363

  18. Incorporating Non-Linear Sorption into High Fidelity Subsurface Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Rabideau, A. J.; Allen-King, R. M.

    2014-12-01

    A variety of studies, including multiple NRC (National Research Council) reports, have stressed the need for simulation models that can provide realistic predictions of contaminant behavior during the groundwater remediation process, most recently highlighting the specific technical challenges of "back diffusion and desorption in plume models". For a typically-sized remediation site, a minimum of about 70 million grid cells are required to achieve desired cm-level thickness among low-permeability lenses responsible for driving the back-diffusion phenomena. Such discretization is nearly three orders of magnitude more than is typically seen in modeling practice using public domain codes like RT3D (Reactive Transport in Three Dimensions). Consequently, various extensions have been made to the RT3D code to support efficient modeling of recently proposed dual-mode non-linear sorption processes (e.g. Polanyi with linear partitioning) at high-fidelity scales of grid resolution. These extensions have facilitated development of exploratory models in which contaminants are introduced into an aquifer via an extended multi-decade "release period" and allowed to migrate under natural conditions for centuries. These realistic simulations of contaminant loading and migration provide high fidelity representation of the underlying diffusion and sorption processes that control remediation. Coupling such models with decision support processes is expected to facilitate improved long-term management of complex remediation sites that have proven intractable to conventional remediation strategies.

  19. Effect of surface curvature on diffusion-limited reactions on a curved surface

    NASA Astrophysics Data System (ADS)

    Eun, Changsun

    2017-11-01

    To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.

  20. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  1. Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.

    PubMed

    Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z

    Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.

  2. Amygdala reactivity to fearful faces correlates positively with impulsive aggression.

    PubMed

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V; Holst, Klaus; Knudsen, Gitte M

    2018-01-07

    Facial expressions robustly activate the amygdala, a brain structure playing a critical role in aggression. Whereas previous studies suggest that amygdala reactivity is related to various measures of impulsive aggression, we here estimate a composite measure of impulsive aggression and evaluate whether it is associated with amygdala reactivity to angry and fearful faces. We estimated amygdala reactivity with functional magnetic resonance imaging in 47 men with varying degree of aggressive traits (19 incarcerated violent offenders and 28 healthy controls). We modeled a composite "impulsive aggression" trait construct (LV agg ) using a linear structural equation model, with a single latent variable capturing the shared correlation between five self-report measures of trait aggression, anger and impulsivity. We tested for associations between amygdala reactivity and the LV agg , adjusting for age and group. The LV agg was significantly positively associated with amygdala reactivity to fearful (p = 0.001), but not angry faces (p = 0.9). We found no group difference in amygdala reactivity to fearful or angry faces. The findings suggest that that amygdala reactivity to fearful faces is represented by a composite index of impulsive aggression and provide evidence that impulsive aggression is associated with amygdala reactivity in response to submissive cues, i.e., fearful faces.

  3. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.

  4. The cortisol reactivity threshold model: Direction of trait rumination and cortisol reactivity association varies with stressor severity.

    PubMed

    Vrshek-Schallhorn, Suzanne; Avery, Bradley M; Ditcheva, Maria; Sapuram, Vaibhav R

    2018-06-01

    Various internalizing risk factors predict, in separate studies, both augmented and reduced cortisol responding to lab-induced stress. Stressor severity appears key: We tested whether heightened trait-like internalizing risk (here, trait rumination) predicts heightened cortisol reactivity under modest objective stress, but conversely predicts reduced reactivity under more robust objective stress. Thus, we hypothesized that trait rumination would interact with a curvilinear (quadratic) function of stress severity to predict cortisol reactivity. Evidence comes from 85 currently non-depressed emerging adults who completed either a non-stressful control protocol (n = 29), an intermediate difficulty Trier Social Stress Test (TSST; n = 26), or a robustly stressful negative evaluative TSST (n = 30). Latent growth curve models evaluated relationships between trait rumination and linear and quadratic effects of stressor severity on the change in cortisol and negative affect over time. Among other findings, a significant Trait Rumination x Quadratic Stress Severity interaction effect for cortisol's Quadratic Trend of Time (i.e., reactivity, B = .125, p = .017) supported the hypothesis. Rumination predicted greater cortisol reactivity to intermediate stress (r p  = .400, p = .043), but blunted reactivity to more robust negative evaluative stress (r p  = -0.379, p = 0.039). Contrasting hypotheses, negative affective reactivity increased independently of rumination as stressor severity increased (B = .453, p = 0.044). The direction of the relationship between an internalizing risk factor (trait rumination) and cortisol reactivity varies as a function of stressor severity. We propose the Cortisol Reactivity Threshold Model, which may help reconcile several divergent reactivity literatures and has implications for internalizing psychopathology, particularly depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. BEARKIMPE-2: A VBA Excel program for characterizing granular iron in treatability studies

    NASA Astrophysics Data System (ADS)

    Firdous, R.; Devlin, J. F.

    2014-02-01

    The selection of a suitable kinetic model to investigate the reaction rate of a contaminant with granular iron (GI) is essential to optimize the permeable reactive barrier (PRB) performance in terms of its reactivity. The newly developed Kinetic Iron Model (KIM) determines the surface rate constant (k) and sorption parameters (Cmax &J) which were not possible to uniquely identify previously. The code was written in Visual Basic (VBA), within Microsoft Excel, was adapted from earlier command line FORTRAN codes, BEARPE and KIMPE. The program is organized with several user interface screens (UserForms) that guide the user step by step through the analysis. BEARKIMPE-2 uses a non-linear optimization algorithm to calculate transport and chemical kinetic parameters. Both reactive and non-reactive sites are considered. A demonstration of the functionality of BEARKIMPE-2, with three nitroaromatic compounds showed that the differences in reaction rates for these compounds could be attributed to differences in their sorption behavior rather than their propensities to accept electrons in the reduction process.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. Considering the reversibility of passive and reactive transport problems: Are forward-in-time and backward-in-time models ever equivalent?

    NASA Astrophysics Data System (ADS)

    Engdahl, N.

    2017-12-01

    Backward in time (BIT) simulations of passive tracers are often used for capture zone analysis, source area identification, and generation of travel time and age distributions. The BIT approach has the potential to become an immensely powerful tool for direct inverse modeling but the necessary relationships between the processes modeled in the forward and backward models have yet to be formally established. This study explores the time reversibility of passive and reactive transport models in a variety of 2D heterogeneous domains using particle-based random walk methods for the transport and nonlinear reaction steps. Distributed forward models are used to generate synthetic observations that form the initial conditions for the backward in time models and we consider both linear-flood and point injections. The results for passive travel time distributions show that forward and backward models are not exactly equivalent but that the linear-flood BIT models are reasonable approximations. Point based BIT models fall within the travel time range of the forward models, though their distributions can be distinctive in some cases. The BIT approximation is not as robust when nonlinear reactive transport is considered and we find that this reaction system is only exactly reversible under uniform flow conditions. We use a series of simplified, longitudinally symmetric, but heterogeneous, domains to illustrate the causes of these discrepancies between the two model types. Many of the discrepancies arise because diffusion is a "self-adjoint" operator, which causes mass to spread in the forward and backward models. This allows particles to enter low velocity regions in the both models, which has opposite effects in the forward and reverse models. It may be possible to circumvent some of these limitations using an anti-diffusion model to undo mixing when time is reversed, but this is beyond the capabilities of the existing Lagrangian methods.

  8. Safety and control of accelerator-driven subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rief, H.; Takahashi, H.

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less

  9. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NASA Astrophysics Data System (ADS)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  10. Using Hierarchical Linear Modeling for Proformative Evaluation: A Case Example

    ERIC Educational Resources Information Center

    Coryn, Chris L. S.

    2007-01-01

    Proformative evaluation--first introduced in Scriven's (2006) "The great enigma: An evaluation design puzzle"--"is motivated, like formative evaluation, by the intention to improve something that is still developing, but unlike formative, the improvement is only possible by taking action, hence proactive instead of reactive, hence both, hence…

  11. Series of structural and functional models for the ES (enzyme-substrate) complex of the Co(II)-containing quercetin 2,3-dioxygenase.

    PubMed

    Sun, Ying-Ji; Huang, Qian-Qian; Zhang, Jian-Jun

    2014-03-17

    A series of mononuclear Co(II)-flavonolate complexes [Co(II)L(R)(fla)] (L(R)H = 2-{[bis(pyridin-2-ylmethyl)amino]methyl}-p/m-R-benzoic acid; R = p-OMe (1), p-Me (2), m-Br (4), and m-NO2 (5); fla = flavonolate) were designed and synthesized as structural and functional models for the ES (enzyme-substrate) complexes to mimic the active site of the Co(II)-containing quercetin 2,3-dioxygenase (Co-2,3-QD). The metal center Co(II) ion in each complex shows a similar distorted octahedral geometry. The model complexes display high enzyme-type dioxygenation reactivity (oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate) at low temperature, presumably due to the attached carboxylate group in the ligands. The reactivity exhibits a substituent group dependent order of -OMe (1) > -Me (2) > -H (3)14b > -Br (4) > -NO2 (5), and the Hammett plot is linear (ρ = -0.78). This can be explained as the electronic nature of the substituent group in the ligands may influence the conformation and redox potential of the bound flavonolate and finally bring different reactivity. The structures, properties, and reactivity of the model complexes show some dependence on the substituent group in the supporting model ligands, and there is some relationship among them. This study is the first example of a series of structural and functional ES models of Co-2,3-QD, with focus on the effects of the electronic nature of substituted groups and the carboxylate group of the ligands to the dioxygenation reactivity, that will provide important insights into the structure-property-reactivity relationship and the catalytic role of Co-2,3-QD.

  12. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE PAGES

    Li, Peng; Ji, Haoran; Wang, Chengshan; ...

    2017-03-22

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  14. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Ji, Haoran; Wang, Chengshan

    The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less

  15. Depression and anger as risk factors underlying the relationship between maternal substance involvement and child abuse potential☆

    PubMed Central

    Hien, Denise; Cohen, Lisa R.; Caldeira, Nathilee A.; Flom, Peter; Wasserman, Gail

    2013-01-01

    Objective This study examines how emotion regulation deficits in the area of anger arousal and reactivity are associated with child abuse potential in mothers with substance use and depressive disorders in order to identify targeted areas for prevention and treatment. Methods A sample of 152 urban mothers was interviewed on measures of substance use, diagnosis of depression, anger arousal and reactivity, and child abuse potential. Results Linear hierarchical regressions revealed that anger arousal and reactivity exceeded diagnostic and demographic variables in predicting maternal child abuse potential. Additionally, anger arousal and reactivity was found to be a partial mediator of the relationship between diagnostic category and child abuse potential. Conclusions Findings are discussed in relation to a multifaceted model of child abuse potential which broadens the existing literature to include an examination of depression and emotion regulation in order to more fully understand how substance use and child abuse potential are linked. Practice implications Models and approaches which help clients to manage and regulate difficult feeling states, specifically anger, could be helpful, and may be most readily applied in such populations. PMID:20170960

  16. Depression and anger as risk factors underlying the relationship between maternal substance involvement and child abuse potential.

    PubMed

    Hien, Denise; Cohen, Lisa R; Caldeira, Nathilee A; Flom, Peter; Wasserman, Gail

    2010-02-01

    This study examines how emotion regulation deficits in the area of anger arousal and reactivity are associated with child abuse potential in mothers with substance use and depressive disorders in order to identify targeted areas for prevention and treatment. A sample of 152 urban mothers was interviewed on measures of substance use, diagnosis of depression, anger arousal and reactivity, and child abuse potential. Linear hierarchical regressions revealed that anger arousal and reactivity exceeded diagnostic and demographic variables in predicting maternal child abuse potential. Additionally, anger arousal and reactivity was found to be a partial mediator of the relationship between diagnostic category and child abuse potential. Findings are discussed in relation to a multifaceted model of child abuse potential which broadens the existing literature to include an examination of depression and emotion regulation in order to more fully understand how substance use and child abuse potential are linked. Models and approaches which help clients to manage and regulate difficult feeling states, specifically anger, could be helpful, and may be most readily applied in such populations. Copyright (c) 2010. Published by Elsevier Ltd.

  17. A numerical study of axisymmetric compressible non-isothermal and reactive swirling flow

    NASA Astrophysics Data System (ADS)

    Tavernetti, William E.; Hafez, Mohamed M.

    2017-09-01

    Non-linear dynamical phenomena in combustion processes is an active area of experimental and theoretical research. This is in large part due to increasingly strict environmental pressures to make gas turbine engines and industrial burners more efficient. Using numerical methods, for steady and unsteady confined and unconfined compressible flow, this study examines the modeling influence of compressibility for axisymmetric swirling flow. The compressible reactive Navier-Stokes equations in terms of stream function, vorticity, circulation are used. Results, details of the numerical algorithms, as well as numerical verification techniques and validation with sources from the literature will be presented. Understanding how vortex breakdown phenomena are affected by modeling reactant consumption with compressibility effect is the main goal of this study.

  18. Predicting Reactive Intermediate Quantum Yields from Dissolved Organic Matter Photolysis Using Optical Properties and Antioxidant Capacity.

    PubMed

    Mckay, Garrett; Huang, Wenxi; Romera-Castillo, Cristina; Crouch, Jenna E; Rosario-Ortiz, Fernando L; Jaffé, Rudolf

    2017-05-16

    The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter ( 3 DOM*), singlet oxygen ( 1 O 2 ), and the hydroxyl radical ( • OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, R RI ) and intrinsic (to predict RI quantum yields, Φ RI ) parameters. Multiple linear regression models consistently led to better predictions of R RI and Φ RI for our data set but poor prediction of Φ RI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and Φ RI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that • OH formation is, in general, decoupled from 3 DOM* and 1 O 2 formation, providing supporting evidence that 3 DOM* is not a • OH precursor. Finally, Φ RI for 1 O 2 and 3 DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3 DOM*.

  19. Recent spectroscopic findings concerning clay/water interactions at low humidity: Possible applications to models of Martian surface reactivity

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Bishop, J.; Howard, L.; Scattergood, T. W.

    1991-01-01

    A feasibility study assessing the utility of the adaptation of near infrared correlation spectroscopy to quantifying iron and adsorbed water in some clay-based Mars soil analog materials (MarSAM's). The work was intended to constitute Phase 1 of an approach to identifying optical analytical wavelength regions, not only for important mineral classes, but for chemically active centers within them. Many of these centers are common to unrelated mineral classes and of disproportionate influence relative to the mineral structure as a whole in determining the surface reactivity of mineral surfaces. We previously reported linearity between reflectance and total iron and total moisture over a large range of both key variables. We also discovered interesting relationships between the intensity of iron bands and the relative humidity of the systems. These relationships were confirmed. We also show that, in the low humidity range, reflectance is linearly dependent on a different kind of water from that best representing the full humidity range (the kind of water associated, in clays, with surface acidity). These relationships and the sensitivity and capability of quantitation of near infrared data indicate high promise with the production of reactive surface intermediates of products of surface reactions.

  20. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    DOE R&D Accomplishments Database

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the ?linear model? is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  1. Individual Differences in Trajectories of Emotion Regulation Processes: The Effects of Maternal Depressive Symptomatology and Children's Physiological Regulation

    ERIC Educational Resources Information Center

    Blandon, Alysia Y.; Calkins, Susan D.; Keane, Susan P.; O'Brien, Marion

    2008-01-01

    Trajectories of emotion regulation processes were examined in a community sample of 269 children across the ages of 4 to 7 using hierarchical linear modeling. Maternal depressive symptomatology (Symptom Checklist-90) and children's physiological reactivity (respiratory sinus arrhythmia [RSA]) and vagal regulation ([delta]RSA) were explored as…

  2. Randomized controlled trial comparing impact on platelet reactivity of twice-daily with once-daily aspirin in people with Type 2 diabetes.

    PubMed

    Bethel, M A; Harrison, P; Sourij, H; Sun, Y; Tucker, L; Kennedy, I; White, S; Hill, L; Oulhaj, A; Coleman, R L; Holman, R R

    2016-02-01

    Reduced aspirin efficacy has been demonstrated in people with Type 2 diabetes. Because increased platelet reactivity and/or turnover are postulated mechanisms, we examined whether higher and/or more frequent aspirin dosing might reduce platelet reactivity more effectively. Participants with Type 2 diabetes (n = 24) but without known cardiovascular disease were randomized in a three-way crossover design to 2-week treatment periods with aspirin 100 mg once daily, 200 mg once daily or 100 mg twice daily. The primary outcome was platelet reactivity, assessed using the VerifyNow(™) ASA method. Relationships between platelet reactivity and aspirin dosing were examined using generalized linear mixed models with random subject effects. Platelet reactivity decreased from baseline with all doses of aspirin. Modelled platelet reactivity was more effectively reduced with aspirin 100 mg twice daily vs. 100 mg once daily, but not vs. 200 mg once daily. Aspirin 200 mg once daily did not differ from 100 mg once daily. Aspirin 100 mg twice daily was also more effective than once daily as measured by collagen/epinephrine-stimulated platelet aggregation and urinary thromboxane levels, with a similar trend measured by serum thromboxane levels. No episodes of bleeding occurred. In Type 2 diabetes, aspirin 100 mg twice daily reduced platelet reactivity more effectively than 100 mg once daily, and numerically more than 200 mg once daily. Clinical outcome trials evaluating primary cardiovascular disease prevention with aspirin in Type 2 diabetes may need to consider using a more frequent dosing schedule. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven J.; Carlsten, Bruce E.

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers;more » (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.« less

  4. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2018-01-08

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  5. Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Wellbore leakage tops the list of perceived risks to the long-term geologic storage of CO 2, because wells provide a direct path between the CO 2 storage reservoir and the atmosphere. In this paper, we have coupled a two-phase flow model with our original framework that combined models for reactive transport of carbonated brine, geochemistry of reacting cement, and geomechanics to predict the permeability evolution of cement fractures. Additionally, this makes the framework suitable for field conditions in geological storage sites, permitting simulation of contact between cement and mixtures of brine and supercritical CO 2. Due to lack of conclusivemore » experimental data, we tried both linear and Corey relative permeability models to simulate flow of the two phases in cement fractures. The model also includes two options to account for the inconsistent experimental observations regarding cement reactivity with two-phase CO 2-brine mixtures. One option assumes that the reactive surface area is independent of the brine saturation and the second option assumes that the reactive surface area is proportional to the brine saturation. We have applied the model to predict the extent of cement alteration, the conditions under which fractures seal, the time it takes to seal a fracture, and the leakage rates of CO 2 and brine when damage zones in the wellbore are exposed to two-phase CO 2-brine mixtures. Initial brine residence time and the initial fracture aperture are critical parameters that affect the fracture sealing behavior. We also evaluated the importance of the model assumptions regarding relative permeability and cement reactivity. These results illustrate the need to understand how mixtures of carbon dioxide and brine flow through fractures and react with cement to make reasonable predictions regarding well integrity. For example, a reduction in the cement reactivity with two-phase CO 2-brine mixture can not only significantly increase the sealing time for fractures but may also prevent fracture sealing.« less

  6. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  7. Determinants of physiological and perceived physiological stress reactivity in children and adolescents.

    PubMed

    Evans, Brittany E; Greaves-Lord, Kirstin; Euser, Anja S; Tulen, Joke H M; Franken, Ingmar H A; Huizink, Anja C

    2013-01-01

    Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. In a stratified sample of 363 children (7-12 years) and 344 adolescents (13-20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness.

  8. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries

    PubMed Central

    Sato, Kohei; Sadamoto, Tomoko; Hirasawa, Ai; Oue, Anna; Subudhi, Andrew W; Miyazawa, Taiki; Ogoh, Shigehiko

    2012-01-01

    Arterial CO2 serves as a mediator of cerebral blood flow (CBF), and its relative influence on the regulation of CBF is defined as cerebral CO2 reactivity. Our previous studies have demonstrated that there are differences in CBF responses to physiological stimuli (i.e. dynamic exercise and orthostatic stress) between arteries in humans. These findings suggest that dynamic CBF regulation and cerebral CO2 reactivity may be different in the anterior and posterior cerebral circulation. The aim of this study was to identify cerebral CO2 reactivity by measuring blood flow and examine potential differences in CO2 reactivity between the internal carotid artery (ICA), external carotid artery (ECA) and vertebral artery (VA). In 10 healthy young subjects, we evaluated the ICA, ECA, and VA blood flow responses by duplex ultrasonography (Vivid-e, GE Healthcare), and mean blood flow velocity in middle cerebral artery (MCA) and basilar artery (BA) by transcranial Doppler (Vivid-7, GE healthcare) during two levels of hypercapnia (3% and 6% CO2), normocapnia and hypocapnia to estimate CO2 reactivity. To characterize cerebrovascular reactivity to CO2, we used both exponential and linear regression analysis between CBF and estimated partial pressure of arterial CO2, calculated by end-tidal partial pressure of CO2. CO2 reactivity in VA was significantly lower than in ICA (coefficient of exponential regression 0.021 ± 0.008 vs. 0.030 ± 0.008; slope of linear regression 2.11 ± 0.84 vs. 3.18 ± 1.09% mmHg−1: VA vs. ICA, P < 0.01). Lower CO2 reactivity in the posterior cerebral circulation was persistent in distal intracranial arteries (exponent 0.023 ± 0.006 vs. 0.037 ± 0.009; linear 2.29 ± 0.56 vs. 3.31 ± 0.87% mmHg−1: BA vs. MCA). In contrast, CO2 reactivity in ECA was markedly lower than in the intra-cerebral circulation (exponent 0.006 ± 0.007; linear 0.63 ± 0.64% mmHg−1, P < 0.01). These findings indicate that vertebro-basilar circulation has lower CO2 reactivity than internal carotid circulation, and that CO2 reactivity of the external carotid circulation is markedly diminished compared to that of the cerebral circulation, which may explain different CBF responses to physiological stress. PMID:22526884

  9. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation

    PubMed Central

    Korostil, Igor A.; Regan, David G.

    2016-01-01

    Background Identification of the factors affecting reactivation of varicella-zoster virus (VZV) largely remains an open question. Exposure to solar ultra violet (UV) radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates. Methods We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA). This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature. Results We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ) was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well. Conclusions Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence. PMID:26963841

  10. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation.

    PubMed

    Korostil, Igor A; Regan, David G

    2016-01-01

    Identification of the factors affecting reactivation of varicella-zoster virus (VZV) largely remains an open question. Exposure to solar ultra violet (UV) radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates. We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA). This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature. We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ) was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well. Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence.

  11. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    PubMed

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  12. Influence of smooth temperature variation on hotspot ignition

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan David

    2018-01-01

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.

  13. Reactive transport in a partially molten system with binary solid solution

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.

  14. Monitoring cerebrovascular pressure reactivity with rheoencephalography

    NASA Astrophysics Data System (ADS)

    Brady, K. M.; Mytar, J. O.; Kibler, K. K.; Easley, R. B.; Koehler, R. C.; Czosnyka, M.; Smielewski, P.; Zweifel, C.; Bodo, M.; Pearce, F. J.; Armonda, R. A.

    2010-04-01

    Determining optimal perfusion pressure for patients with traumatic brain injury can be accomplished by monitoring the pressure reactivity index, or PRx, which requires an intracranial pressure monitor. We hypothesized that pressure reactivity could be quantified using a rheoencephalography index, or REGx. We measured the REGx and PRx as repetitive, low-frequency linear correlation between arterial blood pressure and intracranial pressure (PRx) or arterial blood pressure and REG pulse amplitude (REGx) in a piglet model of progressive hypotension. We compared the PRx and REGx against a gold standard determination of the lower limit of autoregulation using laser-Doppler measurements of cortical red cell flux. The PRx produced an accurate metric of vascular reactivity in this cohort, with area under the receiver-operator characteristic curves of 0.91. REGx was moderately correlated to the PRx, (Spearman r = 0.63, p < 0.0001; Bland-Altman bias-0.13). The area under the receiver-operator curve for the REGx was 0.86. Disagreement occurred at extremes of hypotension.

  15. Heart rate complexity: A novel approach to assessing cardiac stress reactivity.

    PubMed

    Brindle, Ryan C; Ginty, Annie T; Phillips, Anna C; Fisher, James P; McIntyre, David; Carroll, Douglas

    2016-04-01

    Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function. © 2015 Society for Psychophysiological Research.

  16. Coping with racism: the impact of prayer on cardiovascular reactivity and post-stress recovery in African American women.

    PubMed

    Cooper, Denise C; Thayer, Julian F; Waldstein, Shari R

    2014-04-01

    Prayer is often used to cope with racism-related stress. Little is known about its impact on cardiovascular function. This study examined how prayer coping relates to cardiovascular reactivity (CVR), post-stress recovery, and affective reactivity in response to racism-related stress. African American women (n =81; mean age=20 years) reported their use of prayer coping on the Perceived Racism Scale and completed anger recall and racism recall tasks while undergoing monitoring of systolic and diastolic blood pressure (DBP), heart rate, heart rate variability (HRV), and hemodynamic measures. Prayer coping was examined for associations with CVR, recovery, and affective change scores using general linear models with repeated measures. Higher prayer coping was associated with decreased state stress and DBP reactivity during racism recall (p's<0.05) and with decreased DBP and increased HRV during racism recall recovery(p's<0.05). Coping with racism by utilizing prayer may have cardiovascular benefits for African American women.

  17. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    PubMed

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment. Published by Elsevier B.V.

  18. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self-enhancing process is relevant. References: Wang, L., and M. B. Cardenas (2017), Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change, Geophys. Res. Lett., 44(9), 4116-4123, doi: 10.1002/2017gl073161.

  19. Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

    PubMed Central

    Wu, Jingbo; Zhang, Hui; Wang, Yuanzhi; Qiao, Jun; Chen, Chuangfu; Gao, Goege F.; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90. PMID:22457830

  20. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  1. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    NASA Astrophysics Data System (ADS)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  2. Contrasting characteristics of aqueous reactive species induced by cross-field and linear-field plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Han; Chen, Chen; Liu, Dingxin; Xu, Dehui; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2017-06-01

    A comparative study on aqueous reactive species in deionized water treated by two types of plasma jets is presented. Classified by the direction of the electric field in the jet device, a linear-field jet and cross-field jet have been set up. Concentrations of several aqueous reactive species are measured quantitatively by chemical fluorescent assays and electron spin resonance spectrometer. Results show that these two-type plasma jets would generate approximately the same gaseous reactive species under the same discharge power, but the linear-field plasma jet is much more efficient at delivering those species to the remote deionized water. This leads to a much more aqueous short-lived species including OH and \\text{O}2- produced in water, which are mainly correlated to the solvation of gaseous short-lived species such as ions and electrons. Regarding the long-lived species of aqueous H2O2, the concentration grows faster when treated by the linear-field plasma jet in the initial stage, but after 10 min it is similar to that treated by the cross-field counterpart due to the vapor-liquid equilibrium. The aqueous peroxynitrite is also predicted to be produced as a result of the air inclusion in the feeding gas.

  3. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.

    PubMed

    Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I

    2016-03-15

    A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (<) 0.06). For HAAs, we additionally accounted for speciation by including the acidity constant with ELUMO in a two-parameter multiple linear regression model. This increased r(2) to >0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fractional calculus and morphogen gradient formation

    NASA Astrophysics Data System (ADS)

    Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja

    2012-12-01

    Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.

  5. Determinants of Physiological and Perceived Physiological Stress Reactivity in Children and Adolescents

    PubMed Central

    Evans, Brittany E.; Greaves-Lord, Kirstin; Euser, Anja S.; Tulen, Joke H. M.; Franken, Ingmar H. A.; Huizink, Anja C.

    2013-01-01

    Aims Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. Method In a stratified sample of 363 children (7–12 years) and 344 adolescents (13–20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Results Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. Conclusions As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness. PMID:23620785

  6. Scale-Invariant Forms of Conservation Equations in Reactive Fields and a Modified Hydro-Thermo-Diffusive Theory of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    A scale-invariant model of statistical mechanics is applied to present invariant forms of mass, energy, linear, and angular momentum conservation equations in reactive fields. The resulting conservation equations at molecular-dynamic scale are solved by the method of large activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar premixed flames. The predicted temperature and velocity profiles are in agreement with the observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters for a single-step overall combustion of stoichiometric methane-air premixed flame, the laminar flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value.

  7. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  8. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.

  9. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedane, T.; Di Maio, L.; Scarfato, P.

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less

  10. Preliminary evidence of attenuated blood pressure reactivity to acute stress in adults following a recent marital separation.

    PubMed

    Grinberg, Austin M; O'Hara, Karey L; Sbarra, David A

    2018-03-01

    This study explores cardiovascular reactivity during an acute-stress task in a sample of recently separated adults. In a cross-sectional design, we examined the association between adults' subjective separation-related distress and changes in heart rate and blood pressure across the acute-stress laboratory paradigm in a sample of 133 (n = 49 men) recently separated adults. Heart rate (HR) and Blood pressure (BP) were recorded across a resting baseline period, a math stressor task, and a recovery period. Multilevel analyses revealed that adults who reported greater separation-related distress exhibited higher initial BP and a slower linear increase in BP across the study period. In addition, adults reporting greater separation-related distress evidenced significantly slower declines in diastolic blood pressure (DBP) following the acute-stress task. HR reactivity was not moderated by separation-related distress. In recently separated adults, preliminary evidence suggests that the context of the stressors may reveal differential patterns of problematic reactivity (exaggerated or blunted responding). Greater emotional intrusion and hyperactivity symptoms may index increased risk for blunted cardiovascular reactivity to general stressors. This pattern of reactivity is consistent with models of allostatic load that emphasise the deleterious effect of hyporesponsivity to environmental demands.

  11. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    PubMed

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  12. Blood Pressure Reactivity to Psychological Stress in Young Adults and Cognition in Midlife: The Coronary Artery Risk Development in Young Adults (CARDIA) Study.

    PubMed

    Yano, Yuichiro; Ning, Hongyan; Reis, Jared P; Lewis, Cora E; Launer, Lenore J; Bryan, R Nick; Yaffe, Kristine; Sidney, Stephen; Albanese, Emiliano; Greenland, Philip; Lloyd-Jones, Donald; Liu, Kiang

    2016-01-13

    The classic view of blood pressure (BP) reactivity to psychological stress in relation to cardiovascular risks assumes that excess reactivity is worse and lower reactivity is better. Evidence addressing how stress-induced BP reactivity in young adults is associated with midlife cognitive function is sparse. We assessed BP reactivity during a star tracing task and a video game in adults aged 20 to 32 years. Twenty-three years later, cognitive function was assessed with use of the Digit Symbol Substitution Test (a psychomotor speed test), the Rey Auditory Verbal Learning Test (a verbal memory test), and the modified Stroop test (an executive function test). At the time of follow-up, participants (n=3021) had a mean age of 50.2 years; 56% were women, and 44% were black. In linear regression models adjusted for demographic and clinical characteristics including baseline and follow-up resting BP, lower systolic BP (SBP) reactivity during the star tracing and video game was associated with worse Digit Symbol Substitution Test scores (β [SE]: 0.11 [0.02] and 0.05 [0.02], respectively) and worse performance on the Stroop test (β [SE]: -0.06 [0.02] and -0.05 [0.02]; all P<0.01). SBP reactivity was more consistently associated than diastolic BP reactivity with cognitive function scores. The associations between SBP reactivity and cognitive function were mostly similar between blacks and whites. Lower psychological stress-induced SBP reactivity in younger adults was associated with lower cognitive function in midlife. BP reactivity to psychological stressors may have different associations with target organs in hypertension. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Testing Linear Temporal Logic Formulae on Finite Execution Traces

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Norvig, Peter (Technical Monitor)

    2001-01-01

    We present an algorithm for efficiently testing Linear Temporal Logic (LTL) formulae on finite execution traces. The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive. In most past applications of LTL. theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications. Such tests correspond to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property. We then suggest an optimized algorithm based on transforming LTL formulae. The work is done using the Maude rewriting system. which turns out to provide a perfect notation and an efficient rewriting engine for performing these experiments.

  14. Novel polyelectrolytes

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1978-01-01

    Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction.

  15. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    PubMed

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameter<2.5 µm), black carbon, sulfate, nitrogen oxides, and ozone before the examination visits. We used linear mixed effects models for C-reactive protein and tumor necrosis factor receptor 2, which were measured up to twice for each participant; we used linear regression models for interleukin-6, fibrinogen, and tumor necrosis factor α, which were measured once. We adjusted for demographics, socioeconomic position, lifestyle, time, and weather. The 3- to 7-day moving averages of fine particulate matter (diameter<2.5 µm) and sulfate were positively associated with C-reactive protein concentrations. A 5 µg/m 3 higher 5-day moving average fine particulate matter (diameter<2.5 µm) was associated with 4.2% (95% confidence interval: 0.8, 7.6) higher circulating C-reactive protein. Positive associations were also observed for nitrogen oxides with interleukin-6 and for black carbon, sulfate, and ozone with tumor necrosis factor receptor 2. However, black carbon, sulfate, and nitrogen oxides were negatively associated with fibrinogen, and sulfate was negatively associated with tumor necrosis factor α. Higher short-term exposure to relatively low levels of ambient air pollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  16. Influence of smooth temperature variation on hotspot ignition

    DOE PAGES

    Reinbacher, Fynn; Regele, Jonathan David

    2017-10-06

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  17. Influence of smooth temperature variation on hotspot ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbacher, Fynn; Regele, Jonathan David

    Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less

  18. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    NASA Astrophysics Data System (ADS)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  19. Combining experimental techniques with non-linear numerical models to assess the sorption of pesticides on soils

    NASA Astrophysics Data System (ADS)

    Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.

    2012-03-01

    The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.

  20. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  1. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaohu; Shi, Di; Wang, Zhiwei

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less

  3. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    PubMed

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  4. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  5. Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index.

    PubMed

    Zeiler, Frederick A; Smielewski, Peter; Donnelly, Joseph; Czosnyka, Marek; Menon, David K; Ercole, Ari

    2018-04-05

    The study objective was to derive models that estimate the pressure reactivity index (PRx) using the noninvasive transcranial Doppler (TCD) based systolic flow index (Sx_a) and mean flow index (Mx_a), both based on mean arterial pressure, in traumatic brain injury (TBI). Using a retrospective database of 347 patients with TBI with intracranial pressure and TCD time series recordings, we derived PRx, Sx_a, and Mx_a. We first derived the autocorrelative structure of PRx based on: (A) autoregressive integrative moving average (ARIMA) modeling in representative patients, and (B) within sequential linear mixed effects (LME) models with various embedded ARIMA error structures for PRx for the entire population. Finally, we performed sequential LME models with embedded PRx ARIMA modeling to find the best model for estimating PRx using Sx_a and Mx_a. Model adequacy was assessed via normally distributed residual density. Model superiority was assessed via Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log likelihood (LL), and analysis of variance testing between models. The most appropriate ARIMA structure for PRx in this population was (2,0,2). This was applied in sequential LME modeling. Two models were superior (employing random effects in the independent variables and intercept): (A) PRx ∼ Sx_a, and (B) PRx ∼ Sx_a + Mx_a. Correlation between observed and estimated PRx with these two models was: (A) 0.794 (p < 0.0001, 95% confidence interval (CI) = 0.788-0.799), and (B) 0.814 (p < 0.0001, 95% CI = 0.809-0.819), with acceptable agreement on Bland-Altman analysis. Through using linear mixed effects modeling and accounting for the ARIMA structure of PRx, one can estimate PRx using noninvasive TCD-based indices. We have described our first attempts at such modeling and PRx estimation, establishing the strong link between two aspects of cerebral autoregulation: measures of cerebral blood flow and those of pulsatile cerebral blood volume. Further work is required to validate.

  6. Nonquaternary Cholinesterase Reactivators.

    DTIC Science & Technology

    1982-08-30

    c, a plot (not shown) of pKa versus Hammet substituent constant (a )42 is also linear and conforms p to equation (5) pKa - (7.63 ±0.02) - (.63 ±0.05...dissociates to the active oximate form, we have defined an effective bimolecular reactivation rate constant as in equation (6) keff ’ kb [1 + antilog(pKa...type 1 compounds generally exhibit low activity as reactivators. In terms of keff values [see equation (6)] for reactivation of ethyl methylphosphonyl

  7. Daily emotional stress reactivity in emerging adulthood: temporal stability and its predictors.

    PubMed

    Howland, Maryhope; Armeli, Stephen; Feinn, Richard; Tennen, Howard

    2017-03-01

    Emotional reactivity to stress is associated with both mental and physical health and has been assumed to be a stable feature of the person. However, recent evidence suggests that the within-person association between stress and negative affect (i.e., affective stress-reactivity) may increase over time and in times of high stress, at least in older adult populations. The objective of the current study was to examine the across-time stability of stress-reactivity in a younger sample - emerging adulthood - and examine neuroticism, overall stress, social support and life events as potential moderators of stability. Undergraduate students (N = 540, mean age = 18.76 years) participated in a measurement burst design, completing a 30-day daily diary annually for four years. Moderators were assessed once at every burst, while negative affect and stress were assessed daily via a secure website. Findings suggest a relatively high degree of rank-order and mean-level stability in stress-reactivity across the four years, and within-person changes in neuroticism and overall stress predicted concurrent shifts in stress-reactivity. Unlike older samples, there was no evidence of an overall linear change in stability over time, though there was significant variability in linear change trajectories.

  8. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.

    PubMed

    Epolito, William J; Yang, Hanbae; Bottomley, Lawrence A; Pavlostathis, Spyros G

    2008-12-30

    The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100gL(-1) NaCl) and base (3gL(-1) Na2CO3 and 1gL(-1) NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000mgL(-1), the pseudo first-order rate constant (kobs) was 0.029+/-0.006h(-1), corresponding to a half-life of 24.2h and a ZVI surface area-normalized rate constant (kSA) of 2.9x10(-4)Lm(-2)h(-1). However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720+/-88mgL(-1)h(-1) and a half-saturation constant (K) of 1299+/-273mgL(-1). Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2-5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.

  9. Numerical model for the uptake of groundwater contaminants by phreatophytes

    USGS Publications Warehouse

    Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.

    2008-01-01

    Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.

  10. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  11. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media.

    PubMed

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J

    2011-12-01

    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Hybrid Multiscale Finite Volume Method for Advection-Diffusion Equations Subject to Heterogeneous Reactive Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, A. M.

    2016-10-13

    We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomainmore » $$\\Omega^{hs}$$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $$\\Omega^{hs}$$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $$\\Omega^{hs}$$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.« less

  13. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria

    PubMed Central

    Brussee, Janneke M.; Yeo, Tsin W.; Lampah, Daniel A.; Anstey, Nicholas M.

    2015-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria. PMID:26482311

  14. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand

    2016-04-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.

  15. Measurement and reactive burn modeling of the shock to detonation transition for the HMX based explosive LX-14

    NASA Astrophysics Data System (ADS)

    Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.

    2017-06-01

    Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.

  16. Daily Emotional Stress Reactivity in Emerging Adulthood: Temporal Stability and its Predictors

    PubMed Central

    Howland, Maryhope; Armeli, Stephen; Feinn, Richard; Tennen, Howard

    2017-01-01

    Background & Objectives Emotional reactivity to stress is associated with both mental and physical health and has been assumed to be a stable feature of the person. However recent evidence suggests that the within-person association between stress and negative affect (e.g. affective stress-reactivity) may increase over time and in times of high stress, at least in older adult populations. The objective of the current study was to examine the across-time stability of stress-reactivity in a younger sample—emerging adulthood—and examine neuroticism, overall stress, social support and life events as potential moderators of stability. Design & Methods Undergraduate students (N = 540, mean age = 18.76 years) participated in a measurement burst design, completing a 30-day daily diary annually for four years. Moderators were assessed once at every burst, while negative affect and stress were assessed daily via a secure website. Results & Conclusions Findings suggest a relatively high degree of rank-order and mean-level stability in stress-reactivity across the four years, and within-person changes in neuroticism and overall stress predicted concurrent shifts in stress-reactivity. Unlike older samples, there was no evidence of an overall linear change in stability over time, though there was significant variability in linear change trajectories. PMID:27635675

  17. Numerical prediction of turbulent flame stability in premixed/prevaporized (HSCT) combustors

    NASA Technical Reports Server (NTRS)

    Winowich, Nicholas S.

    1990-01-01

    A numerical analysis of combustion instabilities that induce flashback in a lean, premixed, prevaporized dump combustor is performed. KIVA-II, a finite volume CFD code for the modeling of transient, multidimensional, chemically reactive flows, serves as the principal analytical tool. The experiment of Proctor and T'ien is used as a reference for developing the computational model. An experimentally derived combustion instability mechanism is presented on the basis of the observations of Proctor and T'ien and other investigators of instabilities in low speed (M less than 0.1) dump combustors. The analysis comprises two independent procedures that begin from a calculated stable flame: The first is a linear increase of the equivalence ratio and the second is the linear decrease of the inflow velocity. The objective is to observe changes in the aerothermochemical features of the flow field prior to flashback. It was found that only the linear increase of the equivalence ratio elicits a calculated flashback result. Though this result did not exhibit large scale coherent vortices in the turbulent shear layer coincident with a flame flickering mode as was observed experimentally, there were interesting acoustic effects which were resolved quite well in the calculation. A discussion of the k-e turbulence model used by KIVA-II is prompted by the absence of combustion instabilities in the model as the inflow velocity is linearly decreased. Finally, recommendations are made for further numerical analysis that may improve correlation with experimentally observed combustion instabilities.

