Fitting program for linear regressions according to Mahon (1996)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trappitsch, Reto G.
2018-01-09
This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
Watanabe, Hiroyuki; Miyazaki, Hiroyasu
2006-01-01
Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.
Kumar, K Vasanth; Sivanesan, S
2006-08-25
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2018-06-01
This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M
2017-04-01
A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Orthogonal Regression: A Teaching Perspective
ERIC Educational Resources Information Center
Carr, James R.
2012-01-01
A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J
2017-05-01
Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon dioxide stripping in aquaculture -- part III: model verification
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.
ERIC Educational Resources Information Center
Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael
2011-01-01
This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Practical Session: Simple Linear Regression
NASA Astrophysics Data System (ADS)
Clausel, M.; Grégoire, G.
2014-12-01
Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Use of probabilistic weights to enhance linear regression myoelectric control
NASA Astrophysics Data System (ADS)
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-12-01
Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Quantum algorithm for linear regression
NASA Astrophysics Data System (ADS)
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method
ERIC Educational Resources Information Center
Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev
2018-01-01
The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…
Gimelfarb, A.; Willis, J. H.
1994-01-01
An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818
A simplified competition data analysis for radioligand specific activity determination.
Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A
1990-01-01
Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.
Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.
Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko
2016-03-01
In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H
2017-05-10
We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Hidden Connections between Regression Models of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
2013-01-01
Hidden connections between regression models of wind tunnel strain-gage balance calibration data are investigated. These connections become visible whenever balance calibration data is supplied in its design format and both the Iterative and Non-Iterative Method are used to process the data. First, it is shown how the regression coefficients of the fitted balance loads of a force balance can be approximated by using the corresponding regression coefficients of the fitted strain-gage outputs. Then, data from the manual calibration of the Ames MK40 six-component force balance is chosen to illustrate how estimates of the regression coefficients of the fitted balance loads can be obtained from the regression coefficients of the fitted strain-gage outputs. The study illustrates that load predictions obtained by applying the Iterative or the Non-Iterative Method originate from two related regression solutions of the balance calibration data as long as balance loads are given in the design format of the balance, gage outputs behave highly linear, strict statistical quality metrics are used to assess regression models of the data, and regression model term combinations of the fitted loads and gage outputs can be obtained by a simple variable exchange.
Correlation of Respirator Fit Measured on Human Subjects and a Static Advanced Headform
Bergman, Michael S.; He, Xinjian; Joseph, Michael E.; Zhuang, Ziqing; Heimbuch, Brian K.; Shaffer, Ronald E.; Choe, Melanie; Wander, Joseph D.
2015-01-01
This study assessed the correlation of N95 filtering face-piece respirator (FFR) fit between a Static Advanced Headform (StAH) and 10 human test subjects. Quantitative fit evaluations were performed on test subjects who made three visits to the laboratory. On each visit, one fit evaluation was performed on eight different FFRs of various model/size variations. Additionally, subject breathing patterns were recorded. Each fit evaluation comprised three two-minute exercises: “Normal Breathing,” “Deep Breathing,” and again “Normal Breathing.” The overall test fit factors (FF) for human tests were recorded. The same respirator samples were later mounted on the StAH and the overall test manikin fit factors (MFF) were assessed utilizing the recorded human breathing patterns. Linear regression was performed on the mean log10-transformed FF and MFF values to assess the relationship between the values obtained from humans and the StAH. This is the first study to report a positive correlation of respirator fit between a headform and test subjects. The linear regression by respirator resulted in R2 = 0.95, indicating a strong linear correlation between FF and MFF. For all respirators the geometric mean (GM) FF values were consistently higher than those of the GM MFF. For 50% of respirators, GM FF and GM MFF values were significantly different between humans and the StAH. For data grouped by subject/respirator combinations, the linear regression resulted in R2 = 0.49. A weaker correlation (R2 = 0.11) was found using only data paired by subject/respirator combination where both the test subject and StAH had passed a real-time leak check before performing the fit evaluation. For six respirators, the difference in passing rates between the StAH and humans was < 20%, while two respirators showed a difference of 29% and 43%. For data by test subject, GM FF and GM MFF values were significantly different for 40% of the subjects. Overall, the advanced headform system has potential for assessing fit for some N95 FFR model/sizes. PMID:25265037
Javed, Faizan; Chan, Gregory S H; Savkin, Andrey V; Middleton, Paul M; Malouf, Philip; Steel, Elizabeth; Mackie, James; Lovell, Nigel H
2009-01-01
This paper uses non-linear support vector regression (SVR) to model the blood volume and heart rate (HR) responses in 9 hemodynamically stable kidney failure patients during hemodialysis. Using radial bias function (RBF) kernels the non-parametric models of relative blood volume (RBV) change with time as well as percentage change in HR with respect to RBV were obtained. The e-insensitivity based loss function was used for SVR modeling. Selection of the design parameters which includes capacity (C), insensitivity region (e) and the RBF kernel parameter (sigma) was made based on a grid search approach and the selected models were cross-validated using the average mean square error (AMSE) calculated from testing data based on a k-fold cross-validation technique. Linear regression was also applied to fit the curves and the AMSE was calculated for comparison with SVR. For the model based on RBV with time, SVR gave a lower AMSE for both training (AMSE=1.5) as well as testing data (AMSE=1.4) compared to linear regression (AMSE=1.8 and 1.5). SVR also provided a better fit for HR with RBV for both training as well as testing data (AMSE=15.8 and 16.4) compared to linear regression (AMSE=25.2 and 20.1).
Simplified large African carnivore density estimators from track indices.
Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J
2016-01-01
The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y = αx + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.
Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust.
Can, Mustafa
2015-01-01
Linear and non-linear regression procedures have been applied to the Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Redlich-Peterson isotherms for adsorption of acid yellow 132 (AY132) dye onto red pine (Pinus resinosa) sawdust. The effects of parameters such as particle size, stirring rate, contact time, dye concentration, adsorption dose, pH, and temperature were investigated, and interaction was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscope. The non-linear method of the Langmuir isotherm equation was found to be the best fitting model to the equilibrium data. The maximum monolayer adsorption capacity was found as 79.5 mg/g. The calculated thermodynamic results suggested that AY132 adsorption onto red pine sawdust was an exothermic, physisorption, and spontaneous process. Kinetics was analyzed by four different kinetic equations using non-linear regression analysis. The pseudo-second-order equation provides the best fit with experimental data.
Quantifying and Reducing Curve-Fitting Uncertainty in Isc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanelli, Mark; Duck, Benjamin; Emery, Keith
2015-06-14
Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data pointsmore » can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.« less
Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campanelli, Mark; Duck, Benjamin; Emery, Keith
Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data pointsmore » can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.« less
Adjusted variable plots for Cox's proportional hazards regression model.
Hall, C B; Zeger, S L; Bandeen-Roche, K J
1996-01-01
Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.
GWAS with longitudinal phenotypes: performance of approximate procedures
Sikorska, Karolina; Montazeri, Nahid Mostafavi; Uitterlinden, André; Rivadeneira, Fernando; Eilers, Paul HC; Lesaffre, Emmanuel
2015-01-01
Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model (LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly. In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs. The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate the type I error rate and implies only a minimal loss of power. PMID:25712081
ERIC Educational Resources Information Center
Hester, Yvette
Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…
Analysis of Learning Curve Fitting Techniques.
1987-09-01
1986. 15. Neter, John and others. Applied Linear Regression Models. Homewood IL: Irwin, 19-33. 16. SAS User’s Guide: Basics, Version 5 Edition. SAS... Linear Regression Techniques (15:23-52). Random errors are assumed to be normally distributed when using -# ordinary least-squares, according to Johnston...lot estimated by the improvement curve formula. For a more detailed explanation of the ordinary least-squares technique, see Neter, et. al., Applied
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-01-01
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.
1984-01-01
An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.
Geszke-Moritz, Małgorzata; Moritz, Michał
2016-12-01
The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Malmquist bias on correlation studies with IRAS data base
NASA Technical Reports Server (NTRS)
Verter, Frances
1993-01-01
The relationships between galaxy properties in the sample of Trinchieri et al. (1989) are reexamined with corrections for Malmquist bias. The linear correlations are tested and linear regressions are fit for log-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of these quantities. The linear correlations for Malmquist bias are corrected using the method of Verter (1988), in which each galaxy observation is weighted by the inverse of its sampling volume. The linear regressions are corrected for Malmquist bias by a new method invented here in which each galaxy observation is weighted by its sampling volume. The results of correlation and regressions among the sample are significantly changed in the anticipated sense that the corrected correlation confidences are lower and the corrected slopes of the linear regressions are lower. The elimination of Malmquist bias eliminates the nonlinear rise in luminosity that has caused some authors to hypothesize additional components of FIR emission.
NASA Astrophysics Data System (ADS)
Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.
2016-11-01
We use sunspot-group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups [RB] above a variable cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to simulate what a lower-acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number [RA] using a variety of regression techniques. It is found that a very high correlation between RA and RB (r_{AB} > 0.98) does not prevent large errors in the intercalibration (for example sunspot-maximum values can be over 30 % too large even for such levels of r_{AB}). In generating the backbone sunspot number [R_{BB}], Svalgaard and Schatten ( Solar Phys., 2016) force regression fits to pass through the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile ("Q-Q") plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot-group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E
2015-05-01
The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Mamen, Asgeir; Fredriksen, Per Morten
2018-05-01
As children's fitness continues to decline, frequent and systematic monitoring of fitness is important. Easy-to-use and low-cost methods with acceptable accuracy are essential in screening situations. This study aimed to investigate how the measurements of body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR) relate to selected measurements of fitness in children. A total of 1731 children from grades 1 to 6 were selected who had a complete set of height, body mass, running performance, handgrip strength and muscle mass measurements. A composite fitness score was established from the sum of sex- and age-specific z-scores for the variables running performance, handgrip strength and muscle mass. This fitness z-score was compared to z-scores and quartiles of BMI, WC and WHtR using analysis of variance, linear regression and receiver operator characteristic analysis. The regression analysis showed that z-scores for BMI, WC and WHtR all were linearly related to the composite fitness score, with WHtR having the highest R 2 at 0.80. The correct classification of fit and unfit was relatively high for all three measurements. WHtR had the best prediction of fitness of the three with an area under the curve of 0.92 ( p < 0.001). BMI, WC and WHtR were all found to be feasible measurements, but WHtR had a higher precision in its classification into fit and unfit in this population.
NASA Astrophysics Data System (ADS)
Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert
2015-07-01
Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R2 and pseudo R2 were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R2 ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R2 = 0.31), but there was still large variability between patients in R2. The R2 from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.
Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert
2015-07-07
Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R(2) and pseudo R(2) were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R(2) ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R(2) = 0.31), but there was still large variability between patients in R(2). The R(2) from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.
NASA Astrophysics Data System (ADS)
Yadav, Manish; Singh, Nitin Kumar
2017-12-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
Factors associated with parasite dominance in fishes from Brazil.
Amarante, Cristina Fernandes do; Tassinari, Wagner de Souza; Luque, Jose Luis; Pereira, Maria Julia Salim
2016-06-14
The present study used regression models to evaluate the existence of factors that may influence the numerical parasite dominance with an epidemiological approximation. A database including 3,746 fish specimens and their respective parasites were used to evaluate the relationship between parasite dominance and biotic characteristics inherent to the studied hosts and the parasite taxa. Multivariate, classical, and mixed effects linear regression models were fitted. The calculations were performed using R software (95% CI). In the fitting of the classical multiple linear regression model, freshwater and planktivorous fish species and body length, as well as the species of the taxa Trematoda, Monogenea, and Hirudinea, were associated with parasite dominance. However, the fitting of the mixed effects model showed that the body length of the host and the species of the taxa Nematoda, Trematoda, Monogenea, Hirudinea, and Crustacea were significantly associated with parasite dominance. Studies that consider specific biological aspects of the hosts and parasites should expand the knowledge regarding factors that influence the numerical dominance of fish in Brazil. The use of a mixed model shows, once again, the importance of the appropriate use of a model correlated with the characteristics of the data to obtain consistent results.
Deriving the Regression Line with Algebra
ERIC Educational Resources Information Center
Quintanilla, John A.
2017-01-01
Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…
USDA-ARS?s Scientific Manuscript database
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Changes in Clavicle Length and Maturation in Americans: 1840-1980.
Langley, Natalie R; Cridlin, Sandra
2016-01-01
Secular changes refer to short-term biological changes ostensibly due to environmental factors. Two well-documented secular trends in many populations are earlier age of menarche and increasing stature. This study synthesizes data on maximum clavicle length and fusion of the medial epiphysis in 1840-1980 American birth cohorts to provide a comprehensive assessment of developmental and morphological change in the clavicle. Clavicles from the Hamann-Todd Human Osteological Collection (n = 354), McKern and Stewart Korean War males (n = 341), Forensic Anthropology Data Bank (n = 1,239), and the McCormick Clavicle Collection (n = 1,137) were used in the analysis. Transition analysis was used to evaluate fusion of the medial epiphysis (scored as unfused, fusing, or fused). Several statistical treatments were used to assess fluctuations in maximum clavicle length. First, Durbin-Watson tests were used to evaluate autocorrelation, and a local regression (LOESS) was used to identify visual shifts in the regression slope. Next, piecewise regression was used to fit linear regression models before and after the estimated breakpoints. Multiple starting parameters were tested in the range determined to contain the breakpoint, and the model with the smallest mean squared error was chosen as the best fit. The parameters from the best-fit models were then used to derive the piecewise models, which were compared with the initial simple linear regression models to determine which model provided the best fit for the secular change data. The epiphyseal union data indicate a decline in the age at onset of fusion since the early twentieth century. Fusion commences approximately four years earlier in mid- to late twentieth-century birth cohorts than in late nineteenth- and early twentieth-century birth cohorts. However, fusion is completed at roughly the same age across cohorts. The most significant decline in age at onset of epiphyseal union appears to have occurred since the mid-twentieth century. LOESS plots show a breakpoint in the clavicle length data around the mid-twentieth century in both sexes, and piecewise regression models indicate a significant decrease in clavicle length in the American population after 1940. The piecewise model provides a slightly better fit than the simple linear model. Since the model standard error is not substantially different from the piecewise model, an argument could be made to select the less complex linear model. However, we chose the piecewise model to detect changes in clavicle length that are overfitted with a linear model. The decrease in maximum clavicle length is in line with a documented narrowing of the American skeletal form, as shown by analyses of cranial and facial breadth and bi-iliac breadth of the pelvis. Environmental influences on skeletal form include increases in body mass index, health improvements, improved socioeconomic status, and elimination of infectious diseases. Secular changes in bony dimensions and skeletal maturation stipulate that medical and forensic standards used to deduce information about growth, health, and biological traits must be derived from modern populations.
Fischer, A; Friggens, N C; Berry, D P; Faverdin, P
2018-07-01
The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.
US EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS
The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...
ERIC Educational Resources Information Center
Pissanos, Becky W.; And Others
1983-01-01
Step-wise linear regressions were used to relate children's age, sex, and body composition to performance on basic motor abilities including balance, speed, agility, power, coordination, and reaction time, and to health-related fitness items including flexibility, muscle strength and endurance and cardiovascular functions. Eighty subjects were in…
Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G
2008-09-01
A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.
Potential pitfalls when denoising resting state fMRI data using nuisance regression.
Bright, Molly G; Tench, Christopher R; Murphy, Kevin
2017-07-01
In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear Model, and the "cleaned" residuals of this fit are used in further analysis. We examine the statistical assumptions and requirements of the General Linear Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples and real data we show how pre-whitening, temporal filtering and temporal shifting of regressors impact model fit. Based on our own observations, existing literature, and statistical theory, we make the following recommendations when employing nuisance regression: pre-whitening should be applied to achieve valid statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited, should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and precise noise models for cleaning the resting state fMRI time-series. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
SU-F-T-130: [18F]-FDG Uptake Dose Response in Lung Correlates Linearly with Proton Therapy Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; Titt, U; Mirkovic, D
2016-06-15
Purpose: Analysis of clinical outcomes in lung cancer patients treated with protons using 18F-FDG uptake in lung as a measure of dose response. Methods: A test case lung cancer patient was selected in an unbiased way. The test patient’s treatment planning and post treatment positron emission tomography (PET) were collected from picture archiving and communication system at the UT M.D. Anderson Cancer Center. Average computerized tomography scan was registered with post PET/CT through both rigid and deformable registrations for selected region of interest (ROI) via VelocityAI imaging informatics software. For the voxels in the ROI, a system that extracts themore » Standard Uptake Value (SUV) from PET was developed, and the corresponding relative biological effectiveness (RBE) weighted (both variable and constant) dose was computed using the Monte Carlo (MC) methods. The treatment planning system (TPS) dose was also obtained. Using histogram analysis, the voxel average normalized SUV vs. 3 different doses was obtained and linear regression fit was performed. Results: From the registration process, there were some regions that showed significant artifacts near the diaphragm and heart region, which yielded poor r-squared values when the linear regression fit was performed on normalized SUV vs. dose. Excluding these values, TPS fit yielded mean r-squared value of 0.79 (range 0.61–0.95), constant RBE fit yielded 0.79 (range 0.52–0.94), and variable RBE fit yielded 0.80 (range 0.52–0.94). Conclusion: A system that extracts SUV from PET to correlate between normalized SUV and various dose calculations was developed. A linear relation between normalized SUV and all three different doses was found.« less
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.