  18. Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling.

    PubMed

    Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter

    2017-08-01

    Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.

  19. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, L.; Jha, P.

    2012-05-01

    Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.

  20. Central arterial stiffness is associated with systemic inflammation among Asians with type 2 diabetes.

    PubMed

    Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi

    2016-07-01

    To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.

  1. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  2. Autonomic and Adrenocortical Interactions Predict Mental Health in Late Adolescence: The TRAILS Study.

    PubMed

    Nederhof, Esther; Marceau, Kristine; Shirtcliff, Elizabeth A; Hastings, Paul D; Oldehinkel, Albertine J

    2015-07-01

    The present study is informed by the theory of allostatic load to examine how multiple stress responsive biomarkers are related to mental health outcomes. Data are from the TRAILS study, a large prospective population study of 715 Dutch adolescents (50.9 % girls), assessed at 16.3 and 19.1 years. Reactivity measures of the hypothalamic pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) biomarkers (heart rate, HR; respiratory sinus arrhythmia, RSA; and pre-ejection period, PEP) to a social stress task were used to predict concurrent and longitudinal changes in internalizing and externalizing symptoms. Hierarchical linear modeling revealed relatively few single effects for each biomarker with the exception that high HR reactivity predicted concurrent internalizing problems in boys. More interestingly, interactions were found between HPA-axis reactivity and sympathetic and parasympathetic reactivity. Boys with high HPA reactivity and low RSA reactivity had the largest increases in internalizing problems from 16 to 19 years. Youth with low HPA reactivity along with increased ANS activation characterized by both decreases in RSA and decreases in PEP had the most concurrent externalizing problems, consistent with broad theories of hypo-arousal. Youth with high HPA reactivity along with increases in RSA but decreases in PEP also had elevated concurrent externalizing problems, which increased over time, especially within boys. This profile illustrates the utility of examining the parasympathetic and sympathetic components of the ANS which can act in opposition to one another to achieve, overall, stress responsivity. The framework of allostasis and allostatic load is supported in that examination of multiple biomarkers working together in concert was of value in understanding mental health problems concurrently and longitudinally. Findings argue against an additive panel of risk and instead illustrate the dynamic interplay of stress physiology systems.

  3. Modeling contamination of shallow unconfined aquifers through infiltration beds

    USGS Publications Warehouse

    Ostendorf, D.W.

    1986-01-01

    We model the transport of a simply reactive contaminant through an infiltration bed and underlying shallow, one-dimensional, unconfined aquifer with a plane, steeply sloping bottom in the assumed absence of dispersion and downgradient dilution. The effluent discharge and ambient groundwater flow under the infiltration beds are presumed to form a vertically mixed plume marked by an appreciable radial velocity component in the near field flow region. The near field analysis routes effluent contamination as a single linear reservoir whose output forms a source plane for the one-dimensional, far field flow region downgradient of the facility; the location and width of the source plane reflect the relative strengths of ambient flow and effluent discharge. We model far field contaminant transport, using an existing method of characteristics solution with frame speeds modified by recharge, bottom slope, and linear adsorption, and concentrations reflecting first-order reaction kinetics. The near and far field models simulate transport of synthetic detergents, chloride, total nitrogen, and boron in a contaminant plume at the Otis Air Force Base sewage treatment plant in Barnstable County, Massachusetts, with reasonable accuracy.

  4. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  5. Probing the association between serotonin-1A autoreceptor binding and amygdala reactivity in healthy volunteers.

    PubMed

    Kranz, Georg S; Hahn, Andreas; Kraus, Christoph; Spies, Marie; Pichler, Verena; Jungwirth, Johannes; Mitterhauser, Markus; Wadsak, Wolfgang; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2018-05-01

    The serotonergic system modulates affect and is a target in the treatment of mood disorders. 5-HT 1A autoreceptors in the raphe control serotonin release by means of negative feedback inhibition. Hence, 5-HT 1A autoreceptor function should influence the serotonergic regulation of emotional reactivity in limbic regions. Previous findings suggest an inverse relationship between 5-HT 1A autoreceptor binding and amygdala reactivity to facial emotional expressions. The aim of the current multimodal neuroimaging study was to replicate the previous finding in a larger cohort. 31 healthy participants underwent fMRI as well as PET using the radioligand [carbonyl- 11 C]WAY-100635 to quantify 5-HT 1A autoreceptor binding in the dorsal raphe. The binding potential (BP ND ) was quantified using the multilinear reference tissue model (MRTM2) and cerebellar white matter as reference tissue. Functional MRI was done at 3T using a well-established facial emotion discrimination task (EDT). Here, participants had to match the emotional valence of facial expressions, while in a control condition they had to match geometric shapes. Effects of 5-HT 1A autoreceptor binding on amygdala reactivity were investigated using linear regression analysis with SPM8. Regression analysis between 5-HT 1A autoreceptor binding and mean amygdala reactivity revealed no statistically significant associations. Investigating amygdala reactivity in a voxel-wise approach revealed a positive association in the right amygdala (peak-T = 3.64, p < .05 FWE corrected for the amygdala volume) which was however conditional on the omission of age and sex as covariates in the model. Despite highly significant amygdala reactivity to facial emotional expressions, we were unable to replicate the inverse relationship between 5-HT 1A autoreceptor binding in the DRN and amygdala reactivity. Our results oppose previous multimodal imaging studies but seem to be in line with recent animal research. Deviation in results may be explained by methodological differences between our and previous multimodal studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

    PubMed Central

    Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

    2010-01-01

    We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems. PMID:20228879

  7. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling

    PubMed Central

    Klein, Theo; Fung, Shan-Yu; Renner, Florian; Blank, Michael A.; Dufour, Antoine; Kang, Sohyeong; Bolger-Munro, Madison; Scurll, Joshua M.; Priatel, John J.; Schweigler, Patrick; Melkko, Samu; Gold, Michael R.; Viner, Rosa I.; Régnier, Catherine H.; Turvey, Stuart E.; Overall, Christopher M.

    2015-01-01

    Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut patient with healthy MALT1+/mut family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway—first promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback termination, preventing reactivation. PMID:26525107

  8. Thio-arylglycosides with Various Aglycon Para-Substituents, a Probe for Studying Chemical Glycosylation Reactions

    PubMed Central

    Li, Xiaoning; Huang, Lijun; Hu, Xiche; Huang, Xuefei

    2009-01-01

    Summary Three series of thioglycosyl donors differing only in their respective aglycon substituents within each series have been prepared as representatives of typical glycosyl donors. The relative anomeric reactivities of these donors were quantified under competitive glycosylation conditions with various reaction time, promoters, solvents and acceptors. Over three orders of magnitude reactivity difference were generated by simple transformation of the para-substituent on the aglycon with methanol as the acceptor, while chemoselectivities became lower with carbohydrate acceptors. Excellent linear correlations were attained between relative reactivity values of donors and σp values of the substituents in the Hammett plots. This indicates that the glycosylation mechanism remains the same over a wide range of reactivities and glycosylation conditions. The negative slopes of the Hammett plots suggested that electron donating substituents expedite the reactions and the magnitudes of slopes can be rationalized by neighboring group participation as well as electronic properties of the glycon protective groups. Within the same series of donors, less nucleophilic acceptors gave smaller slopes in their Hammett plots. This is consistent with the notion that acceptor nucleophilic attack onto the reactive intermediate is part of the rate limiting step of the glycosylation reaction. Excellent linear Hammett correlations were obtained between relative reactivity values of three series of donors differing only in their aglycon substituents and σp values of the substituents. PMID:19081954

  9. Modelling of reactive fluid transport in deformable porous rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a representative volume element and subsequent averaging of microscopic constitutive laws. Micromechanical and thermodynamic modelling is performed in such a way that the consistency of the obtained rheology and thermodynamically admissible closed system of equations with the exact Gassman's relationship and Terzaghi effective stress law in the simplified case of poroelasticity is guaranteed. In such environments as subduction zones or mid-ocean ridge, metamorphic rocks exhibit a lack of chemical homogenisation. Geochemistry suggests that in order to produce chemical heterogeneity, the fluids generated during high-pressure metamorphism must have been strongly channelled. The following three major mechanisms of fluid flow focusing have been proposed: fluid flow in open fractures and two different types of flow instabilities that do not require the pre-existing fracture network. Of the latter, the first represents a purely mechanical instability of Darcian flow through the deformable porous rock while the second is reactive infiltration instability. Both mechanical and reactive instabilities are expected to occur in the mantle and should probably reinforce each other. However, little research has been done in this direction. In order to investigate how the focusing of a fluid flow occurs, how mechanical and reactive infiltration instabilities influence each other, and what their relative importance in rocks with different rheologies is, linear and non-linear stability analysis is applied to derived governing equations.

  10. Use of MODIS Vegetation Data in Dynamic SPARROW Modeling of Reactive Nitrogen Flux

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G. E.; Nolin, A. W.; Shih, J.; Blomquist, J.; Alexander, R. B.; Macauley, M.

    2012-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are steady-state in form, and describe the average relationship between sources and stream conditions based on non-linear regression of long-term water quality monitoring data on spatially-referenced explanatory information. But many watershed management issues involve intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between watershed inputs and outputs. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. We describe the results of dynamic statistical calibration of a SPARROW model of total reactive nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed explanatory data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and growth of other terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity (GPP) data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model describes transient storage and transport of nitrogen from multiple nonpoint sources including fertilized cropland, pasture, urban/suburban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occurs as parallel first-order processes. Point sources of nitrogen bypass storage and flow directly to stream channels. Model results indicate that, on average, a little more than half of the reactive nitrogen flux comes from transient storage; but in some sub-watersheds a large majority of the flux comes from stored nitrogen input to the watershed in previous seasons and years.

  11. Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition

    NASA Astrophysics Data System (ADS)

    Saffari, Arian; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2013-11-01

    Seasonal and spatial variation in redox activity of quasi-ultrafine particles (PM0.25) and its association with chemical species was investigated at 9 distinct sampling sites across the Los Angeles metropolitan area. Biologically reactive oxygen species (ROS) assay (generation of ROS in rat alveolar macrophage cells) was employed in order to assess the redox activity of PM0.25 samples. Seasonally, fall and summer displayed higher volume-based ROS activity (i.e. ROS activity per unit volume of air) compared to spring and winter. ROS levels were generally higher at near source and urban background sites compared to rural receptor locations, except for summer when comparable ROS activity was observed at the rural receptor sites. Univariate linear regression analysis indicated association (R > 0.7) between ROS activity and organic carbon (OC), water soluble organic carbon (WSOC) and water soluble transition metals (including Fe, V, Cr, Cd, Ni, Zn, Mn, Pb and Cu). A multivariate regression method was also used to obtain a model to predict the ROS activity of PM0.25, based on its water-soluble components. The most important species associated with ROS were Cu and La at the source site of Long Beach, and Fe and V at urban Los Angeles sites. These metals are tracers of road dust enriched with vehicular emissions (Fe and Cu) and residual oil combustion (V and La). At Riverside, a rural receptor location, WSOC and Ni (tracers of secondary organic aerosol and metal plating, respectively) were the dominant species driving the ROS activity. At Long Beach, the multivariate model was able to reconstruct the ROS activity with a high coefficient of determination (R2 = 0.82). For Los Angeles and Riverside, however, the regression models could only explain 63% and 68% of the ROS activity, respectively. The unexplained portion of the measured ROS activity is likely attributed to the nature of organic species not captured in the organic carbon (OC) measurement as well as non-linear effects, which were not included in our linear model.

  12. Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical.

    PubMed

    Ye, Tiantian; Wei, Zongsu; Spinney, Richard; Tang, Chong-Jian; Luo, Shuang; Xiao, Ruiyang; Dionysiou, Dionysios D

    2017-06-01

    Second-order rate constants [Formula: see text] for the reaction of sulfate radical anion (SO 4 •- ) with trace organic contaminants (TrOCs) are of scientific and practical importance for assessing their environmental fate and removal efficiency in water treatment systems. Here, we developed a chemical structure-based model for predicting [Formula: see text] using 32 molecular fragment descriptors, as this type of model provides a quick estimate at low computational cost. The model was constructed using the multiple linear regression (MLR) and artificial neural network (ANN) methods. The MLR method yielded adequate fit for the training set (R training 2 =0.88,n=75) and reasonable predictability for the validation set (R validation 2 =0.62,n=38). In contrast, the ANN method produced a more statistical robustness but rather poor predictability (R training 2 =0.99andR validation 2 =0.42). The reaction mechanisms of SO 4 •- reactivity with TrOCs were elucidated. Our result shows that the coefficients of functional groups reflect their electron donating/withdrawing characters. For example, electron donating groups typically exhibit positive coefficients, indicating enhanced SO 4 •- reactivity. Electron withdrawing groups exhibit negative values, indicating reduced reactivity. With its quick and accurate features, we applied this structure-based model to 55 discrete TrOCs culled from the Contaminant Candidate List 4, and quantitatively compared their removal efficiency with SO 4 •- and OH in the presence of environmental matrices. This high-throughput model helps prioritize TrOCs that are persistent to SO 4 •- based oxidation technologies at the screening level, and provide diagnostics of SO 4 •- reaction mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparing Visible and Invisible Social Support: Non-evaluative Support Buffers Cardiovascular Responses to Stress.

    PubMed

    Kirsch, Julie A; Lehman, Barbara J

    2015-12-01

    Previous research suggests that in contrast to invisible social support, visible social support produces exaggerated negative emotional responses. Drawing on work by Bolger and colleagues, this study disentangled social support visibility from negative social evaluation in an examination of the effects of social support on negative emotions and cardiovascular responses. As part of an anticipatory speech task, 73 female participants were randomly assigned to receive no social support, invisible social support, non-confounded visible social support or visible social support as delivered in a 2007 study by Bolger and Amarel. Twelve readings, each for systolic blood pressure, diastolic blood pressure and heart rate were taken at 5-min intervals throughout the periods of baseline, reactivity and recovery. Cardiovascular outcomes were tested by incorporating a series of theoretically driven planned contrasts into tests of stress reactivity conducted through piecewise growth curve modelling. Linear and quadratic trends established cardiovascular reactivity to the task. Further, in comparison to the control and replication conditions, the non-confounded visible and invisible social support conditions attenuated cardiovascular reactivity over time. Pre- and post-speech negative emotional responses were not affected by the social support manipulations. These results suggest that appropriately delivered visible social support may be as beneficial as invisible social support. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Characterizing monoclonal antibody structure by carbodiimide/GEE footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2014-01-01

    Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines. In this study, the experiments were optimized to preserve the structural integrity of the protein, and experimental conditions were varied and replicated to establish the reproducibility and precision of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include D, E, and the C-terminus, against the experimental surface accessibility data in order to understand the accuracy of the approach in providing an unbiased assessment of structure. Data from the protein were also compared to reactivity measures of several model peptides to explain sequence or structure-based variations in reactivity. The results highlight several advantages of this approach. These include: the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling (indicating that the label does not significantly perturb the structure of the protein), the high reproducibility of replicate experiments (<2 % variation in modification extent), the similar reactivity of the 3 target probe residues (as suggested by analysis of model peptides), and the overall positive and significant correlation of reactivity and solvent accessible surface area (the latter values predicted by the homology modeling). Attenuation of reactivity, in otherwise solvent accessible probes, is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. The results are also compared with data from hydroxyl radical-mediated oxidative footprinting on the same protein, showing that complementary information is gained from the 2 approaches, although the number of target residues in carbodiimide/GEE labeling is fewer. Overall, this approach is an accurate and precise method for assessing protein structure of biologic drugs. PMID:25484052

  15. Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents.

    PubMed

    Lande, Marc B; Pearson, Thomas A; Vermilion, Roger P; Auinger, Peggy; Fernandez, Isabel D

    2008-12-01

    Adult hypertension is independently associated with elevated C-reactive protein levels, after controlling for obesity and other cardiovascular risk factors. The objective of this study was to determine, with a nationally representative sample of children, whether the relationship between elevated blood pressure and C-reactive protein levels may be evident before adulthood. Cross-sectional data for children 8 to 17 years of age who participated in the National Health and Nutrition Examination Survey between 1999 and 2004 were analyzed. Bivariate analyses compared children with C-reactive protein levels of >3 mg/L versus or=95th percentile and 1.3% had diastolic blood pressure of >or=95th percentile. Children with C-reactive protein levels of >3 mg/L had higher systolic blood pressure, compared with children with C-reactive protein levels of or=95th percentile was independently associated with C-reactive protein levels in boys but not girls. Subset analyses according to race/ethnicity demonstrated that the independent association of elevated systolic blood pressure with C-reactive protein levels was largely limited to black boys. These data indicate that there is interplay between race/ethnicity, elevated systolic blood pressure, obesity, and inflammation in children, a finding that has potential implications for disparities in cardiovascular disease later in life.

  16. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function.

    PubMed

    O'Neill, Marie S; Veves, Aristidis; Zanobetti, Antonella; Sarnat, Jeremy A; Gold, Diane R; Economides, Panayiotis A; Horton, Edward S; Schwartz, Joel

    2005-06-07

    Epidemiological studies suggest that people with diabetes are vulnerable to cardiovascular health effects associated with exposure to particle air pollution. Endothelial and vascular function is impaired in diabetes and may be related to increased cardiovascular risk. We examined whether endothelium-dependent and -independent vascular reactivity was associated with particle exposure in individuals with and without diabetes. Study subjects were 270 greater-Boston residents. We measured 24-hour average ambient levels of air pollution (fine particles [PM2.5], particle number, black carbon, and sulfates [SO4(2-)]) approximately 500 m from the patient examination site. Pollutant concentrations were evaluated for associations with vascular reactivity. Linear regressions were fit to the percent change in brachial artery diameter (flow mediated and nitroglycerin mediated), with the particulate pollutant index, apparent temperature, season, age, race, sex, smoking history, and body mass index as predictors. Models were fit to all subjects and then stratified by diagnosed diabetes versus at risk for diabetes. Six-day moving averages of all 4 particle metrics were associated with decreased vascular reactivity among patients with diabetes but not those at risk. Interquartile range increases in SO4(2-) were associated with decreased flow-mediated (-10.7%; 95% CI, -17.3 to -3.5) and nitroglycerin-mediated (-5.4%; 95% CI, -10.5 to -0.1) vascular reactivity among those with diabetes. Black carbon increases were associated with decreased flow-mediated vascular reactivity (-12.6%; 95% CI, -21.7 to -2.4), and PM2.5 was associated with nitroglycerin-mediated reactivity (-7.6%; 95% CI, -12.8 to -2.1). Effects were stronger in type II than type I diabetes. Diabetes confers vulnerability to particles associated with coal-burning power plants and traffic.

  17. Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Mao, Jingqiu; Fiore, Arlene M.; Cohen, Ronald C.; Crounse, John D.; Teng, Alex P.; Wennberg, Paul O.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Veres, Patrick; Roberts, James M.; Neuman, J. Andrew; Nowak, John B.; Wolfe, Glenn M.; Hanisco, Thomas F.; Fried, Alan; Singh, Hanwant B.; Dibb, Jack; Paulot, Fabien; Horowitz, Larry W.

    2018-02-01

    Widespread efforts to abate ozone (O3) smog have significantly reduced emissions of nitrogen oxides (NOx) over the past 2 decades in the Southeast US, a place heavily influenced by both anthropogenic and biogenic emissions. How reactive nitrogen speciation responds to the reduction in NOx emissions in this region remains to be elucidated. Here we exploit aircraft measurements from ICARTT (July-August 2004), SENEX (June-July 2013), and SEAC4RS (August-September 2013) and long-term ground measurement networks alongside a global chemistry-climate model to examine decadal changes in summertime reactive oxidized nitrogen (RON) and ozone over the Southeast US. We show that our model can reproduce the mean vertical profiles of major RON species and the total (NOy) in both 2004 and 2013. Among the major RON species, nitric acid (HNO3) is dominant (˜ 42-45 %), followed by NOx (31 %), total peroxy nitrates (ΣPNs; 14 %), and total alkyl nitrates (ΣANs; 9-12 %) on a regional scale. We find that most RON species, including NOx, ΣPNs, and HNO3, decline proportionally with decreasing NOx emissions in this region, leading to a similar decline in NOy. This linear response might be in part due to the nearly constant summertime supply of biogenic VOC emissions in this region. Our model captures the observed relative change in RON and surface ozone from 2004 to 2013. Model sensitivity tests indicate that further reductions of NOx emissions will lead to a continued decline in surface ozone and less frequent high-ozone events.

  18. Lack of independent relationships between left ventricular mass and cardiovascular reactivity to physical and psychological stress in the Coronary Artery Risk Development in Young Adults (CARDIA) Study.

    PubMed

    Markovitz, J H; Raczynski, J M; Lewis, C E; Flack, J; Chesney, M; Chettur, V; Hardin, J M; Johnson, E

    1996-09-01

    The objective of this study was to determine whether exaggerated blood pressure (BP) reactivity to stress and psychosocial characteristics are related to left ventricular mass (LVM) in a large cohort of young adults. Analyses were conducted with 3,742 participants of the CARDIA study (945 white men, 1,024 white women, 781 black men, and 992 black women), evaluated in 1990 to 1091 with echocardiographic measurement of LVM. Analyses were stratified by gender and race. The relationships of LVM/height2.7 and cardiovascular reactivity to physical and psychological stressors (treadmill exercise, cold pressor, video game, and star-tracing tasks), were examined in both univariate and multivariate analyses adjusting for baseline BP, weight, and other relevant biobehavioral variables. The relationships between LVM and several psychosocial characteristics (hostility, anger suppression, anxiety, depressive symptoms, and education) were also assessed. Systolic blood pressure (SBP) reactivity to exercise was significantly related to LVM in black and white men; LVM was 10% greater among white men with exaggerated (upper quintile) peak exercise SBP than among other white men. SBP reactivity to the cold pressor test was related to LVM in all race/gender groups, although the relationship remained significant only among white men and women in the multivariate analysis. Diastolic blood pressure (DBP) reactivity to the video game was related to LVM only among black men in adjusted analyses. After adjusting for resting BP, weight, and other covariates in linear multiple regression models, SBP reactivity to exercise explained only 3% of the variance in LVM among white men. Otherwise, reactivity to other stressors or psychosocial variables accounted for no more than 1% of the variance in LVM. It was concluded that among a cohort of young adults, blood pressure reactivity to physical and mental stressors did not add substantially to the prediction of LVM when resting BP, weight, and other covariates were taken into account.

  19. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    PubMed

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  20. Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution

    PubMed Central

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377

  1. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}z< {k}zc, and the maximal growth rate is reached at {k}z≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  2. Reactivity measurements using the Zolotukhin-Mogilner Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    The zero count probability method (also called Zolotukhin-Mogilner Method, after its inventors) is a method for measuring the reactivity in nuclear reactors, being a competitor of the [more well-known in the West] Feynman-alpha Method and the Rossi-alpha Method. The modus operandi of this method is using the detector channels where there was no counting at all in order to calculate reactor parameters. In deep subcriticality few models have been tested and this work tries out the Zolotukhin-Mogilner Method in one of such scenarios: measurements will be made in environments below -3,5 k pcm in the zero-potency water-moderated reactor IPEN/MB-01 whichmore » is fuelled by UO{sub 2} enriched by 4.3%. These extremely low reactivity environments are required because the chance of no counts on the detector must be significant: otherwise, the method would demand a large time of acquisition of data. Besides that, the method is very simple and straightforward. One of the advantages of this method is that it needs very little data reduction, since the essential data is directly given by the measuring apparatus. The detection will be in charge of modern BF{sub 3} detectors. It will be assumed that, in these deep subcritical systems, the function K{sub eff} = f(N-Nkp) has a linear portion in its first part, resulting of the decomposition of it in a Taylor series. The value of alpha is related to the reactivity ρ with linear dependency. The results will be compared with recent studies of the two main methods described above. Presented for the first time in the 60's, this tool has seen little use in the west hemisphere. This work shows its use in the measurements of the nuclear reactor IPEN/MB-01, as well as the code developed for its employment. It will be the first time this method is used in the south hemisphere. (authors)« less

  3. Experience, cortisol reactivity, and the coordination of emotional responses to skydiving

    PubMed Central

    Meyer, Vanessa J.; Lee, Yoojin; Böttger, Christian; Leonbacher, Uwe; Allison, Amber L.; Shirtcliff, Elizabeth A.

    2015-01-01

    Physiological habituation to laboratory stressors has previously been demonstrated, although the literature remains equivocal. Previous studies have found skydiving to be a salient naturalistic stressor that elicits a robust subjective and physiological stress response. However, it is uncertain whether (or how) stress reactivity habituates to this stressor given that skydiving remains a risky, life-threatening challenge with every jump despite experience. While multiple components of the stress response have been documented, it is unclear whether an individual’s subjective emotions are related to their physiological responses. Documenting coordinated responsivity would lend insight into shared underlying mechanisms for the nature of habituation of both subjective (emotion) and objective (cortisol) stress responses. Therefore, we examined subjective emotion and cortisol responses in first-time compared to experienced skydivers in a predominantly male sample (total n = 44; males = 32, females = 12). Hierarchical linear modeling (HLM) revealed that experienced skydivers showed less reactivity and faster recovery compared to first-time skydivers. Subjective emotions were coordinated with physiological responses primarily within first-time skydivers. Pre-jump anxiety predicted cortisol reactivity within first-time, but not experienced, skydivers. Higher post-jump happiness predicted faster cortisol recovery after jumping although this effect overlapped somewhat with the effect of experience. Results suggest that experience may modulate the coordination of emotional response with cortisol reactivity to skydiving. Prior experience does not appear to extinguish the stress response but rather alters the individual’s engagement of the HPA axis. PMID:25859199

  4. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-05-01

    Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.

  5. A THC Simulator for Modeling Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen

    2014-05-01

    Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations. Permeability of rock is controlled by porosity, which is itself related to effective stress. The theoretical model is solved using explicit finite differences, and runs in parallel mode with OpenMP. The code is fully modular so that any combination of current THC processes, one- and two-phase, can be chosen. Future developments will include dissolution and precipitation of chemical components in addition to chemical erosion.

  6. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  7. Transport equations for partially ionized reactive plasma in magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-08

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad’s moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  8. Highly-sensitive C-reactive protein, a biomarker of cardiovascular disease risk, in radically-treated differentiated thyroid carcinoma patients after repeated thyroid hormone withholding.

    PubMed

    Piciu, A; Piciu, D; Marlowe, R J; Irimie, A

    2013-02-01

    In patients radically treated for differentiated thyroid carcinoma, we assessed the response of highly-sensitive C-reactive protein, an inflammatory biomarker for cardiovascular risk, after thyroid hormone withholding ("deprivation"), as well as factors potentially influencing this response. We included 52 adults (mean age 45.6±14.0 years, 35 females) who were disease-free after total thyroidectomy, radioiodine ablation and chronic thyroid hormone therapy. They were lifelong non-smokers without apparent inflammatory comorbidity, cardiovascular history beyond pharmacotherapy-controlled hypertension, anti-dyslipidemic medication, or C-reactive protein >10 mg/L in any study measurement. The index deprivation lasted ≥2 weeks, elevating serum thyrotropin >40 mIU/L or ≥100 × the individual's suppressed level. We examined the relationship of age, number of prior deprivations, and gender with the magnitude of post-deprivation C-reactive protein concentration through multivariable statistical analyses using the F test on linear regression models. Post-deprivation, C-reactive protein reached intermediate cardiovascular risk levels (based on general population studies involving chronic elevation), 1-3 mg/L, in 44.2% of patients and high-risk levels, >3 mg/L, in another 17.3%. Mean C-reactive protein was 1.77±1.50 mg/L, differing significantly in females (2.12±1.66 mg/L) vs. males (1.05±0.69 mg/L, P <0.001). In multivariable analysis, patients ≤45 years old (odds ratio, 95% confidence interval 0.164 [0.049-0.548]) were less likely, and females, more likely (3.571 [1.062-12.009]) to have post-deprivation C-reactive protein ≥1 mg/L. Thyroid hormone withdrawal frequently elevated C-reactive protein to levels that when present chronically, were associated with increased cardiovascular risk in general population studies. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  9. Adhesive Properties of Cured Phenylethynyl Containing Imides

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Chang, Alice C.

    1997-01-01

    Considerable attention has been directed towards acetylene terminated oligomers over the last 20 years' and recent work has focused on phenylethynyl terminated imide (PETI) oligomers. These reactive oligomers possess several features which make them attractive candidates for use as composite matrices and adhesives. The phenylethynyl group can be readily incorporated into many different functionalized oligomers. The reactive oligomers possess relatively low melt viscosities and thermally cure without the evolution of volatile by-products. Once cured, they typically display high glass transition temperatures (Tgs), excellent solvent resistance and high mechanical properties. new modified phenylethynyl-terminated imide (LaRC MPEI) oligomers were synthesized at various molecular weights utilizing a small amount of trifunctional amine. As long as the amount of triamine is relatively small, this approach produces a mixture of linear, star-shaped and branched polymer chains that has lower melt and solution viscosity than an equivalent molecular weight linear phenylethynyl terminated imide oligomers. The work reported herein involves the synthesis and characterization of a copolymer using this approach and the preparation of blends utilizing a phenylethynyl containing reactive plasticizer of lower molecular weight called LaRC LV-121. The chemistry and properties of this new MPEI as well as some blends of MPEI with LV-121, are presented and compared to the linear version, LARC-PETI-5.

  10. Variation in C-reactive protein following weight loss in obese insulin resistant postmenopausal women: is there an independent contribution of lean body mass?

    PubMed

    Barsalani, R; Riesco, É; Perreault, K; Imbeault, P; Brochu, M; Dionne, I J

    2015-03-01

    We showed that obese insulin resistant postmenopausal women are characterized by higher lean body mass and elevated C-reactive protein. Although counterintuitive, we hypothesized that losses in muscle mass following caloric restriction and increase in muscle quality will be associated with improvements in glucose homeostasis through decreases in C-reactive protein. To determine 1) if improvements in C-reactive protein concentrations occurs through losses in lean body mass; and 2) if decreases in C-reactive protein levels contribute to improvements in insulin sensitivity. 50 postmenopausal women (body mass index>26 kg/m(²)) with impaired glucose disposal (<7.5 mg/kg/min) completed a 6-month caloric restriction program. Outcome measures were: Glucose disposal rate: M value (by hyperinsulinemic-euglycemic clamp), body composition (total, trunk, and appendicluar). LBM and FM by DXA), LBM index (LBM (kg)/height (m(2)), body fat distribution (VAT and SAT by CT scan) and plasma high-sensitive C-reactive protein (hsCRP) and interleukin-6 (Il-6). Significant correlations were observed between Δ hsCRP levels with Δ Il-6 (r=0.33, p≤0.05), Δ total LBM index (r=0.44, p≤0.01), Δ trunk LBM (r=0.38, p≤0.01) Δ SAT (r=0.35, p≤0.05) and ∆ glucose disposal rate (r=- 0.44, p≤0.01). After including all the correlated variables in Stepwise linear regression model, Δ LBM index was the only independent predictor of the reduction in hsCRP levels (R(2)=0.20, p≤0.01). Losses in total lean body mass are independently associated with improvements in inflammatory state (CRP levels) in obese postmenopausal women with impaired glucose disposal. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile.

    PubMed

    León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A

    2014-06-01

    To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  12. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    PubMed

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with increasing alkyl chain length of a particular AO. We conclude with perspectives and prospects.

  13. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    DOE PAGES

    Jardine, Kolby J.; Jardine, Angela B.; Holm, Jennifer A.; ...

    2016-12-11

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO 2 labeling, in this paper we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1) at the expense of other monoterpene isomers. The observed inverse temperaturemore » response of α-pinene (-0.8% °C -1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.« less

  14. Monoterpene 'thermometer' of tropical forest-atmosphere response to climate warming.

    PubMed

    Jardine, Kolby J; Jardine, Angela B; Holm, Jennifer A; Lombardozzi, Danica L; Negron-Juarez, Robinson I; Martin, Scot T; Beller, Harry R; Gimenez, Bruno O; Higuchi, Niro; Chambers, Jeffrey Q

    2017-03-01

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO 2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C -1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks. © 2016 John Wiley & Sons Ltd.

  15. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Jardine, Angela B.; Holm, Jennifer A.

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO 2 labeling, in this paper we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1) at the expense of other monoterpene isomers. The observed inverse temperaturemore » response of α-pinene (-0.8% °C -1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.« less

  16. A Flexible CUDA LU-based Solver for Small, Batched Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste

    This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less

  17. Characterizing monoclonal antibody structure by carboxyl group footprinting

    PubMed Central

    Kaur, Parminder; Tomechko, Sara E; Kiselar, Janna; Shi, Wuxian; Deperalta, Galahad; Wecksler, Aaron T; Gokulrangan, Giridharan; Ling, Victor; Chance, Mark R

    2015-01-01

    Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb). The experiments were optimized to preserve the structural integrity of the mAb, and experimental conditions were varied and replicated to establish the reproducibility of the technique. Homology-based models were generated and used to compare the solvent accessibility of the labeled residues, which include aspartic acid (D), glutamic acid (E), and the C-terminus (i.e., the target probes), with the experimental data in order to understand the accuracy of the approach. Data from the mAb were compared to reactivity measures of several model peptides to explain observed variations in reactivity. Attenuation of reactivity in otherwise solvent accessible probes is documented as arising from the effects of positive charge or bond formation between adjacent amine and carboxyl groups, the latter accompanied by observed water loss. A comparison of results with previously published data by Deperalta et al using hydroxyl radical footprinting showed that 55% (32/58) of target residues were GEE labeled in this study whereas the previous study reported 21% of the targets were labeled. Although the number of target residues in GEE labeling is fewer, the two approaches provide complementary information. The results highlight advantages of this approach, such as the ease of use at the bench top, the linearity of the dose response plots at high levels of labeling, reproducibility of replicate experiments (<2% variation in modification extent), the similar reactivity of the three target probes, and significant correlation of reactivity and solvent accessible surface area. PMID:25933350

  18. Reactive nitrogen oxides in the southeast United States national parks: source identification, origin, and process budget

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.

    2005-01-01

    We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.

  19. Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease.

    PubMed

    Lippincott, Margaret F; Carlow, Andrea; Desai, Aditi; Blum, Arnon; Rodrigo, Maria; Patibandla, Sushmitha; Zalos, Gloria; Smith, Kevin; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-08-01

    Our purpose was to determine predictors of endothelial function and potential association with cardiovascular risk in women with sedentary occupations, in whom obesity-associated risk factors may contribute to excess morbidity and mortality. Ninety consecutive women (age range 22 to 63 years, 22 overweight (body mass index [BMI] > or =25 to 29.9 kg/m(2)) and 42 obese (BMI > or = 30 kg/m(2)), had vital signs, lipids, insulin, glucose, high-sensitivity C-reactive protein, and sex hormones measured. Endothelial function was determined using brachial artery flow-mediated dilation after 5 minutes of forearm ischemia. Treadmill stress testing was performed with gas exchange analysis at peak exercise (peak oxygen consumption [Vo(2)]) to assess cardiorespiratory fitness. Brachial artery reactivity was negatively associated with Framingham risk score (r = -0.3542, p = 0.0007). Univariate predictors of endothelial function included peak Vo(2) (r = 0.4483, p <0.0001), age (r = -0.3420, p = 0.0010), BMI (r = -0.3065, p = 0.0035), and high-sensitivity C-reactive protein (r = -0.2220, p = 0.0400). Using multiple linear regression analysis with stepwise modeling, peak Vo(2) (p = 0.0003) was the best independent predictor of brachial artery reactivity, with age as the only other variable reaching statistical significance (p = 0.0436) in this model. In conclusion, endothelial function was significantly associated with cardiovascular risk in women with sedentary occupations, who were commonly overweight or obese. Even in the absence of routine exercise, cardiorespiratory fitness, rather than conventional risk factors or body mass, is the dominant predictor of endothelial function and suggests a modifiable approach to risk.

  20. Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene

    DOE PAGES

    Lane, J. Matthew; Moore, Nathan W.

    2018-02-01

    Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less

  1. Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, J. Matthew; Moore, Nathan W.

    Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less

  2. HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity.

    PubMed

    Chen, Xuejie; Gianferante, Danielle; Hanlin, Luke; Fiksdal, Alexander; Breines, Juliana G; Thoma, Myriam V; Rohleder, Nicolas

    2017-04-01

    Inflammation is drawing attention as pathway between psychosocial stress and health, and basal HPA axis activity has been suggested to exert a consistent regulatory influence on peripheral inflammation. Here we studied the relationship between basal HPA axis activity and inflammatory and HPA axis acute stress reactivity. We recruited 48 healthy individuals and collected saliva for diurnal cortisol sampling at 6 points. Participants were previously exposed to the Trier Social Stress Test (TSST) on two consecutive days. Plasma interleukin-6 (IL-6) and salivary cortisol reactivity to acute stress were measured, and their relationships with basal HPA axis activity were analyzed. Steeper cortisol awakening response (CAR) linear increase was related with stronger cortisol stress reactivity (γ=0.015; p=0.042) and marginally significantly with greater habituation (γ=0.01; p=0.066). Greater curvilinearity of CAR was related with stronger cortisol reactivity (γ=-0.014; p=0.021) and greater cortisol habituation (γ=-0.011; p=0.006). Steeper daily linear decline was related with significant or marginally significantly stronger cortisol and IL-6 reactivity (cortisol: γ=-0.0004; p=0.06; IL-6: γ=-0.028; p=0.031) and greater habituation (cortisol: γ=-0.002; p=0.009, IL-6: γ=-0.015; p=0.033). Greater curvilinearity of daily decline was related with stronger IL-6 reactivity (γ=0.002; p=0.024) and also greater cortisol and IL-6 habituation (cortisol: γ=0.00009; p=0.03, IL-6: γ=0.001; p=0.024). Patterns of basal HPA axis activity that are related with healthier outcomes were found to be related with stronger initial cortisol and IL-6 reactivity and greater habituation. This is an important step in understanding the long-term health implications of acute stress responsiveness, and future studies should employ longitudinal designs to identify the direction of these relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as scaffolding for inorganic mineralization. US nanoclusters of discreet size seem to grow in the presence of E165C in aqueous solution spontaneously. Commercially available mono(maleimido)undecagold seem to bind only to E165C through the reactive cysteine side chains. Reduction of Au3+ to elemental gold in solution with E165C, generates long, linear structures of approximately 100-nm diameter.

  4. Reactive solute transport in an asymmetric aquifer-aquitard system with scale-dependent dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Zhan, H.

    2017-12-01

    Abstract: The understanding of reactive solute transport in an aquifer-aquitard system is important to study transport behavior in the more complex porous media. When transport properties are asymmetric in the upper and lower aquitards, reactive solute transport in such an aquifer-aquitard system becomes a coupled three domain problem that is more complex than the symmetric case in which the upper and lower aquitards have identical transport properties. Meanwhile, the dispersivity of transport in the aquifer is considered as a linear or exponential function of travel distance due to the heterogeneity of aquifer. This study proposed new transport models to describe reactive solute transport in such an asymmetric aquifer-aquitard system with scale-dependent dispersion. Mathematical models were developed for such problems under the first-type and third-type boundary conditions to analyze the spatial-temporal concentration and mass distribution in the aquifer and aquitards with the help of Laplace transform technique and the de Hoog numerical Laplace inversion method. Breakthrough curves (BTCs) and residence time distribution curves (RTDs) obtained from the models with scale-dependent dispersion, constant dispersion and constant effective dispersivity were compared to reflect the lumped scale-dispersion effect in the aquifer-aquitard system. The newly acquired solutions were then tested extensively against previous analytical and numerical solutions and were proven to be robust and accurate. Furthermore, to study the back diffusion of contaminant mass in aquitards, a zero-contaminant mass concentration boundary condition was imposed on the inlet boundary of the system after a certain time, which is also called the process of water flushing. The diffusion loss alone the aquifer/aquitard interfaces and mass stored ratio change in each of three domains (upper aquitard, aquifer, and lower aquitard) after water flushing provided an insightful and comprehensive analysis of transport behavior with asymmetric distribution of transport properties.

  5. Selective Catalytic Combustion Sensors for Reactive Organic Analysis

    NASA Technical Reports Server (NTRS)

    Innes, W. B.

    1971-01-01

    Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.

  6. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  7. Automated mapping of linear dunefield morphometric parameters from remotely-sensed data

    NASA Astrophysics Data System (ADS)

    Telfer, M. W.; Fyfe, R. M.; Lewin, S.

    2015-12-01

    Linear dunes are among the world's most common desert dune types, and typically occur in dunefields arranged in remarkably organized patterns extending over hundreds of kilometers. The causes of the patterns, formed by dunes merging, bifurcating and terminating, are still poorly understood, although it is widely accepted that they are emergent properties of the complex system of interactions between the boundary layer and an often-vegetated erodible substrate. Where such dunefields are vegetated, they are typically used as extensive rangeland, yet it is evident that many currently stabilized dunefields have been reactivated repeatedly during the late Quaternary. It has been suggested that dunefield patterning and the temporal evolution of dunefields are related, and thus there is considerable interest in better understanding the boundary conditions controlling dune patterning, especially given the possibility of reactivation of currently-stabilized dunefields under 21st century climate change. However, the time-consuming process of manual dune mapping has hampered attempts at quantitative description of dunefield patterning. This study aims to develop and test methods for delineating linear dune trendlines automatically from freely-available remotely sensed datasets. The highest resolution free global topographic data presently available (Aster GDEM v2) proved to be of marginal use, as the topographic expression of the dunes is of the same order as the vertical precision of the dataset (∼10 m), but in regions with relatively simple patterning it defined dune trends adequately. Analysis of spectral data (panchromatic Landsat 8 data) proved more promising in five of the six test sites, and despite poor panchromatic signal/noise ratios for the sixth site, the reflectance in the deep blue/violet (Landsat 8 Band 1) offers an alternative method of delineating dune pattern. A new edge detection algorithm (LInear Dune Optimized edge detection; LIDO) is proposed, based on Sobel operators with directional filtering and topologically-constrained recursion to optimize the inclusion of marginal zones. The method offers the potential for rapid quantitative mapping of linear dunefield patterning, providing validation data for modeling studies, and offering for the first time the ability to readily remap dunefields to assess dune reorganization at the dunefield scale.

  8. Gone for 60 seconds: reactivation length determines motor memory degradation during reconsolidation.

    PubMed

    de Beukelaar, Toon T; Woolley, Daniel G; Wenderoth, Nicole

    2014-10-01

    When a stable memory is reactivated it becomes transiently labile and requires restabilization, a process known as reconsolidation. Animal studies have convincingly demonstrated that during reconsolidation memories are modifiable and can be erased when reactivation is followed by an interfering intervention. Few studies have been conducted in humans, however, and results are inconsistent regarding the extent to which a memory can be degraded. We used a motor sequence learning paradigm to show that the length of reactivation constitutes a crucial boundary condition determining whether human motor memories can be degraded. In our first experiment, we found that a short reactivation (less than 60 sec) renders the memory labile and susceptible to degradation through interference, while a longer reactivation does not. In our second experiment, we reproduce these results and show a significant linear relationship between the length of memory reactivation and the detrimental effect of the interfering task performed afterwards, i.e., the longer the reactivation, the smaller the memory loss due to interference. Our data suggest that reactivation via motor execution activates a time-dependent process that initially destabilizes the memory, which is then followed by restabilization during further practice.

  9. Circulating miRNAs in Pediatric Pulmonary Hypertension Show Promise as Biomarkers of Vascular Function

    PubMed Central

    Sucharov, Carmen C.; Truong, Uyen; Dunning, Jamie; Ivy, Dunbar; Miyamoto, Shelley; Shandas, Robin

    2017-01-01

    Background/Objectives The objective of this study was to evaluate the utility of circulating miRNAs as biomarkers of vascular function in pediatric pulmonary hypertension. Method Fourteen pediatric pulmonary arterial hypertension patients underwent simultaneous right heart catheterization (RHC) and blood biochemical analysis. Univariate and stepwise multivariate linear regression was used to identify and correlate measures of reactive and resistive afterload with circulating miRNA levels. Furthermore, circulating miRNA candidates that classified patients according to a 20% decrease in resistive afterload in response to oxygen (O2) or inhaled nitric oxide (iNO) were identified using receiver-operating curves. Results Thirty-two circulating miRNAs correlated with the pulmonary vascular resistance index (PVRi), pulmonary arterial distensibility, and PVRi decrease in response to O2 and/or iNO. Multivariate models, combining the predictive capability of multiple promising miRNA candidates, revealed a good correlation with resistive (r = 0.97, P2−tailed < 0.0001) and reactive (r = 0.86, P2−tailed < 0.005) afterloads. Bland-Altman plots showed that 95% of the differences between multivariate models and RHC would fall within 0.13 (mmHg−min/L)m2 and 0.0085/mmHg for resistive and reactive afterloads, respectively. Circulating miR-663 proved to be a good classifier for vascular responsiveness to acute O2 and iNO challenges. Conclusion This study suggests that circulating miRNAs may be biomarkers to phenotype vascular function in pediatric PAH. PMID:28819545

  10. Quantum chemical determination of Young's modulus of lignin. Calculations on a beta-O-4' model compound.

    PubMed

    Elder, Thomas

    2007-11-01

    The calculation of Young's modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in response to linear strain. At larger levels of strain, bond rupture is evidenced by abrupt changes in energy, structure, and charge. Based on the current calculations, the bond scission may be occurring through a homolytic reaction between aliphatic carbon atoms. These results may have implications in the reactivity of lignin especially when subjected to processing methods that place large mechanical forces on the structure.

  11. Intraplate deformation on north-dipping basement structures in the Northern Gawler Craton, Australia: reactivation of original terrane boundaries or later intra-cratonic thrusts?

    NASA Astrophysics Data System (ADS)

    Baines, G.; Giles, D.; Betts, P. G.; Backé, G.

    2007-12-01

    Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".

  12. A field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer

    PubMed Central

    Jung, Hun Bok; Charette, Matthew A.; Zheng, Yan

    2009-01-01

    A field, laboratory, and modeling study of As in groundwater discharging to Waquoit Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport of As in a coastal aquifer. Dissolved Fe(II) and As(III) in a reducing groundwater plume bracketed by an upper and a lower redox interface are oxidized as water flows towards the bay. This results in precipitation of Fe(III) oxides, along with oxidation and adsorption of As to sediment at the redox interfaces where concentrations of sedimentary HCl-leachable Fe (80~90% Fe(III)) are 734±232 mg kg-1, sedimentary phosphate extractable As (90~100% As(V)) are 316±111 μg kg-1, and are linearly correlated. Batch adsorption of As(III) onto orange, brown and gray sediments follows Langmuir isotherms, and can be fitted by a surface complexation model (SCM) assuming a diffuse layer for ferrihydrite. The sorption capacity and distribution coefficient for As increase with decreasing sediment Fe(II)/Fe. To allow accumulation of the amount of sediment As, similar hydrogeochemical conditions would have been operating for thousands of years at Waquoit Bay. The SCM simulated the observed dissolved As concentration better than a parametric approach based on Kd. Site specific isotherms should be established for Kd or SCM based models. PMID:19708362

  13. Mississippi Communities for Healthy Living: Implementing a nutrition intervention effectiveness study in a rural health disparate region.

    PubMed

    Connell, Carol L; Thomson, Jessica L; Huye, Holly F; Landry, Alicia S; Crook, LaShaundrea B; Yadrick, Kathy

    2015-05-01

    Intervention research in rural, health disparate communities presents unique challenges for study design, implementation, and evaluation. Challenges include 1) culturally appropriate intervention components, 2) participant recruitment and retention, 3) treatment cross-contamination, 4) intervention delivery and data collection, and 5) potential measurement reactivity. The purposes of this paper are to 1) detail the methods of the MCHL study and 2) report baseline demographic characteristics of study participants. The secondary aim is to determine if study participants were engaging in behavior changes after enrollment and prior to intervention initiation. MCHL was developed using the RE-AIM planning and evaluation framework (reach, effectiveness, adoption, implementation, maintenance). Intervention components were based on Roger's diffusion of innovation attributes that promote adoption of a new innovation as well as on the psychosocial constructs of social support, self-efficacy and decisional balance. Rolling enrollment data collection was used to acquire sufficient sample size and a second data collection just prior to intervention implementation assessed measurement reactivity effects. Participant outcomes included diet quality, blood pressure, weight status, and quality of life. Cluster stratified assignment to one of two treatment arms was utilized to minimize cross contamination. Generalized linear models were used to compare enrollment measures between the two treatment arms while mixed model linear regression was used to test for changes in diet quality outcomes from enrollment to pre-intervention baseline. There were no significant differences in participant demographic, anthropometric or clinical measures between the two treatment arms at enrollment. With the exception of total vegetables, none of the diet quality indicators were significantly different between enrollment and baseline timepoints. Conducting nutrition intervention research in a rural health disparate region requires flexibility in adapting the recruitment, retention, and data collection procedures while maintaining a high level of scientific rigor. Negligible research participation effects, such as measurement reactivity, were noted in this population. However, further research is needed to identify methods to successfully recruit and retain Caucasian females to participate in community-based nutrition interventions in this region. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comprehensive measurements of atmospheric OH reactivity and trace species within a suburban forest near Tokyo during AQUAS-TAMA campaign

    NASA Astrophysics Data System (ADS)

    Ramasamy, Sathiyamurthi; Nagai, Yoshihide; Takeuchi, Nobuhiro; Yamasaki, Shohei; Shoji, Koki; Ida, Akira; Jones, Charlotte; Tsurumaru, Hiroshi; Suzuki, Yuhi; Yoshino, Ayako; Shimada, Kojiro; Nakashima, Yoshihiro; Kato, Shungo; Hatakeyama, Shiro; Matsuda, Kazuhide; Kajii, Yoshizumi

    2018-07-01

    Total OH reactivity, which gives the instantaneous loss rate of OH radicals due to reactive species, is an invaluable technique to understand regional air quality, as it gives the overall reactivity of the air mass, the fraction of each trace species reactive to OH, the fraction of missing sinks, O3 formation potential, etc. Total OH reactivity measurement was conducted in a small suburban forest located ∼30 km from Tokyo during the air quality study at field museum TAMA (AQUAS-TAMA) campaign in early autumn 2012 and summer 2013. The average measured OH reactivities during that autumn and summer were 7.4 s-1 and 11.4 s-1, respectively. In summer, isoprene was the major contributor, accounting for 28.2% of the OH reactivity, as a result of enhanced light-dependent biogenic emission, whereas NO2 was major contributor in autumn, accounting for 19.6%, due to the diminished contribution from isoprene as a result of lower solar strength. Higher missing OH reactivity 34% was determined in summer, and linear regression analysis showed that oxygenated VOCs could be the potential candidates for missing OH reactivity. Lower missing OH reactivity 25% was determined in autumn and it was significantly reduced (11%) if the interference of peroxy radicals to the measured OH reactivity were considered.

  15. Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome.

    PubMed

    Gottlieb, Sean M; Chang, Che-Wei; Martin, Shelley S; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2014-05-01

    The RcaE cyanobacteriochrome uses a linear tetrapyrrole chromophore to sense the ratio of green and red light to enable the Fremyella diplosiphon cyanobacterium to control the expression of the photosynthetic infrastructure for efficient utilization of incident light. The femtosecond photodynamics of the embedded phycocyanobilin chromophore within RcaE were characterized with dispersed femtosecond pump-dump-probe spectroscopy, which resolved a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates. These reactions were integrated within a central model that incorporated a rapid (200 fs) excited-state Le Châtelier redistribution between parallel evolving populations ascribed to different tautomers. Three photoproducts were resolved and originates from four independent subpopulations, each with different dump-induced behavior: Lumi-Go was depleted, Lumi-Gr was unaffected, and Lumi-Gf was enhanced. This suggests that RcaE may be engineered to act either as an in vivo fluorescent probe (after single-pump excitation) or as an in vivo optogenetic sample (after pump and dump excitation).

  16. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation.

    PubMed

    Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang

    2007-09-01

    Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.

  17. Establishment of a simple and quantitative immunospot assay for detecting anti-type II collagen antibody using an infrared fluorescence imaging system (IFIS).

    PubMed

    Ota, Shusuke; Kanazawa, Satoshi; Kobayashi, Masaaki; Otsuka, Takanobu; Okamoto, Takashi

    2005-04-01

    Antibodies to type II collagen (col II) have been detected in patients with rheumatoid arthritis and in animal models of collagen induced arthritis. Here, we describe a novel method to detect anti-col II antibodies using an immunospot assay with an infrared fluorescence imaging system. This method showed very high sensitivity and specificity, and was simple, with low background levels. It also showed higher reproducibility and linearity, with a dynamic range of approximately 500-fold, than the conventional immunospot assay with enhanced chemiluminescence detection. Using this method we were able to demonstrate the antibody affinity maturation process in mice immunized with col II. In these immunized mice, although cross-reactive antibodies reacting with other collagen species were detected in earlier stages of immunization, the titers of cross-reactive antibodies rapidly diminished after the antigen boost, concomitantly with the elevation of the anti-col II antibody. The method and its possible applications are discussed.

  18. Methods for Assessment of Memory Reactivation.

    PubMed

    Liu, Shizhao; Grosmark, Andres D; Chen, Zhe

    2018-04-13

    It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.

  19. Study and modification of the reactivity of carbon fibers

    NASA Technical Reports Server (NTRS)

    Walker, P. L., Jr.; Ismail, I. M.; Mahajan, O. P.; Eapen, T. A.

    1980-01-01

    The reactivity to air of polyactylonitrile-based carbon fiber cloth was enhanced by the addition of metals to the cloth. The cloth was oxidized in 54 wt% nitric acid in order to increase the surface area of the cloth and to add carbonyl groups to the surface. Metal addition was then achieved by soaking the cloth in metal acetate solution to effect exchange between the metal carbon and hydrogen on the carbonyl groups. The addition of potassium, sodium, calcium and barium enhanced fiber cloth reactivity to air at 573 K. Extended studies using potassium addition showed that success in enhancing fiber cloth reactivity to air depends on: extent of cloth oxidation in nitric acid, time of exchange in potassium acetate solution and the thoroughness of removing metal acetate from the fiber pore structure following exchange. Cloth reactivity increases essentially linearly with increase in potassium addition via exchange.

  20. Spin-Orbit Torques and Anisotropic Magnetization Damping in Skyrmion Crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil; Brataas, Arne

    2014-03-01

    We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the non-relativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  1. [Relationship between high-sensitivity C-reactive protein and obesity/metabolic syndrome in children].

    PubMed

    Chen, Fangfang; Wang, Wenpeng; Teng, Yue; Hou, Dongqing; Zhao, Xiaoyuan; Yang, Ping; Yan, Yinkun; Mi, Jie

    2014-06-01

    To explore the relationship between high-sensitivity C-reactive protein (hsCRP) and obesity/metabolic syndrome (MetS) related factors in children. 403 children aged 10-14 and born in Beijing were involved in this study. Height, weight, waist circumference, fat mass percentage (Fat%), blood pressure (BP), hsCRP, triglyceride (TG), total cholesterol (TC), fasting plasma glucose (FPG), high and low density lipoprotein cholesterol (HDL-C, LDL-C) were observed among these children. hsCRP was transformed with base 10 logarithm (lgCRP). MetS was defined according to the International Diabetes Federation 2007 definition. Associations between MetS related components and hsCRP were tested using partial correlation analysis, analysis of covariance and linear regression models. 1) lgCRP was positively correlated with BMI, waist circumference, Fat%,BP, FPG, LDL-C and TC while negatively correlated with HDL-C. With BMI under control, the relationships disappeared, but LDL-C (r = 0.102). 2) The distributions of lgCRP showed obvious differences in all the metabolic indices, in most groups, respectively. With BMI under control, close relationships between lgCRP and high blood pressure/high TG disappeared and the relationship with MetS weakened. 3) Through linear regression models, factors as waist circumference, BMI, Fat% were the strongest factors related to hsCRP, followed by systolic BP, HDL-C, diastolic BP, TG and LDL-C. With BMI under control, the relationships disappeared, but LDL-C(β = 0.045). hsCRP was correlated with child obesity, lipid metabolism and MetS. Waist circumference was the strongest factors related with hsCRP. Obesity was the strongest and the independent influencing factor of hsCRP.

  2. Excess adiposity, inflammation, and iron-deficiency in female adolescents.

    PubMed

    Tussing-Humphreys, Lisa M; Liang, Huifang; Nemeth, Elizabeta; Freels, Sally; Braunschweig, Carol A

    2009-02-01

    Iron deficiency is more prevalent in overweight children and adolescents but the mechanisms that underlie this condition remain unclear. The purpose of this cross-sectional study was to assess the relationship between iron status and excess adiposity, inflammation, menarche, diet, physical activity, and poverty status in female adolescents included in the National Health and Nutrition Examination Survey 2003-2004 dataset. Descriptive and simple comparative statistics (t test, chi(2)) were used to assess differences between normal-weight (5th < or = body mass index [BMI] percentile <85th) and heavier-weight girls (< or = 85th percentile for BMI) for demographic, biochemical, dietary, and physical activity variables. In addition, logistic regression analyses predicting iron deficiency and linear regression predicting serum iron levels were performed. Heavier-weight girls had an increased prevalence of iron deficiency compared to those with normal weight. Dietary iron, age of and time since first menarche, poverty status, and physical activity were similar between the two groups and were not independent predictors of iron deficiency or log serum iron levels. Logistic modeling predicting iron deficiency revealed having a BMI > or = 85th percentile and for each 1 mg/dL increase in C-reactive protein the odds ratio for iron deficiency more than doubled. The best-fit linear model to predict serum iron levels included both serum transferrin receptor and C-reactive protein following log-transformation for normalization of these variables. Findings indicate that heavier-weight female adolescents are at greater risk for iron deficiency and that inflammation stemming from excess adipose tissue contributes to this phenomenon. Food and nutrition professionals should consider elevated BMI as an additional risk factor for iron deficiency in female adolescents.

  3. Periodontal status affects C-reactive protein and lipids in patients with stable heart disease from a tertiary care cardiovascular clinic.

    PubMed

    Flores, Manuela F; Montenegro, Marlon M; Furtado, Mariana V; Polanczyk, Carisi A; Rösing, Cassiano K; Haas, Alex N

    2014-04-01

    There are scarce data on the impact of the periodontal condition in the control of biomarkers in patients with cardiovascular disease (CVD). The aim of this study is to assess whether periodontal inflammation and tissue breakdown are associated with C-reactive protein (CRP) and lipids in patients with stable heart disease. This cross-sectional study included 93 patients with stable coronary artery disease (57 males; mean age: 63.5 ± 9.8 years) who were in outpatient care for at least 6 months. After applying a structured questionnaire, periodontal examinations were performed by two calibrated periodontists in six sites per tooth at all teeth. Blood samples were collected from patients on the day of periodontal examination to determine levels of CRP, lipids, and glycated hemoglobin. Multiple linear regression models were fitted to evaluate the association among different periodontal and blood parameters controlling for sex, body mass index, glycated hemoglobin, use of oral hypoglycemic drugs, and smoking. Overall, the sample presented high levels of periodontal inflammation and tissue breakdown. Unadjusted mean concentrations of triglycerides (TGs), very-low-density lipoprotein cholesterol, and glucose were significantly higher in individuals with severe periodontitis. When multiple linear regression models were applied, number of teeth with clinical attachment loss ≥6 mm and presence of severe periodontitis were significantly associated with higher CRP concentrations. Bleeding on probing was significantly associated with TGs, total cholesterol, and non-high-density lipoprotein cholesterol. In this sample of patients with stable CVD, current periodontal inflammation and tissue breakdown are associated with cardiovascular inflammatory markers, such as CRP and lipid profile.

  4. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    PubMed Central

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  5. Fear of falling and postural reactivity in patients with glaucoma.

    PubMed

    Daga, Fábio B; Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; Medeiros, Felipe A

    2017-01-01

    To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment.

  6. Fear of falling and postural reactivity in patients with glaucoma

    PubMed Central

    Daga, Fábio B.; Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Medeiros, Felipe A.

    2017-01-01

    Purpose To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. Methods This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Results Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). Conclusion In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment. PMID:29211742

  7. Extreme Sleep Durations and Increased C-Reactive Protein: Effects of Sex and Ethnoracial Group

    PubMed Central

    Grandner, Michael A.; Buxton, Orfeu M.; Jackson, Nicholas; Sands-Lincoln, Megan; Pandey, Abhishek; Jean-Louis, Girardin

    2013-01-01

    Study Objectives: We hypothesize that extremes of sleep duration are associated with elevated C-reactive protein (CRP), a pro-inflammatory marker for cardiovascular disease risk. Design: Cross-sectional. Setting: Population-based research. Participants: Nationally representative sample of 2007-2008 National Health and Nutrition Examination Survey participants (n = 5,587 adults). Interventions: None. Measurements and Results: Associations between CRP and self-reported total sleep time (TST) were examined. Explanatory models considered contributions of sex, age, race/ethnicity, body mass index (BMI), and BMI squared (BMI2). Models also explored the role of insomnia symptoms, sleep apnea, active medical illness, and antidiabetic/antihypertensive treatment. Differential patterns among race/ethnicity groups were examined using interactions and stratified analyses. Nonlinear relationships between CRP and TST were assessed using polynomial and multinomial regression models (< 5, 5, 6, 7, 8, 9, and > 9 h). Linear and squared terms were significant in all models in the complete sample, with notable differences by sex and ethnoracial group. Overall, in models adjusted for sociodemographics and BMI, different patterns were observed for non-Hispanic white (elevated CRP for < 5 h and > 9 h), black/African-American (elevated CRP for < 5 h and 8 h), Hispanic/Latino (elevated CRP for > 9 h), and Asian/ Other (higher in 9 and > 9 h and lower in 5 h and 6 h) groups. Ethnoracial groups also demonstrated patterning by sex. Conclusion: In a representative sample of American adults, elevated CRP was associated with extreme sleep durations. Sex, race/ethnicity, sleep disorders, and medical comorbidity influenced these associations. Differences in CRP along these dimensions should be considered in future research on sleep related disparities influencing cardiometabolic disease risk. Citation: Grandner MA; Buxton OM; Jackson N; Sands M; Pandey A; Jean-Louis G. Extreme sleep durations and increased C-reactive protein: effects of sex and ethnoracial group. SLEEP 2013;36(5):769-779. PMID:23633760

  8. Effectiveness of Chinese Martial Arts and Philosophy to Reduce Reactive and Proactive Aggression in Schoolchildren.

    PubMed

    Fung, Annis Lai Chu; Lee, Toney Ka Hung

    2018-06-01

    This study examined the effectiveness of Chinese martial arts in reducing reactive and proactive aggressive behavior among schoolchildren with a cluster-randomized trial. A screening questionnaire was completed by 3511 schoolchildren of Grades 2 to 5 from 13 sites in Hong Kong. We shortlisted 298 children who scored z ≥ 1 on the total score of the Reactive-Proactive Aggression Questionnaire in their respective sites to participate in the experiment. They were divided into 31 clusters that were blinded and randomly assigned to one of the 4 conditions: skills only, philosophy only, skills and philosophy, and physical fitness (placebo). Subjects were assessed at baseline, posttraining, and 6 months after training using aggression scales. Results from the linear mixed model indicated that the time × training interaction effects were significant for aggressive behavior (reactive and proactive), delinquent behavior, anxiety/depression, and attention problems. Although all measures declined in all conditions over time, only the skills-and-philosophy condition showed a significant reduction at posttraining and/or 6-month follow-up compared with the placebo. The results provided a theoretical proof for the relationship between aggression and sport involvement combined with children's moral reasoning. This study gives practical implications to intervention that solely playing sports or teaching moral lessons is not effective enough for high-risk schoolchildren with aggressive behavior. However, combined traditional Chinese martial arts skills and moral philosophy training could be considered in the school curriculum to reduce school violence and facilitate creation of harmonious schools.

  9. Efficiency of the strong satisfiability checking procedure for reactive system specifications

    NASA Astrophysics Data System (ADS)

    Shimakawa, Masaya; Hagihara, Shigeki; Yonezaki, Naoki

    2018-04-01

    Reactive systems are those that interact with their environment. To develop reactive systems without defects, it is important to describe behavior specifications in a formal language, such as linear temporal logic, and to verify the specification. Specifically, it is important to check whether specifications satisfy the property called realizability. In previous studies, we have proposed the concept of strong satisfiability as a necessary condition for realizability. Although this property of reactive system specifications is a necessary condition, many practical unrealizable specifications are also strongly unsatisfiable. Moreover, we have previously shown the theoretical complexity of the strong satisfiability problem. In the current study, we investigate the practical efficiency of the strong satisfiability checking procedure and demonstrate that strong satisfiability can be checked more efficiently than realizability.

  10. Impact of early life adversity on EMG stress reactivity of the trapezius muscle.

    PubMed

    Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel

    2016-09-01

    Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies.

  11. Infant Temperament Is Associated with Relative Food Reinforcement.

    PubMed

    Kong, Kai Ling; Anzman-Frasca, Stephanie; Feda, Denise M; Eiden, Rina D; Sharma, Neha N; Stier, Corrin L; Epstein, Leonard H

    2016-12-01

    Food reinforcement refers to how hard someone is motivated to work to gain access to food. Infant temperament is defined as behavioral styles, or constitutionally based individual differences in reactive and regulatory aspects of behavior. Identifying correlates of food reinforcement, such as infant temperament, may help identify infants at risk for future negative health consequences (e.g., overweight or obesity) of high food reinforcement. This study tested aspects of parent-reported negative reactivity and regulation and their associations with relative food reinforcement in a cross-sectional sample of 105 9- to 18-month-old infants. Hierarchical linear regression models were then used to predict infant food reinforcement for the temperament dimensions that were significantly related to it. Two temperament dimensions, cuddliness (regulatory aspect) (B = -0.050, ΔR 2  = 0.074, p = 0.005) and rate of recovery from distress and arousal (reactive aspect) (B = -0.040, ΔR 2  = 0.045, p = 0.031), were inversely associated with relative food reinforcement. Clarifying the nature of relationships between these two behavioral predictors, infant temperament and relative food reinforcement, and early obesity can elucidate the role of individual differences in early obesity risk and can further inform targets for early behavioral obesity preventive interventions.

  12. Numerical computation of linear instability of detonations

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry; Kasimov, Aslan

    2017-11-01

    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  13. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  14. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximatemore » match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.« less

  15. ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, B.

    2011-08-15

    Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less

  16. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    PubMed

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Long-Term Effectiveness of Stress Management at Work: Effects of the Changes in Perceived Stress Reactivity on Mental Health and Sleep Problems Seven Years Later

    PubMed Central

    Barrech, Amira; Riedel, Natalie; Gündel, Harald; Angerer, Peter; Li, Jian

    2018-01-01

    The reduction of stress reactivity resulting from stress management interventions prevents disorders and improves mental health, however, its long-term sustainability has been little examined. The objective of this study was, therefore, to determine the effectiveness of a stress management intervention, designed to improve stress reactivity, for mental health and sleep problems seven years later, using longitudinal data from 101 male industrial workers. Linear regressions estimated the adjusted effects of the changes in stress reactivity in general as well as in its six subdimensions (work overload, social conflict, social stress, failure at work, and anticipatory and prolonged reactivity) on depression, anxiety, and sleep problems seven years later. The improvement of the prolonged reactivity had positive effects on depression, anxiety, and sleep problems (unstandardized regression coefficients [Bs] ≥ 0.35, all p-values ≤ 0.01). Depression and sleep problems were further improved by a reduction of the reactivity to social conflicts (Bs ≥ 0.29, p-values < 0.05), and an improvement in the overall reactivity score positively influenced sleep problems (B = 0.07, p = 0.017). In conclusion, the improvement of stress reactivity resulting from a work stress intervention was effective and generally long-lasting in preventing mental health and sleep problems. The reduction of the prolonged reactivity seems of particular importance and efficient in inhibiting negative stress manifestations. PMID:29401657

  18. Long-Term Effectiveness of Stress Management at Work: Effects of the Changes in Perceived Stress Reactivity on Mental Health and Sleep Problems Seven Years Later.

    PubMed

    Herr, Raphael M; Barrech, Amira; Riedel, Natalie; Gündel, Harald; Angerer, Peter; Li, Jian

    2018-02-03

    The reduction of stress reactivity resulting from stress management interventions prevents disorders and improves mental health, however, its long-term sustainability has been little examined. The objective of this study was, therefore, to determine the effectiveness of a stress management intervention, designed to improve stress reactivity, for mental health and sleep problems seven years later, using longitudinal data from 101 male industrial workers. Linear regressions estimated the adjusted effects of the changes in stress reactivity in general as well as in its six subdimensions (work overload, social conflict, social stress, failure at work, and anticipatory and prolonged reactivity) on depression, anxiety, and sleep problems seven years later. The improvement of the prolonged reactivity had positive effects on depression, anxiety, and sleep problems (unstandardized regression coefficients [ Bs ] ≥ 0.35, all p -values ≤ 0.01). Depression and sleep problems were further improved by a reduction of the reactivity to social conflicts ( Bs ≥ 0.29, p -values < 0.05), and an improvement in the overall reactivity score positively influenced sleep problems ( B = 0.07, p = 0.017). In conclusion, the improvement of stress reactivity resulting from a work stress intervention was effective and generally long-lasting in preventing mental health and sleep problems. The reduction of the prolonged reactivity seems of particular importance and efficient in inhibiting negative stress manifestations.

  19. Emotional Reactivity, Behavior Problems, and Social Adjustment at School Entry in a High-risk Sample

    PubMed Central

    Kalvin, Carla B.; Bierman, Karen L.; Gatzke-Kopp, Lisa M.

    2016-01-01

    Prior research suggests that heightened emotional reactivity to emotionally distressing stimuli may be associated with elevated internalizing and externalizing behaviors, and contribute to impaired social functioning. These links were explored in a sample of 169 economically-disadvantaged kindergarteners (66 % male; 68 % African American, 22 % Hispanic, 10 % Caucasian) oversampled for elevated aggression. Physiological measures of emotional reactivity (respiratory sinus arrhythmia [RSA], heart rate [HR], and cardiac pre-ejection period [PEP]) were collected, and teachers and peers provided ratings of externalizing and internalizing behavior, prosocial competence, and peer rejection. RSA withdrawal, HR reactivity, and PEP shortening (indicating increased arousal) were correlated with reduced prosocial competence, and RSA withdrawal and HR reactivity were correlated with elevated internalizing problems. HR reactivity was also correlated with elevated externalizing problems and peer rejection. Linear regressions controlling for age, sex, race, verbal proficiency, and resting physiology showed that HR reactivity explained unique variance in both teacher-rated prosocial competence and peer rejection, and contributed indirectly to these outcomes through pathways mediated by internalizing and externalizing problems. A trend also emerged for the unique contribution of PEP reactivity to peer-rated prosocial competence. These findings support the contribution of emotional reactivity to behavior problems and social adjustment among children living in disadvantaged urban contexts, and further suggest that elevated reactivity may confer risk for social difficulties in ways that overlap only partially with internalizing and externalizing behavior problems. PMID:26943804

  20. Orientation and Polarisation Effects in Reactive Collisions

    DTIC Science & Technology

    1989-01-01

    18 To clock the reaction, an ultrashort laser pulse initiates the experiment by photodis- sociating the HI, ejecting a translationally hot H atom in...the chamber and travels down; the pulsed , linearly polarized u.v. laser beam passes from right to left, going through a polarization rotator before... pulsed beam valve above the chamber; the pulsed linearly polarized laser beam passes through a polarization rotator before entering the chamber. Two

  1. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having E p,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe IV (O)TMC(X) series increase linearly with the observed E p,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with E p,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT reactivity in a nonheme iron enzyme active site.

  2. Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context

    NASA Astrophysics Data System (ADS)

    Robinson, Allen L.; Donahue, Neil M.; Rogge, Wolfgang F.

    2006-02-01

    This paper presents evidence that condensed-phase organic compounds are significantly oxidized in regional air masses and in locations affected by regional transport, especially during the summer. The core of the paper examines a large data set of ambient organic aerosol concentrations for removal of reactive compounds relative to less-reactive compounds. The approach allows visualization of both photochemistry and mixing of emissions from multiple sources in order to differentiate between the two phenomena. The focus is on hopanes and alkenoic acids, important markers for motor vehicle and cooking emissions. Ambient data from Pittsburgh, PA and the Southeastern United States contain evidence for significant photochemical oxidation of these compounds in the summertime. There is a strong seasonal pattern in the ratio of different hopanes to elemental carbon consistent with oxidation. In addition, measurements at rural sites indicate that hopanes are severely depleted in the regional air mass during the summer. Alkenoic acids also appear to be photochemically oxidized during the summertime; however, the oxidation rate appears to be much slower than that inferred from laboratory experiments. The significance of photochemistry is supported by rudimentary calculations which indicate substantial oxidation by OH radicals and ozone on a time scale of a few days or so, comparable to time scales for regional transport. Oxidation is non-linear; therefore it represents a very substantial complication to linear source apportionment techniques such as the Chemical Mass Balance model.

  3. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    EPA Science Inventory

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  4. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    PubMed Central

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.

    2012-01-01

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924

  5. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    NASA Astrophysics Data System (ADS)

    Whalley, L. K.; Stone, D.; Bandy, B.; Dunmore, R.; Hamilton, J. F.; Hopkins, J.; Lee, J. D.; Lewis, A. C.; Heard, D. E.

    2015-11-01

    Near-continuous measurements of OH reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on airmass origin with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the East, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ~ 27 s-1 in the morning with a minimum of ~ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement dataset of volatile organic compounds (VOCs) derived from GC-FID and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs of α pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (≥ C9) was also considered, with the reactivity of the biogenic compounds of α pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (≥ C9) (particularly α pinene and limonene) and model-generated intermediates worsened the agreement between modelled and observed OH concentrations (by 41 %) and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.

  6. Atmospheric OH reactivity in central London: observations, model predictions and estimates of in situ ozone production

    NASA Astrophysics Data System (ADS)

    Whalley, Lisa K.; Stone, Daniel; Bandy, Brian; Dunmore, Rachel; Hamilton, Jacqueline F.; Hopkins, James; Lee, James D.; Lewis, Alastair C.; Heard, Dwayne E.

    2016-02-01

    Near-continuous measurements of hydroxyl radical (OH) reactivity in the urban background atmosphere of central London during the summer of 2012 are presented. OH reactivity behaviour is seen to be broadly dependent on air mass origin, with the highest reactivity and the most pronounced diurnal profile observed when air had passed over central London to the east, prior to measurement. Averaged over the entire observation period of 26 days, OH reactivity peaked at ˜ 27 s-1 in the morning, with a minimum of ˜ 15 s-1 during the afternoon. A maximum OH reactivity of 116 s-1 was recorded on one day during morning rush hour. A detailed box model using the Master Chemical Mechanism was used to calculate OH reactivity, and was constrained with an extended measurement data set of volatile organic compounds (VOCs) derived from a gas chromatography flame ionisation detector (GC-FID) and a two-dimensional GC instrument which included heavier molecular weight (up to C12) aliphatic VOCs, oxygenated VOCs and the biogenic VOCs α-pinene and limonene. Comparison was made between observed OH reactivity and modelled OH reactivity using (i) a standard suite of VOC measurements (C2-C8 hydrocarbons and a small selection of oxygenated VOCs) and (ii) a more comprehensive inventory including species up to C12. Modelled reactivities were lower than those measured (by 33 %) when only the reactivity of the standard VOC suite was considered. The difference between measured and modelled reactivity was improved, to within 15 %, if the reactivity of the higher VOCs (⩾ C9) was also considered, with the reactivity of the biogenic compounds of α-pinene and limonene and their oxidation products almost entirely responsible for this improvement. Further improvements in the model's ability to reproduce OH reactivity (to within 6 %) could be achieved if the reactivity and degradation mechanism of unassigned two-dimensional GC peaks were estimated. Neglecting the contribution of the higher VOCs (⩾ C9) (particularly α-pinene and limonene) and model-generated intermediates increases the modelled OH concentrations by 41 %, and the magnitude of in situ ozone production calculated from the production of RO2 was significantly lower (60 %). This work highlights that any future ozone abatement strategies should consider the role that biogenic emissions play alongside anthropogenic emissions in influencing London's air quality.

  7. Temporal discounting and heart rate reactivity to stress.

    PubMed

    Diller, James W; Patros, Connor H G; Prentice, Paula R

    2011-07-01

    Temporal discounting is the reduction of the value of a reinforcer as a function of increasing delay to its presentation. Impulsive individuals discount delayed consequences more rapidly than self-controlled individuals, and impulsivity has been related to substance abuse, gambling, and other problem behaviors. A growing body of literature has identified biological correlates of impulsivity, though little research to date has examined relations between delay discounting and markers of poor health (e.g., cardiovascular reactivity to stress). We evaluated the relation between one aspect of impulsivity, measured using a computerized temporal discounting task, and heart rate reactivity, measured as a change in heart rate from rest during a serial subtraction task. A linear regression showed that individuals who were more reactive to stress responded more impulsively (i.e., discounted delayed reinforcers more rapidly). When results were stratified by gender, the effect was observed for females, but not for males. This finding supports previous research on gender differences in cardiovascular reactivity and suggests that this type of reactivity may be an important correlate of impulsive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Decay-ratio calculation in the frequency domain with the LAPUR code using 1D-kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Cobo, J. L.; Escriva, A.; Garcia, C.

    This paper deals with the problem of computing the Decay Ratio in the frequency domain codes as the LAPUR code. First, it is explained how to calculate the feedback reactivity in the frequency domain using slab-geometry i.e. 1D kinetics, also we show how to perform the coupling of the 1D kinetics with the thermal-hydraulic part of the LAPUR code in order to obtain the reactivity feedback coefficients for the different channels. In addition, we show how to obtain the reactivity variation in the complex domain by solving the eigenvalue equation in the frequency domain and we compare this result withmore » the reactivity variation obtained in first order perturbation theory using the 1D neutron fluxes of the base case. Because LAPUR works in the linear regime, it is assumed that in general the perturbations are small. There is also a section devoted to the reactivity weighting factors used to couple the reactivity contribution from the different channels to the reactivity of the entire reactor core in point kinetics and 1D kinetics. Finally we analyze the effects of the different approaches on the DR value. (authors)« less

  9. Structure-property relationships in low-temperature adhesives. [for inflatable structures

    NASA Technical Reports Server (NTRS)

    Schoff, C. K.; Udipi, K.; Gillham, J. K.

    1977-01-01

    Adhesive materials of aliphatic polyester, linear hydroxyl end-capped polybutadienes, or SBS block copolymers are studied with the objective to replace conventional partially aromatic end-reactive polyester-isocyanate adhesives that have shown embrittlement

  10. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    PubMed

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  11. Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science

    PubMed Central

    Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Sokołowska, Jolanta; Starowicz, Piotr; Bucholska, Justyna; Hrynkiewicz, Monika

    2015-01-01

    A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept. PMID:26340620

  12. Pharmacokinetics and C-Reactive Protein Modelling of Anti-IL-6 Antibody (PF-04236921) in Healthy Volunteers and Patients with Autoimmune Disease.

    PubMed

    Li, Cheryl; Shoji, Satoshi; Beebe, Jean

    2018-05-18

    The purpose of this study was to characterize pharmacokinetics (PK) of PF-04236921, a novel anti-IL-6 monoclonal antibody, and its pharmacokinetics/pharmacodynamics (PK/PD) relationship on serum C-Reactive Protein (CRP) in healthy volunteers and patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Crohn's disease (CD) METHODS: Population modelling analyses were conducted using nonlinear mixed effects modelling. Data from 2 phase 1 healthy volunteer studies, a phase 1 RA study, a Phase 2 CD study, and a Phase 2 SLE study were included. A 2-compartment model with first order absorption and linear elimination and a mechanism-based indirect response model adequately described the PK and PK/PD relationships, respectively. Central compartment volume of distribution (Vc) positively correlated with body weight. Clearance (CL) negatively correlated with baseline albumin concentration and positively correlated with baseline CRP and creatinine clearance, and was slightly lower in females. After correcting for covariates, CL in CD subjects was approximately 60% higher than other populations. Maximum inhibition of PF-04236921 on CRP production (I max ) negatively correlated with baseline albumin. I max positively correlated with baseline CRP and the relationship was captured as a covariance structure in the PK/PD model. Integrated population PK and PK/PD models of PF-04236921 have been developed using pooled data from healthy subjects and autoimmune patients. The current model enables simulation of PF-04236921 PK and PD profiles under various dosing regimens and patient populations and should facilitate future clinical study of PF-04236921 and other anti-IL6 monoclonal antibodies. This article is protected by copyright. All rights reserved.

  13. Estimation of biotransformation and sorption of emerging organic compounds (EOCs) during artificial recharge through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Martinez-Landa, L.; Carrera, J.; Hidalgo, J. J.; Ayora, C.

    2016-12-01

    The reuse of lesser quality water such as effluents from wastewater treatment plants or effluent-receiving water bodies has been promoted due to the water shortages affecting many regions of the world. Artificial recharge through infiltration basins is known to improve several water quality parameters including the attenuation of emerging organic compounds (EOCs). Many of these contaminants exhibit redox dependent biotransformation because the redox state is one of the factors controlling microbial community development. Together with biotransformation, sorption also affects the behavior of EOCs in their passage through the soil. We studied EOCs attenuation in an infiltration system is located in Sant Vicenç dells Horts on the Llobregat delta (Barcelona, Spain), where the local water agency has an artificial recharge pilot project . The Llobregat river water used for the artificial recharge is affected by treatment plant effluents which contain EOCs. A reactive barrier consisting of vegetable compost, clay, and iron oxide was installed in the bottom of the infiltration basin to enhance biotransformation and sorption of EOCs. The barrier releases dissolved organic carbon, which favors the development of a broad range of redox environments, and supplies neutral, cationic, and anionic surfaces to favor sorption of different types of contaminants. Results were excellent, but quantitative evaluation of the EOCs attenuation requires knowledge of the residence time distribution of infiltrated water. A tracer test was performed by adding tracers to the infiltration water and interpreting the breakthrough curves at diverse monitoring points with a 2D multilayer numerical model. The calibrated model quantify degradation, as a first order law, and sorption through a linear distribution coefficient for ten selected EOCs. Results indicate higher degradation rates and sorption coefficients in the reactive barrier than in the rest of the aquifer for nine and eight of the ten studied EOCs, respectively, which demonstrates the efficiency of the reactive barrier to enhance the removal of EOCs.