Jones, Andrew M; Lomas, James; Moore, Peter T; Rice, Nigel
2016-10-01
We conduct a quasi-Monte-Carlo comparison of the recent developments in parametric and semiparametric regression methods for healthcare costs, both against each other and against standard practice. The population of English National Health Service hospital in-patient episodes for the financial year 2007-2008 (summed for each patient) is randomly divided into two equally sized subpopulations to form an estimation set and a validation set. Evaluating out-of-sample using the validation set, a conditional density approximation estimator shows considerable promise in forecasting conditional means, performing best for accuracy of forecasting and among the best four for bias and goodness of fit. The best performing model for bias is linear regression with square-root-transformed dependent variables, whereas a generalized linear model with square-root link function and Poisson distribution performs best in terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly relative to other models considered in our comparison.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.
Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R
2018-06-01
Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.
A method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Battaglia, P; Malara, D; Ammendolia, G; Romeo, T; Andaloro, F
2015-09-01
Length-mass relationships and linear regressions are given for otolith size (length and height) and standard length (LS ) of certain mesopelagic fishes (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae) living in the central Mediterranean Sea. The length-mass relationship showed isometric growth in six species, whereas linear regressions of LS and otolith size fit the data well for all species. These equations represent a useful tool for dietary studies on Mediterranean marine predators. © 2015 The Fisheries Society of the British Isles.
Does childhood motor skill proficiency predict adolescent fitness?
Barnett, Lisa M; Van Beurden, Eric; Morgan, Philip J; Brooks, Lyndon O; Beard, John R
2008-12-01
To determine whether childhood fundamental motor skill proficiency predicts subsequent adolescent cardiorespiratory fitness. In 2000, children's proficiency in a battery of skills was assessed as part of an elementary school-based intervention. Participants were followed up during 2006/2007 as part of the Physical Activity and Skills Study, and cardiorespiratory fitness was measured using the Multistage Fitness Test. Linear regression was used to examine the relationship between childhood fundamental motor skill proficiency and adolescent cardiorespiratory fitness controlling for gender. Composite object control (kick, catch, throw) and locomotor skill (hop, side gallop, vertical jump) were constructed for analysis. A separate linear regression examined the ability of the sprint run to predict cardiorespiratory fitness. Of the 928 original intervention participants, 481 were in 28 schools, 276 (57%) of whom were assessed. Two hundred and forty-four students (88.4%) completed the fitness test. One hundred and twenty-seven were females (52.1%), 60.1% of whom were in grade 10 and 39.0% were in grade 11. As children, almost all 244 completed each motor assessments, except for the sprint run (n = 154, 55.8%). The mean composite skill score in 2000 was 17.7 (SD 5.1). In 2006/2007, the mean number of laps on the Multistage Fitness Test was 50.5 (SD 24.4). Object control proficiency in childhood, adjusting for gender (P = 0.000), was associated with adolescent cardiorespiratory fitness (P = 0.012), accounting for 26% of fitness variation. Children with good object control skills are more likely to become fit adolescents. Fundamental motor skill development in childhood may be an important component of interventions aiming to promote long-term fitness.
Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.
2009-01-01
Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358
Genetic Programming Transforms in Linear Regression Situations
NASA Astrophysics Data System (ADS)
Castillo, Flor; Kordon, Arthur; Villa, Carlos
The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.
Machine learning approaches to the social determinants of health in the health and retirement study.
Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David
2018-04-01
Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.
The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...
Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.
Ritz, Christian; Van der Vliet, Leana
2009-09-01
The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.
Effect of Contact Damage on the Strength of Ceramic Materials.
1982-10-01
variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F
Garcia-Hermoso, A; Agostinis-Sobrinho, C; Mota, J; Santos, R M; Correa-Bautista, J E; Ramírez-Vélez, R
2017-06-01
Studies in the paediatric population have shown inconsistent associations between cardiorespiratory fitness and inflammation independently of adiposity. The purpose of this study was (i) to analyse the combined association of cardiorespiratory fitness and adiposity with high-sensitivity C-reactive protein (hs-CRP), and (ii) to determine whether adiposity acts as a mediator on the association between cardiorespiratory fitness and hs-CRP in children and adolescents. This cross-sectional study included 935 (54.7% girls) healthy children and adolescents from Bogotá, Colombia. The 20 m shuttle run test was used to estimate cardiorespiratory fitness. We assessed the following adiposity parameters: body mass index, waist circumference, and fat mass index and the sum of subscapular and triceps skinfold thickness. High sensitivity assays were used to obtain hs-CRP. Linear regression models were fitted for mediation analyses examined whether the association between cardiorespiratory fitness and hs-CRP was mediated by each of adiposity parameters according to Baron and Kenny procedures. Lower levels of hs-CRP were associated with the best schoolchildren profiles (high cardiorespiratory fitness + low adiposity) (p for trend <0.001 in the four adiposity parameters), compared with unfit and overweight (low cardiorespiratory fitness + high adiposity) counterparts. Linear regression models suggest a full mediation of adiposity on the association between cardiorespiratory fitness and hs-CRP levels. Our findings seem to emphasize the importance of obesity prevention in childhood, suggesting that having high levels of cardiorespiratory fitness may not counteract the negative consequences ascribed to adiposity on hs-CRP. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Sowande, O S; Oyewale, B F; Iyasere, O S
2010-06-01
The relationships between live weight and eight body measurements of West African Dwarf (WAD) goats were studied using 211 animals under farm condition. The animals were categorized based on age and sex. Data obtained on height at withers (HW), heart girth (HG), body length (BL), head length (HL), and length of hindquarter (LHQ) were fitted into simple linear, allometric, and multiple-regression models to predict live weight from the body measurements according to age group and sex. Results showed that live weight, HG, BL, LHQ, HL, and HW increased with the age of the animals. In multiple-regression model, HG and HL best fit the model for goat kids; HG, HW, and HL for goat aged 13-24 months; while HG, LHQ, HW, and HL best fit the model for goats aged 25-36 months. Coefficients of determination (R(2)) values for linear and allometric models for predicting the live weight of WAD goat increased with age in all the body measurements, with HG being the most satisfactory single measurement in predicting the live weight of WAD goat. Sex had significant influence on the model with R(2) values consistently higher in females except the models for LHQ and HW.
Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting
NASA Astrophysics Data System (ADS)
Palenichka, Roman M.; Zaremba, Marek B.
2003-03-01
Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.
Ling, Ru; Liu, Jiawang
2011-12-01
To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua
2018-03-01
The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.
Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.
Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T
2016-12-01
We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Interaction Models for Functional Regression.
Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab
2016-02-01
A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.
Ichikawa, Shintaro; Motosugi, Utaroh; Hernando, Diego; Morisaka, Hiroyuki; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi
2018-04-10
To compare the abilities of three intravoxel incoherent motion (IVIM) imaging approximation methods to discriminate the histological grade of hepatocellular carcinomas (HCCs). Fifty-eight patients (60 HCCs) underwent IVIM imaging with 11 b-values (0-1000 s/mm 2 ). Slow (D) and fast diffusion coefficients (D * ) and the perfusion fraction (f) were calculated for the HCCs using the mean signal intensities in regions of interest drawn by two radiologists. Three approximation methods were used. First, all three parameters were obtained simultaneously using non-linear fitting (method A). Second, D was obtained using linear fitting (b = 500 and 1000), followed by non-linear fitting for D * and f (method B). Third, D was obtained by linear fitting, f was obtained using the regression line intersection and signals at b = 0, and non-linear fitting was used for D * (method C). A receiver operating characteristic analysis was performed to reveal the abilities of these methods to distinguish poorly-differentiated from well-to-moderately-differentiated HCCs. Inter-reader agreements were assessed using intraclass correlation coefficients (ICCs). The measurements of D, D * , and f in methods B and C (Az-value, 0.658-0.881) had better discrimination abilities than did those in method A (Az-value, 0.527-0.607). The ICCs of D and f were good to excellent (0.639-0.835) with all methods. The ICCs of D * were moderate with methods B (0.580) and C (0.463) and good with method A (0.705). The IVIM parameters may vary depending on the fitting methods, and therefore, further technical refinement may be needed.
Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco
2017-10-01
The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
Hsu, Wei-Hsiu; Chen, Chi-lung; Kuo, Liang Tseng; Fan, Chun-Hao; Lee, Mel S; Hsu, Robert Wen-Wei
2014-01-01
Background Health-related fitness has been reported to be associated with improved quality of life (QoL) in the elderly. Health-related fitness is comprised of several dimensions that could be enhanced by specific training regimens. It has remained unclear how various dimensions of health-related fitness interact with QoL in postmenopausal women. Objective The purpose of the current study was to investigate the relationship between the dimensions of health-related fitness and QoL in elderly women. Methods A cohort of 408 postmenopausal women in a rural area of Taiwan was prospectively collected. Dimensions of health-related fitness, consisting of muscular strength, balance, cardiorespiratory endurance, flexibility, muscle endurance, and agility, were assessed. QoL was determined using the Short Form Health Survey (SF-36). Differences between age groups (stratified by decades) were calculated using a one-way analysis of variance (ANOVA) and multiple comparisons using a Scheffé test. A Spearman’s correlation analysis was performed to examine differences between QoL and each dimension of fitness. Multiple linear regression with forced-entry procedure was performed to evaluate the effects of health-related fitness. A P-value of <0.05 was considered statistically significant. Results Age-related decreases in health-related fitness were shown for sit-ups, back strength, grip strength, side steps, trunk extension, and agility (P<0.05). An age-related decrease in QoL, specifically in physical functioning, role limitation due to physical problems, and physical component score, was also demonstrated (P<0.05). Multiple linear regression analyses demonstrated that back strength significantly contributed to the physical component of QoL (adjusted beta of 0.268 [P<0.05]). Conclusion Back strength was positively correlated with the physical component of QoL among the examined dimensions of health-related fitness. Health-related fitness, as well as the physical component of QoL, declined with increasing age. PMID:25258526
Advanced Statistics for Exotic Animal Practitioners.
Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G
2017-09-01
Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Bi, Peng; Hiller, Janet
2008-01-01
This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.
Individual differences in long-range time representation.
Agostino, Camila S; Caetano, Marcelo S; Balci, Fuat; Claessens, Peter M E; Zana, Yossi
2017-04-01
On the basis of experimental data, long-range time representation has been proposed to follow a highly compressed power function, which has been hypothesized to explain the time inconsistency found in financial discount rate preferences. The aim of this study was to evaluate how well linear and power function models explain empirical data from individual participants tested in different procedural settings. The line paradigm was used in five different procedural variations with 35 adult participants. Data aggregated over the participants showed that fitted linear functions explained more than 98% of the variance in all procedures. A linear regression fit also outperformed a power model fit for the aggregated data. An individual-participant-based analysis showed better fits of a linear model to the data of 14 participants; better fits of a power function with an exponent β > 1 to the data of 12 participants; and better fits of a power function with β < 1 to the data of the remaining nine participants. Of the 35 volunteers, the null hypothesis β = 1 was rejected for 20. The dispersion of the individual β values was approximated well by a normal distribution. These results suggest that, on average, humans perceive long-range time intervals not in a highly compressed, biased manner, but rather in a linear pattern. However, individuals differ considerably in their subjective time scales. This contribution sheds new light on the average and individual psychophysical functions of long-range time representation, and suggests that any attribution of deviation from exponential discount rates in intertemporal choice to the compressed nature of subjective time must entail the characterization of subjective time on an individual-participant basis.
The long-solved problem of the best-fit straight line: application to isotopic mixing lines
NASA Astrophysics Data System (ADS)
Wehr, Richard; Saleska, Scott R.
2017-01-01
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introduce the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods - ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) - have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general - and convenient - solution is always the least biased.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
Optimizing methods for linking cinematic features to fMRI data.
Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia
2015-04-15
One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bhojawala, V. M.; Vakharia, D. P.
2017-12-01
This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1 × 10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.
Social Inequality and Labor Force Participation.
ERIC Educational Resources Information Center
King, Jonathan
The labor force participation rates of whites, blacks, and Spanish-Americans, grouped by sex, are explained in a linear regression model fitted with 1970 U. S. Census data on Standard Metropolitan Statistical Area (SMSA). The explanatory variables are: average age, average years of education, vocational training rate, disabled rate, unemployment…
The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?
Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J; Ma, Keping
2013-01-01
Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Bennett, Bradley C; Husby, Chad E
2008-03-28
Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.
NASA Astrophysics Data System (ADS)
Anisuzzaman, S. M.; Krishnaiah, D.; Alfred, D.
2018-02-01
The purpose of this study is to find the effect of the modified activated carbon (MAC) on the adsorption activity for nitrogen containing compounds (NCC) removal from model fuel. Modification of commercial activated carbon (AC) involved impregnation with different ratios of sulfuric acid solution. Pseudo-first and pseudo-second order kinetic models were applied to study the adsorption kinetics, while the adsorption isotherms were used for the evaluation of equilibrium data. All of the experimental data were analyzed using ultraviolet-visible spectroscopy after adsorption experiment between different concentration dosage of adsorbent and model fuel. It has been found that adsorption of NCC by MAC was best fit is the Langmuir isotherm for quinoline (QUI) and Freundlich isotherm for indole (IND) with a maximum adsorption capacity of 0.13 mg/g and 0.16 mg/g respectively. Based on the experimental data, pseudo-first order exhibited the best fit for QUI with linear regression (R2) ranges from 0.0.9777 to 0.9935 and pseudo-second order exhibited the best fit for IND with linear regression (R2) ranges from 0.9701 to 0.9962. From the adsorption isotherm and kinetic studies result proven that commercial AC shows great potential in removing nitrogen.
Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.
2010-01-01
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121
Bellar, D; Hatchett, A; Judge, L W; Breaux, M E; Marcus, L
2015-11-01
CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success.
Hatchett, A; Judge, LW; Breaux, ME; Marcus, L
2015-01-01
CrossFit is becoming increasingly popular as a method to increase fitness and as a competitive sport in both the Unites States and Europe. However, little research on this mode of exercise has been performed to date. The purpose of the present investigation involving experienced CrossFit athletes and naïve healthy young men was to investigate the relationship of aerobic capacity and anaerobic power to performance in two representative CrossFit workouts: the first workout was 12 minutes in duration, and the second was based on the total time to complete the prescribed exercise. The participants were 32 healthy adult males, who were either naïve to CrossFit exercise or had competed in CrossFit competitions. Linear regression was undertaken to predict performance on the first workout (time) with age, group (naïve or CrossFit athlete), VO2max and anaerobic power, which were all significant predictors (p < 0.05) in the model. The second workout (repetitions), when examined similarly using regression, only resulted in CrossFit experience as a significant predictor (p < 0.05). The results of the study suggest that a history of participation in CrossFit competition is a key component of performance in CrossFit workouts which are representative of those performed in CrossFit, and that, in at least one these workouts, aerobic capacity and anaerobic power are associated with success. PMID:26681834
Liao, Pei-An; Chang, Hung-Hao; Wang, Jiun-Hao; Wu, Min-Chen
2013-06-01
This study examined the relationship between the changes of physical fitness across the 3-year spectrum of senior high school study and academic performance measured by standardized tests in Taiwan. A unique dataset of 149 240 university-bound senior high school students from 2009 to 2011 was constructed by merging two nationwide administrative datasets of physical fitness test performance and the university entrance exam scores. Hierarchical linear regression models were used. All regressions included controls for students' baseline physical fitness status, changes of physical fitness performance over time, age and family economic status. Some notable findings were revealed. An increase of 1 SD on students' overall physical fitness from the first to third school year is associated with an increase in the university entrance exam scores by 0.007 and 0.010 SD for male and female students, respectively. An increase of 1 SD on anaerobic power (flexibility) from the first to third school year is positively associated with an increase in the university entrance exam scores by 0.018 (0.010) SD among female students. We suggest that education and school health policymakers should consider and design policies to improve physical fitness as part of their overall strategy of improving academic performance.