  14. Preliminary Assessment of Various Additives on the Specific Reactivity of Anti- rHBsAg Monoclonal Antibodies

    PubMed Central

    Yazdani, Yaghoub; Mohammadi, Saeed; Yousefi, Mehdi; Shokri, Fazel

    2015-01-01

    Background: Antibodies have a wide application in diagnosis and treatment. In order to maintain optimal stability of various functional parts of antibodies such as antigen binding sites, several approaches have been suggested. Using additives such as polysaccharides and polyols is one of the main methods in protecting antibodies against aggregation or degradation in the formulation. The aim of this study was to evaluate the protective effect of various additives on the specific reactivity of monoclonal antibodies (mAbs) against recombinant HBsAg (rHBsAg) epitopes. Methods: To estimate the protective effect of different additives on the stability of antibody against conformational epitopes (S3 antibody) and linear epitopes (S7 and S11 antibodies) of rHBsAg, heat shock at 37°C was performed in liquid and solid phases. Environmental factors were considered to be constant. The specific reactivity of antibodies was evaluated using ELISA method. The data were analyzed using SPSS software by Mann-Whitney nonparametric test with the confidence interval of 95%. Results: Our results showed that 0.25 M sucrose, 0.04 M trehalose and 0.5% BSA had the most protective effect on maintaining the reactivity of mAbs (S3) against conformational epitopes of rHBsAg. Results obtained from S7 and S11 mAbs against linear characteristics showed minor differences. The most efficient protective additives were 0.04 M trehalose and 1 M sucrose. Conclusion: Nowadays, application of appropriate additives is important for increasing the stability of antibodies. It was concluded that sucrose, trehalose and BSA have considerable effects on the specific reactivity of anti rHBsAg mAbs during long storage. PMID:26605008

  15. Preliminary Assessment of Various Additives on the Specific Reactivity of Anti- rHBsAg Monoclonal Antibodies.

    PubMed

    Yazdani, Yaghoub; Mohammadi, Saeed; Yousefi, Mehdi; Shokri, Fazel

    2015-01-01

    Antibodies have a wide application in diagnosis and treatment. In order to maintain optimal stability of various functional parts of antibodies such as antigen binding sites, several approaches have been suggested. Using additives such as polysaccharides and polyols is one of the main methods in protecting antibodies against aggregation or degradation in the formulation. The aim of this study was to evaluate the protective effect of various additives on the specific reactivity of monoclonal antibodies (mAbs) against recombinant HBsAg (rHBsAg) epitopes. To estimate the protective effect of different additives on the stability of antibody against conformational epitopes (S3 antibody) and linear epitopes (S7 and S11 antibodies) of rHBsAg, heat shock at 37°C was performed in liquid and solid phases. Environmental factors were considered to be constant. The specific reactivity of antibodies was evaluated using ELISA method. The data were analyzed using SPSS software by Mann-Whitney nonparametric test with the confidence interval of 95%. Our results showed that 0.25 M sucrose, 0.04 M trehalose and 0.5% BSA had the most protective effect on maintaining the reactivity of mAbs (S3) against conformational epitopes of rHBsAg. Results obtained from S7 and S11 mAbs against linear characteristics showed minor differences. The most efficient protective additives were 0.04 M trehalose and 1 M sucrose. Nowadays, application of appropriate additives is important for increasing the stability of antibodies. It was concluded that sucrose, trehalose and BSA have considerable effects on the specific reactivity of anti rHBsAg mAbs during long storage.

  16. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant.

    PubMed

    Li, Dan; Zeng, Siyu; Gu, April Z; He, Miao; Shi, Hanchang

    2013-07-01

    Disinfection of reclaimed water prior to reuse is important to prevent the transmission of pathogens. Chlorine is a widely utilized disinfectant and as such is a leading contender for disinfection of reclaimed water. To understand the risks of chlorination resulting from the potential selection of pathogenic bacteria, the inactivation, reactivation and regrowth rates of indigenous bacteria were investigated in reclaimed water after chlorine disinfection. Inactivation of total coliforms, Enterococcus and Salmonella showed linear correlations, with constants of 0.1384, 0.1624 and 0.057 L/(mg.min) and R2 of 0.7617, 0.8316 and 0.845, respectively. However, inactivation of total viable cells by measurement of metabolic activity typically showed a linear correlation at lower chlorine dose (0-22 (mg-min)/L), and a trailing region with chlorine dose increasing from 22 to 69 (mg.min)/L. Reactivation and regrowth of bacteria were most likely to occur after exposure to lower chlorine doses, and extents of reactivation decreased gradually with increasing chlorine dose. In contrast to total coliforms and Enterococcus, Salmonella had a high level of regrowth and reactivation, and still had 2% regrowth even after chlorination of 69 (mg.min)/L and 24 hr storage. The bacterial compositions were also significantly altered by chlorination and storage of reclaimed water, and the ratio of Salmonella was significantly increased from 0.001% to 0.045% after chlorination of 69 (mg.min)/L and 24 hr storage. These trends indicated that chlorination contributes to the selection of chlorine-resistant pathogenic bacteria, and regrowth of pathogenic bacteria after chlorination in reclaimed water with a long retention time could threaten public health security during wastewater reuse.

  17. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  18. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

    NASA Astrophysics Data System (ADS)

    Zannoni, N.; Dusanter, S.; Gros, V.; Sarda Esteve, R.; Michoud, V.; Sinha, V.; Locoge, N.; Bonsang, B.

    2015-09-01

    The hydroxyl radical (OH) plays a key role in the atmosphere, as it initiates most of the oxidation processes of volatile organic compounds (VOCs), and can ultimately lead to the formation of ozone and secondary organic aerosols (SOAs). There are still uncertainties associated with the OH budget assessed using current models of atmospheric chemistry and direct measurements of OH sources and sinks have proved to be valuable tools to improve our understanding of the OH chemistry. The total first order loss rate of OH, or total OH reactivity, can be directly measured using three different methods, such as the following: total OH loss rate measurement, laser-induced pump and probe technique and comparative reactivity method. Observations of total OH reactivity are usually coupled to individual measurements of reactive compounds in the gas phase, which are used to calculate the OH reactivity. Studies using the three methods have highlighted that a significant fraction of OH reactivity is often not explained by individually measured reactive compounds and could be associated to unmeasured or unknown chemical species. Therefore accurate and reproducible measurements of OH reactivity are required. The comparative reactivity method (CRM) has demonstrated to be an advantageous technique with an extensive range of applications, and for this reason it has been adopted by several research groups since its development. However, this method also requires careful corrections to derive ambient OH reactivity. Herein we present an intercomparison exercise of two CRM instruments, CRM-LSCE (Laboratoire des Sciences du Climat et de l'Environnement) and CRM-MD (Mines Douai), conducted during July 2013 at the Mediterranean site of Ersa, Cape Corsica, France. The intercomparison exercise included tests to assess the corrections needed by the two instruments to process the raw data sets as well as OH reactivity observations. The observation was divided in three parts: 2 days of plant emissions (8-9 July), 2 days of ambient measurements (10-11 July) and 2 days (12-13 July) of plant emissions. We discuss in detail the experimental approach adopted and how the data sets were processed for both instruments. Corrections required for the two instruments lead to higher values of reactivity in ambient air; overall 20 % increase for CRM-MD and 49 % for CRM-LSCE compared to the raw data. We show that ambient OH reactivity measured by the two instruments agrees very well (correlation described by a linear least squares fit with a slope of 1 and R2 of 0.75). This study highlights that ambient measurements of OH reactivity with differently configured CRM instruments yield consistent results in a low NOx (NO + NO2), terpene rich environment, despite differential corrections relevant to each instrument. Conducting more intercomparison exercises, involving more CRM instruments operated under different ambient and instrumental settings will help in assessing the variability induced due to instrument-specific corrections further.

  19. Reactivation of Latent Tuberculosis: Variations on the Cornell Murine Model

    PubMed Central

    Scanga, Charles A.; Mohan, V. P.; Joseph, Heather; Yu, Keming; Chan, John; Flynn, JoAnne L.

    1999-01-01

    Mycobacterium tuberculosis causes active tuberculosis in only a small percentage of infected persons. In most cases, the infection is clinically latent, although immunosuppression can cause reactivation of a latent M. tuberculosis infection. Surprisingly little is known about the biology of the bacterium or the host during latency, and experimental studies on latent tuberculosis suffer from a lack of appropriate animal models. The Cornell model is a historical murine model of latent tuberculosis, in which mice infected with M. tuberculosis are treated with antibiotics (isoniazid and pyrazinamide), resulting in no detectable bacilli by organ culture. Reactivation of infection during this culture-negative state occurred spontaneously and following immunosuppression. In the present study, three variants of the Cornell model were evaluated for their utility in studies of latent and reactivated tuberculosis. The antibiotic regimen, inoculating dose, and antibiotic-free rest period prior to immunosuppression were varied. A variety of immunosuppressive agents, based on immunologic factors known to be important to control of acute infection, were used in attempts to reactivate the infection. Although reactivation of latent infection was observed in all three variants, these models were associated with characteristics that limit their experimental utility, including spontaneous reactivation, difficulties in inducing reactivation, and the generation of altered bacilli. The results from these studies demonstrate that the outcome of Cornell model-based studies depends critically upon the parameters used to establish the model. PMID:10456896

  20. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32more » terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.« less

  1. Emotional Reactivity, Behavior Problems, and Social Adjustment at School Entry in a High-risk Sample.

    PubMed

    Kalvin, Carla B; Bierman, Karen L; Gatzke-Kopp, Lisa M

    2016-11-01

    Prior research suggests that heightened emotional reactivity to emotionally distressing stimuli may be associated with elevated internalizing and externalizing behaviors, and contribute to impaired social functioning. These links were explored in a sample of 169 economically-disadvantaged kindergarteners (66 % male; 68 % African American, 22 % Hispanic, 10 % Caucasian) oversampled for elevated aggression. Physiological measures of emotional reactivity (respiratory sinus arrhythmia [RSA], heart rate [HR], and cardiac pre-ejection period [PEP]) were collected, and teachers and peers provided ratings of externalizing and internalizing behavior, prosocial competence, and peer rejection. RSA withdrawal, HR reactivity, and PEP shortening (indicating increased arousal) were correlated with reduced prosocial competence, and RSA withdrawal and HR reactivity were correlated with elevated internalizing problems. HR reactivity was also correlated with elevated externalizing problems and peer rejection. Linear regressions controlling for age, sex, race, verbal proficiency, and resting physiology showed that HR reactivity explained unique variance in both teacher-rated prosocial competence and peer rejection, and contributed indirectly to these outcomes through pathways mediated by internalizing and externalizing problems. A trend also emerged for the unique contribution of PEP reactivity to peer-rated prosocial competence. These findings support the contribution of emotional reactivity to behavior problems and social adjustment among children living in disadvantaged urban contexts, and further suggest that elevated reactivity may confer risk for social difficulties in ways that overlap only partially with internalizing and externalizing behavior problems.

  2. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juxiu Tong; Bill X. Hu; Hai Huang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less

  3. Expanding the role of reactive transport models in critical zone processes

    USGS Publications Warehouse

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including “omics” data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process understanding across disciplines and across scales.

  4. Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong-Gi; Lowengrub, J. S.; Goodman, J.

    2002-02-01

    This is the first paper in a two-part series in which we analyze two model systems to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. The systems stem from a simplification of a general system of equations governing the motion of a binary fluid (NSCH model [Lowengrub and Truskinovsky, Proc. R. Soc. London, Ser. A 454, 2617 (1998)]) to flow in a Hele-Shaw cell. The system takes into account the chemical diffusivity between different components of a fluid mixture and the reactive stresses induced by inhomogeneity. In one of the systems we consider (HSCH), the binary fluid may be compressible due to diffusion. In the other system (BHSCH), a Boussinesq approximation is used and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH equations so as to yield the classical sharp interface model as a limiting case. We then analyze their equilibria, one dimensional evolution and linear stability. In the second paper [paper II, Phys. Fluids 14, 514 (2002)], we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH system, the equilibrium concentration profile is obtained using the classical Maxwell construction [Rowlinson and Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1979)] and does not depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model are somewhat surprising as the gravitational field actually affects the internal structure of an isolated interface by driving additional stratification of light and heavy fluids over that predicted in the Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then show how this analysis may be used to suggest a set of modified parameters which, when used in the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite interface thickness. Evidence of this improved agreement may be found in paper II.

  5. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-05

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggests that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbonded interactions. © 2015 Wiley Periodicals, Inc.

  6. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggest that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbond interactions. PMID:25943338

  7. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    USGS Publications Warehouse

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies chemical structures, estimates the LSER parameters, and predicts toxicity. The LSER models promise to be effective in differentiating between reactive and nonreactive toxicity behavior where other models have failed. Contaminants with reactive behavior are generally the most toxic and rank highest in hazard assessment of environmental chemicals.

  8. Characterization of acute phase proteins and oxidative stress response to road transportation in the dog.

    PubMed

    Fazio, Francesco; Casella, Stefania; Giannetto, Claudia; Giudice, Elisabetta; Piccione, Giuseppe

    2015-01-01

    Haptoglobin (Hp), serum amyloid A (SAA), C-reactive protein (CRP), white blood cells (WBC), reactive oxygen metabolites (ROMs), the antioxidant barrier (Oxy-adsorbent) and thiol groups of plasma compounds (SHp) were measured in ten dogs that had been transported a distance of about 230 km within 2 h (experimental group) and in ten dogs that had not been subjected to road transportation (control group). Blood was collected via cephalic venipuncture before road transportation (T0), after road transportation (T1), and more than 6 (T6) and 24 (T24) hours after road transportation in the experimental group (Group A) and at the same time points in the control group (Group B). The GLM (general linear model) Repeated Measures procedure showed a significant difference between the two groups (P<0.0001) and a significant rise (P<0.0001) in the concentrations of Hp, SAA, CRP, WBC, ROMs, Oxy-adsorbent and SHp after road transportation in Group A, underlining that physiological and homeostatic mechanisms are modified differently at various sampling times.

  9. Large arterial elasticity varies as a function of gender and racism-related vigilance in black youth.

    PubMed

    Clark, Rodney; Benkert, Ramona A; Flack, John M

    2006-10-01

    This exploratory study examined the relationship of gender and racism-related vigilance to baseline and task-induced changes in large arterial elasticity (LAE). The convenience sample consisted of 153 black youth (M age = 11.5 years, SD = 1.4) who were normotensive. Large arterial elasticity was measured via pulse wave contour analysis, before, during, and after a sequentially administered digit forward and digit backward task. Racism-related vigilance was reported by participants. Although findings from general linear models indicated that the independent effects of gender and racism-related vigilance were not significantly related to LAE (baseline, reactivity, or recovery) (all p > .05), these analyses showed that gender and racism-related vigilance interacted to predict baseline LAE (p < .02) and task-induced changes (reactivity only) in LAE (p < .006). Follow-up regression analyses explicating the pattern of these interaction effects indicated that 1) racism-related vigilance was marginally and inversely related to baseline LAE among boys (p < .06) but not in girls (p > .21); and, 2) racism-related vigilance was positively and significantly associated with task-induced changes (reactivity) in LAE among boys (p < .008) but not in girls (p > .30). The relationship between racism-related vigilance and LAE varies as a function of gender, and may have longer-term implications for between and within-group disparities in cardiovascular health.

  10. Reduced striatal activation in females with major depression during the processing of affective stimuli.

    PubMed

    Connolly, Megan E; Gollan, Jackie K; Cobia, Derin; Wang, Xue

    2015-09-01

    The extent to which affective reactivity and associated neural underpinnings are altered by depression remains equivocal. This study assessed striatal activation in fifty-one unmedicated female participants meeting DSM-IV criteria for Major Depressive Disorder (MDD) and 61 age-matched healthy females (HC) aged 17-63 years. Participants completed an affective reactivity functional magnetic resonance imaging task. Data were preprocessed using SPM8, and region-of-interest analyses were completed using MarsBaR to extract caudate, putamen, and nucleus accumbens (NAcc) activation. General linear repeated measure ANOVAs were used to assess group differences and correlational analyses were used to measure the association between activation, depression severity, and anhedonia. Main effects of hemisphere, valence, and group status were observed, with MDD participants demonstrating decreased striatal activation compared with HC. Across groups and valence types, the left hemisphere demonstrated greater activation than the right hemisphere in the putamen and nucleus accumbens, whereas the right hemisphere demonstrated greater activation than the left in the caudate. Additionally, unpleasant stimuli elicited greater activation than pleasant and neutral stimuli in the caudate and putamen, and unpleasant stimuli elicited greater activation than neutral stimuli in the NAcc. There were no significant associations between activation, depression severity, and anhedonia. Overall, depression was characterized by reduced affective reactivity in the striatum, regardless of stimuli valence, supporting the emotion context insensitivity model of depression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Impact of early life adversity on EMG stress reactivity of the trapezius muscle

    PubMed Central

    Luijcks, Rosan; Vossen, Catherine J.; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J.; Lousberg, Richel

    2016-01-01

    Abstract Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0–11 years) and adolescence (12–17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability. Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  12. Integrating deliberative planning in a robot architecture

    NASA Technical Reports Server (NTRS)

    Elsaesser, Chris; Slack, Marc G.

    1994-01-01

    The role of planning and reactive control in an architecture for autonomous agents is discussed. The postulated architecture seperates the general robot intelligence problem into three interacting pieces: (1) robot reactive skills, i.e., grasping, object tracking, etc.; (2) a sequencing capability to differentially ativate the reactive skills; and (3) a delibrative planning capability to reason in depth about goals, preconditions, resources, and timing constraints. Within the sequencing module, caching techniques are used for handling routine activities. The planning system then builds on these cached solutions to routine tasks to build larger grain sized primitives. This eliminates large numbers of essentially linear planning problems. The architecture will be used in the future to incorporate in robots cognitive capabilites normally associated with intelligent behavior.

  13. ESTER HYDROLYSIS RATE CONSTANT PREDICTION FROM INFRARED INTERFEROGRAMS

    EPA Science Inventory

    A method for predicting reactivity parameters of organic chemicals from spectroscopic data is being developed to assist in assessing the environmental fate of pollutants. he prototype system, which employs multiple linear regression analysis using selected points from the Fourier...

  14. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme.

    PubMed

    Alford, Lea M; Stoddard, Daniel; Li, Jennifer H; Hunter, Emily L; Tritschler, Douglas; Bower, Raqual; Nicastro, Daniela; Porter, Mary E; Sale, Winfield S

    2016-06-01

    We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  16. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).

  17. Does Platelet Reactivity Predict Bleeding in Patients Needing Urgent Coronary Artery Bypass Grafting During Dual Antiplatelet Therapy?

    PubMed

    Mahla, Elisabeth; Prueller, Florian; Farzi, Sylvia; Pregartner, Gudrun; Raggam, Reinhard B; Beran, Elisabeth; Toller, Wolfgang; Berghold, Andrea; Tantry, Udaya S; Gurbel, Paul A

    2016-12-01

    Up to 15% of patients require coronary artery bypass grafting (CABG) during dual antiplatelet therapy. Available evidence suggests an association between platelet reactivity and CABG-related bleeding. However, platelet reactivity cutoffs for bleeding remain elusive. We sought to explore the association between platelet reactivity and bleeding. Patients on aspirin and a P2Y 12 receptor inhibitor within 48 hours before isolated CABG (n = 149) were enrolled in this prospective study. Blood was drawn 2 to 4 hours preoperatively and platelet reactivity assessed by light transmittance aggregometry (LTA), vasodilator-stimulated phosphoprotein (VASP) assay, Multiplate analyzer and Innovance PFA2Y. The primary endpoint was calculated red blood cell loss computed as follows: (blood volume × preoperative hematocrit × 0.91) - (blood volume × hematocrit × 0.91 on postoperative day 5) + (mL of transfused red blood cells × 0.59). Preoperative platelet reactivity was low [median (interquartile range): LTA: 20 (9-28)%; VASP-PRI: 39 (15-73)%; Multiplate adenosine phosphate test: 16 (12-22) U∗min]. Innovance PFA2Y ≥300 seconds, 72%. Median (IQR) red blood cell loss in patients in first the LTA tertile was 1,449 (1,020 to 1,754) mL compared with 1,107 (858 to 1,512) mL and 1,075 (811 to 1,269) mL in those in the second and third tertiles, respectively (p < 0.004). Bleeding Academic Research Consortium (BARC)-4 bleeding differed between tertiles (62% versus 46% versus 36%; p = 0.037). In a multivariable linear regression model, aspirin dose ≥300 mg, cardiopulmonary bypass time, EuroSCORE, and tertile distribution of platelet reactivity were significantly associated with red blood cell loss. A gradual decrease in red blood cell loss and BARC-4 bleeding occurs with increasing platelet reactivity in patients on antiplatelet therapy undergoing CABG. Our findings support current guidelines to determine time of surgery based on an objective measurement of platelet function (Platelet Inhibition and Bleeding in Patients Undergoing Emergent Cardiac Surgery; clinicaltrials.gov NCT01468597). Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Optimal Load Shedding and Generation Rescheduling for Overload Suppression in Large Power Systems.

    NASA Astrophysics Data System (ADS)

    Moon, Young-Hyun

    Ever-increasing size, complexity and operation costs in modern power systems have stimulated the intensive study of an optimal Load Shedding and Generator Rescheduling (LSGR) strategy in the sense of a secure and economic system operation. The conventional approach to LSGR has been based on the application of LP (Linear Programming) with the use of an approximately linearized model, and the LP algorithm is currently considered to be the most powerful tool for solving the LSGR problem. However, all of the LP algorithms presented in the literature essentially lead to the following disadvantages: (i) piecewise linearization involved in the LP algorithms requires the introduction of a number of new inequalities and slack variables, which creates significant burden to the computing facilities, and (ii) objective functions are not formulated in terms of the state variables of the adopted models, resulting in considerable numerical inefficiency in the process of computing the optimal solution. A new approach is presented, based on the development of a new linearized model and on the application of QP (Quadratic Programming). The changes in line flows as a result of changes to bus injection power are taken into account in the proposed model by the introduction of sensitivity coefficients, which avoids the mentioned second disadvantages. A precise method to calculate these sensitivity coefficients is given. A comprehensive review of the theory of optimization is included, in which results of the development of QP algorithms for LSGR as based on Wolfe's method and Kuhn -Tucker theory are evaluated in detail. The validity of the proposed model and QP algorithms has been verified and tested on practical power systems, showing the significant reduction of both computation time and memory requirements as well as the expected lower generation costs of the optimal solution as compared with those obtained from computing the optimal solution with LP. Finally, it is noted that an efficient reactive power compensation algorithm is developed to suppress voltage disturbances due to load sheddings, and that a new method for multiple contingency simulation is presented.

  19. Study of a control strategy for grid side converter in doubly- fed wind power system

    NASA Astrophysics Data System (ADS)

    Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.

    2016-08-01

    The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.

  20. Relationship of obesity and insulin resistance with the cerebrovascular reactivity: a case control study

    PubMed Central

    2014-01-01

    Background Obesity is associated with increased risk for stroke. The breath-holding index (BHI) is a measure of vasomotor reactivity of the brain which can be measured with the transcranial Doppler (TCD). We aim to evaluate obesity as an independent factor for altered cerebrovascular reactivity. Methods Cerebrovascular hemodynamics (mean flow velocities MFV, pulsatility index, PI, resistance index, RI, and BHI) was determined in 85 non-obese (Body Mass Index, BMI ≤27 kg/m2) and 85 obese subjects (BMI ≥35 kg/m2) without diabetes mellitus and hypertension. Anthropometric and metabolic variables, and scores to detect risk for obstructive sleep apnea (OSA) were analyzed for their association with the cerebrovascular reactivity. Results The BHI was significantly lower in subjects with obesity according to BMI and in subjects with abdominal obesity, but the PI and RI were not different between groups. There was a linear association between the BMI, the HOMA-IR, the Matsuda index, the waist circumference, and the neck circumference, with the cerebrovascular reactivity. After adjusting for insulin resistance, neck circumference, and abdominal circumference, obesity according to BMI was negatively correlated with the cerebrovascular reactivity. Conclusions We found a diminished vasomotor reactivity in individuals with obesity which was not explained by the presence of insulin resistance. PMID:24383894

  1. Alcohol attentional bias is associated with autonomic indices of stress-primed alcohol cue-reactivity in alcohol-dependent patients.

    PubMed

    Garland, Eric L; Franken, Ingmar H; Sheetz, John J; Howard, Matthew O

    2012-06-01

    When alcohol-dependent individuals are exposed to drinking-related cues, they exhibit psychophysiological reactivity such as changes in heart rate variability (HRV) and skin temperature. Moreover, such alcohol cue-reactivity may co-occur with attentional bias (AB) toward alcohol cues. In turn, stress may promote appetitive responses by exacerbating these autonomic and attentional factors. Although cue-reactivity paradigms have been used for decades to probe such automatic appetitive processes in persons with alcohol-use disorders, less is known about the attentional correlates of alcohol cue-reactivity. In this study, alcohol-dependent adults (N = 58) recruited from a residential treatment facility completed a spatial cueing task as a measure of alcohol AB and affect-modulated cue-reactivity protocol. Multiple linear regression analyses revealed that alcohol AB was significantly positively associated with parasympathetically mediated HRV and finger temperature slope and inversely associated with sympathetically mediated HRV during stress-primed alcohol cue-exposure, independent of alcohol dependence severity, time in treatment, alcohol craving, and perceived stress. Study findings suggest that alcohol AB is linked with physiological cue-reactivity and that different attentional strategies are associated with distinct profiles of autonomic responses that may ultimately index or confer additional risk for alcohol dependence.

  2. Serum bilirubin levels are inversely associated with PAI-1 and fibrinogen in Korean subjects.

    PubMed

    Cho, Hyun Sun; Lee, Sung Won; Kim, Eun Sook; Shin, Juyoung; Moon, Sung Dae; Han, Je Ho; Cha, Bong Yun

    2016-01-01

    Oxidative stress may contribute to atherosclerosis and increased activation of the coagulation pathway. Bilirubin may reduce activation of the hemostatic system to inhibit oxidative stress, which would explain its cardioprotective properties shown in many epidemiological studies. This study investigated the association of serum bilirubin with fibrinogen and plasminogen activator inhibitor-1 (PAI-1), respectively. A cross-sectional analysis was performed on 968 subjects (mean age, 56.0 ± 11.2 years; 61.1% men) undergoing a general health checkup. Serum biochemistry was analyzed including bilirubin subtypes, insulin resistance (using homeostasis model of assessment [HOMA]), C-reactive protein (CRP), fibrinogen, and PAI-1. Compared with subjects with a total bilirubin (TB) concentration of <10.0 μmol/L, those with a TB concentration of >17.1 μmol/L had a smaller waist circumference, a lower triglyceride level, a lower prevalence of metabolic syndrome, and decreased HOMA-IR and CRP levels. Correlation analysis revealed linear relationships of fibrinogen with TB and direct bilirubin (DB), whereas PAI-1 was correlated with DB. After adjustment for confounding factors, bilirubin levels were inversely associated with fibrinogen and PAI-1 levels, respectively. Multivariate regression models showed a negative linear relationship between all types of bilirubin and fibrinogen, whereas there was a significant linear relationship between PAI-1 and DB. High bilirubin concentrations were independently associated with low levels of fibrinogen and PAI-1, respectively. The association between TB and PAI-1 was confined to the highest TB concentration category whereas DB showed a linear association with PAI-1. Bilirubin may protect against the development of atherothrombosis by reducing the hemostatic response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Rabbit and Mouse Models of HSV-1 Latency, Reactivation, and Recurrent Eye Diseases

    PubMed Central

    Webre, Jody M.; Hill, James M.; Nolan, Nicole M.; Clement, Christian; McFerrin, Harris E.; Bhattacharjee, Partha S.; Hsia, Victor; Neumann, Donna M.; Foster, Timothy P.; Lukiw, Walter J.; Thompson, Hilary W.

    2012-01-01

    The exact mechanisms of HSV-1 establishment, maintenance, latency, reactivation, and also the courses of recurrent ocular infections remain a mystery. Comprehensive understanding of the HSV-1 disease process could lead to prevention of HSV-1 acute infection, reactivation, and more effective treatments of recurrent ocular disease. Animal models have been used for over sixty years to investigate our concepts and hypotheses of HSV-1 diseases. In this paper we present descriptions and examples of rabbit and mouse eye models of HSV-1 latency, reactivation, and recurrent diseases. We summarize studies in animal models of spontaneous and induced HSV-1 reactivation and recurrent disease. Numerous stimuli that induce reactivation in mice and rabbits are described, as well as factors that inhibit viral reactivation from latency. The key features, advantages, and disadvantages of the mouse and rabbit models in relation to the study of ocular HSV-1 are discussed. This paper is pertinent but not intended to be all inclusive. We will give examples of key papers that have reported novel discoveries related to the review topics. PMID:23091352

  4. Synthesis and Study of Metallonitride Complexes and Polymers

    DTIC Science & Technology

    1992-03-02

    heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese

  5. Cross-reactivity of a human IgG1 anticitrullinated fibrinogen monoclonal antibody to a citrullinated profilaggrin peptide

    PubMed Central

    Trier, Nicole Hartwig; Leth, Maria Louise; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Rheumatoid arthritis (RA) is the most common autoimmune rheumatic disease. It is characterized by persistent joint inflammation, resulting in loss of joint function, morbidity and premature mortality. The presence of antibodies against citrullinated proteins is a characteristic feature of RA and up to 70% of RA patients are anticitrullinated protein antibody (ACPA) positive. ACPA responses have been widely studied and are suggested to be heterogeneous, favoring antibody cross-reactivity to citrullinated proteins. In this study, we examined factors that may influence cross-reactivity between a commercial human anticitrullinated fibrinogen monoclonal antibody and a citrullinated peptide. Using a citrullinated profilaggrin sequence (HQCHQEST- Cit-GRSRGRCGRSGS) as template, cyclic and linear truncated peptide versions were tested for reactivity to the monoclonal antibody. Factors such as structure, peptide length and flanking amino acids were found to have a notable impact on antibody cross-reactivity. The results achieved contribute to the understanding of the interactions between citrullinated peptides and ACPA, which may aid in the development of improved diagnostics of ACPA. PMID:23076998

  6. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    NASA Astrophysics Data System (ADS)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  7. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near future. Quantitative models that link stress severity, plant volatile emissions and climatic feedbacks are currently being developed, and this presentation argues that incorporating stress-dependent feedbacks in Earth system models in inevitable to simulate future climates.

  8. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less

  9. Oxidative stress biomarker monitoring in elite women volleyball athletes during a 6-week training period.

    PubMed

    Martinović, Jelena; Dopsaj, Violeta; Kotur-Stevuljević, Jelena; Dopsaj, Milivoj; Vujović, Ana; Stefanović, Aleksandra; Nešić, Goran

    2011-05-01

    The objectives of this study were to determine (a) if reactive oxygen metabolites (ROMs) are a reliable parameter for monitoring oxidative stress in athletes alone or in association with other parameters of oxidative stress and depending on whether antioxidant supplements are taken or not; (b) the level of oxidative stress in athletes before the competition season; and (c) if oxidative status could be improved in volleyball athletes. Sixteen women athletes (supplemented group) received an antioxidant cocktail containing vitamin E, vitamin C, zinc gluconate, and selenium as a dietary supplement during a 6-week training period, whereas 12 of them (control group) received no dietary supplement. Blood samples were taken before and after the training period. The following parameters were measured: ROMs, superoxide anion (O2⁻₂), malondialdehyde (MDA), advanced oxidation protein products (AOPP), lipid hydroperoxide (LOOH), biological antioxidative potential (BAP), paraoxonase activity toward paraoxon (POase) and diazoxon (DZOase), superoxide dismutase(SOD), total sulfydryl group concentration (SH groups), and lipid status. Reactive oxygen metabolites were taken as the dependent variable and MDA, O2⁻₂, AOPP, and LOOH as independent variables. In the group of athletes who have received supplementation, linear regression analysis revealed that the implemented model had a lower influence on dROMs (70.4 vs. 27.9%) after the training period. The general linear model showed significant differences between parameters before and after training/supplementation (Wilks' lambda = 0.074, F = 11.76, p < 0.01). At the partial level, significant increases in ROM levels (p <0.05, 95% confidence interval [CI]: 286-337), SOD activity (CI: 113-144), and BAP (CI: 2,388-2,580) (p < 0.01) were observed. The association between ROMs and other parameters of oxidative stress was reduced in athletes who received supplements. During the precompetition training period, treatment with dietary supplements prevented the depletion of antioxidative defense in volleyball athletes.

  10. Vitamin D Status Is Associated with Hepcidin and Hemoglobin Concentrations in Children with Inflammatory Bowel Disease.

    PubMed

    Syed, Sana; Michalski, Ellen S; Tangpricha, Vin; Chesdachai, Supavit; Kumar, Archana; Prince, Jarod; Ziegler, Thomas R; Suchdev, Parminder S; Kugathasan, Subra

    2017-09-01

    Anemia, iron deficiency, and hypovitaminosis D are well-known comorbidities in inflammatory bowel disease (IBD). Epidemiologic studies have linked vitamin D deficiency with increased risk of anemia, and in vitro studies suggest that vitamin D may improve iron recycling through downregulatory effects on hepcidin and proinflammatory cytokines. We aimed to investigate the association of vitamin D status with inflammation, iron biomarkers, and anemia in pediatric IBD. Cross-sectional data were obtained from N = 69 patients with IBD aged 5 to <19 years. Iron biomarkers (ferritin, soluble transferrin receptor), and 25-hydroxyvitamin D (25(OH)D), inflammatory biomarkers (C-reactive protein and α-1-acid glycoprotein), hepcidin, and hemoglobin were collected. Iron biomarkers were regression corrected for inflammation. Multivariable logistic/linear models were used to examine the associations of 25(OH)D with inflammation, iron status, hepcidin, and anemia. Approximately 50% of subjects were inflamed (C-reactive protein >5 mg/L or α-1-acid glycoprotein >1 g/L). Iron deficiency prevalence (inflammation-corrected ferritin <15 μg/L or soluble transferrin receptor >8.3 mg/L) was 67%; anemia was 36%, and vitamin D insufficiency (25(OH)D <30 ng/mL) was 77%. In linear regression models, vitamin D insufficiency was associated with increased hepcidin levels (β [SE] = 0.6 [0.2], P = 0.01) and reduced hemoglobin (β [SE] = -0.9 [0.5], P = 0.046), controlling for age, sex, race, insurance status, body mass index for age, inflammation, disease diagnosis (ulcerative colitis versus Crohn's disease), and disease duration, compared with 25(OH)D ≥30 ng/mL. Our results suggest that concentrations of 25(OH)D ≥30 ng/mL are associated with lower hepcidin and higher hemoglobin levels. Further research is needed to clarify the association of vitamin D with inflammation, iron status, and anemia in pediatric IBD.

  11. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite has rarely been addressed and this holds true especially for PPCPs. Therefore, the obtained results will be useful for the design and characterization of those HPRBs in which zeolite will be employed to regenerate treated wastewater for artificial recharge activities.

  12. PTSD Psychotherapy Outcome Predicted by Brain Activation During Emotional Reactivity and Regulation.

    PubMed

    Fonzo, Gregory A; Goodkind, Madeleine S; Oathes, Desmond J; Zaiko, Yevgeniya V; Harvey, Meredith; Peng, Kathy K; Weiss, M Elizabeth; Thompson, Allison L; Zack, Sanno E; Lindley, Steven E; Arnow, Bruce A; Jo, Booil; Gross, James J; Rothbaum, Barbara O; Etkin, Amit

    2017-12-01

    Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but many patients do not respond. Brain functions governing treatment outcome are not well characterized. The authors examined brain systems relevant to emotional reactivity and regulation, constructs that are thought to be central to PTSD and exposure therapy effects, to identify the functional traits of individuals most likely to benefit from treatment. Individuals with PTSD underwent functional MRI (fMRI) while completing three tasks assessing emotional reactivity and regulation. Participants were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30). A random subset of the prolonged exposure group (N=17) underwent single-pulse transcranial magnetic stimulation (TMS) concurrent with fMRI to examine whether predictive activation patterns reflect causal influence within circuits. Linear mixed-effects modeling in line with the intent-to-treat principle was used to examine how baseline brain function moderated the effect of treatment on PTSD symptoms. At baseline, individuals with larger treatment-related symptom reductions (compared with the waiting list condition) demonstrated 1) greater dorsal prefrontal activation and 2) less left amygdala activation, both during emotion reactivity; 3) better inhibition of the left amygdala induced by single TMS pulses to the right dorsolateral prefrontal cortex; and 4) greater ventromedial prefrontal/ventral striatal activation during emotional conflict regulation. Reappraisal-related activation was not a significant moderator of the treatment effect. Capacity to benefit from prolonged exposure in PTSD is gated by the degree to which prefrontal resources are spontaneously engaged when superficially processing threat and adaptively mitigating emotional interference, but not when deliberately reducing negative emotionality.

  13. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletionmore » of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs« less

  14. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    NASA Astrophysics Data System (ADS)

    Laskin, Julia; Hu, Qichi

    2017-07-01

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.

  15. Assessing the superelectrophilic dimension through sigma-complexation, SNAr and Diels-Alder reactivity.

    PubMed

    Buncel, Erwin; Terrier, François

    2010-05-21

    In the domain of organic chemistry, S(N)Ar substitutions represent a class of reactions of overwhelming importance, both in synthesis and in the understanding of structure-reactivity relationships, especially the role of sigma-complex intermediates. The primary factor necessary for achievement of S(N)Ar reactions is the presence of a good leaving group, which allows facile rearomatization of the ring undergoing nucleophilic attack. Consistent is the finding that the superelectrophilic chloronitrobenzofuroxans--or furazans--exhibit a very high S(N)Ar reactivity, allowing a number of C-C, C-N, C-O couplings to be achieved that are not accessible with the classical series of nitro-substituted aromatics. Of particular interest is the synthesis of a number of indoles, indolizines, pyrroles and extended pi-excessive aromatic structures like azulene substituted by superelectrophilic moieties. The remarkable driving force for the facile completion of these reactions is the 10 orders of magnitude greater reactivity of 10pi-electron-deficient heteroaromatics such as 4,6-dinitrobenzofuroxan (DNBF) than of the most reactive trinitrobenzene derivatives in sigma-adduct complexation. Among the factors that have been recognized as governing superelectrophilicity, there is the poor aromaticity of 6-membered 10pi-electron structures investigated, with a common origin for sigma-complexation and pericyclic processes. A remarkable capacity of these structures is actually to contribute to a variety of Diels-Alder reactions. As an example, the DNBF molecule formally behaves as a nitroalkene, being susceptible to act as a dienophile as well as a heterodiene. Another remarkable Diels-Alder pathway is the capacity of the 6-membered carbocyclic ring of DNBF to act as a carbodiene. Also noteworthy is the successful Diels-Alder trapping of the dinitroso intermediate associated with 1-oxide/3-oxide tautomerism of the furoxan moiety of 4-aza-6-nitrobenzofuroxan. A point of fundamental importance in taking advantage of the reactivity of superelectrophilic structures at hand has been a successful calibration of their reactivity within the electrophilicity E scale developed by Mayr to describe nucleophile-electrophile combinations in general. It has thus been established that the E parameters measuring the electrophilicity of neutral heteroaromatics lie in the same region of the E scale as a number of highly reactive cationic reagents. Besides a reactivity rather similar to that of the 4-nitrobenzenediazonium cation (vide supra), the most electrophilic neutral molecules (DNBF, DNTP, DNBZ) are as electrophilic as tropylium cations or a number of metal-coordinated carbenium ions. Furthermore, there is a remarkable link between the pK(a)(H(2)O) and E scales, as evidenced by the existence of a unique linear relationship spanning more than 20 orders of reactivity. This relationship appears as being a nice probe to predict the feasibility of S(N)Ar substitutions and related sigma-complexation processes. Also revealing in terms of feasibility of the reactions is the existence of a close correlation between the electrochemical oxidation potential E degrees of sigma-adducts and their positioning on the pK(a)(H(2)O) scale. Our data can also be used to evaluate the potential of a theoretical model recently derived from DFT calculations, namely the global electrophilicity index omega, for the description of nucleophile-electrophile combinations. While showing several significant deviations, a reasonably linear omega vs. pK(a)(H(2)O) relationship is obtained when restricting the correlation to structurally similar electrophilic moieties. On this basis, valuable information could be derived regarding the polar character of some DA reactions. Overall, the global electrophilicity (omega) approach may be a promising avenue in future work of electrophile-nucleophile combinations.

  16. On the physics-based processes behind production-induced seismicity in natural gas fields

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan

    2017-04-01

    Induced seismicity due to natural gas production is observed at different sites around the world. Common understanding is that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations, hence reactivating pre-existing faults and inducing earthquakes. Previous studies have often assumed that pressure changes in the reservoir compartments and intersecting fault zones are equal, while neglecting multi-phase fluid flow. In this study, we show that disregarding fluid flow involved in natural gas extraction activities is often inappropriate. We use a fully coupled multiphase fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, cut in two compartments that are offset by a normal fault, and overlain by impermeable caprock. Results show that fluid flow plays a major role pertaining to pore pressure and stress evolution within the fault. Hydro-mechanical processes include rotation of the principal stresses due to reservoir compaction, as well as poroelastic effects caused by the pressure drop in the adjacent reservoir. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighbouring reservoir compartment and other formations. We also analyze the case of production in both compartments, and results show that simultaneous production does not prevent the fault to be reactivated, but the magnitude of the induced event is smaller. Finally, we analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas re-injection. Results show that, in the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production stop, although in average the shut-in results in reduction of seismicity. In the case of gas re-injection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, accounting for continuous production at a given reservoir and gas re-injection at a neighbouring compartment does not stop the fault from being reactivated.