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Saleska, Scott R.
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
Wehr, Richard; Saleska, Scott R.
2017-01-03
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
LIFESTYLE INDICATORS AND CARDIORESPIRATORY FITNESS IN ADOLESCENTS
de Victo, Eduardo Rossato; Ferrari, Gerson Luis de Moraes; da Silva, João Pedro; Araújo, Timóteo Leandro; Matsudo, Victor Keihan Rodrigues
2017-01-01
ABSTRACT Objective: To evaluate the lifestyle indicators associated with cardiorespiratory fitness in adolescents from Ilhabela, São Paulo, Brazil. Methods: The sample consisted of 181 adolescents (53% male) from the Mixed Longitudinal Project on Growth, Development, and Physical Fitness of Ilhabela. Body composition (weight, height, and body mass index, or BMI), school transportation, time spent sitting, physical activity, sports, television time (TV), having a TV in the bedroom, sleep, health perception, diet, and economic status (ES) were analyzed. Cardiorespiratory fitness was estimated by the submaximal progressive protocol performed on a cycle ergometer. Linear regression models were used with the stepwise method. Results: The sample average age was 14.8 years, and the average cardiorespiratory fitness was 42.2 mL.kg-1.min-1 (42.9 for boys and 41.4 for girls; p=0.341). In the total sample, BMI (unstandardized regression coefficient [B]=-0.03), height (B=-0.01), ES (B=0.10), gender (B=0.12), and age (B=0.03) were significantly associated with cardiorespiratory fitness. In boys, BMI, height, not playing any sports, and age were significantly associated with cardiorespiratory fitness. In girls, BMI, ES, and having a TV in the bedroom were significantly associated with cardiorespiratory fitness. Conclusions: Lifestyle indicators influenced the cardiorespiratory fitness; BMI, ES, and age influenced both sexes. Not playing any sports, for boys, and having a TV in the bedroom, for girls, also influenced cardiorespiratory fitness. Public health measures to improve lifestyle indicators can help to increase cardiorespiratory fitness levels. PMID:28977318
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
M.A. Mohamed; H.C. Coppel; J.D. Podgwaite; W.D. Rollinson
1983-01-01
Disease-free larvae of Neodiprion sertifer (Geoffroy) treated with its nucleopolyhedrosis virus in the field and under laboratory conditions showed a high correlation between virus accumulation and body weight. Simple linear regression models were found to fit viral accumulation versus body weight under either circumstance.
A quadratic regression modelling on paddy production in the area of Perlis
NASA Astrophysics Data System (ADS)
Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2017-08-01
Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
Dron, Julien; Dodi, Alain
2011-06-15
The removal of chloride, nitrate and sulfate ions from aqueous solutions by a macroporous resin is studied through the ion exchange systems OH(-)/Cl(-), OH(-)/NO(3)(-), OH(-)/SO(4)(2-), and HCO(3)(-)/Cl(-), Cl(-)/NO(3)(-), Cl(-)/SO(4)(2-). They are investigated by means of Langmuir, Freundlich, Dubinin-Radushkevitch (D-R) and Dubinin-Astakhov (D-A) single-component adsorption isotherms. The sorption parameters and the fitting of the models are determined by nonlinear regression and discussed. The Langmuir model provides a fair estimation of the sorption capacity whatever the system under study, on the contrary to Freundlich and D-R models. The adsorption energies deduced from Dubinin and Langmuir isotherms are in good agreement, and the surface parameter of the D-A isotherm appears consistent. All models agree on the order of affinity OH(-)
Testing goodness of fit in regression: a general approach for specified alternatives.
Solari, Aldo; le Cessie, Saskia; Goeman, Jelle J
2012-12-10
When fitting generalized linear models or the Cox proportional hazards model, it is important to have tools to test for lack of fit. Because lack of fit comes in all shapes and sizes, distinguishing among different types of lack of fit is of practical importance. We argue that an adequate diagnosis of lack of fit requires a specified alternative model. Such specification identifies the type of lack of fit the test is directed against so that if we reject the null hypothesis, we know the direction of the departure from the model. The goodness-of-fit approach of this paper allows to treat different types of lack of fit within a unified general framework and to consider many existing tests as special cases. Connections with penalized likelihood and random effects are discussed, and the application of the proposed approach is illustrated with medical examples. Tailored functions for goodness-of-fit testing have been implemented in the R package global test. Copyright © 2012 John Wiley & Sons, Ltd.
Analysis of reciprocal creatinine plots by two-phase linear regression.
Rowe, P A; Richardson, R E; Burton, P R; Morgan, A G; Burden, R P
1989-01-01
The progression of renal diseases is often monitored by the serial measurement of plasma creatinine. The slope of the linear relation that is frequently found between the reciprocal of creatinine concentration and time delineates the rate of change in renal function. Minor changes in slope, perhaps indicating response to therapeutic intervention, can be difficult to identify and yet be of clinical importance. We describe the application of two-phase linear regression to identify and characterise changes in slope using a microcomputer. The method fits two intersecting lines to the data by computing a least-squares estimate of the position of the slope change and its 95% confidence limits. This avoids the potential bias of fixing the change at a preconceived time corresponding with an alteration in treatment. The program then evaluates the statistical and clinical significance of the slope change and produces a graphical output to aid interpretation.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Revision of laser-induced damage threshold evaluation from damage probability data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas
2013-04-15
In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametricmore » regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).« less
Yang, Xiaowei; Nie, Kun
2008-03-15
Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.
NASA Astrophysics Data System (ADS)
Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino
2018-07-01
Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.
Local Intrinsic Dimension Estimation by Generalized Linear Modeling.
Hino, Hideitsu; Fujiki, Jun; Akaho, Shotaro; Murata, Noboru
2017-07-01
We propose a method for intrinsic dimension estimation. By fitting the power of distance from an inspection point and the number of samples included inside a ball with a radius equal to the distance, to a regression model, we estimate the goodness of fit. Then, by using the maximum likelihood method, we estimate the local intrinsic dimension around the inspection point. The proposed method is shown to be comparable to conventional methods in global intrinsic dimension estimation experiments. Furthermore, we experimentally show that the proposed method outperforms a conventional local dimension estimation method.
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
Pang, Haowen; Sun, Xiaoyang; Yang, Bo; Wu, Jingbo
2018-05-01
To ensure good quality intensity-modulated radiation therapy (IMRT) planning, we proposed the use of a quality control method based on generalized equivalent uniform dose (gEUD) that predicts absorbed radiation doses in organs at risk (OAR). We conducted a retrospective analysis of patients who underwent IMRT for the treatment of cervical carcinoma, nasopharyngeal carcinoma (NPC), or non-small cell lung cancer (NSCLC). IMRT plans were randomly divided into data acquisition and data verification groups. OAR in the data acquisition group for cervical carcinoma and NPC were further classified as sub-organs at risk (sOAR). The normalized volume of sOAR and normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula. For NSCLC, the normalized intersection volume of the planning target volume (PTV) and lung, the maximum diameter of the PTV (left-right, anterior-posterior, and superior-inferior), and the normalized gEUD (a = 1) were analyzed using multiple linear regression to establish a fitting formula for the lung gEUD (a = 1). The r-squared and P values indicated that the fitting formula was a good fit. In the data verification group, IMRT plans verified the accuracy of the fitting formula, and compared the gEUD (a = 1) for each OAR between the subjective method and the gEUD-based method. In conclusion, the gEUD-based method can be used effectively for quality control and can reduce the influence of subjective factors on IMRT planning optimization. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E
2013-06-01
Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.
Effect Size Measure and Analysis of Single Subject Designs
ERIC Educational Resources Information Center
Society for Research on Educational Effectiveness, 2013
2013-01-01
One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…
A generalized multivariate regression model for modelling ocean wave heights
NASA Astrophysics Data System (ADS)
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
What Physical Fitness Component Is Most Closely Associated With Adolescents' Blood Pressure?
Nunes, Heloyse E G; Alves, Carlos A S; Gonçalves, Eliane C A; Silva, Diego A S
2017-12-01
This study aimed to determine which of four selected physical fitness variables, would be most associated with blood pressure changes (systolic and diastolic) in a large sample of adolescents. This was a descriptive and cross-sectional, epidemiological study of 1,117 adolescents aged 14-19 years from southern Brazil. Systolic and diastolic blood pressure were measured by a digital pressure device, and the selected physical fitness variables were body composition (body mass index), flexibility (sit-and-reach test), muscle strength/resistance (manual dynamometer), and aerobic fitness (Modified Canadian Aerobic Fitness Test). Simple and multiple linear regression analyses revealed that aerobic fitness and muscle strength/resistance best explained variations in systolic blood pressure for boys (17.3% and 7.4% of variance) and girls (7.4% of variance). Aerobic fitness, body composition, and muscle strength/resistance are all important indicators of blood pressure control, but aerobic fitness was a stronger predictor of systolic blood pressure in boys and of diastolic blood pressure in both sexes.
Limitations of inclusive fitness.
Allen, Benjamin; Nowak, Martin A; Wilson, Edward O
2013-12-10
Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed.
Methods for scalar-on-function regression.
Reiss, Philip T; Goldsmith, Jeff; Shang, Han Lin; Ogden, R Todd
2017-08-01
Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images, etc. are considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorizing the basic model types as linear, nonlinear and nonparametric. We discuss publicly available software packages, and illustrate some of the procedures by application to a functional magnetic resonance imaging dataset.
Objectively measured sedentary time and academic achievement in schoolchildren.
Lopes, Luís; Santos, Rute; Mota, Jorge; Pereira, Beatriz; Lopes, Vítor
2017-03-01
This study aimed to evaluate the relationship between objectively measured total sedentary time and academic achievement (AA) in Portuguese children. The sample comprised of 213 children (51.6% girls) aged 9.46 ± 0.43 years, from the north of Portugal. Sedentary time was measured with accelerometry, and AA was assessed using the Portuguese Language and Mathematics National Exams results. Multilevel linear regression models were fitted to assess regression coefficients predicting AA. The results showed that objectively measured total sedentary time was not associated with AA, after adjusting for potential confounders.
Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C
2002-03-01
Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant negative influences of employment status and partnership on costs. All three models provided a R2 of about.31. The Residuals of the linear OLS model revealed significant deviances from normality and homoscedasticity. The residuals of the log-transformed model are normally distributed but still heteroscedastic. The linear OLS model provided the lowest prediction error and the best forecast of the dependent cost variable. The log-transformed model provided the lowest RMSE if the heteroscedastic bias correction was used. The RMSE of the GLM with a log link and a gamma distribution was higher than those of the linear OLS model and the log-transformed OLS model. The difference between the RMSE of the linear OLS model and that of the log-transformed OLS model without bias correction was significant at the 95% level. As result of the cross-validation procedure, the linear OLS model provided the lowest RMSE followed by the log-transformed OLS model with a heteroscedastic bias correction. The GLM showed the weakest model fit again. None of the differences between the RMSE resulting form the cross- validation procedure were found to be significant. The comparison of the fit indices of the different regression models revealed that the linear OLS model provided a better fit than the log-transformed model and the GLM, but the differences between the models RMSE were not significant. Due to the small number of cases in the study the lack of significance does not sufficiently proof that the differences between the RSME for the different models are zero and the superiority of the linear OLS model can not be generalized. The lack of significant differences among the alternative estimators may reflect a lack of sample size adequate to detect important differences among the estimators employed. Further studies with larger case number are necessary to confirm the results. Specification of an adequate regression models requires a careful examination of the characteristics of the data. Estimation of standard errors and confidence intervals by nonparametric methods which are robust against deviations from the normal distribution and the homoscedasticity of residuals are suitable alternatives to the transformation of the skew distributed dependent variable. Further studies with more adequate case numbers are needed to confirm the results.
Maternal heterozygosity and progeny fitness association in an inbred Scots pine population.
Abrahamsson, S; Ahlinder, J; Waldmann, P; García-Gil, M R
2013-03-01
Associations between heterozygosity and fitness traits have typically been investigated in populations characterized by low levels of inbreeding. We investigated the associations between standardized multilocus heterozygosity (stMLH) in mother trees (obtained from12 nuclear microsatellite markers) and five fitness traits measured in progenies from an inbred Scots pine population. The traits studied were proportion of sound seed, mean seed weight, germination rate, mean family height of one-year old seedlings under greenhouse conditions (GH) and mean family height of three-year old seedlings under field conditions (FH). The relatively high average inbreeding coefficient (F) in the population under study corresponds to a mixture of trees with different levels of co-ancestry, potentially resulting from a recent bottleneck. We used both frequentist and Bayesian methods of polynomial regression to investigate the presence of linear and non-linear relations between stMLH and each of the fitness traits. No significant associations were found for any of the traits except for GH, which displayed negative linear effect with stMLH. Negative HFC for GH could potentially be explained by the effect of heterosis caused by mating of two inbred mother trees (Lippman and Zamir 2006), or outbreeding depression at the most heterozygote trees and its negative impact on the fitness of the progeny, while their simultaneous action is also possible (Lynch. 1991). However,since this effect wasn't detected for FH, we cannot either rule out that the greenhouse conditions introduce artificial effects that disappear under more realistic field conditions.
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure
Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith
2017-01-01
Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343
Francisco, Fabiane Lacerda; Saviano, Alessandro Morais; Almeida, Túlia de Souza Botelho; Lourenço, Felipe Rebello
2016-05-01
Microbiological assays are widely used to estimate the relative potencies of antibiotics in order to guarantee the efficacy, safety, and quality of drug products. Despite of the advantages of turbidimetric bioassays when compared to other methods, it has limitations concerning the linearity and range of the dose-response curve determination. Here, we proposed to use partial least squares (PLS) regression to solve these limitations and to improve the prediction of relative potencies of antibiotics. Kinetic-reading microplate turbidimetric bioassays for apramacyin and vancomycin were performed using Escherichia coli (ATCC 8739) and Bacillus subtilis (ATCC 6633), respectively. Microbial growths were measured as absorbance up to 180 and 300min for apramycin and vancomycin turbidimetric bioassays, respectively. Conventional dose-response curves (absorbances or area under the microbial growth curve vs. log of antibiotic concentration) showed significant regression, however there were significant deviation of linearity. Thus, they could not be used for relative potency estimations. PLS regression allowed us to construct a predictive model for estimating the relative potencies of apramycin and vancomycin without over-fitting and it improved the linear range of turbidimetric bioassay. In addition, PLS regression provided predictions of relative potencies equivalent to those obtained from agar diffusion official methods. Therefore, we conclude that PLS regression may be used to estimate the relative potencies of antibiotics with significant advantages when compared to conventional dose-response curve determination. Copyright © 2016 Elsevier B.V. All rights reserved.
Wyss, Thomas; Boesch, Maria; Roos, Lilian; Tschopp, Céline; Frei, Klaus M; Annen, Hubert; La Marca, Roberto
2016-12-01
Good physical fitness seems to help the individual to buffer the potential harmful impact of psychosocial stress on somatic and mental health. The aim of the present study is to investigate the role of physical fitness levels on the autonomic nervous system (ANS; i.e. heart rate and salivary alpha amylase) responses to acute psychosocial stress, while controlling for established factors influencing individual stress reactions. The Trier Social Stress Test for Groups (TSST-G) was executed with 302 male recruits during their first week of Swiss Army basic training. Heart rate was measured continuously, and salivary alpha amylase was measured twice, before and after the stress intervention. In the same week, all volunteers participated in a physical fitness test and they responded to questionnaires on lifestyle factors and personal traits. A multiple linear regression analysis was conducted to determine ANS responses to acute psychosocial stress from physical fitness test performances, controlling for personal traits, behavioural factors, and socioeconomic data. Multiple linear regression revealed three variables predicting 15 % of the variance in heart rate response (area under the individual heart rate response curve during TSST-G) and four variables predicting 12 % of the variance in salivary alpha amylase response (salivary alpha amylase level immediately after the TSST-G) to acute psychosocial stress. A strong performance at the progressive endurance run (high maximal oxygen consumption) was a significant predictor of ANS response in both models: low area under the heart rate response curve during TSST-G as well as low salivary alpha amylase level after TSST-G. Further, high muscle power, non-smoking, high extraversion, and low agreeableness were predictors of a favourable ANS response in either one of the two dependent variables. Good physical fitness, especially good aerobic endurance capacity, is an important protective factor against health-threatening reactions to acute psychosocial stress.