  17. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    USGS Publications Warehouse

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.

  18. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.R.; Ebner, J.R.

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account formore » the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.« less

  19. Poverty and involuntary engagement stress responses: examining the link to anxiety and aggression within low-income families.

    PubMed

    Wolff, Brian C; Santiago, Catherine DeCarlo; Wadsworth, Martha E

    2009-05-01

    Families living with the burdens of poverty-related stress are at risk for developing a range of psychopathology. The present study examines the year-long prospective relationships among poverty-related stress, involuntary engagement stress response (IESR) levels, and anxiety symptoms and aggression in an ethnically diverse sample of 98 families (300 individual family members) living at or below 150% of the US federal poverty line. Hierarchical Linear Modeling (HLM) moderator model analyses provided strong evidence that IESR levels moderated the influence of poverty-related stress on anxiety symptoms and provided mixed evidence for the same interaction effect on aggression. Higher IESR levels, a proxy for physiological stress reactivity, worsened the impact of stress on symptoms. Understanding how poverty-related stress and involuntary stress responses affect psychological functioning has implications for efforts to prevent or reduce psychopathology, particularly anxiety, among individuals and families living in poverty.

  20. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Subeihi, Ala' A.A., E-mail: ala.alsubeihi@wur.nl; BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority; Spenkelink, Bert

    2012-05-01

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenolmore » (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD{sub 10}) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose and from rat to human.« less

  1. A Kinetic Approach to Propagation and Stability of Detonation Waves

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  2. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology.

    PubMed

    Heleniak, Charlotte; McLaughlin, Katie A; Ormel, Johan; Riese, Harriette

    2016-10-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity - the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress - a threat as opposed to challenge profile - are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M=16.17years old, 49.2% boys) in the TRacking Adolescents' Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology

    PubMed Central

    Heleniak, Charlotte; McLaughlin, Katie A.; Ormel, Johan; Riese, Harriette

    2016-01-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity – the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress – a threat as opposed to challenge profile – are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M = 16.17 years old, 49.2% boys) in the TRacking Adolescents’ Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. PMID:27568327

  4. Exploring the Reactivity Trends in the E2 and SN2 Reactions of X(-) + CH3CH2Cl (X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3).

    PubMed

    Wu, Xiao-Peng; Sun, Xiao-Ming; Wei, Xi-Guang; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2009-06-09

    The reactivity order of 12 anions toward ethyl chloride has been investigated by using the G2(+) method, and the competitive E2 and SN2 reactions are discussed and compared. The reactions studied are X(-) + CH3CH2Cl → HX + CH2═CH2 + Cl(-) and X(-) + CH3CH2Cl → CH3CH2X + Cl(-), with X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3. Our results indicate that there is no general and straightforward relationship between the overall barriers and the proton affinity (PA) of X(-); instead, discernible linear correlations only exist for the X's within the same group of the periodic table. Similar correlations are also found with the electronegativity of central atoms in X, deformation energy of the E2 transition state (TS), and the overall enthalpy of reaction. It is revealed that the electronegativity will significantly affect the barrier height, and a more electronegative X will stabilize the E2 and SN2 transition states. Multiple linear regression analysis shows that there is a reasonable linear correlation between E2 (or SN2) overall barriers and the linear combination of PA of X(-) and electronegativity of the central atom.

  5. Monitoring Programs Using Rewriting

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Lan, Sonie (Technical Monitor)

    2001-01-01

    We present a rewriting algorithm for efficiently testing future time Linear Temporal Logic (LTL) formulae on finite execution traces, The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive in most past applications of LTL, theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications, corresponding to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property end then suggest an optimized algorithm based on transforming LTL formulae. We use the Maude rewriting logic, which turns out to be a good notation and being supported by an efficient rewriting engine for performing these experiments. The work constitutes part of the Java PathExplorer (JPAX) project, the purpose of which is to develop a flexible tool for monitoring Java program executions.

  6. Evaluation of incremental reactivity and its uncertainty in Southern California.

    PubMed

    Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G

    2003-04-15

    The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used.

  7. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural.

    PubMed

    Neumann, Christopher N D; Bulach, Winfried D; Rehahn, Matthias; Klein, Roland

    2011-09-01

    This paper reports on the synthesis of a new highly reactive diisocyanate monomer based on hydroxymethylfurfural. It further describes its catalyst-free conversion to linear-chain thermoplastic polyurethanes as well as to cross-linked polyurethane foams. In addition, a novel strategy for the synthesis of polyurethane foams without the necessity of using water is developed. Nitrogen is utilized herein as blowing agent which is formed during Curtius rearrangement of a new furan based carboxylic azide into its corresponding diisocyanate. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A computer program for uncertainty analysis integrating regression and Bayesian methods

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary

    2014-01-01

    This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.

  9. Antigenic regions within the hepatitis C virus envelope 1 and non-structural proteins: identification of an IgG3-restricted recognition site with the envelope 1 protein.

    PubMed Central

    Sällberg, M; Rudén, U; Wahren, B; Magnius, L O

    1993-01-01

    Antibody binding to antigenic regions of hepatitis C virus (HCV) envelope 1 (E1; residues 183-380, E2/non-structural (NS) 1 (residues 380-437), NS1 (residues 643-690), and NS4 (1684-1751) proteins were assayed for 50 sera with antibodies to HCV (anti-HCV) and for 46 sera without anti-HCV. Thirty-four peptides, 18 residues long with an eight-amino acid overlap within each HCV region, were synthesized and tested with all 96 sera. Within the E region 183-380, the major binding site was located to residues 203-220, and was recognized by eight sera. Within the E2/NS1 region 380-437, the peptide covering residues 410-427 was recognized by two sera, and within the NS1 region 643-690, peptides covering residues 663-690 were recognized by four sera. Within the NS4 region 1684-1751, 27 sera were reactive to one or more of the NS4 peptides, and 21 out of these were reactive with peptide 1694-1711. One part of the major binding site could be located to residues 1701-1704, with the sequence Leu-Tyr-Arg-Glu. The IgG1, IgG3 and IgG4 subclasses were reactive with the five antigenic regions of HCV core, residues 1-18, 11-28, 21-38, 51-68 and 101-118. Reactivity to the major envelope site consisted almost exclusively of IgG3, and reactivity to the major site of NS4 consisted only of IgG1. Thus, a non-restricted IgG response to linear HCV-encoded binding sites was found to the core protein, whereas IgG subclass-restricted linear binding sites were found within the E1 protein, and within the NS4 protein. PMID:7680297

  10. Arginine intake is associated with oxidative stress in a general population.

    PubMed

    Carvalho, Aline Martins de; Oliveira, Antonio Anax Falcão de; Loureiro, Ana Paula de Melo; Gattás, Gilka Jorge Figaro; Fisberg, Regina Mara; Marchioni, Dirce Maria

    2017-01-01

    The aim of this study was to assess the association between protein and arginine from meat intake and oxidative stress in a general population. Data came from the Health Survey for Sao Paulo (ISA-Capital), a cross-sectional population-based study in Brazil (N = 549 adults). Food intake was estimated by a 24-h dietary recall. Oxidative stress was estimated by malondialdehyde (MDA) concentration in plasma. Analyses were performed using general linear regression models adjusted for some genetic, lifestyle, and biochemical confounders. MDA levels were associated with meat intake (P for linear trend = 0.031), protein from meat (P for linear trend = 0.006), and arginine from meat (P for linear trend = 0.044) after adjustments for confounders: age, sex, body mass index, smoking, physical activity, intake of fruit and vegetables, energy and heterocyclic amines, C-reactive protein levels, and polymorphisms in GSTM1 (glutathione S-transferase Mu 1) and GSTT1 (glutathione S-transferase theta 1) genes. Results were not significant for total protein and protein from vegetable intake (P > 0.05). High protein and arginine from meat intake were associated with oxidative stress independently of genetic, lifestyle, and biochemical confounders in a population-based study. Our results suggested a novel link between high protein/arginine intake and oxidative stress, which is a major cause of age-related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Reactivating dynamics for the susceptible-infected-susceptible model: a simple method to simulate the absorbing phase

    NASA Astrophysics Data System (ADS)

    Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.

    2018-04-01

    We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.

  12. Alteration of complex negative emotions induced by music in euthymic patients with bipolar disorder.

    PubMed

    Choppin, Sabine; Trost, Wiebke; Dondaine, Thibaut; Millet, Bruno; Drapier, Dominique; Vérin, Marc; Robert, Gabriel; Grandjean, Didier

    2016-02-01

    Research has shown bipolar disorder to be characterized by dysregulation of emotion processing, including biases in facial expression recognition that is most prevalent during depressive and manic states. Very few studies have examined induced emotions when patients are in a euthymic phase, and there has been no research on complex emotions. We therefore set out to test emotional hyperreactivity in response to musical excerpts inducing complex emotions in bipolar disorder during euthymia. We recruited 21 patients with bipolar disorder (BD) in a euthymic phase and 21 matched healthy controls. Participants first rated their emotional reactivity on two validated self-report scales (ERS and MAThyS). They then rated their music-induced emotions on nine continuous scales. The targeted emotions were wonder, power, melancholy and tension. We used a specific generalized linear mixed model to analyze the behavioral data. We found that participants in the euthymic bipolar group experienced more intense complex negative emotions than controls when the musical excerpts induced wonder. Moreover, patients exhibited greater emotional reactivity in daily life (ERS). Finally, a greater experience of tension while listening to positive music seemed to be mediated by greater emotional reactivity and a deficit in executive functions. The heterogeneity of the BD group in terms of clinical characteristics may have influenced the results. Euthymic patients with bipolar disorder exhibit more complex negative emotions than controls in response to positive music. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mothers' Vagal Regulation During the Still-Face Paradigm: Normative Reactivity and Impact of Depression Symptoms

    PubMed Central

    Oppenheimer, Julia E.; Measelle, Jeffrey R.; Laurent, Heidemarie K.; Ablow, Jennifer C.

    2013-01-01

    This study examined mothers' physiological reactivity in response to infant distress during the Still-Face Paradigm. We aimed to explore normative regulatory profiles and associated physiological and behavioral processes in order to further our understanding of what constitutes regulation in this dyadic context. We examined physiological patterns—vagal tone, indexed by respiratory sinus arrhythmia (RSA)-- while mothers maintained a neutral expression over the course of the still face episode, as well as differential reactivity patterns in mothers with depression symptoms compared to non-depressed mothers. Behavioral and physiological data were collected from mothers of 5-month-old infants during the emotion suppression phase of the Still-Face Paradigm. We used Hierarchical Linear Modeling to examine changes in mothers' RSA during infant distress and explored maternal depression as a predictor of physiological profiles. Mothers were generally able to maintain a neutral expression and simultaneously demonstrated a mean-level increase in RSA during the still face episode compared to baseline, indicating an active regulatory response overall. A more detailed time-course examination of RSA trajectories revealed that an initial RSA increase was typically followed by a decrease in response to peak infant distress, suggesting a physiological mobilization response. However, this was not true of mothers with elevated depressive symptoms, who showed no change in RSA during infant distress. These distinct patterns of infant distress-related physiological activation may help to explain differences in maternal sensitivity and adaptive parenting. PMID:23454427

  14. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Commer, M.; Ajo Franklin, J. B.; Li, L.; Hubbard, S. S.

    2012-12-01

    In Microbial-Enhanced-Hydrocarbon-Recovery (MEHR), preferential bioclogging targets the growth of the biofilms (def. immobilized biopolymers with active cells embodied in it) in highly permeable thief zones to enhance sweep efficiency in oil reservoirs. During MEHR, understanding and controlling bioclogging is hindered by the lack of advanced modeling and monitoring tools; these deficiencies contribute to suboptimal performance. Our focus in this study was on developing a systematic approach to understand and monitor bioclogging at the reservoir scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic). In this study, we created a realistic reservoir model from a heterogeneous gas reservoir in the Southern Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical, nuclear, and NMR logs for hydrologic and geophysical properties. From the simplified 2D log data model, a strip of size 150m x75m with several high permeability streaks is identified for bioclogging simulation experiments. From the NMR log data it is observed that a good linear correlation exist between logarithmic permeability (0.55- 3.34 log (mD)) versus porosity (0.041-0.28). L. mesenteroides was chosen as the model bacteria. In the presence of sucrose, it enzymatically catalyzes the production of dextran, a useful bioclogging agent. Using microbial kinetics from our laboratory experiment and reservoir heterogeneity, a reactive transport model (RTM) is established for two kinds of bioclogging treatments based on whether microbes are present in situ or are supplied externally. In both cases, sucrose media (1.5 M) is injected at the rate of 1 liter/s for 20 days into the center of high permeable strip to stimulate microbes. Simulations show that the high dextran production was deep into the formation from the injection well. This phenomenon can be explained precisely with bacterial kinetics and injection rate. In the in situ treatment, dextran contributes to a maximum porosity reduction of 9.2%, while in the exogenous microbes treatment, the dextran contributes to a maximum of 10.9% porosity reduction. After RTM, the potential geophysical signature of the treatment was evaluated using previously developed experimental rock physics models and realistic forward modeling approaches. Seismic experiments during dextran production performed by Kwan & Ajo-Franklin (2011) were combined with full waveform viscoelastic modeling to yield a predicted attenuation response from the dextran distributions modeled using RTM. The response suggests that crosswell attenuation tomography may be a viable approach for in situ monitoring of the bioclogging process. Modeling the EM response involved the induced polarization (IP) method, where the simulated resistance amplitude and phase changes can be attributed to porosity reduction. Our studies suggest that the IP signals provide a valuable additional indicator. Both geophysical data methods in a joint imaging approach potentially increase the resolution of each geophysical attribute change. Likewise, reactive transport modeling and geophysical monitoring can provide a powerful tool for predicting different bioclogging scenarios in subsurface. The combination may enhance our capabilities of controlling and monitoring the MEHR bioclogging process at reservoir scale.

  15. Visualization of RNA structure models within the Integrative Genomics Viewer.

    PubMed

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude

    PubMed Central

    Fan, Jui-Lin; Subudhi, Andrew W.; Duffin, James; Lovering, Andrew T.; Roach, Robert C.; Kayser, Bengt

    2016-01-01

    Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude. PMID:26779030

  17. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  18. Do Productive Activities Reduce Inflammation in Later Life? Multiple Roles, Frequency of Activities, and C-Reactive Protein

    PubMed Central

    Kim, Seoyoun; Ferraro, Kenneth F.

    2014-01-01

    Purpose of the Study: The study investigates whether productive activities by older adults reduce bodily inflammation, as indicated by C-reactive protein (CRP), a biomeasure associated with the risk of cardiovascular diseases. Design and Methods: The study uses a representative survey of adults aged 57–85 from the National Social Life, Health, and Aging Project (N = 1,790). Linear regression models were used to analyze the effects of multiple roles (employment, volunteering, attending meetings, and caregiving) and the frequency of activity within each role on log values of CRP concentration (mg/L) drawn from assayed blood samples. Results: Number of roles for productive activities was associated with lower levels of CRP net of chronic conditions, lifestyle factors, and socioeconomic resources. When specific types of activity were examined, volunteering manifested the strongest association with lower levels of inflammation, particularly in the 70+ group. There was no evidence that frequent engagement in volunteer activity was associated with heightened inflammation. Implications: Productive activities—and frequent volunteering in particular—may protect individuals from inflammation that is associated with increased risk of hypertension and cardiovascular disease. PMID:23969258

  19. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information

    NASA Astrophysics Data System (ADS)

    Unke, Oliver T.; Meuwly, Markus

    2018-06-01

    Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thousands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are used. Most current approaches are either transferable between different chemical systems, but not particularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method to construct a potential energy surface based on neural networks is presented. Since the total energy is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales linearly with system size. With prediction errors below 0.5 kcal mol-1 for both unknown molecules and configurations, the method is accurate across chemical and configurational space, which is demonstrated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a diverse database of equilibrium structures. The possibility to use small molecules as reference data to predict larger structures is also explored. Since the descriptor only uses local information, high-level ab initio methods, which are computationally too expensive for large molecules, become feasible for generating the necessary reference data used to train the neural network.

  20. Serum Bilirubin and Their Association With C-Reactive Protein in Patients With Migraine.

    PubMed

    Peng, You-Fan; Xie, Li-Qiu; Xiang, Yang; Xu, Gui-Dan

    2016-11-01

    Increased levels of C-reactive protein (CRP) have been considered as a marker in assessing neurogenic inflammation of migraine patients. An inverse relationship between serum bilirubin and CRP has been observed in various diseases. Therefore, we analyzed serum bilirubin levels in migraine patients, and investigated the relationship between serum bilirubin and CRP in migraineurs. A total of 86 newly diagnosed migraine patients were consecutively recruited to this study. Significantly lower median serum total bilirubin, conjugated bilirubin (CB) and unconjugated bilirubin were found in patients with migraine than healthy controls, and the levels of CRP were significantly higher in migraine patients than healthy controls. A negative correlation between CRP and CB was observed in patients with migraine (r = -0.255, P = 0.018). In a multiple linear regression model, the concentrations of CRP remained negatively correlated with CB. Our study demonstrates that serum bilirubin concentrations are decreased in migraineurs, and CB levels were found to be positively correlated with CRP in migraine patents. However, larger cross-sectional and prospective studies are needed to establish whether serum bilirubin may be a useful biomarker for assessing neurogenic inflammation in migraine patients and eventually guiding the therapy. © 2016 Wiley Periodicals, Inc.

  1. Adolescent Physiological and Behavioral Patterns of Emotion Dysregulation Predict Multisystemic Therapy Response.

    PubMed

    Winiarski, D Anne; Schechter, Julia C; Brennan, Patricia A; Foster, Sharon L; Cunningham, Phillippe B; Whitmore, Elizabeth A

    2017-09-01

    This study examined whether physiological and behavioral indicators of emotion dysregulation assessed over the course of Multisystemic Therapy (MST) were related to treatment response. Participants were 180 ethnically diverse adolescents ( n =120 males), ranging in age from 12 to 17 years. Treatment response was assessed through therapist report and official arrest records. Changes in cortisol reactivity and changes in scores on a behavioral dysregulation subscale of the Child Behavior Checklist were used as indicators of emotion dysregulation. Hierarchical linear modeling analyses examined whether a less favorable treatment response was associated with cortisol reactivity measures (a) collected early in treatment and (b) over the course of treatment, as well as with behavioral reports of emotion dysregulation reported (c) early in treatment, and (d) over the course of treatment. Sex was explored as a moderator of these associations. Results indicated that both cortisol and behavioral indices of emotion dysregulation early in treatment and over the course of therapy predicted treatment responsiveness. This relationship was moderated by sex: girls were more likely to evidence a pattern of increasing emotion regulation prior to successful therapy response. The results lend further support to the notion of incorporating emotion regulation techniques into treatment protocols for delinquent behavior.

  2. Estradiol and inflammatory markers in older men.

    PubMed

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Metter, E Jeffrey; Artoni, Andrea; Gatti, Elisa; Ruggiero, Carmelinda; Guralnik, Jack M; Valenti, Giorgio; Ling, Shari M; Basaria, Shehzad; Ferrucci, Luigi

    2009-02-01

    Aging is characterized by a mild proinflammatory state. In older men, low testosterone levels have been associated with increasing levels of proinflammatory cytokines. It is still unclear whether estradiol (E2), which generally has biological activities complementary to testosterone, affects inflammation. We analyzed data obtained from 399 men aged 65-95 yr enrolled in the Invecchiare in Chianti study with complete data on body mass index (BMI), serum E2, testosterone, IL-6, soluble IL-6 receptor, TNF-alpha, IL-1 receptor antagonist, and C-reactive protein. The relationship between E2 and inflammatory markers was examined using multivariate linear models adjusted for age, BMI, smoking, physical activity, chronic disease, and total testosterone. In age-adjusted analysis, log (E2) was positively associated with log (IL-6) (r = 0.19; P = 0.047), and the relationship was statistically significant (P = 0.032) after adjustments for age, BMI, smoking, physical activity, chronic disease, and serum testosterone levels. Log (E2) was not significantly associated with log (C-reactive protein), log (soluble IL-6 receptor), or log (TNF-alpha) in both age-adjusted and fully adjusted analyses. In older men, E2 is weakly positively associated with IL-6, independent of testosterone and other confounders including BMI.

  3. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    PubMed

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.

  4. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  5. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  6. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Lu, Dan; Ye, Ming; Gunzburger, Max; Webster, Clayton

    2013-10-01

    Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and non-Gaussian features of PPDF caused by model nonlinearity. Both experiments show that aSG-hSC is an effective and efficient tool for Bayesian inference.

  7. Child Maltreatment and Autonomic Nervous System Reactivity: Identifying Dysregulated Stress Reactivity Patterns using the Biopsychosocial Model of Challenge and Threat

    PubMed Central

    McLaughlin, Katie A.; Sheridan, Margaret A.; Alves, Sonia; Mendes, Wendy Berry

    2014-01-01

    OBJECTIVE Disruptions in stress response system development have been posited as mechanisms linking child maltreatment (CM) to psychopathology. Existing theories predict elevated sympathetic nervous system (SNS) reactivity following CM, but evidence for this is inconsistent. We present a novel framework for conceptualizing stress reactivity following CM using the biopsychosocial model of challenge and threat. We predicted that in the context of a social-evaluative stressor, maltreated adolescents would exhibit a threat pattern of reactivity, involving SNS activation paired with elevated vascular resistance and blunted cardiac output (CO) reactivity. METHODS A sample of 168 adolescents (mean age=14.9 years) participated. Recruitment targeted maltreated adolescents; 38.2% qualified as maltreated. Electrocardiogram, impedance cardiography, and blood pressure were acquired at rest and during an evaluated social stressor (Trier Social Stress Test). Pre-ejection period (PEP), CO, and total peripheral resistance (TPR) reactivity were computed during task preparation, speech-delivery, and verbal mental-arithmetic. Internalizing and externalizing symptoms were assessed. RESULTS Maltreatment was unrelated to PEP reactivity during preparation or speech, but maltreated adolescents had reduced PEP reactivity during math. Maltreatment exposure (F(1,145)=3.8-9.4, p=.053-<.001) and severity (β=−.10-.12, p=.030-.007) were associated with significantly reduced CO reactivity during all components of the stress-task and marginally associated with elevated TPR reactivity (F(1,145)=3.8-9.4, p=.053-<.001; β=.07-.11, p=.11-.009, respectively). Threat reactivity was negatively associated with externalizing symptoms. CONCLUSIONS Child maltreatment is associated with a dysregulated pattern of physiological reactivity consistent with theoretical conceptualizations of threat but not previously examined in relation to maltreatment, suggesting a more nuanced pattern of stress reactivity than predicted by current theoretical models. PMID:25170753

  8. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Reactive system verification case study: Fault-tolerant transputer communication

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis; Hamory, Philip J.

    1993-01-01

    A reactive program is one which engages in an ongoing interaction with its environment. A system which is controlled by an embedded reactive program is called a reactive system. Examples of reactive systems are aircraft flight management systems, bank automatic teller machine (ATM) networks, airline reservation systems, and computer operating systems. Reactive systems are often naturally modeled (for logical design purposes) as a composition of autonomous processes which progress concurrently and which communicate to share information and/or to coordinate activities. Formal (i.e., mathematical) frameworks for system verification are tools used to increase the users' confidence that a system design satisfies its specification. A framework for reactive system verification includes formal languages for system modeling and for behavior specification and decision procedures and/or proof-systems for verifying that the system model satisfies the system specifications. Using the Ostroff framework for reactive system verification, an approach to achieving fault-tolerant communication between transputers was shown to be effective. The key components of the design, the decoupler processes, may be viewed as discrete-event-controllers introduced to constrain system behavior such that system specifications are satisfied. The Ostroff framework was also effective. The expressiveness of the modeling language permitted construction of a faithful model of the transputer network. The relevant specifications were readily expressed in the specification language. The set of decision procedures provided was adequate to verify the specifications of interest. The need for improved support for system behavior visualization is emphasized.

  10. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  11. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    NASA Astrophysics Data System (ADS)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  12. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  13. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles.

    PubMed

    Pilz, Veronika; Wolf, Kathrin; Breitner, Susanne; Rückerl, Regina; Koenig, Wolfgang; Rathmann, Wolfgang; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-04-01

    Long-term exposure to ambient air pollution contributes to the global burden of disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. We cross-sectionally analysed data from the second follow up (2013 and 2014) of the German KORA baseline survey which was conducted in 1999-2001. Residential long-term exposure to PNC and various other size fractions of particulate matter (PM 10 with size of <10 μm in aerodynamic diameter, PM coarse 2.5-10 μm or PM 2.5  < 2.5 μm, respectively), soot (PM 2.5 abs: absorbance of PM 2.5 ), nitrogen oxides (nitrogen dioxide NO 2 or oxides NO x , respectively) and ozone (O 3 ) were estimated by land-use regression models. Associations between annual air pollution concentrations and hs-CRP were modeled in 2252 participants using linear regression models adjusted for several confounders. Potential effect-modifiers were examined by interaction terms and two-pollutant models were calculated for pollutants with Spearman inter-correlation <0.70. Single pollutant models for PNC, PM 10 , PM coarse , PM 2.5 abs, NO 2 and NO x showed positive but non-significant associations with hs-CRP. For PNC, an interquartile range (2000 particles/cm 3 ) increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was found for PM 2.5 . Effect estimates were higher for women, non-obese participants, for participants without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower estimates compared to smokers or non-smokers. For O 3 , the dose-response function suggested a non-linear relationship. In two-pollutant models, adjustment for PM 2.5 strengthened the effect estimates for PNC and PM 10 (6.3% increase per 2000 particles/cm 3 [95% CI: 0.4%; 12.5%] and 7.3% per 16.5 μg/m 3 [95% CI: 0.4%; 14.8%], respectively). This study adds to a scarce but growing body of literature showing associations between long-term exposure to ultrafine particles and hs-CRP, one of the most intensely studied blood biomarkers for cardiovascular health. Our results highlight the role of ultrafine particles within the complex mixture of ambient air pollution and their inflammatory potential. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Monoclonal antibodies and human sera directed to the secreted glycoprotein G of herpes simplex virus type 2 recognize type-specific antigenic determinants.

    PubMed

    Liljeqvist, Jan-Ake; Trybala, Edward; Hoebeke, Johan; Svennerholm, Bo; Bergström, Tomas

    2002-01-01

    Glycoprotein G-2 (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion (sgG-2) and to a cell-associated carboxy-terminal portion which is further O-glycosylated to constitute the mature gG-2 (mgG-2). In contrast to mgG-2, which is known to elicit a type-specific antibody response in the human host, information on the immunogenic properties of sgG-2 is lacking. Here the sgG-2 protein was purified on a heparin column and used for production of monoclonal antibodies (mAbs). Four anti-sgG-2 mAbs were mapped using a Pepscan technique and identified linear epitopes which localized to the carboxy-terminal part of the protein. One additional anti-sgG-2 mAb, recognizing a non-linear epitope, was reactive to three discrete peptide stretches where the most carboxy-terminally located stretch was constituted by the amino acids (320)RRAL(323). Although sgG-2 is rapidly secreted into the cell-culture medium after infection, the anti-sgG-2 mAbs identified substantial amounts of sgG-2 in the cytoplasm of HSV-2-infected cells. All of the anti-sgG-2 mAbs were HSV-2 specific showing no cross-reactivity to HSV-1 antigen or to HSV-1-infected cells. Similarly, sera from 50 HSV-2 isolation positive patients were all reactive to sgG-2 in an enzyme immunoassay whilst no reactivity was seen in 25 sera from HSV-1 isolation positive patients or in 25 serum samples from HSV-negative patients suggesting that sgG-2 is a novel antigen potentially suitable for type-discriminating serodiagnosis.

  15. Smoking cue reactivity across massed extinction trials: negative affect and gender effects.

    PubMed

    Collins, Bradley N; Nair, Uma S; Komaroff, Eugene

    2011-04-01

    Designing and implementing cue exposure procedures to treat nicotine dependence remains a challenge. This study tested the hypothesis that gender and negative affect (NA) influence changes in smoking urge over time using data from a pilot project testing the feasibility of massed extinction procedures. Forty-three smokers and ex-smokers completed the behavioral laboratory procedures. All participants were over 17 years old, smoked at least 10 cigarettes daily over the last year (or the year prior to quitting) and had expired CO below 10 ppm at the beginning of the ~4-hour session. After informed consent, participants completed 45 min of baseline assessments, and then completed a series of 12 identical, 5-minute exposure trials with inter-trial breaks. Smoking cues included visual, tactile, and olfactory cues with a lit cigarette, in addition to smoking-related motor behaviors without smoking. After each trial, participants reported urge and negative affect (NA). Logistic growth curve models supported the hypothesis that across trials, participants would demonstrate an initial linear increase followed by a decrease in smoking urge (quadratic effect). Data supported hypothesized gender, NA, and gender×NA effects. Significant linear increases in urge were observed among high and low NA males, but not among females in either NA subgroup. A differential quadratic effect showed a significant decrease in urge for the low NA subgroup, but a non-significant decrease in urge in the high NA group. This is the first study to demonstrate gender differences and the effects of NA on the extinction process using a smoking cue exposure paradigm. Results could guide future cue reactivity research and exposure interventions for nicotine dependence. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    PubMed Central

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  17. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.

  19. Dust from southern Africa: rate of emission and biogeochemical properties

    USDA-ARS?s Scientific Manuscript database

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune rea...

  20. INFRARED SPECTROSCOPY-BASED PROPERTY-REACTIVITY CORRELATIONS FOR PREDICTING ENVIRONMENTAL FATE OF ORGANIC CHEMICALS

    EPA Science Inventory

    A conventional structure-activity relationship (SAP) has been established between the alkaline hydrolysis rate constant (kOH) of 12 alkyl and aryl formates and acetates and the linear combination GE the frequencies of the and infrared (SR) absorbance peaks. he inability of this r...

  1. DNA Reactivity as a Mode of Action and Its Relevance to Cancer Risk Assessment

    EPA Science Inventory

    The ability of a chemical to induce mutations has long been a driver in the cancer risk assessment process. The default strategy has been that mutagenic chemicals demonstrate linear cancer dose responses, especially at low exposure levels. In the absence of additional confounding...

  2. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    DOE PAGES

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally, limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.« less

  3. Associations between sociocultural home environmental factors and vegetable consumption among Norwegian 3-5-year olds: BRA-study.

    PubMed

    Kristiansen, Anne Lene; Bjelland, Mona; Himberg-Sundet, Anne; Lien, Nanna; Frost Andersen, Lene

    2017-10-01

    The home environment is the first environment to shape childhood dietary habits and food preferences, hence greater understanding of home environmental factors associated with vegetable consumption among young children is needed. The objective has been to examine questionnaire items developed to measure the sociocultural home environment of children focusing on vegetables and to assess the psychometric properties of the resulting factors. Further, to explore associations between the environmental factors and vegetable consumption among Norwegian 3-5 year olds. Parents (n 633) were invited to participate and filled in a questionnaire assessing the child's vegetable intake and factors potentially influencing this, along with a 24-h recall of their child's fruit and vegetable intake. Children's fruit and vegetable intakes at two meals in one day in the kindergarten were observed by researchers. Principal components analysis was used to examine items assessing the sociocultural home environment. Encouragement items resulted in factors labelled "reactive encouragement", "child involvement" and "reward". Modelling items resulted in the factors labelled "active role model" and "practical role model". Items assessing negative parental attitudes resulted in the factor labelled "negative parental attitudes" and items assessing family pressure/demand resulted in the factor labelled "family demand". The psychometric properties of the factors were for most satisfactory. Linear regression of the associations between vegetable intake and the factors showed, as expected, generally positive associations with "child involvement", "practical role model" and "family demand", and negative associations with "negative parental attitudes" and "reward". Unexpectedly, "reactive encouragement" was negatively associated with vegetable consumption. In conclusion, associations between sociocultural home environmental factors and children's vegetable consumption showed both expected and unexpected associations some of which differed by maternal education - pointing to a need for further comparable studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A parallel reaction-transport model applied to cement hydration and microstructure development

    NASA Astrophysics Data System (ADS)

    Bullard, Jeffrey W.; Enjolras, Edith; George, William L.; Satterfield, Steven G.; Terrill, Judith E.

    2010-03-01

    A recently described stochastic reaction-transport model on three-dimensional lattices is parallelized and is used to simulate the time-dependent structural and chemical evolution in multicomponent reactive systems. The model, called HydratiCA, uses probabilistic rules to simulate the kinetics of diffusion, homogeneous reactions and heterogeneous phenomena such as solid nucleation, growth and dissolution in complex three-dimensional systems. The algorithms require information only from each lattice site and its immediate neighbors, and this localization enables the parallelized model to exhibit near-linear scaling up to several hundred processors. Although applicable to a wide range of material systems, including sedimentary rock beds, reacting colloids and biochemical systems, validation is performed here on two minerals that are commonly found in Portland cement paste, calcium hydroxide and ettringite, by comparing their simulated dissolution or precipitation rates far from equilibrium to standard rate equations, and also by comparing simulated equilibrium states to thermodynamic calculations, as a function of temperature and pH. Finally, we demonstrate how HydratiCA can be used to investigate microstructure characteristics, such as spatial correlations between different condensed phases, in more complex microstructures.

  5. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding.

    PubMed

    Goldman, Nir; Aradi, Bálint; Lindsey, Rebecca K; Fried, Laurence E

    2018-05-08

    We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. We find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H 2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

  6. Transport and Reactive Flow Modelling Using A Particle Tracking Method Based on Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2017-12-01

    Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in transport heterogeneity at latter times, representing the increase in rock heterogeneity. Evolution of transit time distribution is associated with the evolution of concentration profiles, thus highlighting the impact of initial rock structure on the reactive transport for a range of Pe and Da numbers.

  7. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    PubMed Central

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700

  8. Blood pressure reactivity to psychological stress is associated with clinical outcomes in patients with heart failure.

    PubMed

    Sherwood, Andrew; Hill, LaBarron K; Blumenthal, James A; Adams, Kirkwood F; Paine, Nicola J; Koch, Gary G; O'Connor, Christopher M; Johnson, Kristy S; Hinderliter, Alan L

    2017-09-01

    Cardiovascular (CV) reactivity to psychological stress has been implicated in the development and exacerbation of cardiovascular disease (CVD). Although high CV reactivity traditionally is thought to convey greater risk of CVD, the relationship between reactivity and clinical outcomes is inconsistent and may depend on the patient population under investigation. The present study examined CV reactivity in patients with heart failure (HF) and its potential association with long-term clinical outcomes. One hundred ninety-nine outpatients diagnosed with HF, with ejection fraction ≤40%, underwent an evaluation of blood pressure (BP) and heart rate reactivity to a laboratory-based simulated public-speaking stressor. Cox proportional hazards regression models were used to examine the prospective association between BP and heart rate reactivity on a combined end point of death or CV hospitalization over a 5-year median follow-up period. Both systolic blood pressure (SBP) and diastolic blood pressure (DBP) reactivity, quantified as continuous variables, were inversely related to risk of death or CV hospitalization (Ps < .01) after controlling for established risk factors, including HF disease severity and etiology. In similar models, heart rate reactivity was unrelated to outcome (P = .12). In models with tertiles of reactivity, high SBP reactivity, compared with intermediate SBP reactivity, was associated with lower risk (hazard ratio [HR] = .498, 95% CI .335-.742, P =.001), whereas low SBP reactivity did not differ from intermediate reactivity. For DBP, high reactivity was marginally associated with lower risk compared with intermediate DBP reactivity (HR = .767, 95% CI .515-1.14, P =.193), whereas low DBP reactivity was associated with greater risk (HR = 1.49, 95% CI 1.027-2.155, P =.0359). No relationship of heart rate reactivity to outcome was identified. For HF patients with reduced ejection fraction, a robust increase in BP evoked by a laboratory-based psychological challenge was associated with lower risk for adverse CVD events and may be a novel and unique marker of left ventricular systolic reserve that is accompanied by a more favorable long-term prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tao; Li, Cheng; Huang, Can

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  10. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  11. The role of zonal flows in reactive fluid closures

    NASA Astrophysics Data System (ADS)

    Jan, WEILAND

    2018-07-01

    We will give an overview of results obtained by our reactive fluid model. It is characterised as a fluid model where all moments with sources in the experiment are kept. Furthermore, full account is taken for the highest moments appearing in unexpanded denominators also including full toroidicity. It has been demonstrated that the strength of zonal flows is dramatically larger in reactive fluid closures than in those which involve dissipation. This gives a direct connection between the fluid closure and the level of excitation of turbulence. This is because zonal flows are needed to absorb the inverse cascade in quasi 2D turbulence. This also explains the similarity in structure of the transport coefficients in our model with a reactive closure in the energy equation and models which have a reactive closure because of zero ion temperature such as the Hasegawa–Wakatani model. Our exact reactive closure unifies several well-known features of tokamak experiments such as the L–H transition, internal transport barriers and the nonlinear Dimits upshift of the critical gradient for onset of transport. It also gives transport of the same level as that in nonlinear gyrokinetic codes. Since these include the kinetic resonance this confirms the validity of the thermodynamic properties of our model. Furthermore, we can show that while a strongly nonlinear model is needed in kinetic theory a quasilinear model is sufficient in the fluid description. Thus our quasilinear fluid model will be adequate for treating all relevant problems in bulk transport. This is finally confirmed by the reproduction by the model of the experimental power scaling of the confinement time τ E ∼ P ‑2/3. This confirms the validity of our reactive fluid model. This also gives credibility to our ITER simulations including the H-mode barrier. A new result is here, that alpha heating strongly reduces the slope of the H-mode barrier. This should significantly reduce the effects of ELM’s.

  12. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam V.; Sundararaghavan, Veera

    2017-01-01

    In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.

  13. A Learning-Based Approach to Reactive Security

    NASA Astrophysics Data System (ADS)

    Barth, Adam; Rubinstein, Benjamin I. P.; Sundararajan, Mukund; Mitchell, John C.; Song, Dawn; Bartlett, Peter L.

    Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender's strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker's incentives and knowledge.

  14. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less

  15. S-Esters of Thiohydroximic Acid Esters - A Novel Class of Cholinesterase Reactivators.

    DTIC Science & Technology

    1981-01-05

    Hammet substituent constant ( p)63 is also linear and conforms to equation (5) pKa - (7.63 ±0.02) - 0.63 ±0.05) a (5) p These correlations provide an...of AChE reactivation and it is recognized6, 7 that the reaction proceeds as shown in equation (1) EOP + R [EOP9R] kr P EOH + ROP (1) H20 where: EOH is...conforms to equation (4) pKa (25.3 ±2.1) - (1.36 ±0.16) 6 (4) For the aroylthiohydroximates (SR 2458, 2460, and 2461) a plot (not shown) of pKa versus

  16. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  17. Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability.

    PubMed

    Liu, Yuyun; Wu, Wei; Wei, Jia; Yu, Yanlei

    2017-01-11

    Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.

  18. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  19. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less

  20. The modeling of reactive solute transport with sorption to mobile and immobile sorbents 1. Experimental evidence and model development

    NASA Astrophysics Data System (ADS)

    Knabner, P.; Totsche, K. U.; Kögel-Knabner, I.

    Modeling carrier-influenced transport needs to take into account the reactivity of the carrier itself. This paper presents a mathematical model of reactive solute transport with sorption to mobile and immobile sorbents. The mobile sorbent is also considered to be reactive. To justify the assumptions and generality of our modeling approach, experimental findings are reviewed and analyzed. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulations. Breakthrough data on dissolved organic carbon are presented to exemplify the need to take into account the reactivity of the mobile sorbent. Data on hexachlorobiphenyl and cadmium are presented to demonstrate carrier-introduced increased mobility, whereas data on anthracene and pyrene are presented to demonstrate carrier-introduced reduced mobility. The experimental conditions leading to the different findings are pointed out. The sorption processes considered in the model are both equilibrium and nonequilibrium processes, allowing for different sorption sites and nonlinear isotherms and rate functions. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions, are introduced and their properties are discussed.

  1. Plasma visfatin, associated with a genetic polymorphism -1535C>T, is correlated with C-reactive protein in Chinese Han patients with traumatic brain injury.

    PubMed

    Weng, Jian-Feng; Chen, Jun; Hong, Wei-Cong; Luo, Li-Feng; Yu, Wei; Luo, Shi-Da

    2013-02-01

    Visfatin is a newly identified pro-inflammatory adipokine and a genetic polymorphism -1535 C>T located in the visfatin gene promoter has been suggested to be associated with the regulation of visfatin expression in some inflammatory illness. However, there were some conflicting results regarding whether this variant is functional or not. This study aimed to examine the relations of the -1535 C>T single nucleotide polymorphism (SNP) of visfatin gene to the plasma visfatin and C-reactive protein concentrations in traumatic brain injury (TBI). 318 Chinese Han patients with TBI were recruited in this study. Plasma visfatin and C-reactive protein levels were significantly different between the genotypes in the SNP-1535 C>T even after adjustment for age, sex and body mass index. The genotype C-C had the highest plasma visfatin and C-reactive protein concentrations. The plasma visfatin and C-reactive protein concentrations between the variant genotypes C-T and T-T did not differ significantly. Plasma visfatin level was significantly associated with plasma C-reactive protein level using multivariate linear regression. Thus, the SNP-1535 C>T of visfatin gene seemed to be potentially involved in the inflammatory component of TBI through a decreased production of visfatin. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. C-reactive protein and reactive oxygen metabolites in subjects with metabolic syndrome.

    PubMed

    Kotani, K; Sakane, N

    2012-01-01

    This cross-sectional study investigated the correlation between diacron reactive oxygen metabolites (d-ROMs) and high-sensitivity C-reactive protein (hs-CRP) in subjects with or without metabolic syndrome. Cardiometabolic risk factors, d-ROMs and hs-CRP were determined in 457 women: 123 with metabolic syndrome and 334 without metabolic syndrome. The correlation between d-ROMs and hs-CRP levels was compared between the two groups. The group with metabolic syndrome had significantly higher d-ROMs and hs-CRP levels than the group without metabolic syndrome. While the d-ROMs level was significantly and positively correlated with the hs-CRP level in both groups, the correlation level between the two groups was significantly different. Multiple linear regression analysis adjusted for other cardiometabolic risk factors also showed significant positive correlation between dROMs and hs-CRP levels in both groups. Subjects with metabolic syndrome may have a closer relationship between inflammation and oxidative stress than subjects without metabolic syndrome, possibly reflecting their increased predisposition to atherosclerosis. Further studies are necessary to confirm the observed relationship.

  4. Competition kinetics using the UV/H2O2 process: a structure reactivity correlation for the rate constants of hydroxyl radicals toward nitroaromatic compounds.

    PubMed

    García Einschlag, Fernando S; Carlos, Luciano; Capparelli, Alberto L

    2003-10-01

    The rate constants for hydroxyl radical reaction toward a set of nitroaromatic substrates kS, have been measured at 25 degrees C using competition experiments in the UV/H2O2 process. For a given pair of substrates S1 and S2, the relative reactivity beta (defined as kS1/kS2) was calculated from the slope of the corresponding double logarithmic plot, i.e., of ln[S1] vs. ln[S2]. This method is more accurate and remained linear for larger conversions in comparison with the plots of ln[S1] and ln[S2] against time. The rate constants measured ranged from 0.33 to 8.6 x 10(9) M(-1)s(-1). A quantitative structure-reactivity relationship was found using the Hammett equation. Assuming sigma values to be additive, a value of -0.60 was obtained for the reaction constant rho. This value agrees with the high reactivity and the electrophilic nature of HO* radical.

  5. Accounting for the Decreasing Denitrification Potential of Aquifers in Travel-Time Based Reactive-Transport Models of Nitrate

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Loschko, M.; Wöhling, T.; Rudolph, D. L.

    2017-12-01

    Excess nitrate concentrations pose a threat to drinking-water production from groundwater in all regions of intensive agriculture worldwide. Natural organic matter, pyrite, and other reduced constituents of the aquifer matrix can be oxidized by aerobic and denitrifying bacteria, leading to self-cleaning of groundwater. Various studies have shown that the heterogeneity of both hydraulic and chemical aquifer properties influence the reactive behavior. Since the exact spatial distributions of these properties are not known, predictions on the temporal evolution of nitrate should be probabilistic. However, the computational effort of pde-based, spatially explicit multi-component reactive-transport simulations are so high that multiple model runs become impossible. Conversely, simplistic models that treat denitrification as first-order decay process miss important controls on denitrification. We have proposed a Lagrangian framework of nonlinear reactive transport, in which the electron-donor supply by the aquifer matrix is parameterized by a relative reactivity, that is the reaction rate relative to a standard reaction rate for identical solute concentrations (Loschko et al., 2016). We could show that reactive transport simplifies to solving a single ordinary dfferential equation in terms of the cumulative relative reactivity for a given combination of inflow concentrations. Simulating 3-D flow and reactive transport are computationally so inexpensive that Monte Carlo simulation become feasible. The original scheme did not consider a change of the relative reactivity over time, implying that the electron-donor pool in the matrix is infinite. We have modified the scheme to address the consumption of the reducing aquifer constituents upon the reactions. We also analyzed how a minimally complex model of aerobic respiration and denitrification could look like. With the revised scheme, we performed Monte Carlo simulations in 3-D domains, confirming that the uncertainty in predicting nitrate breakthrough depends on the scale of observation. Reference: M. Loschko, T. Wöhling, D.L. Rudolph, O.A. Cirpka: Cumulative relative reactivity: a concept for modeling aquifer-scale reactive transport. Water Resour. Res. 52(10): 8117-8137, 2016, doi: 10.1002/2016WR019080.

  6. Continuous and discontinuous transitions to synchronization.

    PubMed

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  7. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  8. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  9. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  10. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    USGS Publications Warehouse

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.

  11. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    NASA Astrophysics Data System (ADS)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  12. Social Stress and the Reactivation of Latent Herpes Simplex Virus Type 1

    NASA Astrophysics Data System (ADS)

    Padgett, David A.; Sheridan, John F.; Dorne, Julianne; Berntson, Gary G.; Candelora, Jessica; Glaser, Ronald

    1998-06-01

    Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpes-viruses.

  13. An analysis of the effect of defect structures on catalytic surfaces by the boundary element technique

    NASA Astrophysics Data System (ADS)

    Peirce, Anthony P.; Rabitz, Herschel

    1988-08-01

    The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.

  14. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. A physiological model for interpretation of arterial spin labeling reactive hyperemia of calf muscles.

    PubMed

    Chen, Hou-Jen; Wright, Graham A

    2017-01-01

    To characterize and interpret arterial spin labeling (ASL) reactive hyperemia of calf muscles for a better understanding of the microcirculation in peripheral arterial disease (PAD), we present a physiological model incorporating oxygen transport, tissue metabolism, and vascular regulation mechanisms. The model demonstrated distinct effects between arterial stenoses and microvascular dysfunction on reactive hyperemia, and indicated a higher sensitivity of 2-minute thigh cuffing to microvascular dysfunction than 5-minute cuffing. The recorded perfusion responses in PAD patients (n = 9) were better differentiated from the normal subjects (n = 7) using the model-based analysis rather than characterization using the apparent peak and time-to-peak of the responses. The analysis results suggested different amounts of microvascular disease within the patient group. Overall, this work demonstrates a novel analysis method and facilitates understanding of the physiology involved in ASL reactive hyperemia. ASL reactive hyperemia with model-based analysis may be used as a noninvasive microvascular assessment in the presence of arterial stenoses, allowing us to look beyond the macrovascular disease in PAD. A subgroup who will have a poor prognosis after revascularization in the patients with critical limb ischemia may be associated with more severe microvascular diseases, which may potentially be identified using ASL reactive hyperemia.

  16. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada

    DOE PAGES

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    2017-04-02

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  17. Biased Self-Perceptions, Peer Rejection, and Aggression in Children

    ERIC Educational Resources Information Center

    White, Bradley A.; Kistner, Janet A.

    2011-01-01

    This study examined whether children's biased self-perceptions of peer acceptance are associated in a linear or curvilinear fashion with aggression, whether associations are moderated by peer rejection status, and whether associations apply uniquely to reactive aggression. Children in the 4th through 7th grades completed a self-report measure on…

  18. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  19. Non-linear optical techniques and optical properties of condensed molecular systems

    NASA Astrophysics Data System (ADS)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  20. A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems

    PubMed Central

    Liu, JianCheng; Howard, Gregory D.; Lewis, Steven H.; Barros, Matthew D.; Stansbury, Jeffrey W.

    2012-01-01

    A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers. PMID:23109731

  1. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.

  2. Sensitivity analysis of reactive ecological dynamics.

    PubMed

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  3. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  4. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  5. The reasoned/reactive model: A new approach to examining eating decisions among female college dieters and nondieters.

    PubMed

    Ruhl, Holly; Holub, Shayla C; Dolan, Elaine A

    2016-12-01

    Female college students are prone to unhealthy eating patterns that can impact long-term health. This study examined female students' healthy and unhealthy eating behaviors with three decision-making models. Specifically, the theory of reasoned action, prototype/willingness model, and new reasoned/reactive model were compared to determine how reasoned (logical) and reactive (impulsive) factors relate to dietary decisions. Females (N=583, M age =20.89years) completed measures on reasoned cognitions about foods (attitudes, subjective norms, nutrition knowledge, intentions to eat foods), reactive cognitions about foods (prototypes, affect, willingness to eat foods), dieting, and food consumption. Structural equation modeling (SEM) revealed the new reasoned/reactive model to be the preeminent model for examining eating behaviors. This model showed that attitudes were related to intentions and willingness to eat healthy and unhealthy foods. Affect was related to willingness to eat healthy and unhealthy foods, whereas nutrition knowledge was related to intentions and willingness to eat healthy foods only. Intentions and willingness were related to healthy and unhealthy food consumption. Dieting status played a moderating role in the model and revealed mean-level differences between dieters and nondieters. This study highlights the importance of specific factors in relation to female students' eating decisions and unveils a comprehensive model for examining health behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II.

    PubMed

    Pesonen, Anu-Katriina; Räikkönen, Katri; Feldt, Kimmo; Heinonen, Kati; Osmond, Clive; Phillips, David I W; Barker, David J P; Eriksson, Johan G; Kajantie, Eero

    2010-06-01

    Animal models have linked early maternal separation with lifelong changes in hypothalamic-pituitary-adrenocortical (HPA) axis activity. Although this is paralleled in human studies, this is often in the context of other life adversities, for example, divorce or adoption, and it is not known whether early separation in the absence of these factors has long term effects on the HPA axis. The Finnish experience in World War II created a natural experiment to test whether separation from a father serving in the armed forces or from both parents due to war evacuation are associated with alterations in HPA axis response to psychosocial stress in late adulthood. 282 subjects (M=63.5 years, SD=2.5), of whom 85 were non-separated, 129 were separated from their father, and 68 were separated from both their caregivers during WWII, were enlisted to participate in a Trier Social Stress Test (TSST), during which we measured salivary cortisol and, for 215 individuals, plasma cortisol and ACTH concentrations. We used mixed models to study whether parental separation is associated with salivary and plasma cortisol or plasma ACTH reactivity, and linear regressions to analyse differences in the baseline, or incremental area under the cortisol or ACTH curves. Participants separated from their father did not differ significantly from non-separated participants. However, those separated from both parents had higher average salivary cortisol and plasma ACTH concentrations across all time points compared to the non-separated group. They also had higher salivary cortisol reactivity to the TSST. Separated women had higher baselines in plasma cortisol and ACTH, whereas men had higher reactivity in response to stress during the TSST. Participants who had experienced the separation in early childhood were more affected than children separated during infancy or school age. Separation from parents during childhood may alter an individual's stress physiology much later in adult life. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.

  8. Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid

    NASA Astrophysics Data System (ADS)

    Antanovskii, L. K.

    1991-12-01

    An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.

  9. SELECTION AND CALIBRATION OF SUBSURFACE REACTIVE TRANSPORT MODELS USING A SURROGATE-MODEL APPROACH

    EPA Science Inventory

    While standard techniques for uncertainty analysis have been successfully applied to groundwater flow models, extension to reactive transport is frustrated by numerous difficulties, including excessive computational burden and parameter non-uniqueness. This research introduces a...

  10. Heavy metal removal capacity of individual components of permeable reactive concrete

    NASA Astrophysics Data System (ADS)

    Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.

    2017-01-01

    Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.

  11. Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers

    DOE PAGES

    Altay, Esra; Nykypanchuk, Dmytro; Rzayev, Javid

    2017-08-07

    Reticulated nanoporous materials generated by versatile molecular framework approaches are limited to pore dimensions on the scale of the utilized rigid molecular building blocks (<5 nm). The inherent flexibility of linear polymers precludes their utilization as long framework connectors for the extension of this strategy to larger length scales. We report a method for the fabrication of mesoporous frameworks by using bottlebrush copolymers with reactive end blocks serving as rigid macromolecular interconnectors with directional reactivity. End-reactive bottlebrush copolymers with pendant alkene functionalities were synthesized by a combination of controlled radical polymerization and polymer modification protocols. Ru-catalyzed cross-metathesis cross-linking of bottlebrushmore » copolymers with two reactive end blocks resulted in the formation of polymer frameworks where isolated cross-linked domains were interconnected with bottlebrush copolymer bridges. The resulting materials were characterized by a continuous network pore structure with average pore sizes of 9–50 nm, conveniently tunable by the length of the utilized bottlebrush copolymer building blocks. As a result, the materials fabrication strategy described in this work expands the length scale of molecular framework materials and provides access to mesoporous polymers with a molecularly tunable reticulated pore structure without the need for templating, sacrificial component etching, or supercritical fluid drying.« less

  12. Metadynamics for training neural network model chemistries: A competitive assessment

    NASA Astrophysics Data System (ADS)

    Herr, John E.; Yao, Kun; McIntyre, Ryker; Toth, David W.; Parkhill, John

    2018-06-01

    Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited. Little is systematically known about how data should be sampled, and "test data" chosen randomly from some sampling techniques can provide poor information about generality. If the sampling method is narrow, "test error" can appear encouragingly tiny while the model fails catastrophically elsewhere. In this manuscript, we competitively evaluate two common sampling methods: molecular dynamics (MD), normal-mode sampling, and one uncommon alternative, Metadynamics (MetaMD), for preparing training geometries. We show that MD is an inefficient sampling method in the sense that additional samples do not improve generality. We also show that MetaMD is easily implemented in any NNMC software package with cost that scales linearly with the number of atoms in a sample molecule. MetaMD is a black-box way to ensure samples always reach out to new regions of chemical space, while remaining relevant to chemistry near kbT. It is a cheap tool to address the issue of generalization.

  13. OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Tan, Zhaofeng; Lu, Keding; Bohn, Birger; Broch, Sebastian; Brown, Steven S.; Dong, Huabin; Gomm, Sebastian; Häseler, Rolf; He, Lingyan; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Ying; Lu, Sihua; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Zhang, Yinson; Wahner, Andreas; Zhang, Yuanhang

    2017-01-01

    In 2014, a large, comprehensive field campaign was conducted in the densely populated North China Plain. The measurement site was located in a botanic garden close to the small town Wangdu, without major industry but influenced by regional transportation of air pollution. The loss rate coefficient of atmospheric hydroxyl radicals (OH) was quantified by direct measurements of the OH reactivity. Values ranged between 10 and 20 s-1 for most of the daytime. Highest values were reached in the late night with maximum values of around 40 s-1. OH reactants mainly originated from anthropogenic activities as indicated (1) by a good correlation between measured OH reactivity and carbon monoxide (linear correlation coefficient R2 = 0.33) and (2) by a high contribution of nitrogen oxide species to the OH reactivity (up to 30 % in the morning). Total OH reactivity was measured by a laser flash photolysis-laser-induced fluorescence instrument (LP-LIF). Measured values can be explained well by measured trace gas concentrations including organic compounds, oxygenated organic compounds, CO and nitrogen oxides. Significant, unexplained OH reactivity was only observed during nights, when biomass burning of agricultural waste occurred on surrounding fields. OH reactivity measurements also allow investigating the chemical OH budget. During this campaign, the OH destruction rate calculated from measured OH reactivity and measured OH concentration was balanced by the sum of OH production from ozone and nitrous acid photolysis and OH regeneration from hydroperoxy radicals within the uncertainty of measurements. However, a tendency for higher OH destruction compared to OH production at lower concentrations of nitric oxide is also observed, consistent with previous findings in field campaigns in China.

  14. Reactive transport modeling in the subsurface environment with OGS-IPhreeqc

    NASA Astrophysics Data System (ADS)

    He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf

    2015-04-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.

  15. Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc

    NASA Astrophysics Data System (ADS)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.

  16. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value.

    PubMed

    Seo, Seung-Jun; Jeon, Jae-Kun; Han, Sung-Mi; Kim, Jong-Ki

    2017-11-01

    The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.

  17. Reactive transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Adler, P.; Jasinski, L.; Thovert, J.-F.; Mourzenko, V. V.

    2012-04-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  18. Reactive flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.

    2011-12-01

    Reactive flow through geological formations occurs in many situations due to human intervention or during natural processes. For instance, chemical dissolution and precipitation play a major role in diagenesis or in the formation of karsts. The quantitative description of the injection of a reacting fluid from a well into a fractured porous medium is also a subject of high interest. It can be provoked, as in the acidization stimulation technique for increasing well productivity, or accidental, in CO2 sequestration. Ideally, one wishes to analyze the improvements or damages caused by the fluid to the well itself and to its immediate surroundings. To this end, a coupled system of equations has to be solved. It includes the description of the flow in the porous matrix and in the fracture network by Darcy-like equations, and the description of the reactive solute transport and of the reactions which occur in the two structures. In addition, constitutive equations are required for the evolution of these two structures, such as evolution laws for permeability and reactivity as functions of porosity. Our discrete fracture numerical model involves three major steps. First, an unstructured tetrahedral mesh of the fractures and of the porous matrix is built. Second, the Darcy equations are discretized and solved, in a finite volume formulation. Third, the evolution of the solute concentration has to be calculated. This is the most difficult point if one wants to avoid numerical diffusion and accurately describe the transfers between the fractures and the matrix. A non linear flux limiting scheme of the Superbee type coupled with a systematic use of triple control volumes proved to be the most efficient. Various simple model situations have been considered, for validation purposes or to illustrate some physical points. In particular, it is shown that even when the matrix permeability is small and the flow is predominantly carried by the fracture network, convective exchanges still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.

  19. The association of serum prolactin concentration with inflammatory biomarkers - cross-sectional findings from the population-based Study of Health in Pomerania.

    PubMed

    Friedrich, Nele; Schneider, Harald J; Spielhagen, Christin; Markus, Marcello Ricardo Paulista; Haring, Robin; Grabe, Hans J; Buchfelder, Michael; Wallaschofski, Henri; Nauck, Matthias

    2011-10-01

    Prolactin (PRL) is involved in immune regulation and may contribute to an atherogenic phenotype. Previous results on the association of PRL with inflammatory biomarkers have been conflicting and limited by small patient studies. Therefore, we used data from a large population-based sample to assess the cross-sectional associations between serum PRL concentration and high-sensitivity C-reactive protein (hsCRP), fibrinogen, interleukin-6 (IL-6), and white blood cell (WBC) count. From the population-based Study of Health in Pomerania (SHIP), a total of 3744 subjects were available for the present analyses. PRL and inflammatory biomarkers were measured. Linear and logistic regression models adjusted for age, sex, body-mass-index, total cholesterol and glucose were analysed. Multivariable linear regression models revealed a positive association of PRL with WBC. Multivariable logistic regression analyses showed a significant association of PRL with increased IL-6 in non-smokers [highest vs lowest quintile: odds ratio 1·69 (95% confidence interval 1·10-2·58), P = 0·02] and smokers [OR 2·06 (95%-CI 1·10-3·89), P = 0·02]. Similar results were found for WBC in non-smokers [highest vs lowest quintile: OR 2·09 (95%-CI 1·21-3·61), P = 0·01)] but not in smokers. Linear and logistic regression analyses revealed no significant associations of PRL with hsCRP or fibrinogen. Serum PRL concentrations are associated with inflammatory biomarkers including IL-6 and WBC, but not hsCRP or fibrinogen. The suggested role of PRL in inflammation needs further investigation in future prospective studies. © 2011 Blackwell Publishing Ltd.

  20. White Blood Cells, Neutrophils, and Reactive Oxygen Metabolites among Asymptomatic Subjects.

    PubMed

    Kotani, Kazuhiko; Sakane, Naoki

    2012-06-01

    Chronic inflammation and oxidative stress are associated with health and the disease status. The objective of the present study was to investigate the association among white blood cell (WBC) counts, neutrophil counts as a WBC subpopulation, and diacron reactive oxygen metabolites (d-ROMs) levels in an asymptomatic population. The clinical data, including general cardiovascular risk variables and high-sensitivity C-reactive protein (hs-CRP), were collected from 100 female subjects (mean age, 62 years) in outpatient clinics. The correlation of the d-ROMs with hs-CRP, WBC, and neutrophil counts was examined. The mean/median levels were WBC counts 5.9 × 10(9)/L, neutrophil counts 3.6 × 10(9)/L, hs-CRP 0.06 mg/dL, and d-ROMs 359 CURR U. A simple correlation analysis showed a significant positive correlation of the d-ROMs with the WBC counts, neutrophil counts, or hs-CRP levels. The correlation between d-ROMs and neutrophil counts (β = 0.22, P < 0.05), as well as that between d-ROMs and hs-CRP (β = 0.28, P < 0.01), remained significant and independent in a multiple linear regression analysis adjusted for other variables. A multiple linear regression analysis showed that WBC counts had only a positive correlation tendency to the d-ROMs. Neutrophils may be slightly but more involved in the oxidative stress status, as assessed by d-ROMs, in comparison to the overall WBC. Further studies are needed to clarify the biologic mechanism(s) of the observed relationship.

  1. Adolescents’ Emotional Reactivity across Relationship Contexts

    PubMed Central

    Cook, Emily C.; Buehler, Cheryl; Blair, Bethany L.

    2012-01-01

    Adolescents’ emotional reactivity in family, close friendships, and romantic relationships was examined in a community-based sample of 416 two-parent families. Six waves of annual data were analyzed using structural equation modeling. Emotional reactivity to interparental conflict during early adolescence was associated prospectively with adolescents’ reactivity to conflict in friendships and romantic relationships during middle adolescence. Close friendship reactivity partially explained the prospective association between reactivity to interparental conflict and romantic relationship reactivity. The association between perceived emotional reactivity and relationship conflict was stronger for girls than boys. Results have important developmental implications regarding adolescents’ emotional reactivity across salient interpersonal contexts during adolescence. PMID:22545839

  2. Modelling total OH reactivity: atmospheric implications of the missing OH sink

    NASA Astrophysics Data System (ADS)

    Ferracci, V.; Archibald, A. T.; Heimann, I.; Pyle, J. A.

    2016-12-01

    The removal of the majority of reactive trace gases emitted into the atmosphere is initiated by reaction with the hydroxyl radical (OH). Over the last decade, a number of field campaigns have measured the chemical loss rate of OH, also known as total OH reactivity, in a variety of regions across the planet, from urban areas to remote forests. In most cases, comparison of the measured total OH reactivity with that calculated from the sum of the individual OH sinks (obtained via the simultaneous detection of species such as VOCs and NOx) highlighted the presence of "missing" reactivity (up to 80 % of the total measured reactivity), indicating that a significant sink of the hydroxyl radical is currently not accounted for in tropospheric oxidation schemes. Potential candidates for the missing OH reactivity are previously undetected biogenic VOCs, reactive intermediates of the oxidation of known biogenic VOCs (mainly isoprene), or a combination of the two. In this work the Met Office's Unified Model with the United Kingdom Chemistry and Aerosols scheme (UM-UKCA) was used to investigate the potential impacts of a simulated missing OH sink. UM-UKCA is a chemistry-climate model which includes detailed tropospheric chemistry derived from a combination of the JPL-NASA and IUPAC kinetic evaluations as well as the Master Chemical Mechanism database. The missing OH sink was simulated in a number of scenarios: initially, by including in the model chemical reactions that were only recently characterised (e.g., peroxy radicals + OH), then by adding a new chemical tracer, along with its reaction with OH, that would account for most of the missing reactivity observed in the various campaigns across the globe. Sensitivity of the model to the abundance and regional distribution of the new chemical tracer, and to the kinetics and hypothetical products of its reaction with OH are discussed, as well as the impacts of the missing OH sink on the tropospheric ozone budget and methane lifetime, with associated implications for air quality and global warming respectively.

  3. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    NASA Astrophysics Data System (ADS)

    Kabalan, Mahmoud

    Microgrid stability studies have been largely based on small-signal linearization techniques. However, the validity and magnitude of the linearization domain is limited to small perturbations. Thus, there is a need to examine microgrids with large-signal nonlinear techniques to fully understand and examine their stability. Large-signal stability analysis can be accomplished by Lyapunov-based mathematical methods. These Lyapunov methods estimate the domain of asymptotic stability of the studied system. A survey of Lyapunov-based large-signal stability studies showed that few large-signal studies have been completed on either individual systems (dc/ac inverters, dc/dc rectifiers, etc.) or microgrids. The research presented in this thesis addresses the large-signal stability of droop-controlled dc/ac inverters and inverter-based microgrids. Dc/ac power electronic inverters allow microgrids to be technically feasible. Thus, as a prelude to examining the stability of microgrids, the research presented in Chapter 3 analyzes the stability of inverters. First, the 13 th order large-signal nonlinear model of a droop-controlled dc/ac inverter connected to an infinite bus is presented. The singular perturbation method is used to decompose the nonlinear model into 11th, 9th, 7th, 5th, 3rd and 1st order models. Each model ignores certain control or structural components of the full order model. The aim of the study is to understand the accuracy and validity of the reduced order models in replicating the performance of the full order nonlinear model. The performance of each model is studied in three different areas: time domain simulations, Lyapunov's indirect method and domain of attraction estimation. The work aims to present the best model to use in each of the three domains of study. Results show that certain reduced order models are capable of accurately reproducing the performance of the full order model while others can be used to gain insights into those three areas of study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.

  4. On the modelling of non-reactive and reactive turbulent combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, Mohammad; So, Ronald M. C.

    1987-01-01

    A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.

  5. Self-focused attention and emotional reactivity: the role of culture.

    PubMed

    Chentsova-Dutton, Yulia E; Tsai, Jeanne L

    2010-03-01

    Research conducted with European Americans suggests that attention to the individual self intensifies emotional reactivity. We propose, however, that cultural models of the self determine which aspect of the self (individual vs. relational), when attended to, intensifies emotional reactivity. In 3 studies, we predicted and observed that attention to individual aspects of the self was associated with levels of emotional reactivity that were greater in individuals from European American contexts (which promote an independent model of the self) than in individuals from Asian American contexts (which promote an interdependent model of the self). In contrast, attention to relational aspects of the self was associated with levels of emotional reactivity that were similar or greater in individuals from Asian American than in individuals from European American contexts. These findings highlight the importance of considering cultural and situational factors when examining links between the self and emotion.

  6. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    NASA Astrophysics Data System (ADS)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  7. Quantitative evaluation of lectin-reactive glycoforms of α(1)-acid glycoprotein using lectin affinity capillary electrophoresis with fluorescence detection.

    PubMed

    Shimura, Kiyohito; Tamura, Mayumi; Toda, Tosifusa; Yazawa, Shin; Kasai, Ken-ichi

    2011-08-01

    α(1)-Acid glycoprotein (AGP) was previously shown to be a marker candidate of disease progression and prognosis of patients with malignancies by analysis of its glycoforms via lectins. Herein, affinity capillary electrophoresis of fluorescein-labeled AGP using lectins with the aid of laser-induced fluorescence detection was developed for quantitative evaluation of the fractional ratios of concanavalin A-reactive or Aleuria aurantia lectin-reactive AGP. Labeled AGP was applied at the anodic end of a fused-silica capillary (50 μm id, 360 μm od, 27 cm long) coated with linear polyacryloyl-β-alanyl-β-alanine, and electrophoresis was carried out for about 10 min in 60 mM 3-morpholinopropane-1-sulfonic acid-NaOH buffer (pH 7.35). Addition of the lectins to the anode buffer resulted in the separation of lectin-reactive glycoform peaks from lectin-non-reactive glycoform peaks. Quantification of the peak area of each group revealed that the percent of lectin-reactive AGP is independent of a labeling ratio ranging from 0.4 to 1.5 mol fluorescein/mol AGP, i.e. the standard deviation of 0.5% for an average of 59.9% (n=3). In combination with a facile procedure for micro-purification of AGP from serum, the present procedure, marking the reactivity of AGP with lectins, should be useful in determining the prognosis for a large number of patients with malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The association between personality traits, cognitive reactivity and body mass index is dependent on depressive and/or anxiety status.

    PubMed

    Paans, Nadine P G; Bot, Mariska; Gibson-Smith, Deborah; Van der Does, Willem; Spinhoven, Philip; Brouwer, Ingeborg; Visser, Marjolein; Penninx, Brenda W J H

    2016-10-01

    A range of biological, social and psychological factors, including depression and anxiety disorders, is thought to be associated with higher body mass index (BMI). Depression and anxiety disorders are associated with specific psychological vulnerabilities, like personality traits and cognitive reactivity, that may also be associated with BMI. The relationship between those psychological vulnerabilities and BMI is possibly different in people with and without depression and anxiety disorders. Therefore, we examined the relationship between personality traits, cognitive reactivity and severity of affective symptoms with BMI in people with and without depression and anxiety disorders. Data from 1249 patients with current major depressive and/or anxiety disorder and 631 healthy controls were sourced from the Netherlands Study of Depression and Anxiety. Linear and logistic regression analyses were used to determine the associations between personality traits (neuroticism, extraversion, conscientiousness), cognitive reactivity (hopelessness, aggression, rumination, anxiety sensitivity), depression and anxiety symptoms with BMI classes (normal: 18.5-24.9, overweight: 25-29.9, and obese: ≥30kg/m(2)) and continuous BMI. Due to significant statistical interaction, analyses were stratified for healthy individuals and depressed/anxious patients. Personality traits were not consistently related to BMI. In patients, higher hopelessness and aggression reactivity and higher depression and anxiety symptoms were associated with higher BMI. In contrast, in healthy individuals lower scores on hopelessness, rumination, aggression reactivity and anxiety sensitivity were associated with higher BMI. These results suggest that, particularly in people with psychopathology, cognitive reactivity may contribute to obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Stress reactivity predicts symptom improvement in children with anxiety disorders.

    PubMed

    Dieleman, Gwendolyn C; Huizink, Anja C; Tulen, Joke H M; Utens, Elisabeth M W J; Tiemeier, Henning

    2016-05-15

    We examined the longitudinal associations of autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis rest and reactivity measures with anxiety and depressive symptoms at one-year follow-up in children with anxiety disorders. In a clinical sample of 152 children with a primary DSM-IV anxiety disorder, aged 8 to 12 years, anxiety and depressive symptoms were assessed with the Multidimensional Anxiety Scale for Children and the Children's Depression Inventory at pre-treatment baseline and one year later, after treatment with cognitive behavioral therapy. At baseline, children participated in a 70min stress task. Salivary cortisol was measured directly prior to and 20min post stress task. Skin conductance level (SCL), heart rate and high frequency heart rate variability (HRV) were continuously measured during rest and the stress task. To investigate if rest or reactivity measures predicted anxiety and depressive symptoms at one year follow-up, linear regression analyses were conducted for rest and reactivity measures of SCL, heart rate, HRV and cortisol separately. Higher SCL reactivity predicted less decrease of anxiety symptoms at one-year follow-up. Cortisol reactivity showed a weak association with depressive symptoms at one-year follow-up: lower cortisol reactivity predicted less decrease in depressive symptoms. Only self-reported anxiety and depressive symptoms were used. However, all predictors were objective biological measures, hence there is no risk of shared method variance bias. These findings suggest that pre-treatment HPA and ANS responsiveness to stress are predictive biomarkers for a lack of symptom improvement in children with a clinical anxiety disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Reference scales for the characterization of cationic electrophiles and neutral nucleophiles.

    PubMed

    Mayr, H; Bug, T; Gotta, M F; Hering, N; Irrgang, B; Janker, B; Kempf, B; Loos, R; Ofial, A R; Remennikov, G; Schimmel, H

    2001-10-03

    Twenty-three diarylcarbenium ions and 38 pi-systems (arenes, alkenes, allyl silanes and stannanes, silyl enol ethers, silyl ketene acetals, and enamines) have been defined as basis sets for establishing general reactivity scales for electrophiles and nucleophiles. The rate constants of 209 combinations of these benzhydrylium ions and pi-nucleophiles, 85 of which are first presented in this article, have been subjected to a correlation analysis to determine the electrophilicity parameters E and the nucleophilicity parameters N and s as defined by the equation log k(20 degrees C) = s(N + E) (Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957). Though the reactivity scales thus obtained cover more than 16 orders of magnitude, the individual rate constants are reproduced with a standard deviation of a factor of 1.19 (Table 1). It is shown that the reactivity parameters thus derived from the reactions of diarylcarbenium ions with pi-nucleophiles (Figure 3) are also suitable for characterizing the nucleophilic reactivities of alkynes, metal-pi-complexes, and hydride donors (Table 2) and for characterizing the electrophilic reactivities of heterosubstituted and metal-coordinated carbenium ions (Table 3). The reactivity parameters in Figure 3 are, therefore, recommended for the characterization of any new electrophiles and nucleophiles in the reactivity range covered. The linear correlation between the electrophilicity parameters E of benzhydryl cations and the corresponding substituent constants sigma(+) provides Hammett sigma(+) constants for 10 substituents from -1.19 to -2.11, i.e., in a range with only very few previous entries.

  11. The association of C-reactive protein with subclinical cardiovascular disease in HIV-infected and HIV-uninfected women.

    PubMed

    Moran, Caitlin A; Sheth, Anandi N; Mehta, C Christina; Hanna, David B; Gustafson, Deborah R; Plankey, Michael W; Mack, Wendy J; Tien, Phyllis C; French, Audrey L; Golub, Elizabeth T; Quyyumi, Arshed; Kaplan, Robert C; Ofotokun, Ighovwerha

    2018-05-15

    HIV is a cardiovascular disease (CVD) risk factor. However, CVD risk is often underestimated in HIV-infected women. C-reactive protein (CRP) may improve CVD prediction in this population. We examined the association of baseline plasma CRP with subclinical CVD in women with and without HIV. Retrospective cohort study. A total of 572 HIV-infected and 211 HIV-uninfected women enrolled in the Women's Interagency HIV Study underwent serial high-resolution B-mode carotid artery ultrasonography between 2004 and 2013 to assess carotid intima-media thickness (CIMT) and focal carotid artery plaques. We used multivariable linear and logistic regression models to assess the association of baseline high (≥3 mg/l) high-sensitivity (hs) CRP with baseline CIMT and focal plaques, and used multivariable linear and Poisson regression models for the associations of high hsCRP with CIMT change and focal plaque progression. We stratified our analyses by HIV status. Median (interquartile range) hsCRP was 2.2 mg/l (0.8-5.3) in HIV-infected, and 3.2 mg/l (0.9-7.7) in HIV-uninfected, women (P = 0.005). There was no statistically significant association of hsCRP with baseline CIMT [adjusted mean difference -3.5 μm (95% confidence interval:-19.0 to 12.1)] or focal plaques [adjusted odds ratio: 1.31 (0.67-2.67)], and no statistically significant association of hsCRP with CIMT change [adjusted mean difference 11.4 μm (-2.3 to 25.1)]. However, hsCRP at least 3 mg/l was positively associated with focal plaque progression in HIV-uninfected [adjusted rate ratio: 5.97 (1.46-24.43)], but not in HIV-infected [adjusted rate ratio: 0.81 (0.47-1.42)] women (P = 0.042 for interaction). In our cohort of women with similar CVD risk factors, higher baseline hsCRP is positively associated with carotid plaque progression in HIV-uninfected, but not HIV-infected, women, suggesting that subclinical CVD pathogenesis may be different HIV-infected women.

  12. Surrogate model approach for improving the performance of reactive transport simulations

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.

  13. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site. Multiple data types (e.g., hydrochemical, geophysical, tracer, temperature, etc.) were collected prior to, and during an injection trial. Visualizing the trade-off between the calibration of each data type has provided the means of identifying some model-structure deficiencies.

  14. A new look at the multi-G model for organic carbon degradation in surface marine sediments for coupled benthic-pelagic simulations of the global ocean

    NASA Astrophysics Data System (ADS)

    Stolpovsky, Konstantin; Dale, Andrew W.; Wallmann, Klaus

    2018-06-01

    The kinetics of particulate organic carbon (POC) mineralization in marine surface sediments is not well constrained. This creates considerable uncertainties when benthic processes are considered in global biogeochemical or Earth system circulation models to simulate climate-ocean interactions and biogeochemical tracer distributions in the ocean. In an attempt to improve our understanding of the rate and depth distribution of organic carbon mineralization in bioturbated (0-20 cm) sediments at the global scale, we parameterized a 1-D diagenetic model that simulates the mineralization of three discrete POC pools (a multi-G model). The rate constants of the three reactive classes (highly reactive, reactive, refractory) are fixed and determined to be 70, 0.5 and ˜ 0.001 yr-1, respectively, based on the Martin curve model for pelagic POC degradation. In contrast to previous approaches, however, the reactivity of the organic material degraded in the seafloor is continuous with, and set by, the apparent reactivity of material sinking through the water column. Despite the simplifications of describing POC remineralization using G-type approaches, the model is able to simulate a global database (185 stations) of benthic oxygen and nitrate fluxes across the sediment-water interface in addition to porewater oxygen and nitrate distributions and organic carbon burial efficiencies. It is further consistent with degradation experiments using fresh phytoplankton reported in a previous study. We propose that an important yet mostly overlooked consideration in upscaling approaches is the proportion of the reactive POC classes reaching the seafloor in addition to their reactivity. The approach presented is applicable to both steady-state and non-steady state scenarios, and links POC degradation kinetics in sedimentary environments to water depth and the POC rain rate to the seafloor.

  15. Advanced Energy Storage Management in Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) andmore » control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.« less

  16. Adsorption of Emerging Munitions Contaminants on Cellulose Surface: A Combined Theoretical and Experimental Investigation.

    PubMed

    Shukla, Manoj K; Poda, Aimee

    2016-06-01

    This manuscript reports results of an integrated theoretical and experimental investigation of adsorption of two emerging contaminants (DNAN and FOX-7) and legacy compound TNT on cellulose surface. Cellulose was modeled as trimeric form of the linear chain of 1 → 4 linked of β-D-glucopyranos in (4)C1 chair conformation. Geometries of modeled cellulose, munitions compounds and their complexes were optimized at the M06-2X functional level of Density Functional Theory using the 6-31G(d,p) basis set in gas phase and in water solution. The effect of water solution was modeled using the CPCM approach. Nature of potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Interaction energies were corrected for basis set superposition error and the 6-311G(d,p) basis set was used. Molecular electrostatic potential mapping was performed to understand the reactivity of the investigated systems. It was predicted that adsorbates will be weakly adsorbed on the cellulose surface in water solution than in the gas phase.

  17. An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation

    NASA Astrophysics Data System (ADS)

    Fox, J. B.; Thayer, D. W.; Phillips, J. G.

    The effect of low dose γ-irradiation on the thiamin content of ground pork was studied in the range of 0-14 kGy at 2°C and at radiation doses from 0.5 to 7 kGy at temperatures -20, 10, 0, 10 and 20°C. The detailed study at 2°C showed that loss of thiamin was exponential down to 0kGy. An exponential expression was derived for the effect of radiation dose and temperature of irradiation on thiamin loss, and compared with a previously derived general linear expression. Both models were accurate depictions of the data, but the exponential expression showed a significant decrease in the rate of loss between 0 and -10°C. This is the range over which water in meat freezes, the decrease being due to the immobolization of reactive radiolytic products of water in ice crystals.

  18. Determination of minimum enzymatic decolorization time of reactive dye solution by spectroscopic & mathematical approach.

    PubMed

    Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim

    2015-02-01

    Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation.

  19. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  20. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.

    PubMed

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K

    2010-10-01

    This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.

  1. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.

    PubMed

    Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2017-12-01

    Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum BDNF concentrations.

  2. Diffusion-controlled reactions: hydrodynamic interaction between charged, uniformly reactive spherical reactants.

    PubMed

    Allison, Stuart

    2006-12-28

    In this work, different models of hydrodynamic interaction (HI) are examined in the diffusion-controlled reaction between uniformly reactive charged spherical particles. In addition to Oseen "stick" and "slip" models of HI, one is considered that accounts for the disturbance of fluid flow by the ions around one reactive partner as they interact with a neighboring reactive species. This interaction is closely related to the "electrophoretic effect" in electrokinetics and can be described by a fairly simple electrophoretic, or E-tensor. These models are applied to the electron-transfer quenching reaction of Ru(bpy)3(2+) and methyl viologen (MV2+) over a wide range of NaCl concentrations (Chiorboli, C. et al., J. Phys. Chem. 1988, 92, 156). The back reaction is also considered. From a comparison of the salt dependence of the model and experimental rates, it is concluded that the "E-tensor" model works best and ignoring HI altogether works worst. The Oseen "stick" and "slip" models fall between these.

  3. Infectious reactivation of cytomegalovirus explaining age- and sex-specific patterns of seroprevalence.

    PubMed

    van Boven, Michiel; van de Kassteele, Jan; Korndewal, Marjolein J; van Dorp, Christiaan H; Kretzschmar, Mirjam; van der Klis, Fiona; de Melker, Hester E; Vossen, Ann C; van Baarle, Debbie

    2017-09-01

    Human cytomegalovirus (CMV) is a herpes virus with poorly understood transmission dynamics. Person-to-person transmission is thought to occur primarily through transfer of saliva or urine, but no quantitative estimates are available for the contribution of different infection routes. Using data from a large population-based serological study (n = 5,179), we provide quantitative estimates of key epidemiological parameters, including the transmissibility of primary infection, reactivation, and re-infection. Mixture models are fitted to age- and sex-specific antibody response data from the Netherlands, showing that the data can be described by a model with three distributions of antibody measurements, i.e. uninfected, infected, and infected with increased antibody concentration. Estimates of seroprevalence increase gradually with age, such that at 80 years 73% (95%CrI: 64%-78%) of females and 62% (95%CrI: 55%-68%) of males are infected, while 57% (95%CrI: 47%-67%) of females and 37% (95%CrI: 28%-46%) of males have increased antibody concentration. Merging the statistical analyses with transmission models, we find that models with infectious reactivation (i.e. reactivation that can lead to the virus being transmitted to a novel host) fit the data significantly better than models without infectious reactivation. Estimated reactivation rates increase from low values in children to 2%-4% per year in women older than 50 years. The results advance a hypothesis in which transmission from adults after infectious reactivation is a key driver of transmission. We discuss the implications for control strategies aimed at reducing CMV infection in vulnerable groups.