Estimating V0[subscript 2]max Using a Personalized Step Test
ERIC Educational Resources Information Center
Webb, Carrie; Vehrs, Pat R.; George, James D.; Hager, Ronald
2014-01-01
The purpose of this study was to develop a step test with a personalized step rate and step height to predict cardiorespiratory fitness in 80 college-aged males and females using the self-reported perceived functional ability scale and data collected during the step test. Multiple linear regression analysis yielded a model (R = 0.90, SEE = 3.43…
A Case for Transforming the Criterion of a Predictive Validity Study
ERIC Educational Resources Information Center
Patterson, Brian F.; Kobrin, Jennifer L.
2011-01-01
This study presents a case for applying a transformation (Box and Cox, 1964) of the criterion used in predictive validity studies. The goals of the transformation were to better meet the assumptions of the linear regression model and to reduce the residual variance of fitted (i.e., predicted) values. Using data for the 2008 cohort of first-time,…
ERIC Educational Resources Information Center
Lazar, Ann A.; Zerbe, Gary O.
2011-01-01
Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…
Mahlke, C; Hernando, D; Jahn, C; Cigliano, A; Ittermann, T; Mössler, A; Kromrey, ML; Domaska, G; Reeder, SB; Kühn, JP
2016-01-01
Purpose To investigate the feasibility of estimating the proton-density fat fraction (PDFF) using a 7.1 Tesla magnetic resonance imaging (MRI) system and to compare the accuracy of liver fat quantification using different fitting approaches. Materials and Methods Fourteen leptin-deficient ob/ob mice and eight intact controls were examined in a 7.1 Tesla animal scanner using a 3-dimensional six-echo chemical shift-encoded pulse sequence. Confounder-corrected PDFF was calculated using magnitude (magnitude data alone) and combined fitting (complex and magnitude data). Differences between fitting techniques were compared using Bland-Altman analysis. In addition, PDFFs derived with both reconstructions were correlated with histopathological fat content and triglyceride mass fraction using linear regression analysis. Results The PDFFs determined with use of both reconstructions correlated very strongly (r=0.91). However, small mean bias between reconstructions demonstrated divergent results (3.9%; CI 2.7%-5.1%). For both reconstructions, there was linear correlation with histopathology (combined fitting: r=0.61; magnitude fitting: r=0.64) and triglyceride content (combined fitting: r=0.79; magnitude fitting: r=0.70). Conclusion Liver fat quantification using the PDFF derived from MRI performed at 7.1 Tesla is feasible. PDFF has strong correlations with histopathologically determined fat and with triglyceride content. However, small differences between PDFF reconstruction techniques may impair the robustness and reliability of the biomarker at 7.1 Tesla. PMID:27197806
Method development estimating ambient mercury concentration from monitored mercury wet deposition
NASA Astrophysics Data System (ADS)
Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.
2013-05-01
Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2012-01-01
This paper reviews the derivation of an equation for scaling response surface modeling experiments. The equation represents the smallest number of data points required to fit a linear regression polynomial so as to achieve certain specified model adequacy criteria. Specific criteria are proposed which simplify an otherwise rather complex equation, generating a practical rule of thumb for the minimum volume of data required to adequately fit a polynomial with a specified number of terms in the model. This equation and the simplified rule of thumb it produces can be applied to minimize the cost of wind tunnel testing.
2014-10-01
and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents a best fit linear regression...parameters: a) Hseg, b) QL, c) γ0, and d) Γb0. The scatter of the data points is due to the variation in the other parameters at 1 h. The line represents...concentration x0 for the nanocrystalline Fe–Zr system. The white square data point shows the location of the experimental data used for fitting the
Carsin-Vu, Aline; Corouge, Isabelle; Commowick, Olivier; Bouzillé, Guillaume; Barillot, Christian; Ferré, Jean-Christophe; Proisy, Maia
2018-04-01
To investigate changes in cerebral blood flow (CBF) in gray matter (GM) between 6 months and 15 years of age and to provide CBF values for the brain, GM, white matter (WM), hemispheres and lobes. Between 2013 and 2016, we retrospectively included all clinical MRI examinations with arterial spin labeling (ASL). We excluded subjects with a condition potentially affecting brain perfusion. For each subject, mean values of CBF in the brain, GM, WM, hemispheres and lobes were calculated. GM CBF was fitted using linear, quadratic and cubic polynomial regression against age. Regression models were compared with Akaike's information criterion (AIC), and Likelihood Ratio tests. 84 children were included (44 females/40 males). Mean CBF values were 64.2 ± 13.8 mL/100 g/min in GM, and 29.3 ± 10.0 mL/100 g/min in WM. The best-fit model of brain perfusion was the cubic polynomial function (AIC = 672.7, versus respectively AIC = 673.9 and AIC = 674.1 with the linear negative function and the quadratic polynomial function). A statistically significant difference between the tested models demonstrating the superiority of the quadratic (p = 0.18) or cubic polynomial model (p = 0.06), over the negative linear regression model was not found. No effect of general anesthesia (p = 0.34) or of gender (p = 0.16) was found. we provided values for ASL CBF in the brain, GM, WM, hemispheres, and lobes over a wide pediatric age range, approximately showing inverted U-shaped changes in GM perfusion over the course of childhood. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling Pan Evaporation for Kuwait by Multiple Linear Regression
Almedeij, Jaber
2012-01-01
Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P
2010-10-22
A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of aerobic fitness on the physiological stress responses at work.
Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Halonen, Toivo; Hänninen, Osmo
2007-01-01
The aim of the present study was to examine the effects of aerobic fitness on physiological stress responses experienced by teachers during working hours. Twenty-six healthy female and male teachers aged 33-62 years participated in the study. The ratings of perceived stress visual analogue scale (VAS), and the measurement of physiological responses (norepinephrine, epinephrine, cortisol, diastolic and systolic blood pressure, heart rate (HR), and trapezius muscle activity by electromyography (EMG), were determined. Predicted maximal oxygen uptake (VO(2)max) was measured using the submaximal bicycle ergometer test. The predicted VO(2)max was standardized for age using residuals of linear regression analyses. Static EMG activity, HR and VAS were associated with aerobic fitness in teachers. The results suggest that a higher level of aerobic fitness may reduce muscle tension, HR and perceived work stress in teachers.
Bioinactivation: Software for modelling dynamic microbial inactivation.
Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A
2017-03-01
This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simple method for quick estimation of aquifer hydrogeological parameters
NASA Astrophysics Data System (ADS)
Ma, C.; Li, Y. Y.
2017-08-01
Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.
Rothenberg, Stephen J; Rothenberg, Jesse C
2005-09-01
Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.
Comparison of aerobic fitness and space motion sickness during the Shuttle program
NASA Technical Reports Server (NTRS)
Jennings, Richard T.; Davis, Jeffrey R.; Santy, Patricia A.
1988-01-01
Space motion sickness (SMS) is an important problem for short-duration space flight; 71 percent of STS crewmembers develop SMS symptoms. The search for effective countermeasures and factors that correlate with sensitivity has been extensive. Recently, several investigators have linked aerobic fitness with motion sickness sensitivity in the 1-G or high-G environment. This paper compares the aerobic fitness of 125 Shuttle crewmembers with their SMS symptom category. Aerobic fitness data were obtained from the exercise tolerance test conducted nearest the time of launch. SMS data were derived from the medical debrief summaries. Mean maximum oxygen consumption values for crewmembers in four SMS categories (none, mild, moderate, severe) were 44.55, 44.08, 46.5, and 44.24 ml/kg per min, respectively. Scattergrams with linear regression analysis, comparing aerobic fitness and SMS symptom classification are presented. Correlation coefficients comparing SMS categories vs. aerobic fitness for men and women reveal no definite relationship between the two factors.
SigrafW: An easy-to-use program for fitting enzyme kinetic data.
Leone, Francisco Assis; Baranauskas, José Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida
2005-11-01
SigrafW is Windows-compatible software developed using the Microsoft® Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent dissociation constant (K). The estimation of V, K, and the sum of the squares of residuals is performed using a Wilkinson nonlinear regression at any Hill coefficient (n). In contrast to many currently available kinetic analysis programs, SigrafW shows several advantages for the determination of kinetic parameters of both hyperbolic and nonhyperbolic saturation curves. No initial estimates of the kinetic parameters are required, a measure of the goodness-of-the-fit for each calculation performed is provided, the nonlinear regression used for calculations eliminates the statistical bias inherent in linear transformations, and the software can be used for enzyme kinetic simulations either for educational or research purposes. Persons interested in receiving a free copy of the software should contact Dr. F. A. Leone. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.
Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation
NASA Astrophysics Data System (ADS)
Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.
A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.
Wu, Baolin
2006-02-15
Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.
Evaluating abundance and trends in a Hawaiian avian community using state-space analysis
Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.
2016-01-01
Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.
NASA Astrophysics Data System (ADS)
Polat, Esra; Gunay, Suleyman
2013-10-01
One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.
Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G
2007-08-01
A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.
NASA Astrophysics Data System (ADS)
Hapugoda, J. C.; Sooriyarachchi, M. R.
2017-09-01
Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.
Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger
2016-09-01
The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.
Estimating effects of limiting factors with regression quantiles
Cade, B.S.; Terrell, J.W.; Schroeder, R.L.
1999-01-01
In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e.g., 90-95th) were greater than if effects were estimated by changes in the means from standard linear model procedures. Estimating a range of regression quantiles (e.g., 5-95th) provides a comprehensive description of biological response patterns for exploratory and inferential analyses in observational studies of limiting factors, especially when sampling large spatial and temporal scales.
2009-03-01
80 100 120 140 -0 .6 -0 .4 -0 .2 0. 0 0. 2 0. 4 0. 6 l1 fit M irr or T ra ce r M od el Figure 26. l1fit of Mirror Tracer Model To ensure model... teachers are unfair to students is nonsense. b. Most students don’t realize the extent to which their grades are influenced by accidental happenings...understand how teachers arrive at the grades they give. b. There is a direct connection between how hard 1 study and the grades I get. 24. a. A
A Modified LS+AR Model to Improve the Accuracy of the Short-term Polar Motion Prediction
NASA Astrophysics Data System (ADS)
Wang, Z. W.; Wang, Q. X.; Ding, Y. Q.; Zhang, J. J.; Liu, S. S.
2017-03-01
There are two problems of the LS (Least Squares)+AR (AutoRegressive) model in polar motion forecast: the inner residual value of LS fitting is reasonable, but the residual value of LS extrapolation is poor; and the LS fitting residual sequence is non-linear. It is unsuitable to establish an AR model for the residual sequence to be forecasted, based on the residual sequence before forecast epoch. In this paper, we make solution to those two problems with two steps. First, restrictions are added to the two endpoints of LS fitting data to fix them on the LS fitting curve. Therefore, the fitting values next to the two endpoints are very close to the observation values. Secondly, we select the interpolation residual sequence of an inward LS fitting curve, which has a similar variation trend as the LS extrapolation residual sequence, as the modeling object of AR for the residual forecast. Calculation examples show that this solution can effectively improve the short-term polar motion prediction accuracy by the LS+AR model. In addition, the comparison results of the forecast models of RLS (Robustified Least Squares)+AR, RLS+ARIMA (AutoRegressive Integrated Moving Average), and LS+ANN (Artificial Neural Network) confirm the feasibility and effectiveness of the solution for the polar motion forecast. The results, especially for the polar motion forecast in the 1-10 days, show that the forecast accuracy of the proposed model can reach the world level.
NASA Astrophysics Data System (ADS)
Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.
2008-04-01
Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.
[Relationship between the refractive index and specific gravity of the rat urine (author's transl)].
Kitagawa, Y F; Takahashi, T; Hayashi, H
1981-07-01
The relationship between the refractive index and specific gravity of urine was studied with specimens from 165 Sprague-Dawley rats, by graphic analysis of the plot of the refractometrically determined index against the specific gravity which was measured with a pycnometer. 1. A linear regression was demonstrated between the refractive index and specific gravity. 2. The nomogram fitted the data of even those samples with high refractive index and specific gravity, irrespective of changes in food or water intake and protein or glucose contents in the urine. 3. The nomogram was in good agreement, in respect of linearity, with the regression line derived from the conversion table of TS meter by the American Optical Corporation and also with the nomogram of the Japanese Society of Clinical Pathology. It approximated more closely to the former than to the latter.
NASA Astrophysics Data System (ADS)
Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.
2015-12-01
Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.
A Bayesian model averaging method for the derivation of reservoir operating rules
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai
2015-09-01
Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.
Elliott, J.G.; DeFeyter, K.L.
1986-01-01
Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)
NASA Astrophysics Data System (ADS)
Adbul-Munaim, Ali Mazin; Reuter, Marco; Koch, Martin; Watson, Dennis G.
2015-07-01
Terahertz-time-domain spectroscopy (THz-TDS) in the range of 0.5-2.0 THz was evaluated for distinguishing among gasoline engine oils of three different grades (SAE 5W-20, 10W-40, and 20W-50) from the same manufacturer. Absorption coefficient showed limited potential and only distinguished ( p < 0.05) the 20W-50 grade from the other two grades in the 1.7-2.0-THz range. Refractive index data demonstrated relatively flat and consistently spaced curves for the three oil grades. ANOVA results confirmed a highly significant difference ( p < 0.0001) in refractive index among each of the three oils across the 0.5-2.0-THz range. Linear regression was applied to refractive index data at 0.25-THz intervals from 0.5 to 2.0 THz to predict kinematic viscosity. All seven linear regression models, intercepts, and refractive index coefficients were highly significant ( p < 0.0001). All models had a similar fit with R 2 ranging from 0.9773 to 0.9827 and RMSE ranging from 6.33 to 7.75. The refractive indices at 1.25 THz produced the best fit. The refractive indices of these oil samples were promising for identification and distinction of oil grades.
Analyses of Field Test Data at the Atucha-1 Spent Fuel Pools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
A field test was conducted at the Atucha-1 spent nuclear fuel pools to validate a software package for gross defect detection that is used in conjunction with the inspection tool, Spent Fuel Neutron Counter (SFNC). A set of measurements was taken with the SFNC and the software predictions were compared with these data and analyzed. The data spanned a wide range of cooling times and a set of burnup levels leading to count rates from the several hundreds to around twenty per second. The current calibration in the software using linear fitting required the use of multiple calibration factors tomore » cover the entire range of count rates recorded. The solution to this was to use power regression data fitting to normalize the predicted response and derive one calibration factor that can be applied to the entire set of data. The resulting comparisons between the predicted and measured responses were generally good and provided a quantitative method of detecting missing fuel in virtually all situations. Since the current version of the software uses the linear calibration method, it would need to be updated with the new power regression method to make it more user-friendly for real time verification and fieldable for the range of responses that will be encountered.« less
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments
2010-01-01
Background The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/. PMID:20482791
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments.
Ma, Jingming; Dykes, Carrie; Wu, Tao; Huang, Yangxin; Demeter, Lisa; Wu, Hulin
2010-05-18
The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/.
Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites
NASA Astrophysics Data System (ADS)
Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren
2005-09-01
The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Foulley, Jean-Louis; Van Dyk, David A
2000-01-01
This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399
Peripheral Refraction, Peripheral Eye Length, and Retinal Shape in Myopia.
Verkicharla, Pavan K; Suheimat, Marwan; Schmid, Katrina L; Atchison, David A
2016-09-01
To investigate how peripheral refraction and peripheral eye length are related to retinal shape. Relative peripheral refraction (RPR) and relative peripheral eye length (RPEL) were determined in 36 young adults (M +0.75D to -5.25D) along horizontal and vertical visual field meridians out to ±35° and ±30°, respectively. Retinal shape was determined in terms of vertex radius of curvature Rv, asphericity Q, and equivalent radius of curvature REq using a partial coherence interferometry method involving peripheral eye lengths and model eye raytracing. Second-order polynomial fits were applied to RPR and RPEL as functions of visual field position. Linear regressions were determined for the fits' second order coefficients and for retinal shape estimates as functions of central spherical refraction. Linear regressions investigated relationships of RPR and RPEL with retinal shape estimates. Peripheral refraction, peripheral eye lengths, and retinal shapes were significantly affected by meridian and refraction. More positive (hyperopic) relative peripheral refraction, more negative RPELs, and steeper retinas were found along the horizontal than along the vertical meridian and in myopes than in emmetropes. RPR and RPEL, as represented by their second-order fit coefficients, correlated significantly with retinal shape represented by REq. Effects of meridian and refraction on RPR and RPEL patterns are consistent with effects on retinal shape. Patterns derived from one of these predict the others: more positive (hyperopic) RPR predicts more negative RPEL and steeper retinas, more negative RPEL predicts more positive relative peripheral refraction and steeper retinas, and steeper retinas derived from peripheral eye lengths predict more positive RPR.