  4. Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions - 2D generic models with a small isolated fault

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel

    2016-12-01

    This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.

  5. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    NASA Astrophysics Data System (ADS)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  6. Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less

  7. Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm

    DOE PAGES

    Zhang, Baohua; Hu, Weihao; Hou, Peng; ...

    2017-06-27

    This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less

  8. Do productive activities reduce inflammation in later life? Multiple roles, frequency of activities, and C-reactive protein.

    PubMed

    Kim, Seoyoun; Ferraro, Kenneth F

    2014-10-01

    The study investigates whether productive activities by older adults reduce bodily inflammation, as indicated by C-reactive protein (CRP), a biomeasure associated with the risk of cardiovascular diseases. The study uses a representative survey of adults aged 57-85 from the National Social Life, Health, and Aging Project (N = 1,790). Linear regression models were used to analyze the effects of multiple roles (employment, volunteering, attending meetings, and caregiving) and the frequency of activity within each role on log values of CRP concentration (mg/L) drawn from assayed blood samples. Number of roles for productive activities was associated with lower levels of CRP net of chronic conditions, lifestyle factors, and socioeconomic resources. When specific types of activity were examined, volunteering manifested the strongest association with lower levels of inflammation, particularly in the 70+ group. There was no evidence that frequent engagement in volunteer activity was associated with heightened inflammation. Productive activities-and frequent volunteering in particular-may protect individuals from inflammation that is associated with increased risk of hypertension and cardiovascular disease. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    PubMed

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  10. Estradiol and Inflammatory Markers in Older Men

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Metter, E. Jeffrey; Artoni, Andrea; Gatti, Elisa; Ruggiero, Carmelinda; Guralnik, Jack M.; Valenti, Giorgio; Ling, Shari M.; Basaria, Shehzad; Ferrucci, Luigi

    2009-01-01

    Background: Aging is characterized by a mild proinflammatory state. In older men, low testosterone levels have been associated with increasing levels of proinflammatory cytokines. It is still unclear whether estradiol (E2), which generally has biological activities complementary to testosterone, affects inflammation. Methods: We analyzed data obtained from 399 men aged 65–95 yr enrolled in the Invecchiare in Chianti study with complete data on body mass index (BMI), serum E2, testosterone, IL-6, soluble IL-6 receptor, TNF-α, IL-1 receptor antagonist, and C-reactive protein. The relationship between E2 and inflammatory markers was examined using multivariate linear models adjusted for age, BMI, smoking, physical activity, chronic disease, and total testosterone. Results: In age-adjusted analysis, log (E2) was positively associated with log (IL-6) (r = 0.19; P = 0.047), and the relationship was statistically significant (P = 0.032) after adjustments for age, BMI, smoking, physical activity, chronic disease, and serum testosterone levels. Log (E2) was not significantly associated with log (C-reactive protein), log (soluble IL-6 receptor), or log (TNF-α) in both age-adjusted and fully adjusted analyses. Conclusions: In older men, E2 is weakly positively associated with IL-6, independent of testosterone and other confounders including BMI. PMID:19050054

  11. Excess Visceral Adipose Tissue Worsens the Vascular Endothelial Function in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Kurozumi, Akira; Okada, Yosuke; Arao, Tadashi; Tanaka, Yoshiya

    Objective Visceral fat obesity and metabolic syndrome correlate with atherosclerosis in part due to insulin resistance and various other factors. The aim of this study was to determine the relationship between vascular endothelial dysfunction and excess visceral adipose tissue (VAT) in Japanese patients with type 2 diabetes mellitus (T2DM). Methods In 71 T2DM patients, the reactive hyperemia index (RHI) was measured using an Endo-PAT 2000, and VAT and subcutaneous adipose tissue (SAT) were measured via CT. We also measured various metabolic markers, including high-molecular-weight adiponectin (HMW-AN). Results VAT correlated negatively with the natural logarithm of RHI (L_RHI), the primary endpoint (p=0.042, r=-0.242). L_RHI did not correlate with SAT, VAT/SAT, abdominal circumference, homeostasis model assessment for insulin resistance, urinary C-peptide reactivity, HMW-AN, or alanine amino transferase, the secondary endpoints. A linear multivariate analysis via the forced entry method using age, sex, VAT, and smoking history as independent variables and L_RHI as the dependent variable revealed a lack of any determinants of L_RHI. Conclusion Excess VAT worsens the vascular endothelial function, represented by RHI which was analyzed using Endo-PAT, in Japanese patients with T2DM.

  12. C-reactive protein, waist circumference, and family history of heart attack are independent predictors of body iron stores in apparently healthy premenopausal women.

    PubMed

    Suárez-Ortegón, M F; Arbeláez, A; Mosquera, M; Méndez, F; Aguilar-de Plata, C

    2012-08-01

    Ferritin levels have been associated with metabolic syndrome and insulin resistance. The aim of the present study was to evaluate the prediction of ferritin levels by variables related to cardiometabolic disease risk in a multivariate analysis. For this aim, 123 healthy women (72 premenopausal and 51 posmenopausal) were recruited. Data were collected through procedures of anthropometric measurements, questionnaires for personal/familial antecedents, and dietary intake (24-h recall), and biochemical determinations (ferritin, C reactive protein (CRP), glucose, insulin, and lipid profile) in blood serum samples obtained. Multiple linear regression analysis was used and variables with no normal distribution were log-transformed for this analysis. In premenopausal women, a model to explain log-ferritin levels was found with log-CRP levels, heart attack familial history, and waist circumference as independent predictors. Ferritin behaves as other cardiovascular markers in terms of prediction of its levels by documented predictors of cardiometabolic disease and related disorders. This is the first report of a relationship between heart attack familial history and ferritin levels. Further research is required to evaluate the mechanism to explain the relationship of central body fat and heart attack familial history with body iron stores values.

  13. Association of serum uric acid with high-sensitivity C-reactive protein in postmenopausal women.

    PubMed

    Raeisi, A; Ostovar, A; Vahdat, K; Rezaei, P; Darabi, H; Moshtaghi, D; Nabipour, I

    2017-02-01

    To explore the independent correlation between serum uric acid and low-grade inflammation (measured by high-sensitivity C-reactive protein, hs-CRP) in postmenopausal women. A total of 378 healthy Iranian postmenopausal women were randomly selected in a population-based study. Circulating hs-CRP levels were measured by highly specific enzyme-linked immunosorbent assay method and an enzymatic calorimetric method was used to measure serum levels of uric acid. Pearson correlation coefficient, multiple linear regression and logistic regression models were used to analyze the association between uric acid and hs-CRP levels. A statistically significant correlation was seen between serum levels of uric acid and log-transformed circulating hs-CRP (r = 0.25, p < 0.001). After adjustment for age and cardiovascular risk factors (according to NCEP ATP III criteria), circulating hs-CRP levels were significantly associated with serum uric acid levels (β = 0.20, p < 0.001). After adjustment for age and cardiovascular risk factors, hs-CRP levels ≥3 mg/l were significantly associated with higher uric acid levels (odds ratio =1.52, 95% confidence interval 1.18-1.96). Higher serum uric acid levels were positively and independently associated with circulating hs-CRP in healthy postmenopausal women.

  14. Analytical resolution of the reactive diffusion equation for transient electronics including materials whose porosity value changes in terms of their thickness

    NASA Astrophysics Data System (ADS)

    Vargas Toro, Agustín.

    2014-05-01

    Transient electronic devices are a new technology development whose main characteristic is that its components can disappear in a programmed and controlled way, which means such devices have a pre-engineered service life. Nowadays, transient electronics have a large application field, involving from the reduction of e-waste in the planet until the development of medical instruments and implants that can be discarded when the patients do not need it anymore, avoiding the trouble of having an extra procedure for them. These devices must be made from biocompatible materials avoiding long-term adverse effects in the environment and patients. It is fundamental to develop an analytical model that allows describing the behavior of these materials considering cases which its porosity may be constant or not, in presence of water or any other biofluid. In order to accomplish this analysis was solve the reactive diffusion equation based on Bromwich's integral and the Residue theorem for two material cases, those whose porosity is constant, and those whose porosity increases linearly in terms of its thickness, where was found a general expression. This allows to the analysis of the relation of the electric resistance (per unit length) and the rate of dissolution of the material.

  15. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.

    PubMed

    Chen, A M; Lucas, J N; Simpson, P J; Griffin, C S; Savage, J R; Brenner, D J; Hlatky, L R; Sachs, R K

    1997-11-01

    With fluorescence in situ hybridization (FISH), many different categories of chromosome aberrations can be recognized-dicentrics, translocations, rings and various complex aberrations such as insertions or three-way interchanges. Relative frequencies for the various aberration categories indicate mechanisms of radiation-induced damage and reflect radiation quality. Data obtained with FISH support a proximity version of the classic random breakage-and-reunion model for the formation of aberrations. A Monte Carlo computer implementation of the model, called the CAS (chromosome aberration simulator), is generalized here to high linear energy transfer (LET) and compared to published data for human cells irradiated with X rays or 238Pu alpha particles. For each kind of radiation, the CAS has two adjustable parameters: the number of interaction sites per cell nucleus and the number of reactive double-strand breaks (DSBs) per gray. Aberration frequencies for various painted chromosomes, of varying lengths, and for 11 different categories of simple or complex aberrations were simulated and compared to the data. The optimal number of interaction sites was found to be approximately 13 for X irradiation and approximately 25 for alpha-particle irradiation. The relative biological effectiveness (RBE) of alpha particles for the induction of reactive DSBs (which are a minority of all DSBs) was found to be approximately 4. The two-parameter CAS model adequately matches data for many different categories of aberrations. It can use data obtained with FISH for any one painting pattern to predict results for any other kind of painting pattern or whole-genome staining, and to estimate a suggested overall numerical damage indicator for chromosome aberration studies, the total misrejoining number.

  16. Meat Consumption and Its Association With C-Reactive Protein and Incident Type 2 Diabetes

    PubMed Central

    van Woudenbergh, Geertruida J.; Kuijsten, Anneleen; Tigcheler, Basia; Sijbrands, Eric J.G.; van Rooij, Frank J.A.; Hofman, Albert; Witteman, Jacqueline C.M.; Feskens, Edith J.M.

    2012-01-01

    OBJECTIVE To investigate whether intake of different types of meat is associated with circulating C-reactive protein (CRP) and risk of type 2 diabetes in a prospective cohort study. RESEARCH DESIGN AND METHODS Our analysis included 4,366 Dutch participants who did not have diabetes at baseline. During a median follow-up period of 12.4 years, 456 diabetes cases were confirmed. Intake of red meat, processed meat, and poultry was derived from a food frequency questionnaire, and their association with serum high-sensitivity CRP was examined cross-sectionally using linear regression models. Their association with risk of type 2 diabetes was examined using multivariate Cox proportional hazards model, including age, sex, family history of diabetes, and lifestyle and dietary factors. RESULTS An increment of 50 g of processed meat was associated with increased CRP concentration (βprocessed meat = 0.12; P = 0.01), whereas intake of red meat and poultry was not. When comparing the highest to the lowest category of meat intake with respect to diabetes incidence, the adjusted relative risks were as follows: for red meat (1.42 [95% CI 1.06–1.91]), for processed meat (1.87 [1.26–2.78]), and for poultry (0.95 [0.74–1.22]). Additional analysis showed that the associations were not affected appreciably after inclusion of CRP into the model. After adjustment for BMI, however, the association for red meat attenuated to 1.18 (0.88–1.59). CONCLUSIONS Intake of processed meat is associated with higher risk of type 2 diabetes. It appears unlikely that CRP mediates this association. PMID:22596177

  17. A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils.

    PubMed

    Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan

    2014-12-03

    Theoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.

  18. Instrumental and Reactive Functions and Overt and Relational Forms of Aggression: Developmental Trajectories and Prospective Associations during Middle School

    ERIC Educational Resources Information Center

    Ojanen, Tiina; Kiefer, Sarah

    2013-01-01

    This study examined the development of adolescent self-reported instrumental-overt, instrumental-relational, reactive-overt, and reactive-relational aggression during middle school ("N" = 384; 12-14 years; 53% boys). Growth modeling indicated average increases in instrumental-relational aggression, and decreases in reactive-overt and…

  19. Evidence of Non-Linear Elasticity of the Crust from the Mw7.6 Manyi (Tibet) Earthquake Surface Displacement Field

    NASA Technical Reports Server (NTRS)

    Peltzer, G.; Crampe, F.; King, G.

    1999-01-01

    Satellite synthetic aperture radar (SAR) interferometry shows that the magnitude 7.6 Manyi earthquake of 8 November 1997 produces a 170 km-long surface break with up to 7m of left-lateral slip, reactivating a North 76 degrees East quaternary fault in western Tibet.

  20. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  1. Quantitative reactive modeling and verification.

    PubMed

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  3. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alonemore » or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.« less

  4. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    DOE PAGES

    Dittrich, T. M.; Reimus, P. W.

    2015-02-12

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system.

  5. Association between carotid intima-media thickness and adiponectin in participants without diabetes or cardiovascular disease of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    de Almeida-Pititto, Bianca; Ribeiro-Filho, Fernando Flexa; Santos, Itamar S; Lotufo, Paulo A; Bensenor, Isabela M; Ferreira, Sandra Rg

    2017-01-01

    Objective The study assessed the association of adiponectin concentration with carotid intima-media thickness (CIMT) in middle-aged participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) without diabetes or cardiovascular disease. Design Cross-sectional analyses. Methods A sample of 687 individuals (35-54 years old) without diabetes or cardiovascular disease was stratified into two categories according to CIMT (< or ≥ 75th percentile). Traditional risk factors, C-reactive protein and adiponectin values were compared between categories by Student's t-test and frequencies by chi-square test. In linear regression models, associations of CIMT with adiponectin, adjusted for adiposity, blood pressure, C-reactive protein and homeostasis model assessment-insulin resistance were tested. Mean CIMT values were compared across quartiles of adiponectin concentrations using analysis of variance. Results Three hundred and forty-one individuals (49.6%) were women and 130 (19.0%) had three traditional cardiovascular risk factors. Those with elevated CIMT (21.8%) had greater mean values of body mass index (26.2(3.8) vs. 27.7(4.0)kg/m 2 , p < 0.001), waist circumference (86.9(10.1) vs. 90.1(10.8) cm, p = 0.001), systolic blood pressure (116.2(13.6) vs.121.2(16.1) mmHg, p < 0.001), homeostasis model assessment index (1.4(0.9-2.4) vs. 1.8(1.1-2.9), p = 0.011), C-reactive protein (1.2 (0.6-2.6) vs. 1.4(0.8-3.2) mg/l, p = 0.054) and adiponectin (9.9 (6.0-14.7) vs. 8.9 (5.3-13.8) µg/ml, p = 0.002) levels than the counterpart, while plasma glucose and lipids were not different between groups. In the adjusted model, blood pressure (directly) and adiponectin (inversely) persisted associated with high CIMT. Mean CIMT was greater in the first quartile of adiponectin when compared with the other three quartiles ( p = 0.019). Conclusions Lower adiponectin levels together with higher blood pressure were independently associated with elevated CIMT. Adiponectin concentration may be an independent marker of early structural damage in individuals at low-to-moderate cardiovascular risk.

  6. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Morrison, Stan; Morris, Sarah

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  7. Nuclear size measurement for distinguishing urothelial carcinomas from reactive urothelium on tissue sections.

    PubMed

    Poropatich, Kate; Yang, Jason C; Goyal, Rajen; Parini, Vamsi; Yang, Ximing J

    2016-06-30

    Pathological diagnosis of urothelial carcinoma (UC) is primarily based on cytological atypia. It has previously been shown that high-grade (HG) UC, particularly UC in situ cells (CIS), can be over five times the size of a lymphocyte. However, this has not been demonstrated in comparison to reactive urothelium. The objective of this study was to empirically compare the difference in nuclear size of UC cells with reactive urothelial cells. Using CellSens imaging software, we measured urothelial nuclear length (l) and width (w) on digital images of H&E sections. The area (a) of a nucleus was calculated based on the oval shape of most urothelial cells. Lymphocytes were measured to calculate normalized urothelial linear and area ratios. A total of 1085 urothelial cell nuclei from 60 cases were measured from reactive urothelium, low grade (LG) UC, HG UC and CIS. CIS nuclei were found to have an a 2.75 times larger than reactive nuclei (p < 0.001). A nuclear size cut-off of 11 um for l and 7 um for w was found to be sensitive [98.09 % (95 % CI: 95.60-99.38 %) and 89.31 % (95 % CI: 83.6-91.82 %) for l and w, respectively] and specific [92.60 % (95 % CI: 87.13-95.82 %) and 85.71 % (95 % CI: 79.49-90.63 %) for l and w, respectively] for distinguishing CIS from reactive atypia. Nuclear morphometry can be used to differentiate CIS from reactive atypia. A l over 11 um and a w over 7 um and is highly sensitive and specific for CIS compared to reactive urothelium. This difference in nuclear size may be used as a tool for differentiating the flat urothelial lesions from reactive urothelium in daily practice.

  8. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

    PubMed

    Drake, Christopher L; Pillai, Vivek; Roth, Thomas

    2014-08-01

    To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Longitudinal. Community-based. 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). None. Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P < 0.01) and stress-induced cognitive intrusion (OR = 1.61; P < 0.01) were significant predictors of risk for insomnia one year hence (Time 2). Intrusion mediated the effects of stressful events on risk for insomnia (P < 0.05). Trait sleep reactivity significantly increased risk for insomnia (OR = 1.78; P < 0.01). Further, sleep reactivity moderated the effects of stress-induced intrusion (P < 0.05), such that the risk for insomnia as a function of intrusion was significantly higher in individuals with high sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P < 0.01) two years later (Time 3). Insomnia at Time 2 significantly mediated this effect (P < 0.05). This study suggests that premorbid sleep reactivity is a significant risk factor for incident insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

  9. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  10. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques

    PubMed Central

    Lin, Philana Ling; Dartois, Veronique; Johnston, Paul J.; Janssen, Christopher; Via, Laura; Goodwin, Michael B.; Klein, Edwin; Barry, Clifton E.; Flynn, JoAnne L.

    2012-01-01

    Targeting Mycobacterium tuberculosis bacilli in low-oxygen microenvironments, such as caseous granulomas, has been hypothesized to have the potential to shorten therapy for active tuberculosis (TB) and prevent reactivation of latent infection. We previously reported that upon low-dose M. tuberculosis infection, equal proportions of cynomolgus macaques develop active disease or latent infection and that latently infected animals reactivated upon neutralization of TNF. Using this model we now show that chemoprophylaxis of latently infected cynomolgus macaques with 6 mo of isoniazid (INH) effectively prevented anti-TNF antibody-induced reactivation. Similarly, 2-mo treatment of latent animals with a combination of INH and rifampicin (RIF) was highly effective at preventing reactivation disease in this model. Metronidazole (MTZ), which has activity only against anaerobic, nonreplicating bacteria, was as effective as either of these treatments in preventing reactivation of latent infection. Because hypoxic lesions also occur during active TB, we further showed that addition of MTZ to INH/RIF effectively treated animals with active TB within 2 mo. Healing lesions were associated with distinct changes in cellular pathology, with a shift toward increasingly fibrotic and calcified lesions. Our data in the nonhuman primate model of active and latent TB supports targeting bacteria in hypoxic environments for preventing reactivation of latent infection and possibly shortening the duration of therapy in active TB. PMID:22826237

  11. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2010-11-15

    A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Toward computational models of magma genesis and geochemical transport in subduction zones

    NASA Astrophysics Data System (ADS)

    Katz, R.; Spiegelman, M.

    2003-04-01

    The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic calculations yet it remains flexible and computationally efficient. Given accurate solid-flow fields, a parameterization of hydrous melting and a method for calculating thermal structure (enforcing energy conservation), the final step is to integrate these components into a consistent framework for reactive-flow and chemical transport in deformable porous media. We present preliminary results for reactive flow in 2-D static and upwelling columns and discuss possible mechanical and chemical consequences of open system reactive melting with application to arcs.

  13. Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A

    NASA Astrophysics Data System (ADS)

    Baker, E. L.; Schimel, B.; Grantham, W. J.

    1996-05-01

    Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.

  14. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    USGS Publications Warehouse

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  15. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  16. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  17. VERIFICATION AND VALIDATION OF THE SPARC MODEL

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values--that is, the physical and chemical constants that govern reactivity. Although empirical structure-activity relationships that allow estimation of some ...

  18. Extremum Seeking Control of Smart Inverters for VAR Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma

    2015-09-04

    Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand informationmore » confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.« less

  19. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition delay in the lean case (φ = 0.6) is larger when compared to the rich case (φ = 0.75), in correlation with the instantaneous flame stretch. Partially premixed combustion is simulated for cases where the transverse profile of the inflow equivalence ratio is variable. The simulations show that for mixtures leaner in the core the vortical pattern tends towards anti-symmetry and the heat release decreases, resulting also in instability of the flame. For mixtures richer in the core, the flame displays sinusoidal flapping that results in larger wake spreading. The numerical simulations presented in this study employed simple, one-step chemical mechanisms. More accurate predictions of flame stability will require the use of detailed chemistry, raising the computational cost of the simulation. To address this issue, a novel algorithm for training Artificial Neural Networks (ANN) for prediction of the chemical source terms has been implemented and tested. Compared to earlier methods, such as reaction rate tabulation, the main advantages of the ANN method are in CPU time and disk space and memory reduction. The results of the testing indicate reasonable algorithm accuracy although some regions of the flame exhibit relatively significant differences compared to direct integration.

  20. Emotional reactivity across the adult life span: the cognitive pragmatics make a difference.

    PubMed

    Kunzmann, Ute; Richter, David

    2009-12-01

    Previously, we found that during films about age-typical losses, older adults experienced greater sadness than young adults, whereas their physiological responses were just as large. In the present study, our goal was to replicate this finding and extend past work by examining the role of cognitive functioning in age differences in emotional reactivity. We measured the autonomic and subjective responses of 240 adults (age range=20 to 70) while they viewed films about age-typical losses from our previous work. Findings were fully supportive of our past work: The magnitude of subjective reactions to our films increased linearly over the adult years, whereas there were no age differences on the level of physiological reactivity. We also found that the subjective reactions of adults with high pragmatic intelligence were of moderate size independent of their own age or the age relevance of the emotion elicitor. In contrast, the subjective reactions of adults low on pragmatic intelligence were more variable. Together, this evidence suggests that research on age differences in emotional reactivity may benefit from a perspective that considers individual difference variables as well as contextual variations. PsycINFO Database Record Copyright (c) 2009 APA, all rights reserved

  1. Determination of Roles of Microgravity and Ionizing Radiation on the Reactivation of Epstein-Barr Virus In Vitro

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K; Renner, Ashlie; Stowe, Raymond; Bloom, David; Pierson, Duane

    2015-01-01

    Astronauts experience symptomatic and asymptomatic herpes virus reactivation during spaceflight. We have shown increases in reactivation of Epstein-Barr virus (EBV), cytomegalovirus (CMV) and varicella zoster virus (VZV) and shedding in body fluids (saliva and urine) in astronauts during space travel. Alterations in immunity, increased stress hormone levels, microgravity, increased radiation, and other conditions unique to spaceflight may promote reactivation of latent herpes viruses. Unique mechanico-physico forces associated with spaceflight can have profound effects on cellular function, especially immune cells. In space flight analog studies such as Antarctica, bed rest studies, and NASA's undersea habitat (Aquarius), reactivation of these viruses occurred, but to a lesser extent than spaceflight. Spaceflight analogs model some spaceflight factors, but none of the analogs recreates all factors experienced in space. Most notably, microgravity and radiation are not included in many analogs. Stress, processed through the HPA axis and SAM systems, induces viral reactivation. However, the respective roles of microgravity and increased space radiation levels or if any synergy exists are not known. Therefore, we studied the effect of modeled space radiation and/or microgravity, independent of the immune system on the changes in cellular gene expression that results in viral (EBV) reactivation. The effects of modeled microgravity and low shear on EBV replication and cellular and EBV gene expression were studied in human B-lymphocyte cell cultures. Latently infected B-lymphocytes were propagated in the rotating wall bioreactor and irradiated with the various dosages of gamma irradiation. At specific time intervals following exposure to modeled microgravity, the cells and supernatant were harvested and reactivation of EBV were assessed by measuring EBV and gene expression, DNA methylation, and infectious virus production.

  2. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.

    PubMed

    Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2018-05-10

    The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.

  3. Integrated Modeling and Experimental Studies at the Meso Scale for Advanced Reactive Materials

    DTIC Science & Technology

    2016-07-01

    T E C H N IC A L R E P O R T DTRA-TR-16-76 Integrated Modeling and Experimental Studies at the Meso- Scale for Advanced Reactive Materials ...study the energy release processes that thermitic and/or exothermic intermetallic reactive materials experience when they are subjected to...thermitic and/or exothermic intermetallic materials experience when they are subjected to sustained shock loading. Data from highly spatially and

  4. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  5. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  6. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  7. Links between physical fitness and cardiovascular reactivity and recovery to psychological stressors: A meta-analysis.

    PubMed

    Forcier, Kathleen; Stroud, Laura R; Papandonatos, George D; Hitsman, Brian; Reiches, Meredith; Krishnamoorthy, Jenelle; Niaura, Raymond

    2006-11-01

    A meta-analysis of published studies with adult human participants was conducted to evaluate whether physical fitness attenuates cardiovascular reactivity and improves recovery from acute psychological stressors. Thirty-three studies met selection criteria; 18 were included in recovery analyses. Effect sizes and moderator influences were calculated by using meta-analysis software. A fixed effects model was fit initially; however, between-studies heterogeneity could not be explained even after inclusion of moderators. Therefore, to account for residual heterogeneity, a random effects model was estimated. Under this model, fit individuals showed significantly attenuated heart rate and systolic blood pressure reactivity and a trend toward attenuated diastolic blood pressure reactivity. Fit individuals also showed faster heart rate recovery, but there were no significant differences in systolic blood pressure or diastolic blood pressure recovery. No significant moderators emerged. Results have important implications for elucidating mechanisms underlying effects of fitness on cardiovascular disease and suggest that fitness may be an important confound in studies of stress reactivity. Copyright 2006 APA, all rights reserved.

  8. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  9. Dual Pathways from Reactive Aggression to Depressive Symptoms in Children: Further Examination of the Failure Model.

    PubMed

    Evans, Spencer C; Fite, Paula J

    2018-04-13

    The failure model posits that peer rejection and poor academic performance are dual pathways in the association between early aggressive behavior and subsequent depressive symptoms. We examined this model using an accelerated longitudinal design while also incorporating proactive and reactive aggression and gender moderation. Children in 1st, 3rd, and 5th grades (n = 912; ages 6-12; 48% female) were rated three times annually by their primary teachers on measures of proactive and reactive aggression, peer rejection, academic performance, and depressive symptoms. Using Bayesian cross-classified estimation to account for nested and planned-missing data, path models were estimated to examine whether early reactive aggression predicted subsequent peer rejection and academic performance, and whether these, in turn, predicted subsequent depressive symptoms. From 1st to 3rd grade, reactive aggression predicted peer rejection (not academic performance), proactive aggression predicted academic performance (not peer rejection), and academic performance and peer rejection both predicted depressive symptoms. From 3rd to 5th grade, however, neither peer rejection nor academic performance predicted subsequent depressive symptoms. Results were not moderated by gender. Overall, these findings provide mixed and limited support for the failure model among school-age children. Early reactive aggression may be a key risk factor for social problems, whereas proactive aggression may be linked to improved academic functioning. The "dual pathways" of peer rejection and academic performance may operate during early but not later elementary school. Limitations and implications are discussed.

  10. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    USGS Publications Warehouse

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  11. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone).

    PubMed

    Rawat, Poonam; Singh, R N

    2015-04-05

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm(-1)) and asymmetric (3389, 3382 cm(-1)) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0=23.83×10(-30) esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors--Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone)

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.

    2015-04-01

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm-1) and asymmetric (3389, 3382 cm-1) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0 = 23.83 × 10-30 esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors - Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule.

  13. Correlation Between High-sensitivity C-reactive Protein and Reactive Oxygen Metabolites During A One-year Period Among Asymptomatic Subjects

    PubMed Central

    Kotani, Kazuhiko; Taniguchi, Nobuyuki

    2012-01-01

    Background Inflammation and oxidative stress are associated with human health and the disease status. The present study aimed to investigate the longitudinal correlation between the diacron reactive oxygen metabolites (d-ROMs) level, as an oxidative stress-related marker, and high-sensitivity C-reactive protein (hsCRP), as an inflammatory marker, during a one-year period among asymptomatic subjects. Methods The data, including anthropometric and biochemical markers, were collected at baseline and after the one-year period from 71 participants (male/female = 41/30, mean age 50 years). The correlation between the changes of the d-ROMs and hsCRP levels during the study period was examined. Results A simple correlation analysis showed a significant and positive correlation to exist between the changes of the d-ROMs and hsCRP levels (r = 0.40, P < 0.01). This significant correlation remained independent in a multiple linear regression analysis adjusted for confounding factors. Conclusions The present findings suggest that the relationship between the d-ROMs and hsCRP levels could be prospectively followed, and that monitoring both markers may help to better understand the cooperation of inflammation and oxidative stress in association with health and disease. Further studies are necessary to clarify the biological mechanism(s) responsible for the observed relationship. Keywords Oxidative stress; Oxygen reactive species; Inflammation; CRP PMID:22383928

  14. Tuberculin reactivity and tuberculosis epidemiology in the Pakaanóva (Wari') Indians of Rondônia, south-western Brazilian Amazon.

    PubMed

    Escobar, A L; Coimbra, C E A; Camacho, L A B; Santos, R V

    2004-01-01

    To investigate the characteristics of tuberculin skin test reactivity in the Pakaanóva Indians, in Amazonia, Brazil, after revaccination of all study participants with bacille Calmette-Guerin (BCG). The investigation was designed as a post-BCG vaccination purified protein derivative (PPD) survey. Data included PPD readings, age, sex, nutritional status, place of residence, previous tuberculosis, physical examinations and BCG status. Bivariate and multivariate logistic regression analyses were conducted. About 90% (n = 505) of the total population participated. One third (32.1%) of the subjects presented induration > or = 10 mm at 72 h. Induration sizes showed weak linear correlation with age; differences between sexes were not observed. Skin reaction was not associated with nutritional status. Individuals with a history of tuberculosis were six times more likely to test positive. History of tuberculosis, age, and previous BCG vaccination were significantly associated with PPD reactivity in the multivariate analyses. The Pakaanóva showed a high proportion (58.4%) of non-reactors, even with a recent BCG booster. Sex differences in PPD reactivity were either not present or could not be demonstrated. The association between age and PPD reactivity resembles that observed in other Amazonian populations. The authors discuss the potential of PPD testing as a screening tool to enhance tuberculosis detection, especially in indigenous populations in Amazonia with limited access to health services.

  15. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  16. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  17. Genomic prediction based on data from three layer lines using non-linear regression models.

    PubMed

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.

  18. A Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Vedolizumab.

    PubMed

    Rosario, Maria; Dirks, Nathanael L; Milch, Catherine; Parikh, Asit; Bargfrede, Michael; Wyant, Tim; Fedyk, Eric; Fox, Irving

    2017-11-01

    Vedolizumab is a humanized anti-α 4 β 7 integrin monoclonal antibody that selectively blocks trafficking of memory T cells to inflamed gut tissue by inhibiting the α 4 β 7 -mucosal addressin cell adhesion molecule-1 (MAdCAM-1) interaction. Approved for treating patients with moderately to severely active ulcerative colitis (UC) or Crohn's disease (CD), vedolizumab is administered as a 300 mg intravenous infusion. Vedolizumab undergoes a rapid, saturable, non-linear, target-mediated elimination process at low concentrations and a slower, linear, non-specific elimination process at higher concentrations. At therapeutic concentrations, vedolizumab primarily undergoes linear elimination. From population pharmacokinetic modeling, the vedolizumab terminal elimination half-life (t ½ β) was estimated to be 25.5 days; linear clearance (CL L ) was similar for patients with UC (0.159 L/day) and CD (0.155 L/day). Extreme low albumin concentrations and extreme high body weight values were potentially clinically important predictors of vedolizumab CL L . Other factors, including concomitant therapy use (methotrexate, azathioprine, mercaptopurine, or aminosalicylates) or prior tumor necrosis factor-α (TNF-α) antagonist use, had no clinically relevant effects on CL L . A positive exposure-efficacy relationship for clinical remission and clinical response was apparent for vedolizumab induction therapy in patients with UC or CD. On average, patients with higher albumin, lower fecal calprotectin (UC only), lower C-reactive protein (CD only), and no prior TNF-α antagonist use had a higher probability of remission. Off drug, 10% of patients with UC or CD were positive for anti-drug antibodies. This article provides a comprehensive review of the clinical pharmacokinetics, pharmacodynamics, exposure-efficacy relationships, and immunogenicity of vedolizumab.

  19. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in model simulations of past and future atmospheres may be a cause of the different evolution of tropospheric O3 and CH4, and lead to different chemistry-climate feedbacks across the models.

  20. A Model-based Approach to Reactive Self-Configuring Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Nayak, P. Pandurang

    1996-01-01

    This paper describes Livingstone, an implemented kernel for a self-reconfiguring autonomous system, that is reactive and uses component-based declarative models. The paper presents a formal characterization of the representation formalism used in Livingstone, and reports on our experience with the implementation in a variety of domains. Livingstone's representation formalism achieves broad coverage of hybrid software/hardware systems by coupling the concurrent transition system models underlying concurrent reactive languages with the discrete qualitative representations developed in model-based reasoning. We achieve a reactive system that performs significant deductions in the sense/response loop by drawing on our past experience at building fast prepositional conflict-based algorithms for model-based diagnosis, and by framing a model-based configuration manager as a prepositional, conflict-based feedback controller that generates focused, optimal responses. Livingstone automates all these tasks using a single model and a single core deductive engine, thus making significant progress towards achieving a central goal of model-based reasoning. Livingstone, together with the HSTS planning and scheduling engine and the RAPS executive, has been selected as the core autonomy architecture for Deep Space One, the first spacecraft for NASA's New Millennium program.

  1. The influence of physical and cognitive factors on reactive agility performance in men basketball players.

    PubMed

    Scanlan, Aaron; Humphries, Brendan; Tucker, Patrick S; Dalbo, Vincent

    2014-01-01

    This study explored the influence of physical and cognitive measures on reactive agility performance in basketball players. Twelve men basketball players performed multiple sprint, Change of Direction Speed Test, and Reactive Agility Test trials. Pearson's correlation analyses were used to determine relationships between the predictor variables (stature, mass, body composition, 5-m, 10-m and 20-m sprint times, peak speed, closed-skill agility time, response time and decision-making time) and reactive agility time (response variable). Simple and stepwise regression analyses determined the individual influence of each predictor variable and the best predictor model for reactive agility time. Morphological (r = -0.45 to 0.19), sprint (r = -0.40 to 0.41) and change-of-direction speed measures (r = 0.43) had small to moderate correlations with reactive agility time. Response time (r = 0.76, P = 0.004) and decision-making time (r = 0.58, P = 0.049) had large to very large relationships with reactive agility time. Response time was identified as the sole predictor variable for reactive agility time in the stepwise model (R(2) = 0.58, P = 0.004). In conclusion, cognitive measures had the greatest influence on reactive agility performance in men basketball players. These findings suggest reaction and decision-making drills should be incorporated in basketball training programmes.

  2. Micro-Machined High-Frequency (80 MHz) PZT Thick Film Linear Arrays

    PubMed Central

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the development of a micro-machined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT solgel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (−6 dB) of 60%. An insertion loss of −41 dB and adjacent element crosstalk of −21 dB were found at the center frequency. PMID:20889407

  3. Letter: Modeling reactive shock waves in heterogeneous solids at the continuum level with stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.

    2018-05-01

    A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.

  4. Exploring the potential energy surface for the interaction of sterically hindered trichloro(diethylenetriamine)gold(III) complexes with water.

    PubMed

    Dos Santos, Hélio F; Paschoal, Diego; Burda, Jaroslav V

    2012-11-15

    The reactivity of gold(III) complexes is analyzed for a series of derivatives of 3-azapentane-1,5-diamine (dien) tridentate ligand that can contain some bulky substituents. Two distinct series of compounds are considered where the dien ligand is either deprotonated (R-dien-H) or protonated (R-dien) at the secondary amine where R = ethyl (Et) or methyl (Me). While the deprotonated species will occur in neutral and basic solutions, the protonated forms are likely to be present in acidic environment. Hydration reaction (water/Cl(-) ligand exchange) of 14 complexes is modeled with quantum chemical calculations. Our calculations predict that the reactivity decreases with the increase in the molecular volume of the substituted dien ligand, and the calculated rate constants are in satisfactory agreement with experimental results. In addition, quantitative structure/reactivity models are proposed where the angle between the entering and leaving groups in the transition state structure (the reactivity angle) is used as a molecular descriptor. These models explain the trend of the relative reactivity of these complexes and can be used to design new ligands for gold(III) complexes aiming to adjust the reactivity of the complex.

  5. Neurobehavioral foundation of environmental reactivity.

    PubMed

    Moore, Sarah R; Depue, Richard A

    2016-02-01

    Sensitivity to environmental context has been of interest for many years, but the nature of individual differences in environmental sensitivity has become of particular focus over the past 2 decades. What is particularly uncertain are the neural variables and processes that mediate the effects of environment on developmental outcomes. Accordingly, we provide a neurobehavioral foundation of reactivity to the environment in several steps. First, the different patterns of environmental sensitivity are defined to identify the significant factors involved in the manifestation of these patterns. Second, we focus on neurobiological reactivity as the construct underlying variation in sensitivity to the environment by (a) providing an organizing threshold model of elicitation of neurobiology by environmental context; and (b) integrating the literature on 2 sets of neuromodulators in terms of each modulator's (a) contribution to neural and behavioral reactivity to stimulation, and (b) relation to emotional-motivational systems (dopamine, opiates and oxytocin, corticotropin-releasing hormone) or the general modulation of those systems (serotonin, norepinephrine, and GABA). Discussion concludes with (a) a comprehensive neurobehavioral framework of environmental reactivity based on a combinatorial model of a supertrait, (b) methodological implications of the model, and (c) a developmental perspective on environmental reactivity. (c) 2016 APA, all rights reserved).

  6. Sources and Fate of Reactive Carbon over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2016-12-01

    We apply a high-resolution chemical transport model (GEOS-Chem CTM at 0.25°×0.3125°) to generate, a comprehensive gas-phase reactive carbon budget over North America. Based on state-of-science source inventories and known chemistry, we find in the model that biogenic sources dominate the overall reactive carbon budget, with 49, 15, 4, and 39 TgC, respectively, introduced to the North American atmosphere from the biosphere, anthropogenic sources, fires, and from methane oxidation in 2013. Biogenic and anthropogenic non-methane volatile organic compounds contribute 60% and 10%, respectively, to the total OH reactivity over the Southeast US, along with other contributions from methane and inorganics. Oxidation to CO and CO2 then represents the overwhelming fate of that reactive carbon, with 65, 15, 7 and 5 TgC, respectively, oxidized to produce CO/CO2, dry deposited, wet deposited and transported (net) out of North America. We confront this simulation with an ensemble of recent airborne measurements over North America (SEAC4RS, SENEX, DISCOVER-AQ, DC3) and interpret the model-measurement comparisons in terms of their implications for current understanding of atmospheric reactive carbon and the processes driving its distribution.

  7. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    ERIC Educational Resources Information Center

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  8. Insights into the regioselectivity and RNA-binding affinity of HIV-1 nucleocapsid protein from linear-scaling quantum methods.

    PubMed

    Khandogin, Jana; Musier-Forsyth, Karin; York, Darrin M

    2003-07-25

    Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) plays several important roles in the viral life-cycle and presents an attractive target for rational drug design. Here, the macromolecular reactivity of NC and its binding to RNA is characterized through determination of electrostatic and chemical descriptors derived from linear-scaling quantum calculations in solution. The computational results offer a rationale for the experimentally observed susceptibility of the Cys49 thiolate toward small-molecule electrophilic agents, and support the recently proposed stepwise protonation mechanism of the C-terminal Zn-coordination complex. The distinctive binding mode of NC to SL2 and SL3 stem-loops of the HIV-1 genomic RNA packaging signal is studied on the basis of protein side-chain contributions to the electrostatic binding energies. These results indicate the importance of several basic residues in the 3(10) helical region and the N-terminal zinc finger, and rationalize the presence of several evolutionarily conserved residues in NC. The combined reactivity and RNA-binding study provides new insights that may contribute toward the structure-based design of anti-HIV therapies.

  9. Reactivity of the plant growth regulator paclobutrazol (cultar) with two tropical soils of the northeast semiarid region of Brazil.