Hoekstra, Trynke; Boreham, Colin A; Murray, Liam J; Twisk, Jos W R
2008-11-01
It is not clear what the relative contribution is of specific components of physical fitness (aerobic and muscular) to cardiovascular disease (CVD) risk. We investigated associations between aerobic fitness (endurance) and muscular fitness (power) and CVD risk factors. Data were obtained from the Young Hearts project, a representative sample of 12- and 15-year-old boys and girls from Northern Ireland (N = 2016). Aerobic fitness was determined by the 20-m shuttle run test, muscular fitness by the Sargent jump test. CVD risk factors included sum of skinfolds, systolic and diastolic blood pressure, serum total cholesterol (TC), HDL cholesterol, and TC:HDL ratio. Several linear regression analyses were conducted for 4 age and gender groups separately, with the risk factor as the outcome variable. Significant associations between aerobic fitness and a healthy CVD risk profile were found. These observed relationships were independent of power, whereas the (few) relationships between muscular fitness and the risk factors were partly explained by endurance. Tailored, preventive strategies during adolescence, incorporating endurance rather than power sports, could be encouraged to help prevent CVD. This is important because existing studies propose that healthiness during adulthood is founded on healthiness in adolescence.
García-Rubio, Javier; Olivares, Pedro R; Lopez-Legarrea, Patricia; Gómez-Campos, Rossana; Cossio-Bolaños, Marco A; Merellano-Navarro, Eugenio
2015-10-01
the objective of this study was to analyze the potential relationships between Health Related Quality of Life (HRQoL) with weight status, physical activity (PA) and fitness in Chilean adolescents in both, independent and combined analysis. a sample of 767 participants (47.5% females) and aged between 12 and 18 (mean age 15.5) was employed. All measurements were carried out using selfreported instruments and Kidscreen-10, iPAQ and IFIS were used to assess HRQoL, PA and Fitness respectively. One factor ANOVA and linear regression models were applied to analyze associations between HRQoL, weight status, PA and fitness using age and sex as confounders. body mass index, level of PA and fitness were independently associated with HRQoL in Chilean adolescents. However, the combined and adjusted by sex and age analysis of these associations showed that only the fitness was significantly related with HRQoL. general fitness is associated with HRQoL independently of sex, age, bodyweight status and level of PA. The relationship between nutritional status and weekly PA with HRQoL are mediated by sex, age and general fitness. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Year-round measurements of CH4 exchange in a forested drained peatland using automated chambers
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Koskinen, Markku; Penttilä, Timo; Arffman, Pentti; Ojanen, Paavo; Minkkinen, Kari; Laurila, Tuomas; Lohila, Annalea
2016-04-01
Pristine peatlands are usually carbon accumulating ecosystems and sources of methane (CH4). Draining peatlands for forestry increases the thickness of the oxic layer, thus enhancing CH4 oxidation which leads to decreased CH4 emissions. Closed chambers are commonly used in estimating the greenhouse gas exchange between the soil and the atmosphere. However, the closed chamber technique alters the gas concentration gradient making the concentration development against time non-linear. Selecting the correct fitting method is important as it can be the largest source of uncertainty in flux calculation. We measured CH4 exchange rates and their diurnal and seasonal variations in a nutrient-rich drained peatland located in southern Finland. The original fen was drained for forestry in 1970s and now the tree stand is a mixture of Scots pine, Norway spruce and Downy birch. Our system consisted of six transparent polycarbonate chambers and stainless steel frames, positioned on different types of field and moss layer. During winter, the frame was raised above the snowpack with extension collars and the height of the snowpack inside the chamber was measured regularly. The chambers were closed hourly and the sample gas was sucked into a cavity ring-down spectrometer and analysed for CH4, CO2 and H2O concentration with 5 second time resolution. The concentration change in time in the beginning of a closure was determined with linear and exponential fits. The results show that linear regression systematically underestimated the CH4 flux when compared to exponential regression by 20-50 %. On the other hand, the exponential regression seemed not to work reliably with small fluxes (< 3.5 μg CH4 m-2 h-1): using exponential regression in such cases typically resulted in anomalously large fluxes and high deviation. Due to these facts, we recommend first calculating the flux with the linear regression and, if the flux is high enough, calculate the flux again using the exponential regression and use this value in later analysis. The forest floor at the site (including the ground vegetation) acted as a CH4 sink most of the time. CH4 emission peaks were occasionally observed, particularly in spring during the snow melt, and during rainfall events in summer. Diurnal variation was observed mainly in summer. The net CH4 exchange for the two year measurement period in the six chambers varied from -31 to -155 mg CH4 m-2 yr-1, the average being -67 mg CH4 m-2 yr-1. However, this does not include the ditches which typically act as a significant source for CH4.
Criteria for the use of regression analysis for remote sensing of sediment and pollutants
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.
1982-01-01
An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.
NASA Technical Reports Server (NTRS)
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus
NASA Technical Reports Server (NTRS)
Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.
2014-01-01
The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye
Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael
2017-01-01
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847
Physical fitness reference standards in fibromyalgia: The al-Ándalus project.
Álvarez-Gallardo, I C; Carbonell-Baeza, A; Segura-Jiménez, V; Soriano-Maldonado, A; Intemann, T; Aparicio, V A; Estévez-López, F; Camiletti-Moirón, D; Herrador-Colmenero, M; Ruiz, J R; Delgado-Fernández, M; Ortega, F B
2017-11-01
We aimed (1) to report age-specific physical fitness levels in people with fibromyalgia of a representative sample from Andalusia; and (2) to compare the fitness levels of people with fibromyalgia with non-fibromyalgia controls. This cross-sectional study included 468 (21 men) patients with fibromyalgia and 360 (55 men) controls. The fibromyalgia sample was geographically representative from southern Spain. Physical fitness was assessed with the Senior Fitness Test battery plus the handgrip test. We applied the Generalized Additive Model for Location, Scale and Shape to calculate percentile curves for women and fitted mean curves using a linear regression for men. Our results show that people with fibromyalgia reached worse performance in all fitness tests than controls (P < 0.001) in all age ranges (P < 0.001). This study provides a comprehensive description of age-specific physical fitness levels among patients with fibromyalgia and controls in a large sample of patients with fibromyalgia from southern of Spain. Physical fitness levels of people with fibromyalgia from Andalusia are very low in comparison with age-matched healthy controls. This information could be useful to correctly interpret physical fitness assessments and helping health care providers to identify individuals at risk for losing physical independence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J
2014-05-06
One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.
Rothenberg, Stephen J.; Rothenberg, Jesse C.
2005-01-01
Statistical evaluation of the dose–response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose–response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear–linear dose response) and natural-log–transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose–response relationship. We found that a log-linear lead–IQ relationship was a significantly better fit than was a linear–linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead–IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 μg/dL to 2.0 μg/dL) was 2.2 times ($319 billion) that calculated using a linear–linear dose–response function ($149 billion). The Centers for Disease Control and Prevention action limit of 10 μg/dL for children fails to protect against most damage and economic cost attributable to lead exposure. PMID:16140626
Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function
NASA Astrophysics Data System (ADS)
Mohamad, Mazni; Ramli, Norazan Mohamed; Ghani@Mamat, Nor Azura Md; Ahmad, Sanizah
2014-09-01
Partial Least Squares (PLS) regression is a popular regression technique for handling multicollinearity in low and high dimensional data which fits a linear relationship between sets of explanatory and response variables. Several robust PLS methods are proposed to accommodate the classical PLS algorithms which are easily affected with the presence of outliers. The recent one was called partial robust M-regression (PRM). Unfortunately, the use of monotonous weighting function in the PRM algorithm fails to assign appropriate and proper weights to large outliers according to their severity. Thus, in this paper, a modified partial robust M-regression is introduced to enhance the performance of the original PRM. A re-descending weight function, known as Bisquare weight function is recommended to replace the fair function in the PRM. A simulation study is done to assess the performance of the modified PRM and its efficiency is also tested in both contaminated and uncontaminated simulated data under various percentages of outliers, sample sizes and number of predictors.
Ding, H; Chen, C; Zhang, X
2016-01-01
The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms
1976-08-01
a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P
Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.
Bartelt-Hunt, Shannon L; Smith, James A
2002-06-01
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.
Restoring method for missing data of spatial structural stress monitoring based on correlation
NASA Astrophysics Data System (ADS)
Zhang, Zeyu; Luo, Yaozhi
2017-07-01
Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Tuovinen, Juha-Pekka; Aurela, Mika; Koskinen, Markku; Minkkinen, Kari; Ojanen, Paavo; Penttilä, Timo; Rainne, Juuso; Laurila, Tuomas; Lohila, Annalea
2017-04-01
We measured methane (CH4) exchange rates with automatic chambers at the forest floor of a nutrient-rich drained peatland in 2011-2013. The fen, located in southern Finland, was drained for forestry in 1969 and the tree stand is now a mixture of Scots pine, Norway spruce, and pubescent birch. Our measurement system consisted of six transparent chambers and stainless steel frames, positioned on a number of different field and moss layer compositions. Gas concentrations were measured with an online cavity ring-down spectroscopy gas analyzer. Fluxes were calculated with both linear and exponential regression. The use of linear regression resulted in systematically smaller CH4 fluxes by 10-45 % as compared to exponential regression. However, the use of exponential regression with small fluxes ( < 2.5 µg CH4 m-2 h-1) typically resulted in anomalously large absolute fluxes and high hour-to-hour deviations. Therefore, we recommend that fluxes are initially calculated with linear regression to determine the threshold for low
fluxes and that higher fluxes are then recalculated using exponential regression. The exponential flux was clearly affected by the length of the fitting period when this period was < 190 s, but stabilized with longer periods. Thus, we also recommend the use of a fitting period of several minutes to stabilize the results and decrease the flux detection limit. There were clear seasonal dynamics in the CH4 flux: the forest floor acted as a CH4 sink particularly from early summer until the end of the year, while in late winter the flux was very small and fluctuated around zero. However, the magnitude of fluxes was relatively small throughout the year, ranging mainly from -130 to +100 µg CH4 m-2 h-1. CH4 emission peaks were observed occasionally, mostly in summer during heavy rainfall events. Diurnal variation, showing a lower CH4 uptake rate during the daytime, was observed in all of the chambers, mainly in the summer and late spring, particularly in dry conditions. It was attributed more to changes in wind speed than air or soil temperature, which suggest that physical rather than biological phenomena are responsible for the observed variation. The annual net CH4 exchange varied from -104 ± 30 to -505 ± 39 mg CH4 m-2 yr-1 among the six chambers, with an average of -219 mg CH4 m-2 yr-1 over the 2-year measurement period.
García-Hermoso, Antonio; Carrillo, Hugo Alejandro; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavidez, Daniel Humberto; Correa-Bautista, Jorge Enrique; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio; Peterson, Mark D; Ramírez-Vélez, Robinson
2017-01-01
The purpose of this study was two-fold: to analyze the association between muscular fitness (MF) and clustering of metabolic syndrome (MetS) components, and to determine if fatness parameters mediate the association between MF and MetS clustering in Colombian collegiate students. This cross-sectional study included a total of 886 (51.9% women) healthy collegiate students (21.4 ± 3.3 years old). Standing broad jump and isometric handgrip dynamometry were used as indicators of lower and upper body MF, respectively. Also, a MF score was computed by summing the standardized values of both tests, and used to classify adults as fit or unfit. We also assessed fat mass, body mass index, waist-to-height ratio, and abdominal visceral fat, and categorized individuals as low and high fat using international cut-offs. A MetS cluster score was derived by calculating the sum of the sample-specific z-scores from the triglycerides, HDL cholesterol, fasting glucose, waist circumference, and arterial blood pressure. Linear regression models were used to examine whether the association between MF and MetS cluster was mediated by the fatness parameters. Data were collected from 2013 to 2016 and the analysis was done in 2016. Findings revealed that the best profiles (fit + low fat) were associated with lower levels of the MetS clustering (p <0.001 in the four fatness parameters), compared with unfit and fat (unfit + high fat) counterparts. Linear regression models indicated a partial mediating effect for fatness parameters in the association of MF with MetS clustering. Our findings indicate that efforts to improve MF in young adults may decrease MetS risk partially through an indirect effect on improvements to adiposity levels. Thus, weight reduction should be taken into account as a complementary goal to improvements in MF within exercise programs.
Carrillo, Hugo Alejandro; González-Ruíz, Katherine; Vivas, Andrés; Triana-Reina, Héctor Reynaldo; Martínez-Torres, Javier; Prieto-Benavidez, Daniel Humberto; Ramos-Sepúlveda, Jeison Alexander; Villa-González, Emilio
2017-01-01
The purpose of this study was two-fold: to analyze the association between muscular fitness (MF) and clustering of metabolic syndrome (MetS) components, and to determine if fatness parameters mediate the association between MF and MetS clustering in Colombian collegiate students. This cross-sectional study included a total of 886 (51.9% women) healthy collegiate students (21.4 ± 3.3 years old). Standing broad jump and isometric handgrip dynamometry were used as indicators of lower and upper body MF, respectively. Also, a MF score was computed by summing the standardized values of both tests, and used to classify adults as fit or unfit. We also assessed fat mass, body mass index, waist-to-height ratio, and abdominal visceral fat, and categorized individuals as low and high fat using international cut-offs. A MetS cluster score was derived by calculating the sum of the sample-specific z-scores from the triglycerides, HDL cholesterol, fasting glucose, waist circumference, and arterial blood pressure. Linear regression models were used to examine whether the association between MF and MetS cluster was mediated by the fatness parameters. Data were collected from 2013 to 2016 and the analysis was done in 2016. Findings revealed that the best profiles (fit + low fat) were associated with lower levels of the MetS clustering (p <0.001 in the four fatness parameters), compared with unfit and fat (unfit + high fat) counterparts. Linear regression models indicated a partial mediating effect for fatness parameters in the association of MF with MetS clustering. Our findings indicate that efforts to improve MF in young adults may decrease MetS risk partially through an indirect effect on improvements to adiposity levels. Thus, weight reduction should be taken into account as a complementary goal to improvements in MF within exercise programs. PMID:28296952
Estimating standard errors in feature network models.
Frank, Laurence E; Heiser, Willem J
2007-05-01
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
Calibrating the Decline Rate - Peak Luminosity Relation for Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Rust, Bert W.; Pruzhinskaya, Maria V.; Thijsse, Barend J.
2015-08-01
The correlation between peak luminosity and rate of decline in luminosity for Type I supernovae was first studied by B. W. Rust [Ph.D. thesis, Univ. of Illinois (1974) ORNL-4953] and Yu. P. Pskovskii [Sov. Astron., 21 (1977) 675] in the 1970s. Their work was little-noted until Phillips rediscovered the correlation in 1993 [ApJ, 413 (1993) L105] and attempted to derive a calibration relation using a difference quotient approximation Δm15(B) to the decline rate after peak luminosity Mmax(B). Numerical differentiation of data containing measuring errors is a notoriously unstable calculation, but Δm15(B) remains the parameter of choice for most calibration methods developed since 1993. To succeed, it should be computed from good functional fits to the lightcurves, but most workers never exhibit their fits. In the few instances where they have, the fits are not very good. Some of the 9 supernovae in the Phillips study required extinction corrections in their estimates of the Mmax(B), and so were not appropriate for establishing a calibration relation. Although the relative uncertainties in his Δm15(B) estimates were comparable to those in his Mmax(B) estimates, he nevertheless used simple linear regression of the latter on the former, rather than major-axis regression (total least squares) which would have been more appropriate.Here we determine some new calibration relations using a sample of nearby "pure" supernovae suggested by M. V. Pruzhinskaya [Astron. Lett., 37 (2011) 663]. Their parent galaxies are all in the NED collection, with good distance estimates obtained by several different methods. We fit each lightcurve with an optimal regression spline obtained by B. J. Thijsse's spline2 [Comp. in Sci. & Eng., 10 (2008) 49]. The fits, which explain more that 99% of the variance in each case, are better than anything heretofore obtained by stretching "template" lightcurves or fitting combinations of standard lightcurves. We use the fits to compute estimates of Δm15(B) and some other calibration parameters suggested by Pskovskii [Sov. Astron., 28 (1984) 858] and compare their utility for cosmological testing.
The H,G_1,G_2 photometric system with scarce observational data
NASA Astrophysics Data System (ADS)
Penttilä, A.; Granvik, M.; Muinonen, K.; Wilkman, O.
2014-07-01
The H,G_1,G_2 photometric system was officially adopted at the IAU General Assembly in Beijing, 2012. The system replaced the H,G system from 1985. The 'photometric system' is a parametrized model V(α; params) for the magnitude-phase relation of small Solar System bodies, and the main purpose is to predict the magnitude at backscattering, H := V(0°), i.e., the (absolute) magnitude of the object. The original H,G system was designed using the best available data in 1985, but since then new observations have been made showing certain features, especially near backscattering, to which the H,G function has troubles adjusting to. The H,G_1,G_2 system was developed especially to address these issues [1]. With a sufficient number of high-accuracy observations and with a wide phase-angle coverage, the H,G_1,G_2 system performs well. However, with scarce low-accuracy data the system has troubles producing a reliable fit, as would any other three-parameter nonlinear function. Therefore, simultaneously with the H,G_1,G_2 system, a two-parameter version of the model, the H,G_{12} system, was introduced [1]. The two-parameter version ties the parameters G_1,G_2 into a single parameter G_{12} by a linear relation, and still uses the H,G_1,G_2 system in the background. This version dramatically improves the possibility to receive a reliable phase-curve fit to scarce data. The amount of observed small bodies is increasing all the time, and so is the need to produce estimates for the absolute magnitude/diameter/albedo and other size/composition related parameters. The lack of small-phase-angle observations is especially topical for near-Earth objects (NEOs). With these, even the two- parameter version faces problems. The previous procedure with the H,G system in such circumstances has been that the G-parameter has been fixed to some constant value, thus only fitting a single-parameter function. In conclusion, there is a definitive need for a reliable procedure to produce photometric fits to very scarce and low-accuracy data. There are a few details that should be considered with the H,G_1,G_2 or H,G_{12} systems with scarce data. The first point is the distribution of errors in the fit. The original H,G system allowed linear regression in the flux space, thus making the estimation computationally easier. The same principle was repeated with the H,G_1,G_2 system. There is, however, a major hidden assumption in the transformation. With regression modeling, the residuals should be distributed symmetrically around zero. If they are normally distributed, even better. We have noticed that, at least with some NEO observations, the residuals in the flux space are far from symmetric, and seem to be much more symmetric in the magnitude space. The result is that the nonlinear fit in magnitude space is far more reliable than the linear fit in the flux space. Since the computers and nonlinear regression algorithms are efficient enough, we conclude that, in many cases, with low-accuracy data the nonlinear fit should be favored. In fact, there are statistical procedures that should be employed with the photometric fit. At the moment, the choice between the three-parameter and two-parameter versions is simply based on subjective decision-making. By checking parameter error and model comparison statistics, the choice could be done objectively. Similarly, the choice between the linear fit in flux space and the nonlinear fit in magnitude space should be based on a statistical test of unbiased residuals. Furthermore, the so-called Box-Cox transform could be employed to find an optimal transformation somewhere between the magnitude and flux spaces. The H,G_1,G_2 system is based on cubic splines, and is therefore a bit more complicated to implement than a system with simpler basis functions. The same applies to a complete program that would automatically choose the best transforms to data, test if two- or three-parameter version of the model should be fitted, and produce the fitted parameters with their error estimates. Our group has already made implementations of the H,G_1,G_2 system publicly available [2]. We plan to implement the abovementioned improvements to the system and make also these tools public.
Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas
2015-01-01
Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600
Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P
2018-06-20
Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.
Changes in Collegiate Ice Hockey Player Anthropometrics and Aerobic Fitness Over Three Decades.
Triplett, Ashley N; Ebbing, Amy C; Green, Matthew R; Connolly, Christopher P; Carrier, David P; Pivarnik, James M
2018-04-09
Over the past several decades, an increased emphasis on fitness training has emerged among collegiate ice hockey teams, with the objective to improve on-ice performance. However, it is unknown if this increase in training has translated over time to changes in anthropometric and fitness profiles of collegiate ice hockey players. The purposes of this study were to describe anthropometric (height, weight, BMI, %fat) and aerobic fitness (VO2peak) characteristics of collegiate ice hockey players over 36 years, and to evaluate whether these characteristics differ between player positions. Anthropometric and physiologic data were obtained through preseason fitness testing of players (N=279) from a NCAA Division I men's ice hockey team from the years of 1980 through 2015. Changes over time in the anthropometric and physiologic variables were evaluated via regression analysis using linear and polynomial models and differences between player position were compared via ANOVA (p<0.05). Regression analysis revealed a cubic model best predicted changes in mean height (R2=0.65), weight (R2=0.77), and BMI (R2=0.57), while a quadratic model best fit change in %fat by year (R2=0.30). Little change was observed over time in the anthropometric characteristics. Defensemen were significantly taller than forwards (184.7±12.1 vs. 181.3±5.9cm)(p=0.007) and forwards had a higher relative VO2peak compared to defensemen (58.7±4.7 vs. 57.2±4.4ml/kg/min)(p=0.032). No significant differences were observed in %fat or weight by position. While average player heights and weights fluctuated over time, increased emphasis on fitness training did not affect athletes' relative aerobic fitness. Differences in height and aerobic fitness levels were observed between player position.
Bennie, Jason A; Thornton, Lukar E; van Uffelen, Jannique G Z; Banting, Lauren K; Biddle, Stuart J H
2016-07-11
Leisure-time physical activity and strength training participation levels are low and socioeconomically distributed. Fitness trainers (e.g. gym/group instructors) may have a role in increasing these participation levels. However, it is not known whether the training location and characteristics of Australian fitness trainers vary between areas that differ in socioeconomic status. In 2014, a sample of 1,189 Australian trainers completed an online survey with questions about personal and fitness industry-related characteristics (e.g. qualifications, setting, and experience) and postcode of their usual training location. The Australian Bureau of Statistics 'Index of Relative Socioeconomic Disadvantage' (IRSD) was matched to training location and used to assess where fitness professionals trained and whether their experience, qualification level and delivery methods differed by area-level disadvantage. Linear regression analysis was used to examine the relationship between IRSD score and selected characteristics adjusting for covariates (e.g. sex, age). Overall, 47 % of respondents worked in areas within the three least-disadvantaged deciles. In contrast, only 14.8 % worked in the three most-disadvantaged deciles. In adjusted regression models, fitness industry qualification was positively associated with a higher IRSD score (i.e. working in the least-disadvantaged areas) (Cert III: ref; Cert IV β:13.44 [95 % CI 3.86-23.02]; Diploma β:15.77 [95 % CI: 2.17-29.37]; Undergraduate β:23.14 [95 % CI: 9.41-36.86]). Fewer Australian fitness trainers work in areas with high levels of socioeconomic disadvantaged areas than in areas with low levels of disadvantage. A higher level of fitness industry qualifications was associated with working in areas with lower levels of disadvantage. Future research should explore the effectiveness of providing incentives that encourage more fitness trainers and those with higher qualifications to work in more socioeconomically disadvantaged areas.
Videodensitometric Methods for Cardiac Output Measurements
NASA Astrophysics Data System (ADS)
Mischi, Massimo; Kalker, Ton; Korsten, Erik
2003-12-01
Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.
Sun, Yanqing; Sun, Liuquan; Zhou, Jie
2013-07-01
This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.
Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil
2015-12-07
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.
Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil
2015-01-01
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190
Murnaghan, Donna; Morrison, William; Laurence, Courtney; Bell, Brandi
2014-07-01
As youth struggle with anxiety and depression, promoting positive mental fitness is a primary concern. Canadian school-based mental health programs that focus on positive psychology and positive mental health initiatives emphasize safe and supportive environments, student engagement, resilience, and self-determination. This study examined predictors of mental fitness and its 3 components (autonomy, competence, and relatedness). School Health Action Planning and Evaluation System-Prince Edward Island (SHAPES-PEI) and the New Brunswick Student Wellness Survey (NB SWS) are data collection and feedback systems that survey youth about 4 health behaviors. Grade 7-12 students in Prince Edward Island (N = 3318) and New Brunswick (N = 7314) completed a mental fitness questionnaire in 2008-2009 (PEI) and 2006-2007 (NB). Four linear regression models were conducted to examine student characteristics associated with mental fitness, autonomy, competence, and relatedness. Positive associations were found between school connectedness (p < .0001) and mental fitness, as well as autonomy, competence, and relatedness. There were also significant relationships between affect, pro-social and antisocial behaviors, tried smoking, and mental fitness. A better understanding of adolescent health and its predictors is needed. By identifying core parameters for mental fitness, we can inform how to address students' needs through appropriate programs and policies supporting healthy school environments. © 2014, American School Health Association.
Wen, Cheng; Dallimer, Martin; Carver, Steve; Ziv, Guy
2018-05-06
Despite the great potential of mitigating carbon emission, development of wind farms is often opposed by local communities due to the visual impact on landscape. A growing number of studies have applied nonmarket valuation methods like Choice Experiments (CE) to value the visual impact by eliciting respondents' willingness to pay (WTP) or willingness to accept (WTA) for hypothetical wind farms through survey questions. Several meta-analyses have been found in the literature to synthesize results from different valuation studies, but they have various limitations related to the use of the prevailing multivariate meta-regression analysis. In this paper, we propose a new meta-analysis method to establish general functions for the relationships between the estimated WTP or WTA and three wind farm attributes, namely the distance to residential/coastal areas, the number of turbines and turbine height. This method involves establishing WTA or WTP functions for individual studies, fitting the average derivative functions and deriving the general integral functions of WTP or WTA against wind farm attributes. Results indicate that respondents in different studies consistently showed increasing WTP for moving wind farms to greater distances, which can be fitted by non-linear (natural logarithm) functions. However, divergent preferences for the number of turbines and turbine height were found in different studies. We argue that the new analysis method proposed in this paper is an alternative to the mainstream multivariate meta-regression analysis for synthesizing CE studies and the general integral functions of WTP or WTA against wind farm attributes are useful for future spatial modelling and benefit transfer studies. We also suggest that future multivariate meta-analyses should include non-linear components in the regression functions. Copyright © 2018. Published by Elsevier B.V.
Brudvig, Jean M; Swenson, Cheryl L
2015-12-01
Rapid and precise measurement of total and differential nucleated cell counts is a crucial diagnostic component of cavitary and synovial fluid analyses. The objectives of this study included (1) evaluation of reliability and precision of canine and equine fluid total nucleated cell count (TNCC) determined by the benchtop Abaxis VetScan HM5, in comparison with the automated reference instruments ADVIA 120 and the scil Vet abc, respectively, and (2) comparison of automated with manual canine differential nucleated cell counts. The TNCC and differential counts in canine pleural and peritoneal, and equine synovial fluids were determined on the Abaxis VetScan HM5 and compared with the ADVIA 120 and Vet abc analyzer, respectively. Statistical analyses included correlation, least squares fit linear regression, Passing-Bablok regression, and Bland-Altman difference plots. In addition, precision of the total cell count generated by the VetScan HM5 was determined. Agreement was excellent without significant constant or proportional bias for canine cavitary fluid TNCC. Automated and manual differential counts had R(2) < .5 for individual cell types (least squares fit linear regression). Equine synovial fluid TNCC agreed but with some bias due to the VetScan HM5 overestimating TNCC compared to the Vet abc. Intra-assay precision of the VetScan HM5 in 3 fluid samples was 2-31%. The Abaxis VetScan HM5 provided rapid, reliable TNCC for canine and equine fluid samples. The differential nucleated cell count should be verified microscopically as counts from the VetScan HM5 and also from the ADVIA 120 were often incorrect in canine fluid samples. © 2015 American Society for Veterinary Clinical Pathology.
Body mass index in relation to serum prostate-specific antigen levels and prostate cancer risk.
Bonn, Stephanie E; Sjölander, Arvid; Tillander, Annika; Wiklund, Fredrik; Grönberg, Henrik; Bälter, Katarina
2016-07-01
High Body mass index (BMI) has been directly associated with risk of aggressive or fatal prostate cancer. One possible explanation may be an effect of BMI on serum levels of prostate-specific antigen (PSA). To study the association between BMI and serum PSA as well as prostate cancer risk, a large cohort of men without prostate cancer at baseline was followed prospectively for prostate cancer diagnoses until 2015. Serum PSA and BMI were assessed among 15,827 men at baseline in 2010-2012. During follow-up, 735 men were diagnosed with prostate cancer with 282 (38.4%) classified as high-grade cancers. Multivariable linear regression models and natural cubic linear regression splines were fitted for analyses of BMI and log-PSA. For risk analysis, Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) and natural cubic Cox regression splines producing standardized cancer-free probabilities were fitted. Results showed that baseline Serum PSA decreased by 1.6% (95% CI: -2.1 to -1.1) with every one unit increase in BMI. Statistically significant decreases of 3.7, 11.7 and 32.3% were seen for increasing BMI-categories of 25 < 30, 30 < 35 and ≥35 kg/m(2), respectively, compared to the reference (18.5 < 25 kg/m(2)). No statistically significant associations were seen between BMI and prostate cancer risk although results were indicative of a positive association to incidence rates of high-grade disease and an inverse association to incidence of low-grade disease. However, findings regarding risk are limited by the short follow-up time. In conclusion, BMI was inversely associated to PSA-levels. BMI should be taken into consideration when referring men to a prostate biopsy based on serum PSA-levels. © 2016 UICC.
Smooth individual level covariates adjustment in disease mapping.
Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise
2018-05-01
Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hoover, Stephen; Jackson, Eric V.; Paul, David; Locke, Robert
2016-01-01
Summary Background Accurate prediction of future patient census in hospital units is essential for patient safety, health outcomes, and resource planning. Forecasting census in the Neonatal Intensive Care Unit (NICU) is particularly challenging due to limited ability to control the census and clinical trajectories. The fixed average census approach, using average census from previous year, is a forecasting alternative used in clinical practice, but has limitations due to census variations. Objective Our objectives are to: (i) analyze the daily NICU census at a single health care facility and develop census forecasting models, (ii) explore models with and without patient data characteristics obtained at the time of admission, and (iii) evaluate accuracy of the models compared with the fixed average census approach. Methods We used five years of retrospective daily NICU census data for model development (January 2008 – December 2012, N=1827 observations) and one year of data for validation (January – December 2013, N=365 observations). Best-fitting models of ARIMA and linear regression were applied to various 7-day prediction periods and compared using error statistics. Results The census showed a slightly increasing linear trend. Best fitting models included a non-seasonal model, ARIMA(1,0,0), seasonal ARIMA models, ARIMA(1,0,0)x(1,1,2)7 and ARIMA(2,1,4)x(1,1,2)14, as well as a seasonal linear regression model. Proposed forecasting models resulted on average in 36.49% improvement in forecasting accuracy compared with the fixed average census approach. Conclusions Time series models provide higher prediction accuracy under different census conditions compared with the fixed average census approach. Presented methodology is easily applicable in clinical practice, can be generalized to other care settings, support short- and long-term census forecasting, and inform staff resource planning. PMID:27437040
Capan, Muge; Hoover, Stephen; Jackson, Eric V; Paul, David; Locke, Robert
2016-01-01
Accurate prediction of future patient census in hospital units is essential for patient safety, health outcomes, and resource planning. Forecasting census in the Neonatal Intensive Care Unit (NICU) is particularly challenging due to limited ability to control the census and clinical trajectories. The fixed average census approach, using average census from previous year, is a forecasting alternative used in clinical practice, but has limitations due to census variations. Our objectives are to: (i) analyze the daily NICU census at a single health care facility and develop census forecasting models, (ii) explore models with and without patient data characteristics obtained at the time of admission, and (iii) evaluate accuracy of the models compared with the fixed average census approach. We used five years of retrospective daily NICU census data for model development (January 2008 - December 2012, N=1827 observations) and one year of data for validation (January - December 2013, N=365 observations). Best-fitting models of ARIMA and linear regression were applied to various 7-day prediction periods and compared using error statistics. The census showed a slightly increasing linear trend. Best fitting models included a non-seasonal model, ARIMA(1,0,0), seasonal ARIMA models, ARIMA(1,0,0)x(1,1,2)7 and ARIMA(2,1,4)x(1,1,2)14, as well as a seasonal linear regression model. Proposed forecasting models resulted on average in 36.49% improvement in forecasting accuracy compared with the fixed average census approach. Time series models provide higher prediction accuracy under different census conditions compared with the fixed average census approach. Presented methodology is easily applicable in clinical practice, can be generalized to other care settings, support short- and long-term census forecasting, and inform staff resource planning.
Improvement and Optimization of Internal Damping in Fiber Reinforced Composite Materials
1986-03-03
Resin Casting ............. 61 5.0 TESTS ON DISCONTINUOUS ALIGNED FIBER REINFORCED COMPOSITES . . . ...................... 63 5.1 Experimental...After some :x..iipulation [ 61 , the longitudinal storage modulus is given by: Vf -+-- -~V (2.9) Eý Eý E P9. t z[(R /r) - ] + cosha.t I-. . 10 where 1...the storage moduluii were fitted with a linear regression given by E . . 61 E’ = 571252.737 + 55.647 x f (psi) (4.1) m Where f is the frequency in
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki
2002-05-01
To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.