    PubMed

    Milfont, Mônica Lúcia; Martins, Jean Manuel Fonseca; Antonino, Antonio Celso Dantas; Gouveia, Ester Ribeiro; Netto, André Maciel; Guiné, Véronique; Mas, Hélène; dos Santos Freire, Maria Betânia Galvão

    2008-01-01

    The reactivity of paclobutrazol (PBZ, a plant growth retardant) with a Yellow Ultisol and a Vertisol from the semiarid northeast region of Brazil was evaluated through batch sorption experiments and modeling. Although not instantaneous, the sorption kinetic of PBZ (pure and formulated) was fast (a few hours) in both soils. The sorption kinetics were well described by a second-order (dS(t)/dt=k(2)(S(e2)-S(t))(2)) but not by a first-order model. The sorption isotherms were found to be linear and the calculated K(D) values were 8.8 +/- 0.11 and 7.4 +/- 0.2 L kg(-1) for pure PBZ in the Ultisol and the Vertisol, respectively. The corresponding K(OC) values were 1275 +/- 34 (logK(OC) = 3.11) and 1156 +/- 49 (logK(OC) = 3.06) L kg(-1), respectively. Considering the very different texture of the two soils and the similar K(OC) values determined, these results showed that in both soils, the sorption of PBZ is dominantly controlled by organic matter, although some interactions of PBZ with iron oxides (goethite) were observed in the Ultisol. Based on these sorption parameters a low leachability potential of PBZ in soils is anticipated, as they correspond to a groundwater ubiquity score (GUS) ranging from 2.0 to 2.7, i.e., moderately to not mobile, in contradiction with the actual groundwater situation in Brazil. This work stresses the need to evaluate and predict the risk associated with aquifer contamination by this widely used plant growth regulator.

  10. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lack of Resilience Is Related to Stress-Related Sleep Reactivity, Hyperarousal, and Emotion Dysregulation in Insomnia Disorder.

    PubMed

    Palagini, Laura; Moretto, Umberto; Novi, Martina; Masci, Isabella; Caruso, Danila; Drake, Christopher L; Riemann, Dieter

    2018-05-15

    According to the diathesis-stress model of insomnia, insomnia may develop in vulnerable individuals in response to stress. Resilience is a psychobiological factor that determines an individual's capacity to adapt successfully to stressful events and low resilience increases vulnerability for development of mental disorders. The aim was to explore resilience in subjects with insomnia and its relationship with the factors that contribute to its development and perpetuation. The study consisted of 58 subjects with Insomnia Disorder according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and 38 good sleepers. Resilience Scale for Adults (RSA), Ford Insomnia Response to Stress Test (FIRST), Pre-sleep Arousal Scale (PSAS), and Difficulties in Emotion Regulation Scale (DERS) were administered while taking into account psychiatric symptoms. Differences in means between groups were assessed using t test or Mann-Whitney U /Wilcoxon test. Linear/multivariable regression analyses and mediation analyses were performed. Subjects with insomnia (24 females, mean age 49 ± 2.1 years) had lower RSA and higher FIRST, DERS, and PSAS scores than good sleepers (22 females, mean age 47.2 ± 1.2 years). After controlling for anxiety/depressive symptoms, low resilience correlated with high stress-related sleep reactivity ( P = .004), pre-sleep cognitive hyperarousal ( P = .01) and emotion dysregulation ( P = .01). Emotion dysregulation mediated the relationship between low resilience and cognitive hyperarousal (Z = 2.06, P = .03). Subjects with insomnia showed low resilience, which was related to high stress-related sleep reactivity, emotional dysregulation, and hyperarousal. If resilience helps to minimize the extent of pathogenesis in the developmental process, an early identification of vulnerable candidates should be useful for preventing insomnia development and maintenance. A commentary on this article appears in this issue on page 709. © 2018 American Academy of Sleep Medicine.

  12. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    USGS Publications Warehouse

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  13. Prediction of Down-Gradient Impacts of DNAPL Source Depletion Using Tracer Techniques

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Fure, A. D.; Jawitz, J. W.

    2006-12-01

    Four simplified DNAPL source depletion models that have been discussed in the literature recently are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. One of the source depletion models, the equilibrium streamtube model, is shown to be relatively easily parameterized using non-reactive and reactive tracers. Non-reactive tracers are used to characterize the aquifer heterogeneity while reactive tracers are used to describe the mean DNAPL mass and its distribution. This information is then used in a Lagrangian framework to predict source remediation performance. In a Lagrangian approach the source zone is conceptualized as a collection of non-interacting streamtubes with hydrodynamic and DNAPL heterogeneity represented by the variation of the travel time and DNAPL saturation among the streamtubes. The travel time statistics are estimated from the non-reactive tracer data while the DNAPL distribution statistics are estimated from the reactive tracer data. The combined statistics are used to define an analytical solution for contaminant dissolution under natural gradient flow. The tracer prediction technique compared favorably with results from a multiphase flow and transport simulator UTCHEM in domains with different hydrodynamic heterogeneity (variance of the log conductivity field = 0.2, 1 and 3).

  14. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in model simulations of past and future atmospheres may be a cause of the different evolution of tropospheric O3 and CH4, and lead to different chemistry-climate feedbacks across the models.

  15. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different environmental and geo-engineering applications. SeSBench will organize new workshops to add new benchmarks in a new special issue. Steefel, C. I., et al. (2015). "Reactive transport codes for subsurface environmental simulation." Computational Geosciences 19: 445-478.

  16. Nitrate reduction and its effects on trichloroethylene degradation by granular iron.

    PubMed

    Lu, Qiong; Jeen, Sung-Wook; Gui, Lai; Gillham, Robert W

    2017-04-01

    Laboratory column experiments and reactive transport modeling were performed to evaluate the reduction of nitrate and its effects on trichloroethylene (TCE) degradation by granular iron. In addition to determining degradation kinetics of TCE in the presence of nitrate, the columns used in this study were equipped with electrodes which allowed for in situ measurements of corrosion potentials of the iron material. Together with Raman spectroscopic measurements the mechanisms of decline in iron reactivity were examined. The experimental results showed that the presence of nitrate resulted in an increase in corrosion potential and the formation of thermodynamically stable passive films on the iron surface which impaired iron reactivity. The extent of the decline in iron reactivity was proportional to the nitrate concentration. Consequently, significant decreases in TCE and nitrate degradation rates and migration of degradation profiles for both compounds occurred. Furthermore, the TCE degradation kinetics deviated from the pseudo-first-order model. The results of reactive transport modeling, which related the amount of a passivating iron oxide, hematite (α-Fe 2 O 3 ), to the reactivity of iron, were generally consistent with the patterns of migration of TCE and nitrate profiles observed in the column experiments. More encouragingly, the simulations successfully demonstrated the differences in performances of three columns without changing model parameters other than concentrations of nitrate in the influent. This study could be valuable in the design of iron permeable reactive barriers (PRBs) or in the development of effective maintenance procedures for PRBs treating TCE-contaminated groundwater with elevated nitrate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chi-Jen; Ackerman, David M.; Slowing, Igor I.

    2014-07-14

    Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P~(R-R c) σ, where passing is sterically blocked for R≤R c, with σ below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotationalmore » degrees of freedom for elongated molecules.« less

  18. Adolescents' Emotional Reactivity across Relationship Contexts

    ERIC Educational Resources Information Center

    Cook, Emily C.; Buehler, Cheryl; Blair, Bethany L.

    2013-01-01

    Adolescents' emotional reactivity in family, close friendships, and romantic relationships was examined in a community-based sample of 416 two-parent families. Six waves of annual data were analyzed using structural equation modeling. Emotional reactivity to interparental conflict during early adolescence was associated prospectively with…

  19. Serology indicates cytomegalovirus infection is associated with varicella-zoster virus reactivation.

    PubMed

    Ogunjimi, Benson; Theeten, Heidi; Hens, Niel; Beutels, Philippe

    2014-05-01

    Varicella-zoster virus (VZV) causes chickenpox after which the virus remains latent in neural ganglia. Subsequent reactivation episodes occur, leading mainly to subclinical detection of VZV, but also to the clinical entity herpes zoster. These reactivations are known to occur most frequently amongst immunocompromised individuals, but the incidence of herpes zoster is also known to increase with age, supposedly as a consequence of immunosenescence. Our analysis aims to explore associations between cytomegalovirus (CMV) infection and VZV reactivation by analyzing VZV-specific antibody titers as a function of age, gender, and CMV serostatus. The analysis was repeated on measles and parvovirus B19 antibody titers. At the time of the observations, measles virus circulation was virtually eliminated, whereas parvovirus B19 circulated at lower levels than VZV. Multiple linear regression analyses, using the log-transformed antibody titers, identified a positive association between ageing and VZV antibody titers suggesting that ageing increasingly stimulates VZV reactivation. CMV infection further amplified the positive association between ageing and the reactivation rate. A negative association between CMV infection and VZV antibody titers was found in young individuals, thereby supporting the hypothesis that CMV infection may have a negative effect on the number of B-cells. However, no associations between CMV infection and measles or parvovirus B19 antibody titers occurred, but ageing tended to be associated with a decrease in the antibody titer against parvovirus B19. The combined results thus suggest that both CMV-dependent and CMV-independent immunosenescence occurs. This is supported by an in-depth analysis of VZV, measles and parvovirus B19 antibody titers. © 2013 Wiley Periodicals, Inc.

  20. CALCULATING PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FOR ENVIRONMENTAL MODELING FROM MOLECULAR STRUCTURE

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values-- that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed t...

  1. IDENTIFYING INDICATORS OF REACTIVITY FOR CHEMICAL REDUCTANTS IN ANOXIC AND ANAEROBIC SEDIMENTS

    EPA Science Inventory

    To develop reaction transport models describing the movement of redox-active organic contaminants through contaminated sediments and aquifers, it is imperative to know the identity and reactivity of chemical reductants in natural sediments and to associate their reactivity with p...

  2. REDUCTIVE DEHALOGENATION OF HALOMETHANES IN IRON- AND SULFATE-REDUCING SEDIMENTS. 1. REACTIVITY PATTERN ANALYSIS

    EPA Science Inventory

    The incorporation of reductive transformations into environmental fate models requires the characterization of natural reductants in well-characterized sediments and aquifer materials. For this purpose, reactivity patterns (i.e., the range and relative order of reactivity) for a...

  3. Prenatal bisphenol a exposure and dysregulation of infant hypothalamic-pituitary-adrenal axis function: findings from the APrON cohort study.

    PubMed

    Giesbrecht, Gerald F; Ejaredar, Maede; Liu, Jiaying; Thomas, Jenna; Letourneau, Nicole; Campbell, Tavis; Martin, Jonathan W; Dewey, Deborah

    2017-05-19

    Animal models show that prenatal bisphenol A (BPA) exposure leads to sexually dimorphic disruption of the neuroendocrine system in offspring, including the hypothalamic-pituitary-adrenal (HPA) neuroendocrine system, but human data are lacking. In humans, prenatal BPA exposure is associated with sex-specific behavioural problems in children, and HPA axis dysregulation may be a biological mechanism. The objective of the current study was to examine sex differences in associations between prenatal maternal urinary BPA concentration and HPA axis function in 3 month old infants. Mother-infant pairs (n = 132) were part of the Alberta Pregnancy Outcomes and Nutrition study, a longitudinal birth cohort recruited (2010-2012) during pregnancy. Maternal spot urine samples collected during the 2nd trimester were analyzed for total BPA and creatinine. Infant saliva samples collected prior to and after a blood draw were analyzed for cortisol. Linear growth curve models were used to characterize changes in infant cortisol as a function of prenatal BPA exposure. Higher maternal BPA was associated with increases in baseline cortisol among females (β = 0.13 log μg/dL; 95% CI: 0.01, 0.26), but decreases among males (β = -0.22 log μg/dL; 95% CI: -0.39, -0.05). In contrast, higher BPA was associated with increased reactivity in males (β = .30 log μg/dL; 95% CI: 0.04, 0.56) but decreased reactivity in females (β = -0.15 log μg/dL; 95% CI: -0.35, 0.05). Models adjusting for creatinine yielded similar results. Prenatal BPA exposure is associated with sex-specific changes in infant HPA axis function. The biological plausibility of these findings is supported by their consistency with evidence in rodent models. Furthermore, these data support the hypotheses that sexually dimorphic changes in children's behaviour following prenatal BPA exposure are mediated by sexually dimorphic changes in HPA axis function.

  4. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  5. Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat.

    PubMed

    Ferreira, Anthony; Lamarque, Stéphanie; Boyer, Patrice; Perez-Diaz, Fernando; Jouvent, Roland; Cohen-Salmon, Charles

    2006-12-01

    According to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.

  6. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    NASA Astrophysics Data System (ADS)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  7. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  8. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    EPA Science Inventory

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  9. Reactive transport modeling

    USDA-ARS?s Scientific Manuscript database

    This special section in the Vadose Zone Journal focusing on reactive transport modeling was developed from a special symposium jointly sponsored by the Soil Physics and Soil Chemistry Divisions of the Soil Science Society of America at the 2010 annual meetings held in Long Beach, CA. It contains eig...

  10. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  11. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses

    PubMed Central

    Aron, Adam R

    2010-01-01

    A better understanding of the neural systems underlying impulse control is important for psychiatry. While most impulses are motivational or emotional rather than motoric per se, it is research into the neural architecture of motor response control that has made the greatest strides. This article reviews recent developments in the cognitive neuroscience of stopping responses. Most research of this kind has focused on reactive control – i.e. how subjects stop a response outright when instructed by a signal. It is argued that reactive paradigms are limited as models of control relevant to psychiatry. Instead, a set of paradigms is advocated that begins to model proactive inhibitory control – i.e. how a subject prepares to stop an upcoming response tendency. Proactive inhibitory control is generated according to the goals of the subject, rather than by an external signal, and it can be selectively targeted at a particular response tendency. This may have wider validity than reactive control as an experimental model for stopping inappropriate responses. PMID:20932513

  12. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    NASA Technical Reports Server (NTRS)

    Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.

    2003-01-01

    A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.

  13. LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1994-01-01

    The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.

  14. Emotional hyper-reactivity and cardiometabolic risk in remitted bipolar patients: a machine learning approach.

    PubMed

    Dargél, A A; Roussel, F; Volant, S; Etain, B; Grant, R; Azorin, J-M; M'Bailara, K; Bellivier, F; Bougerol, T; Kahn, J-P; Roux, P; Aubin, V; Courtet, P; Leboyer, M; Kapczinski, F; Henry, C

    2018-05-15

    Remitted bipolar disorder (BD) patients frequently present with chronic mood instability and emotional hyper-reactivity, associated with poor psychosocial functioning and low-grade inflammation. We investigated emotional hyper-reactivity as a dimension for characterization of remitted BD patients, and clinical and biological factors for identifying those with and without emotional hyper-reactivity. A total of 635 adult remitted BD patients, evaluated in the French Network of Bipolar Expert Centers from 2010-2015, were assessed for emotional reactivity using the Multidimensional Assessment of Thymic States. Machine learning algorithms were used on clinical and biological variables to enhance characterization of patients. After adjustment, patients with emotional hyper-reactivity (n = 306) had significantly higher levels of systolic and diastolic blood pressure (P < 1.0 × 10 -8 ), high-sensitivity C-reactive protein (P < 1.0 × 10 -8 ), fasting glucose (P < 2.23 × 10 -6 ), glycated hemoglobin (P = 0.0008) and suicide attempts (P = 1.4 × 10 -8 ). Using models of combined clinical and biological factors for distinguishing BD patients with and without emotional hyper-reactivity, the strongest predictors were: systolic and diastolic blood pressure, fasting glucose, C-reactive protein and number of suicide attempts. This predictive model identified patients with emotional hyper-reactivity with 84.9% accuracy. The assessment of emotional hyper-reactivity in remitted BD patients is clinically relevant, particularly for identifying those at higher risk of cardiometabolic dysfunction, chronic inflammation, and suicide. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Stress and Sleep Reactivity: A Prospective Investigation of the Stress-Diathesis Model of Insomnia

    PubMed Central

    Drake, Christopher L.; Pillai, Vivek; Roth, Thomas

    2014-01-01

    Study Objectives: To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Design: Longitudinal. Setting: Community-based. Participants: 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). Interventions: None. Measurements and Results: Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P < 0.01) and stress-induced cognitive intrusion (OR = 1.61; P < 0.01) were significant predictors of risk for insomnia one year hence (Time 2). Intrusion mediated the effects of stressful events on risk for insomnia (P < 0.05). Trait sleep reactivity significantly increased risk for insomnia (OR = 1.78; P < 0.01). Further, sleep reactivity moderated the effects of stress-induced intrusion (P < 0.05), such that the risk for insomnia as a function of intrusion was significantly higher in individuals with high sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P < 0.01) two years later (Time 3). Insomnia at Time 2 significantly mediated this effect (P < 0.05). Conclusions: This study suggests that premorbid sleep reactivity is a significant risk factor for incident insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Citation: Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia. SLEEP 2014;37(8):1295-1304. PMID:25083009

  16. Comparison of Immature Platelet Count to Established Predictors of Platelet Reactivity During Thienopyridine Therapy.

    PubMed

    Stratz, Christian; Bömicke, Timo; Younas, Iris; Kittel, Anja; Amann, Michael; Valina, Christian M; Nührenberg, Thomas; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-07-19

    Previous data suggest that reticulated platelets significantly affect antiplatelet response to thienopyridines. It is unknown whether parameters describing reticulated platelets can predict antiplatelet response to thienopyridines. The authors sought to determine the extent to which parameters describing reticulated platelets can predict antiplatelet response to thienopyridine loading compared with established predictors. This study randomized 300 patients undergoing elective coronary stenting to loading with clopidogrel 600 mg, prasugrel 30 mg, or prasugrel 60 mg. Adenosine diphosphate (ADP)-induced platelet reactivity was assessed by impedance aggregometry before loading (intrinsic platelet reactivity) and again on day 1 after loading. Multiple parameters of reticulated platelets were assessed by automated whole blood flow cytometry: absolute immature platelet count (IPC), immature platelet fraction, and highly fluorescent immature platelet fraction. Each parameter of reticulated platelets correlated significantly with ADP-induced platelet reactivity (p < 0.01 for all 3 parameters). In a multivariable model including all 3 parameters, only IPC remained a significant predictor of platelet reactivity (p < 0.001). In models adjusting each of the 3 parameters for known predictors of on-treatment platelet reactivity including cytochrome P450 2C19 (CYP2C19) polymorphisms, age, body mass index, diabetes, and intrinsic platelet reactivity, only IPC prevailed as an independent predictor (p = 0.001). In this model, IPC was the strongest predictor of on-treatment platelet reactivity followed by intrinsic platelet reactivity. IPC is the strongest independent platelet count-derived predictor of antiplatelet response to thienopyridine treatment. Given its easy availability, together with its even stronger association with on-treatment platelet reactivity compared with known predictors, including the CYP2C19*2 polymorphism, IPC may become the preferred predictor of antiplatelet response to thienopyridine treatment. (Impact of Extent of Clopidogrel-Induced Platelet Inhibition During Elective Stent Implantation on Clinical Event Rate-Advanced Loading Strategies [ExcelsiorLOAD]; DRKS00006102). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Establishment of HSV1 Latency in Immunodeficient Mice Facilitates Efficient In Vivo Reactivation

    PubMed Central

    Ramakrishna, Chandran; Ferraioli, Adrianna; Calle, Aleth; Nguyen, Thanh K.; Openshaw, Harry; Lundberg, Patric S.; Lomonte, Patrick; Cantin, Edouard M.

    2015-01-01

    The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation. PMID:25760441

  18. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  19. Defining Tropospheric Chemistry As A Heterogeneous Ensemble Of Reactive Air Parcels

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Zhu, X.; Flynn, C.; Mao, J.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Shindell, D. T.; Murray, L. T.

    2016-12-01

    Two major challenges in model-measurement comparisons have been: Which measurements are the most important to match? At what level do models need to simulate the variegated fine structures observed in trace gases and aerosols? This talk presents a novel approach for evaluating high-resolution global chemistry models (1/2 to 1 deg) that is integral to NASA's Atmospheric Tomography (ATom) mission. The approach seeks to develop a chemical climatology for tropospheric regions rather than just event-based testing of specific observations. It enables chemistry-climate models to be readily compared and more severely tested with observations. It uses the reactivity of air parcels (e.g., loss of methane, production and loss of ozone) to weight each parcel in terms of its importance in controlling the two most important chemically reactive greenhouse gases. It looks at the entire statistical distribution of air parcels in terms of a chemical phase space for those species that control the reactivity (e.g., O3, H2O, CH4, CO, NOx, HNO3, HNO4, PAN, CH3NO3, HCHO, HOOH, CH3OOH, C2H6, C3H6O, and other VOCs when present in sufficiently large abundances). It builds statistics of chemically extreme air parcels such as pollution layers to determine if a model failure to match such cases affects the overall reactivity of the region. This approach was designed for the ATom in situ measurements using the DC-8 to slice through the middle of the Pacific and Atlantic Ocean basins each season. The ATom payload will measure the above key trace gases and many other gases and aerosols in every designated air parcel (i.e., 10-sec averages). The first ATom measurements will not be available until mid-2017 and this presentation shows how this climatology looks when sampled with different models. Six global chemistry models have simulated one day in August (no particular year), and we sample all six showing how the 2D probability density plots highlight different regions when weighted by chemical reactivity. These models pre-simulation of ATom provide a target for the ATom measurements. The models also enable us to estimate the representativeness of ATom's single tomographic slice down the ocean basins, and therefore just how well we can observationally determine this chemical climatology of the reactivity of the troposphere.

  20. Early life adversity reduces stress reactivity and enhances impulsive behavior: Implications for health behaviors

    PubMed Central

    Lovallo, William R.

    2012-01-01

    Altered reactivity to stress, either in the direction of exaggerated reactivity or diminished reactivity, may signal a dysregulation of systems intended to maintain homeostasis and a state of good health. Evidence has accumulated that diminished reactivity to psychosocial stress may signal poor health outcomes. One source of diminished cortisol and autonomic reactivity is the experience of adverse rearing during childhood and adolescence. The Oklahoma Family Health Patterns Project has examined a cohort of 426 healthy young adults with and without a family history of alcoholism. Regardless of family history, persons who had experienced high degrees of adversity prior to age 16 had a constellation of changes including reduced cortisol and heart rate reactivity, diminished cognitive capacity, and unstable regulation of affect, leading to behavioral impulsivity and antisocial tendencies. We present a model whereby this constellation of physiological, cognitive, and affective tendencies is consistent with altered central dopaminergic activity leading to changes in brain function that may foster impulsive and risky behaviors. These in turn may promote greater use of alcohol other drugs along with adopting poor health behaviors. This model provides a pathway from early life adversity to low stress reactivity that forms a basis for risky behaviors and poor health outcomes. PMID:23085387

  1. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    PubMed

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. © 2014 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. Improving the nutritional quality and shelf life of broiler meat by feeding diets supplemented with fermented pomegranate (Punica granatum L.) by-products.

    PubMed

    Ahmed, S T; Ko, S-Y; Yang, C-J

    2017-12-01

    1. Four experimental diets containing 0, 0.5, 1.0 and 2.0% fermented pomegranate by-products (FPB) were supplied to 320d-old broilers to evaluate the effects of FPB on growth performance, nutritional composition, fatty acid profile and oxidative stability of meat. 2. Dietary supplementation of FPB linearly increased the weight gain and feed intake of broilers with linear reduction in feed conversion ratio. 3. The crude protein, iron, magnesium, and sodium content were linearly higher, whereas cholesterol was linearly lower in the breast meat of FPB-supplemented broilers. In thigh meat, linearly lower ether extract and cholesterol with higher moisture was noted in response to increasing levels of FPB. 4. The proportion of saturated fatty acids was both linearly and quadratically lower in breast and thigh meat, whereas those of monounsaturated fatty acids of breast (linear and quadratic) and n-3 fatty acids of breast and thigh (linear) meat was higher in the FPB-supplemented broilers. The n-6/n-3 ratio of breast meat was linearly lower in response to FPB supplementation. The hypocholesterolaemic to hypercholesterolaemic ratio of thigh meat was higher in the FPB-supplemented groups. 5. The thiobarbituric acid reactive substances and pH value were lower in the breast and thigh meat of FPB-supplemented broilers. 6. Thus, additive supplementation of the diet with up to 2% FPB improved the nutritional quality, fatty acid profile and shelf life of broiler meat.

  3. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  4. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  5. Vicilin allergens of peanut and tree nuts (walnut, hazelnut and cashew nut) share structurally related IgE-binding epitopes.

    PubMed

    Barre, Annick; Sordet, Camille; Culerrier, Raphaël; Rancé, Fabienne; Didier, Alain; Rougé, Pierre

    2008-03-01

    Surface-exposed IgE-binding epitopes of close overall conformation were characterized on the molecular surface of three-dimensional models built for the vicilin allergens of peanut (Ara h 1), walnut (Jug r 2), hazelnut (Cor a 11) and cashew nut (Ana o 1). They correspond to linear stretches of conserved amino acid sequences mainly located along the C-terminus of the polypeptide chains. A glyco-epitope corresponding to an exposed N-glycosylation site could also interfere with the IgE-binding epitopes. All these epitopic regions should participate in the IgE-binding cross-reactivity commonly reported between tree nuts or between peanut and some tree nuts in sensitized individuals. Owing to this epitopic community which constitutes a risk of cross-sensitization, the avoidance or a restricted consumption of other tree nuts should be recommended to peanut-sensitized individuals.

  6. Verification of low-Mach number combustion codes using the method of manufactured solutions

    NASA Astrophysics Data System (ADS)

    Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz

    2007-11-01

    Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.

  7. Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers

    NASA Astrophysics Data System (ADS)

    Rodrigues, G. Costa; Duflou, J. R.

    As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.

  8. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.

    2018-03-01

    The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

  9. Exact PDF equations and closure approximations for advective-reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-06-01

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recentlymore » proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.« less

  10. Chronic parenting stress and mood reactivity: The role of sleep quality.

    PubMed

    da Estrela, Chelsea; Barker, Erin T; Lantagne, Sarah; Gouin, Jean-Philippe

    2018-04-01

    Sleep is a basic biological process supporting emotion regulation. The emotion regulation function of sleep may be particularly important in the context of chronic stress. To better understand how chronic stress and sleep interact to predict mood, 66 parents of children with autism completed daily diaries assessing parenting stress, negative mood, and sleep quality for 6 consecutive days. Hierarchical linear modelling revealed that daily negative mood was predicted by between-person differences in parenting stress and between-person differences in sleep efficiency. Further, between-person differences in sleep efficiency and within-person differences in sleep satisfaction moderated the impact of stress on mood. These data suggest that sleep disturbances may exacerbate the association between stress and mood in the context of chronic parenting stress. Further, high parenting stress appears to heighten the impact of transient sleep disturbances on mood. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Applying the min-projection strategy to improve the transient performance of the three-phase grid-connected inverter.

    PubMed

    Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad

    2014-07-01

    Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    NASA Astrophysics Data System (ADS)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  13. A model for the catalytic reduction of NO with CO and N desorption

    NASA Astrophysics Data System (ADS)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  14. Modeling reactive nitrogen in North America: recent developments, observational needs and future directions

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest ...

  15. Modeling and testing of reactive contaminant transport in drinking water pipes: Chlorine response and implications for online contaminant detection

    EPA Science Inventory

    Reactive contaminants introduced to chlorinated drinking water can cause water quality change directly related to their reactivity and other physiochemical properties. This general principle is further developed and utilized in a proposed real-time event adaptive detection, iden...

  16. MRM assay for quantitation of complement components in human blood plasma - a feasibility study on multiple sclerosis.

    PubMed

    Rezeli, Melinda; Végvári, Akos; Ottervald, Jan; Olsson, Tomas; Laurell, Thomas; Marko-Varga, György

    2011-12-10

    As a proof-of-principle study, a multiple reaction monitoring (MRM) assay was developed for quantitation of proteotypic peptides, representing seven plasma proteins associated with inflammation (complement components and C-reactive protein). The assay development and the sample analysis were performed on a linear ion trap mass spectrometer. We were able to quantify 5 of the 7 target proteins in depleted plasma digests with reasonable reproducibility over a 2 orders of magnitude linear range (RSD≤25%). The assay panel was utilized for the analysis of a small multiple sclerosis sample cohort with 10 diseased and 8 control patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Finite element code development for modeling detonation of HMX composites

    NASA Astrophysics Data System (ADS)

    Duran, Adam; Sundararaghavan, Veera

    2015-06-01

    In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.

  18. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, Emily R.

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling andmore » simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact not conservative and could be overestimating reactivity feedback effects that are closely tied to reactor safety. We conclude that there is indeed value in performing direct simulation of deformed meshes despite the increased computational expense. PROTEUS-SN is already part of the SHARP multi-physics toolkit where both thermal hydraulics and structural mechanical feedback modeling can be applied but this is the first comparison of direct simulation to legacy techniques for radial core expansion.« less

  19. Equilibrium, kinetic, and reactive transport models for plutonium

    NASA Astrophysics Data System (ADS)

    Schwantes, Jon Michael

    Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive transport model; (2) a simulation of the effects of dissolution of PuO2 solid and radiolysis on the behavior of Pu diffusing out of a confined pore space; and (3) application of a steady-state three phase reactive transport model to groundwater at the Nevada Test Site.

  20. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    PubMed

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  1. A method to optimize PEG-coating of red blood cells.

    PubMed

    Hashemi-Najafabadi, Sameereh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Rasaee, Mohammad Javad; Armstrong, Jonathan K; Moin, Mostafa; Pourpak, Zahra

    2006-01-01

    Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. A proposed method to overcome donor-recipient blood group incompatibility is to mask the blood group antigens by the covalent attachment of poly(ethylene glycol) (PEG) to the red blood cell (RBC) membrane. Despite much work in the development of PEG-coating of RBCs, there is a paucity of data on the optimization of the PEG-coating technique; it is the aim of this study to determine the optimum conditions for PEG coating using a cyanuric chloride reactive derivative of methoxy-PEG as a model polymer. Activated PEG of molecular mass 5 kDa was covalently attached to human RBCs under various reaction conditions. Inhibition of binding of a blood-type specific antiserum (anti-D) was employed to evaluate the effect of the PEG-coating, quantified by hemocytometry and flow-cytometry. RBC morphology was examined by light and scanning electron microscopy. Statistical analysis of experimental design together with microscopy results showed that the optimum PEGylation conditions are pH = 8.7, temperature = 14 degrees C, and reaction time = 30 min. An optimum concentration of reactive PEG could not be determined. At high polymer concentrations (>25 mg/mL) a predominance of type III echinocytes was observed, and as a result, a concentration of 15 mg/mL is the highest recommended concentration for a linear PEG of molecular mass 5 kDa.

  2. The biopsychosocial model of stress in adolescence: self-awareness of performance versus stress reactivity

    PubMed Central

    Rith-Najarian, Leslie R.; McLaughlin, Katie A.; Sheridan, Margaret A.; Nock, Matthew K.

    2014-01-01

    Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one’s physiological and emotional state during adolescence are discussed. PMID:24491123

  3. The biopsychosocial model of stress in adolescence: self-awareness of performance versus stress reactivity.

    PubMed

    Rith-Najarian, Leslie R; McLaughlin, Katie A; Sheridan, Margaret A; Nock, Matthew K

    2014-03-01

    Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one's physiological and emotional state during adolescence are discussed.

  4. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis.

    PubMed

    Khan, Farman U; Qamar, Shamsul

    2017-05-01

    A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients.

    PubMed

    Christou, Kostas; Markoulis, Nikolaos; Moulas, Anargyros N; Pastaka, Chaido; Gourgoulianis, Kostantinos I

    2003-09-01

    Obstructive sleep apnea syndrome (OSA) is accompanied by oxygen desaturation and arousal from sleep. Free oxygen radicals are highly reactive molecules which could be produced by the OSA phenomenon of hypoxia/reoxygenation: cyclical alterations of arterial oxygen saturation with oxygen desaturation developing in response to apneas followed by resumption of oxygen saturation during hyperventilation. On the basis of these considerations, it was hypothesized that OSA may be linked to increased oxidative stress. Twenty-six participants gave an interview during which a physician asked them about their age, smoking habits, and symptoms such as excessive daytime sleepiness and snoring. Physical examination and polysomnography were performed during their hospitalization. Reactive oxygen metabolites (ROMs) were measured in blood samples by the diacron reactive oxygen metabolites (D-ROM) test. Twenty-one out of 26 subjects had an apnea/hypopnea index greater than 5 (OSA group). The measurement of free radicals was high in OSA patients. Furthermore, ROMs values in OSA patients were linearly correlated with the apnea/hypopnea index (R = 0.426; p = 0.042). The predictive value of a positive D-ROM test is 81%. ROMs were elevated in patients with OSA. When OSA was severe, similarly the value of ROMs in blood samples was enhanced, and the probable underlying mechanism for these events is the hypoxia/reoxygenation phenomenon.

  7. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  8. Impact of Cognitive-Behavioral Therapy for Social Anxiety Disorder on the Neural Bases of Emotional Reactivity to and Regulation of Social Evaluation

    PubMed Central

    Goldin, Philippe R.; Ziv, Michal; Jazaieri, Hooria; Weeks, Justin; Heimberg, Richard G.; Gross, James J.

    2014-01-01

    We examined whether Cognitive-Behavioral Therapy (CBT) for social anxiety disorder (SAD) would modify self-reported negative emotion and functional magnetic resonance imaging brain responses when reacting to and reappraising social evaluation, and tested whether changes would predict treatment outcome in 59 patients with SAD who completed CBT or waitlist groups. For reactivity, compared to waitlist, CBT resulted in (a) increased brain responses in right superior frontal gyrus (SFG), inferior parietal lobule (IPL), and middle occipital gyrus (MOG) when reacting to social praise, and (b) increases in right SFG and IPL and decreases in left posterior superior temporal gyrus (pSTG) when reacting to social criticism. For reappraisal, compared to waitlist, CBT resulted in greater (c) reductions in self-reported negative emotion, and (d) increases in brain responses in right SFG and MOG, and decreases in left pSTG. A linear regression found that after controlling for CBT-induced changes in reactivity and reappraisal negative emotion ratings and brain changes in reactivity to praise and criticism, reappraisal of criticism brain response changes predicted 24% of the unique variance in CBT-related reductions in social anxiety. Thus, one mechanism underlying CBT for SAD may be changes in reappraisal-related brain responses to social criticism. PMID:25193002

  9. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  10. Total OH reactivity as a constraint of model calculated peroxy radical production, and the catalytic efficiency of NOx in O3 production in a boreal forest environment.

    NASA Astrophysics Data System (ADS)

    Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.

    2016-12-01

    Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.

  11. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    PubMed

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  12. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.

  13. A mixing-model approach to quantifying sources of organic matter to salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Bowles, K. M.; Meile, C. D.

    2010-12-01

    Salt marshes are highly productive ecosystems, where autochthonous production controls an intricate exchange of carbon and energy among organisms. The major sources of organic carbon to these systems include 1) autochthonous production by vascular plant matter, 2) import of allochthonous plant material, and 3) phytoplankton biomass. Quantifying the relative contribution of organic matter sources to a salt marsh is important for understanding the fate and transformation of organic carbon in these systems, which also impacts the timing and magnitude of carbon export to the coastal ocean. A common approach to quantify organic matter source contributions to mixtures is the use of linear mixing models. To estimate the relative contributions of endmember materials to total organic matter in the sediment, the problem is formulated as a constrained linear least-square problem. However, the type of data that is utilized in such mixing models, the uncertainties in endmember compositions and the temporal dynamics of non-conservative entitites can have varying affects on the results. Making use of a comprehensive data set that encompasses several endmember characteristics - including a yearlong degradation experiment - we study the impact of these factors on estimates of the origin of sedimentary organic carbon in a saltmarsh located in the SE United States. We first evaluate the sensitivity of linear mixing models to the type of data employed by analyzing a series of mixing models that utilize various combinations of parameters (i.e. endmember characteristics such as δ13COC, C/N ratios or lignin content). Next, we assess the importance of using more than the minimum number of parameters required to estimate endmember contributions to the total organic matter pool. Then, we quantify the impact of data uncertainty on the outcome of the analysis using Monte Carlo simulations and accounting for the uncertainty in endmember characteristics. Finally, as biogeochemical processes can alter endmember characteristics over time, we investigate the effect of early diagenesis on chosen parameters, an analysis that entails an assessment of the organic matter age distribution. Thus, estimates of the relative contributions of phytoplankton, C3 and C4 plants to bulk sediment organic matter depend not only on environmental characteristics that impact reactivity, but also on sediment mixing processes.

  14. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    DTIC Science & Technology

    2003-12-01

    and Flame 117, 732. TSAI, K. & Fox, R. 0. 1998 The BMC/GIEM model for micromixing in non-premixed turbulent reacting flows. Industrial Engineering...L. & Fox, R. 0. 2003 Comparison of micromixing models for CFD simulation of nanoparticle formation by reactive precipitation. Submitted to AIChE

  15. EVALUATING THE SENSITIVITY OF A SUBSURFACE MULTICOMPONENT REACTIVE TRANSPORT MODEL WITH RESPECT TO TRANSPORT AND REACTION PARAMETERS

    EPA Science Inventory

    The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...

  16. Trait rumination and response to negative evaluative lab-induced stress: neuroendocrine, affective, and cognitive outcomes.

    PubMed

    Vrshek-Schallhorn, Suzanne; Velkoff, Elizabeth A; Zinbarg, Richard E

    2018-04-06

    Theoretical models of depression posit that, under stress, elevated trait rumination predicts more pronounced or prolonged negative affective and neuroendocrine responses, and that trait rumination hampers removing irrelevant negative information from working memory. We examined several gaps regarding these models in the context of lab-induced stress. Non-depressed undergraduates completed a rumination questionnaire and either a negative-evaluative Trier Social Stress Test (n = 55) or a non-evaluative control condition (n = 69), followed by a modified Sternberg affective working memory task assessing the extent to which irrelevant negative information can be emptied from working memory. We measured shame, negative and positive affect, and salivary cortisol four times. Multilevel growth curve models showed rumination and stress interactively predicted cortisol reactivity; however, opposite predictions, greater rumination was associated with blunted cortisol reactivity to stress. Elevated trait rumination interacted with stress to predict augmented shame reactivity. Rumination and stress did not significantly interact to predict working memory performance, but under control conditions, rumination predicted greater difficulty updating working memory. Results support a vulnerability-stress model of trait rumination with heightened shame reactivity and cortisol dysregulation rather than hyper-reactivity in non-depressed emerging adults, but we cannot provide evidence that working memory processes are critical immediately following acute stress.

  17. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  18. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  19. First OH reactivity measurements in Harvard Forest

    NASA Astrophysics Data System (ADS)

    Herdlinger-Blatt, I. S.; Martin, S. T.; Hansel, A.; McKinney, K. A.

    2013-12-01

    The OH reactivity provides critical insight into the HOx budget under actual atmospheric conditions, and has implications for the production of ozone and the formation of secondary organic material. Previous studies have indicated that the OH reactivity measured at field sites often exceeds model estimations, but current experiments remain inconclusive about the origin of the discrepancy between the modeled and measured OH reactivity (Lou et al., 2010). As of now there are only a limited number of atmospheric studies of total OH reactivity available, so to improve understanding of the OH reactivity more studies are needed. The first OH reactivity measurements in the northeastern United States are being performed during the summer of 2013 at Harvard Forest. Harvard forest, is located about 100 km west of the Boston metropolitan area, is one of the most intensively studied forests in North America. The main biogenic VOC emitted from Harvard Forest is isoprene followed by monoterpenes and methanol. Sampling for the OH reactivity measurements will be conducted from a 30m tall meteorological tower at the Harvard Forest site. The air is drawn into a reaction cell where the OH reactivity is determined using the Comparative Reactivity Method (Sinha et al., 2008) employing a High-Sensitivity Proton Transfer Reaction Mass Spectrometer (Lindinger et al., 1998, Hansel et al., 1998). In addition to the OH reactivity measurements, the most abundant compounds present in the air sample will be quantified using PTR-MS. The quantification of these compounds is needed to compare the theoretical calculated OH reactivity with the measured OH reactivity data. The measurements will be used to evaluate our understanding of the OH budget at Harvard Forest. References: A. Hansel, A. Jordan, C. Warneke, R. Holzinger, and W. Lindinger.: Improved Detection Limit of the Proton-transfer Reaction Mass Spectrometer: On-line Monitoring of Volatile Organic Compounds at Mixing Ratios of a Few PPTV, Rapid Commun. Mass Spectrom., 12, 871-875, (1998). W. Lindinger, A. Hansel, and A. Jordan: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chemical Society Reviews , 27, 1998. S. Lou, F. Holland, F. Rohrer, K. Lu, B. Bohn, T. Brauers, C. C. Chang, H. Fuchs, R. Häseler, K. Kita, Y. Kondo, X. Li, M. Shao, L. Zeng, A. Wahner, Y. Zhang, W. Wang, and A. Hofzumahaus, Atmospheric OH reactivities in the Pearl River Delta - China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243-11260, (2010). V. Sinha, J. Williams, J.N. Crowley, and J. Lelieveld., The Comparaptive Reactivity Methode - a new tool to measure total OH Reactivity in ambient air, Atmos. Env., 38, 2511-2522, (2008).

  20. Development and Application of Numerical Models for Reactive Flows

    DTIC Science & Technology

    1990-08-15

    Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the

Top