Ozone and UV-B variations at Ispra from 1993 to 1997
NASA Astrophysics Data System (ADS)
Cappellani, F.; Kochler, C.
An analysis of the variability of the total ozone column at Ispra (Italy) has been performed to ascertain if, even in a short-time interval of 5 years (1993-1997), a decline of the monthly mean ozone values could be demonstrated. A linear fit of the data displays a decrease of 0.21% per year with a mean value equal to 319±2 D.U. and an amplitude of the annual cycle of about 10% of the mean. A linear regression of the surface monthly mean ozone values has also been performed showing a decreasing trend (-1% per year) that could contribute, even if for a very small amount, to the decline of the total ozone values. Ispra monthly mean total ozone data have been compared with those of three stations located within 2° latitude and 3° longitude from Ispra (Haute Provence, Hohenpeissenberg and Arosa). A linear fit of the data shows some discrepancies in the ozone changes, which can be attributed to the limited length of the observational period. An analysis has been performed to verify if the variation of ozone at Ispra is in agreement with that of the solar UV measured at a wavelength (305 nm) where the ozone absorption is still remarkable. The results, taken at a fixed solar zenith angle of 68°, show a clear anticorrelation between the monthly mean values of UV and the corresponding values of the total ozone column; the linear fit of the UV data displays an increase of 2.0% per year, much higher than expected from the ozone decrease, and a mean value of 1.4±0.1 mW m -2 nm -1.
Hajian-Tilaki, Karimollah; Heidari, Behzad
2015-01-01
The biological variation of body mass index (BMI) and waist circumference (WC) with age may vary by gender. The objective of this study was to investigate the functional relationship of anthropometric measures with age and sex. The data were collected from a population-based cross-sectional study of 1800 men and 1800 women aged 20-70 years in northern Iran. The linear and quadratic pattern of age on weight, height, BMI and WC and WHR were tested statistically and the interaction effect of age and gender was also formally tested. The quadratic model (age(2)) provided a significantly better fit than simple linear model for weight, BMI and WC. BMI, WC and weight explained a greater variance using quadratic form for women compared with men (for BMI, R(2)=0.18, p<0.001 vs R(2)=0.059, p<0.001 and for WC, R(2)=0.17, p<0.001 vs R(2)=0.047, p<0.001). For height, there is an inverse linear relationship while for WHR, a positive linear association was apparent by aging, the quadratic form did not add to better fit. These findings indicate the different patterns of weight gain, fat accumulation for visceral adiposity and loss of muscle mass between men and women in the early and middle adulthood.
Wockner, Leesa F; Hoffmann, Isabell; O'Rourke, Peter; McCarthy, James S; Marquart, Louise
2017-08-25
The efficacy of vaccines aimed at inhibiting the growth of malaria parasites in the blood can be assessed by comparing the growth rate of parasitaemia in the blood of subjects treated with a test vaccine compared to controls. In studies using induced blood stage malaria (IBSM), a type of controlled human malaria infection, parasite growth rate has been measured using models with the intercept on the y-axis fixed to the inoculum size. A set of statistical models was evaluated to determine an optimal methodology to estimate parasite growth rate in IBSM studies. Parasite growth rates were estimated using data from 40 subjects published in three IBSM studies. Data was fitted using 12 statistical models: log-linear, sine-wave with the period either fixed to 48 h or not fixed; these models were fitted with the intercept either fixed to the inoculum size or not fixed. All models were fitted by individual, and overall by study using a mixed effects model with a random effect for the individual. Log-linear models and sine-wave models, with the period fixed or not fixed, resulted in similar parasite growth rate estimates (within 0.05 log 10 parasites per mL/day). Average parasite growth rate estimates for models fitted by individual with the intercept fixed to the inoculum size were substantially lower by an average of 0.17 log 10 parasites per mL/day (range 0.06-0.24) compared with non-fixed intercept models. Variability of parasite growth rate estimates across the three studies analysed was substantially higher (3.5 times) for fixed-intercept models compared with non-fixed intercept models. The same tendency was observed in models fitted overall by study. Modelling data by individual or overall by study had minimal effect on parasite growth estimates. The analyses presented in this report confirm that fixing the intercept to the inoculum size influences parasite growth estimates. The most appropriate statistical model to estimate the growth rate of blood-stage parasites in IBSM studies appears to be a log-linear model fitted by individual and with the intercept estimated in the log-linear regression. Future studies should use this model to estimate parasite growth rates.
Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun
2013-09-01
By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.
Lutchen, K R
1990-08-01
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otake, M.; Schull, W.J.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information onmore » their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.« less
SPSS macros to compare any two fitted values from a regression model.
Weaver, Bruce; Dubois, Sacha
2012-12-01
In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.
Variational and robust density fitting of four-center two-electron integrals in local metrics
NASA Astrophysics Data System (ADS)
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Variational and robust density fitting of four-center two-electron integrals in local metrics.
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł
2008-09-14
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Random regression analyses using B-splines to model growth of Australian Angus cattle
Meyer, Karin
2005-01-01
Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011
Olivares, Pedro R; García-Rubio, Javier
2016-01-01
To analyze the associations between different components of fitness and fatness with academic performance, adjusting the analysis by sex, age, socio-economic status, region and school type in a Chilean sample. Data of fitness, fatness and academic performance was obtained from the Chilean System for the Assessment of Educational Quality test for eighth grade in 2011 and includes a sample of 18,746 subjects (49% females). Partial correlations adjusted by confounders were done to explore association between fitness and fatness components, and between the academic scores. Three unadjusted and adjusted linear regression models were done in order to analyze the associations of variables. Fatness has a negative association with academic performance when Body Mass Index (BMI) and Waist to Height Ratio (WHR) are assessed independently. When BMI and WHR are assessed jointly and adjusted by cofounders, WHR is more associated with academic performance than BMI, and only the association of WHR is positive. For fitness components, strength was the variable most associated with the academic performance. Cardiorespiratory capacity was not associated with academic performance if fatness and other fitness components are included in the model. Fitness and fatness are associated with academic performance. WHR and strength are more related with academic performance than BMI and cardiorespiratory capacity.
2016-01-01
Objectives To analyze the associations between different components of fitness and fatness with academic performance, adjusting the analysis by sex, age, socio-economic status, region and school type in a Chilean sample. Methods Data of fitness, fatness and academic performance was obtained from the Chilean System for the Assessment of Educational Quality test for eighth grade in 2011 and includes a sample of 18,746 subjects (49% females). Partial correlations adjusted by confounders were done to explore association between fitness and fatness components, and between the academic scores. Three unadjusted and adjusted linear regression models were done in order to analyze the associations of variables. Results Fatness has a negative association with academic performance when Body Mass Index (BMI) and Waist to Height Ratio (WHR) are assessed independently. When BMI and WHR are assessed jointly and adjusted by cofounders, WHR is more associated with academic performance than BMI, and only the association of WHR is positive. For fitness components, strength was the variable most associated with the academic performance. Cardiorespiratory capacity was not associated with academic performance if fatness and other fitness components are included in the model. Conclusions Fitness and fatness are associated with academic performance. WHR and strength are more related with academic performance than BMI and cardiorespiratory capacity. PMID:27761345
NASA Astrophysics Data System (ADS)
Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.
2017-12-01
Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.
Rappole, Catherine; Grier, Tyson; Anderson, Morgan K; Hauschild, Veronique; Jones, Bruce H
2017-11-01
To investigate the effects of age, aerobic fitness, and body mass index (BMI) on injury risk in operational Army soldiers. Retrospective cohort study. Male soldiers from an operational Army brigade were administered electronic surveys regarding personal characteristics, physical fitness, and injuries occurring over the last 12 months. Injury risks were stratified by age, 2-mile run time, and BMI. Analyses included descriptive incidence, a Mantel-Haenszel χ 2 test to determine trends, a multivariable logistic regression to determine factors associated with injury, and a one-way analysis of variance (ANOVA). Forty-seventy percent of 1099 respondents reported at least one injury. A linear trend showed that as age, 2-mile run time, and BMI increased, so did injury risk (p<0.01). When controlling for BMI, the most significant independent injury risk factors were older age (odd ratio (OR) 30years-35years/≤24years=1.25, 95%CI: 1.08-2.32), (OR≥36years/≤24years=2.05, 95%CI: 1.36-3.10), and slow run times (OR≥15.9min/≤13.9min=1.91, 95%CI: 1.28-2.85). An ANOVA showed that both run times and BMI increased with age. The stratified analysis and the multivariable logistic regression suggested that older age and poor aerobic fitness are stronger predictors of injury than BMI. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Zhang, Chao; Jia, Pengli; Yu, Liu; Xu, Chang
2018-05-01
Dose-response meta-analysis (DRMA) is widely applied to investigate the dose-specific relationship between independent and dependent variables. Such methods have been in use for over 30 years and are increasingly employed in healthcare and clinical decision-making. In this article, we give an overview of the methodology used in DRMA. We summarize the commonly used regression model and the pooled method in DRMA. We also use an example to illustrate how to employ a DRMA by these methods. Five regression models, linear regression, piecewise regression, natural polynomial regression, fractional polynomial regression, and restricted cubic spline regression, were illustrated in this article to fit the dose-response relationship. And two types of pooling approaches, that is, one-stage approach and two-stage approach are illustrated to pool the dose-response relationship across studies. The example showed similar results among these models. Several dose-response meta-analysis methods can be used for investigating the relationship between exposure level and the risk of an outcome. However the methodology of DRMA still needs to be improved. © 2018 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Statistical approach to Higgs boson couplings in the standard model effective field theory
NASA Astrophysics Data System (ADS)
Murphy, Christopher W.
2018-01-01
We perform a parameter fit in the standard model effective field theory (SMEFT) with an emphasis on using regularized linear regression to tackle the issue of the large number of parameters in the SMEFT. In regularized linear regression, a positive definite function of the parameters of interest is added to the usual cost function. A cross-validation is performed to try to determine the optimal value of the regularization parameter to use, but it selects the standard model (SM) as the best model to explain the measurements. Nevertheless as proof of principle of this technique we apply it to fitting Higgs boson signal strengths in SMEFT, including the latest Run-2 results. Results are presented in terms of the eigensystem of the covariance matrix of the least squares estimators as it has a degree model-independent to it. We find several results in this initial work: the SMEFT predicts the total width of the Higgs boson to be consistent with the SM prediction; the ATLAS and CMS experiments at the LHC are currently sensitive to non-resonant double Higgs boson production. Constraints are derived on the viable parameter space for electroweak baryogenesis in the SMEFT, reinforcing the notion that a first order phase transition requires fairly low-scale beyond the SM physics. Finally, we study which future experimental measurements would give the most improvement on the global constraints on the Higgs sector of the SMEFT.
Modeling when and where a secondary accident occurs.
Wang, Junhua; Liu, Boya; Fu, Ting; Liu, Shuo; Stipancic, Joshua
2018-01-31
The occurrence of secondary accidents leads to traffic congestion and road safety issues. Secondary accident prevention has become a major consideration in traffic incident management. This paper investigates the location and time of a potential secondary accident after the occurrence of an initial traffic accident. With accident data and traffic loop data collected over three years from California interstate freeways, a shock wave-based method was introduced to identify secondary accidents. A linear regression model and two machine learning algorithms, including a back-propagation neural network (BPNN) and a least squares support vector machine (LSSVM), were implemented to explore the distance and time gap between the initial and secondary accidents using inputs of crash severity, violation category, weather condition, tow away, road surface condition, lighting, parties involved, traffic volume, duration, and shock wave speed generated by the primary accident. From the results, the linear regression model was inadequate in describing the effect of most variables and its goodness-of-fit and accuracy in prediction was relatively poor. In the training programs, the BPNN and LSSVM demonstrated adequate goodness-of-fit, though the BPNN was superior with a higher CORR and lower MSE. The BPNN model also outperformed the LSSVM in time prediction, while both failed to provide adequate distance prediction. Therefore, the BPNN model could be used to forecast the time gap between initial and secondary accidents, which could be used by decision makers and incident management agencies to prevent or reduce secondary collisions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Forecasting daily patient volumes in the emergency department.
Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L
2008-02-01
Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.
Normative biometrics for fetal ocular growth using volumetric MRI reconstruction.
Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P; Estroff, Judy A; Warfield, Simon K
2015-04-01
To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. The 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). All biometry correlated with GA (Volume, Pearson's correlation coefficient (CC) = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD, and OD and a linear model to best fit volume. Orbital volume had the greatest correlation with GA, although BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.
Adikaram, K K L B; Hussein, M A; Effenberger, M; Becker, T
2015-01-01
Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio Rmax of amax - amin and Sn - amin*n and that of Rmin of amax - amin and amax*n - Sn are always equal to 2/n, where amax is the maximum element, amin is the minimum element and Sn is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, Rmax > 2/n and Rmin > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k1) and 2/n * (1 + k2), respectively, where k1 > k2 and 0 ≤ k1 ≤ n/2 - 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10-4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process.
Evaluation of force-velocity and power-velocity relationship of arm muscles.
Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan
2015-08-01
A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.
Biophysical characterization of a swimmer with a unilateral arm amputation: a case study.
Figueiredo, Pedro; Willig, Renata; Alves, Francisco; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2014-11-01
To examine the effect of swimming speed (v) on the biomechanical and physiological responses of a trained front-crawl swimmer with a unilateral arm amputation. A 13-y-old girl with a unilateral arm amputation (level of the elbow) was tested for stroke length (SL, horizontal displacement cover with each stroke cycle), stroke frequency (SF, inverse of the time to complete each stroke cycle), adapted index of coordination (IdCadapt, lag time between propulsive phases), intracycle velocity variation (IVV, coefficient of variation of the instantaneous velocity-time data), active drag (D, hydrodynamic resistance), and energy cost (C, ratio of metabolic power to speed) during trials of increasing v. Swimmer data showed a positive relationship between v and SF (R² = 1, P < .001), IVV (R² = .98, P = .002), D (R² = .98, P < .001), and C (R² = .95, P = .001) and a negative relationship with the SL (R² = .99, P = .001). No relation was found between v and IdCadapt (R² = .35, P = .22). A quadratic regression best fitted the relationship between v and general kinematical parameters (SL and SF); a cubic relationship fit the IVV best. The relationship between v and D was best expressed by a power regression, and the linear regression fit the C and IdCadapt best. The subject's adaptation to increased v was different from able-bodied swimmers, mainly on interarm coordination, maintaining the lag time between propulsive phases, which influence the magnitude of the other parameters. These results might be useful to develop specific training and enhance swimming performance in swimmers with amputations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, J; Chao, M
2016-06-15
Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associatedmore » algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately improving tumor motion management for radiation therapy of cancer patients.« less
Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.
García-Mozo, H; Yaezel, L; Oteros, J; Galán, C
2014-03-01
Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.
Yao, Hong; Zhuang, Wei; Qian, Yu; Xia, Bisheng; Yang, Yang; Qian, Xin
2016-01-01
Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R2 = 0.86–0.93 for 72 data sets collected in the industrial river and R2 = 0.60–0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals’ concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density. PMID:27028017
Yao, Hong; Zhuang, Wei; Qian, Yu; Xia, Bisheng; Yang, Yang; Qian, Xin
2016-01-01
Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R(2) = 0.86-0.93 for 72 data sets collected in the industrial river and R(2) = 0.60-0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals' concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density.
Peng, Jui-Chen; Lee, Yin-Ling; Tseng, Mei-Man
2014-03-01
Person-organization (P-O) fit is an important influencing factor on the intentions and attitudes of hospital nurses. The authors used a motivation-mechanism approach to conceptualize work engagement as a mediator and demand-ability (D-A) fit as a moderator to elicit the role of P-O fit in the turnover intention of nurses. This article explores whether the work engagement of nurses mediates the relationship between P-O fit and turnover intention and examines whether D-A fit moderates this relationship. The sample comprised 349 nurses working for two regional hospitals in Yilan County, Taiwan. Linear regression modeling analysis was conducted to test the proposed hypotheses. Results indicate that P-O fit has a negative effect on participant turnover intention. In addition, the work engagement of participants was found to mediate the impact of P-O fit on turnover intention. A new significant interactive relationship was discovered such that high D-A fit strengthened the negative relationship between P-O fit and turnover intention. The work engagement of professional nurses has attracted increasing attention in the literature on fit, particularly with regard to the linkage between P-O and fit-turnover intention. This study enhances the understanding of the function of P-O fit by considering perceived D-A fit. Nurse turnover is the main reason for the current shortage of nurses in Taiwan. Therefore, if the cognitive values of nurses and the organizational culture fit with hospital value systems, common values may facilitate a higher degree of nurse work engagement and, in turn, decrease turnover intention. In addition, recruiting employees with high D-A fit may help hospitals enhance the negative relationship between P-O fit and nurse turnover intention.
Gerrard, Paul
2012-10-01
To determine whether there is a relationship between the level of education and the accuracy of self-reported physical activity as a proxy measure of aerobic fitness. Data from the National Health and Nutrition Examination from the years 1999 to 2004 were used. Linear regression was performed for measured maximum oxygen consumption (Vo(2)max) versus self-reported physical activity for 5 different levels of education. This was a national survey in the United States. Participants included adults from the general U.S. population (N=3290). None. Coefficients of determination obtained from models for each education level were used to compare how well self-reported physical activity represents cardiovascular fitness. These coefficients were the main outcome measure. Coefficients of determination for Vo(2)max versus reported physical activity increased as the level of education increased. In this preliminary study, self-reported physical activity is a better proxy measure for aerobic fitness in highly educated individuals than in poorly educated individuals. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
An Occupational Performance Test Validation Program for Fire Fighters at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Schonfeld, Brian R.; Doerr, Donald F.; Convertino, Victor A.
1990-01-01
We evaluated performance of a modified Combat Task Test (CTT) and of standard fitness tests in 20 male subjects to assess the prediction of occupational performance standards for Kennedy Space Center fire fighters. The CTT consisted of stair-climbing, a chopping simulation, and a victim rescue simulation. Average CTT performance time was 3.61 +/- 0.25 min (SEM) and all CTT tasks required 93% to 97% maximal heart rate. By using scores from the standard fitness tests, a multiple linear regression model was fitted to each parameter: the stairclimb (r(exp 2) = .905, P less than .05), the chopping performance time (r(exp 2) = .582, P less than .05), the victim rescue time (r(exp 2) = .218, P = not significant), and the total performance time (r(exp 2) = .769, P less than .05). Treadmill time was the predominant variable, being the major predictor in two of four models. These results indicated that standardized fitness tests can predict performance on some CTT tasks and that test predictors were amenable to exercise training.
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.; Chen, J.
2017-11-01
The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.
Influences of physical fitness on bone mass in women with fibromyalgia.
Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Navarro-Vera, Isabel; Martinez-Redondo, Diana; Díez-Sánchez, Carmen; Casajús, José Antonio
2015-04-01
The aim of this study was to provide information about the relationship of bone mineral content (BMC) and density (BMD) with some physical-fitness-related variables in a sample of women with fibromyalgia (FM) and age-matched women without FM. Twenty-eight women clinically diagnosed with FM (age 51.1 ± 8.4 yr, M ± SD) and 22 age-matched controls participated in the study. Whole-body BMC and BMD, lean mass, handgrip strength, quadriceps strength, and cardiovascular fitness were measured in all participants. The association between physical-fitness variables and bone-related variables was tested by linear regression controlling for body weight as a possible confounder. There were no differences in BMC or BMD between groups. Women with FM had lower values of handgrip strength, quadriceps strength, and VO2peak than the control group. Handgrip strength and aerobic capacity were associated with BMC and BMD and quadriceps strength was associated with BMD in women with FM; however, only VO2peak was associated with BMC in the group of women without FM. Bone mass of women with FM may be more susceptible to changes in physical fitness than that of the women without fibromyalgia.
Creating a non-linear total sediment load formula using polynomial best subset regression model
NASA Astrophysics Data System (ADS)
Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali
2016-08-01
The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2015-01-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398
Polynomials to model the growth of young bulls in performance tests.
Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B
2014-03-01
The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.
Aerobic Capacity and Cognitive Control in Elementary School-Age Children
Scudder, Mark R.; Lambourne, Kate; Drollette, Eric S.; Herrmann, Stephen; Washburn, Richard; Donnelly, Joseph E.; Hillman, Charles H.
2014-01-01
Purpose The current study examined the relationship between children’s performance on the Progressive Aerobic Cardiovascular Endurance Run (PACER) subtest of the FitnessGram® and aspects of cognitive control that are believed to support academic success. Methods Hierarchical linear regression analyses were conducted on a sample of 2nd and 3rd grade children (n = 397) who completed modified versions of a flanker task and spatial n-back task to assess inhibitory control and working memory, respectively. Results Greater aerobic fitness was significantly related to shorter reaction time and superior accuracy during the flanker task, suggesting better inhibitory control and the facilitation of attention in higher fit children. A similar result was observed for the n-back task such that higher fit children exhibited more accurate target detection and discrimination performance when working memory demands were increased. Conclusion These findings support the positive association between aerobic fitness and multiple aspects of cognitive control in a large sample of children, using a widely implemented and reliable field estimate of aerobic capacity. Importantly, the current results suggest that this relationship is consistent across methods used to assess fitness, which may have important implications for extending this research to more representative samples of children in a variety of experimental contexts. PMID:24743109
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.
Alantary, Doaa; Yalkowsky, Samuel
2016-09-01
A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Ma, Yibing; Wang, Xingxiang
2014-10-01
Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Physical fitness of 9 year olds in England: related factors.
Kikuchi, S; Rona, R J; Chinn, S
1995-04-01
To examine the influence of social factors, passive smoking, and other parental health related factors, as well as anthropometric and other measurements on children's cardiorespiratory fitness. This was a cross sectional study. The analysis was based on 22 health areas in England. The subjects were 299 boys and 282 girls aged 8 to 9 years. Parents did not give positive consent for 15% of the eligible sample. A further 25% of the eligible sample did not participate because the cycle-ergometer broke down, study time was insufficient, or they were excluded from the analysis because they were from ethnic minority groups or had missing data on one continuous variable. Cardiorespiratory fitness was determined using the cycle-ergometer test. It was measured in terms of PWC85%-that is, power output per body weight (watt/kg) assessed at 85% of maximum heart rate. The association between children's fitness and biological and social factors was analysed in two stages. Firstly, multiple logistic analysis was used to examine the factors associated with the children's ability to complete the test for at least four minutes. Secondly, multiple linear regression analysis was used to examine the independent association of the factors with PWC85%. In the logistic analysis, shorter children, children with higher blood pressure, and boys with a larger sibship size had poorer fitness. In the multiple regression analysis, only height (p < 0.001) was positively associated, and the sum of skinfold thicknesses at four sites (p = 0.001) was negatively associated with fitness in both sexes. In girls, a positive association was found with pre-exercise peak expiratory flow rate (p < 0.05), and there were negative associations with systolic blood pressure (p < 0.05) and family history of heart attack (p < 0.05). In boys an association was found with skinfold distribution and fitness (p < 0.05), so that children with relatively less body fat were fitter. Social and health behaviour factors such as father's social class, father's employment status, or parents' smoking habits were unrelated to child's fitness. Height and obesity are strongly associated, and systolic blood pressure to a small extent, with children's fitness, but social factors are unrelated.
Gross Motor Skills and Cardiometabolic Risk in Children: A Mediation Analysis.
Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C
2017-04-01
The purpose of this study was to examine the linear relationship between gross motor skills and cardiometabolic risk, with aerobic fitness as a mediator variable, in low-income children from the United States. Participants were a convenience sample of 224 children (mean ± SD age = 9.1 ± 1.1 yr; 129 girls and 95 boys) recruited from five low-income elementary schools from the Mountain West Region of the United States. Gross motor skills were assessed using the Test for Gross Motor Development, 3rd Edition. Gross motor skills were analyzed using a locomotor skill, a ball skill, and a total gross motor skill score. Aerobic fitness was assessed using the Progressive Aerobic Cardiovascular Endurance Run that was administered during physical education class. A continuous and age- and sex-adjusted metabolic syndrome score (MetS) was calculated from health and blood marker measurements collected in a fasted state before school hours. Total effects, average direct effects, and indirect effects (average causal mediation effect) were calculated using a bootstrap mediation analysis method via a linear regression algorithm. The average causal mediation effect of gross locomotor skills on MetS scores, using aerobic fitness as the mediator variable, was statistically significant (β = -0.055, 95% confidence interval = -0.097 to -0.021, P = 0.003). The model explained approximately 17.5% of the total variance in MetS with approximately 43.7% of the relationship between locomotor skills and MetS mediated through aerobic fitness. Ball skills did not significantly relate with cardiometabolic risk. There is a significant relationship between gross locomotor skills and cardiometabolic risk that is partially mediated through aerobic fitness in a sample of low-income children from the United States.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
New database for improving virtual system “body-dress”
NASA Astrophysics Data System (ADS)
Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.
2017-10-01
The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.
Endotracheal tube leak pressure and tracheal lumen size in swine.
Finholt, D A; Audenaert, S M; Stirt, J A; Marcella, K L; Frierson, H F; Suddarth, L T; Raphaely, R C
1986-06-01
Endotracheal tube "leak" is often estimated in children to judge the fit of uncuffed endotracheal tubes within the trachea. Twenty-five swine were intubated with uncuffed tracheal tubes to determine whether a more sensitive measurement of leaks could be devised and whether leak pressure estimates fit between tracheal tube and trachea. We compared leak pressure measurement using a stethoscope and aneroid manometer with a technique using a microphone, pressure transducer, and recorder, and found no differences between the two methods. The tracheas were then removed and slides prepared of tracheal cross-sectional specimens. Regression analysis revealed a linear relationship between tracheal lumen size and tracheal tube size for both low leak pressure (y = -0.4 + 0.79x, r = 0.88, P less than 0.05) and high leak pressure (y = -2.9 + 0.71x, r = 0.92, P less than 0.05) groups. We conclude that leak testing with a stethoscope and aneroid manometer is sensitive and accurate, and that tracheal tube leak pressure accurately portrays fit between tube and trachea.
NASA Astrophysics Data System (ADS)
Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.
2013-02-01
Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.
Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor
Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo
2015-01-01
In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods. PMID:26343654
SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, A; Ahmad, M; Chen, Z
2014-06-01
Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.« less
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
NASA Astrophysics Data System (ADS)
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
Dávila-Romero, C; Hernández-Mocholí, M A; García-Hermoso, A
2015-03-01
This study is divided into three sequential stages: identification of fitness and game performance profiles (individual player performance), an assessment of the relationship between these profiles, and an assessment of the relationship between individual player profiles and team performance during play (in championship performance). The overall study sample comprised 525 (19 teams) female volleyball players aged 12-16 years and a subsample (N.=43) used to examine study aims one and two was selected from overall sample. Anthropometric, fitness and individual player performance (actual game) data were collected in the subsample. These data were analyzed through clustering methods, ANOVA and independence chi-square test. Then, we investigated whether the proportion of players with the highest individual player performance profile might predict a team's results in the championship. Cluster analysis identified three volleyball fitness profiles (high, medium, and low) and two individual player performance profiles (high and low). The results showed a relationship between both types of profile (fitness and individual player performance). Then, linear regression revealed a moderate relationship between the number of players with a high volleyball fitness profile and a team's results in the championship (R2=0.23). The current study findings may enable coaches and trainers to manage training programs more efficiently in order to obtain tailor-made training, identify volleyball-specific physical fitness training requirements and reach better results during competitions.
Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif
2017-01-01
Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.
Confidence in Altman-Bland plots: a critical review of the method of differences.
Ludbrook, John
2010-02-01
1. Altman and Bland argue that the virtue of plotting differences against averages in method-comparison studies is that 95% confidence limits for the differences can be constructed. These allow authors and readers to judge whether one method of measurement could be substituted for another. 2. The technique is often misused. So I have set out, by statistical argument and worked examples, to advise pharmacologists and physiologists how best to construct these limits. 3. First, construct a scattergram of differences on averages, then calculate the line of best fit for the linear regression of differences on averages. If the slope of the regression is shown to differ from zero, there is proportional bias. 4. If there is no proportional bias and if the scatter of differences is uniform (homoscedasticity), construct 'classical' 95% confidence limits. 5. If there is proportional bias yet homoscedasticity, construct hyperbolic 95% confidence limits (prediction interval) around the line of best fit. 6. If there is proportional bias and the scatter of values for differences increases progressively as the average values increase (heteroscedasticity), log-transform the raw values from the two methods and replot differences against averages. If this eliminates proportional bias and heteroscedasticity, construct 'classical' 95% confidence limits. Otherwise, construct horizontal V-shaped 95% confidence limits around the line of best fit of differences on averages or around the weighted least products line of best fit to the original data. 7. In designing a method-comparison study, consult a qualified biostatistician, obey the rules of randomization and make replicate observations.
Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth
2018-01-01
Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rice, F L; Park, R; Stayner, L; Smith, R; Gilbert, S; Checkoway, H
2001-01-01
To use various exposure-response models to estimate the risk of mortality from lung cancer due to occupational exposure to respirable crystalline silica dust. Data from a cohort mortality study of 2342 white male California diatomaceous earth mining and processing workers exposed to crystalline silica dust (mainly cristobalite) were reanalyzed with Poisson regression and Cox's proportional hazards models. Internal and external adjustments were used to control for potential confounding from the effects of time since first observation, calendar time, age, and Hispanic ethnicity. Cubic smoothing spline models were used to assess the fit of the models. Exposures were lagged by 10 years. Evaluations of the fit of the models were performed by comparing their deviances. Lifetime risks of lung cancer were estimated up to age 85 with an actuarial approach that accounted for competing causes of death. Exposure to respirable crystalline silica dust was a significant predictor (p<0.05) in nearly all of the models evaluated and the linear relative rate model with a 10 year exposure lag seemed to give the best fit in the Poisson regression analysis. For those who died of lung cancer the linear relative rate model predicted rate ratios for mortality from lung cancer of about 1.6 for the mean cumulative exposure to respirable silica compared with no exposure. The excess lifetime risk (to age 85) of mortality from lung cancer for white men exposed for 45 years and with a 10 year lag period at the current Occupational Safety and Health Administration (OSHA) standard of about 0.05 mg/m(3) for respirable cristobalite dust is 19/1000 (95% confidence interval (95% CI) 5/1000 to 46/1000). There was a significant risk of mortality from lung cancer that increased with cumulative exposure to respirable crystalline silica dust. The predicted number of deaths from lung cancer suggests that current occupational health standards may not be adequately protecting workers from the risk of lung cancer.
NASA Astrophysics Data System (ADS)
Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.
2018-05-01
Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.
Carbon emissions risk map from deforestation in the tropical Amazon
NASA Astrophysics Data System (ADS)
Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.
2011-12-01
Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.
Vergeer, Ineke; Bennie, Jason A; Charity, Melanie J; Harvey, Jack T; van Uffelen, Jannique G Z; Biddle, Stuart J H; Eime, Rochelle M
2017-06-06
In recent decades, the evidence supporting the physical and mental health benefits of holistic movement practices such as yoga and t'ai chi have become increasingly established. Consequently, investigating the participation prevalence and patterns of these practices is a relevant pursuit in the public health field. Few studies have provided population-level assessment of participation rates, however, and even fewer have focused on patterns over time. The purpose of this study was to examine participation prevalence and trends in yoga/Pilates and t'ai chi/qigong over a ten-year period in a nationally representative sample of Australians aged 15 years and over, with particular attention to sex and age. A secondary purpose was to juxtapose these findings with participation trends in traditional fitness activities over the same period. Data comprised modes and types of physical activity, age, and sex variables collected through the Exercise, Recreation and Sport Survey (ERASS), a series of independent cross-sectional Australia-wide surveys conducted yearly between 2001 and 2010. For each year, weighted population estimates were calculated for those participating in yoga/Pilates, t'ai chi/qigong, and fitness activities (e.g. aerobics, calisthenics). Linear regression and multiple logistic regression analyses were used to examine trends in prevalence rates over time and differences among sex and age (15-34; 35-54; 55+ years) groups, respectively. Average prevalence rates between 2001 and 2010 were 3.0% (95% CI 2.9-3.1) for yoga/Pilates, 0.6% (95% CI 0.5-0.6) for t'ai chi/qigong, and 19.2% (95% CI 18.9-19.4) for fitness activities. Across the decade, overall participation rates remained relatively stable for yoga/Pilates and t'ai chi/qigong, while increasing linearly for fitness activities. For both genders and in all three age groups, participation in fitness activities increased, whereas only in the 55+ age group was there a significant increase in yoga/Pilates participation; participation in t'ai chi/qigong declined significantly in the two younger age groups. Participation rates in yoga/Pilates and t'ai chi/qigong in Australia were low and relatively stable. As fitness activities increased in popularity across the decade, holistic movement practices did not. These findings point to the need to investigate activity-specific barriers and facilitators to participation, including intrapersonal, interpersonal, organisational, and environmental factors.
Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics.
Chiha, Mahdi; Merouani, Slimane; Hamdaoui, Oualid; Baup, Stéphane; Gondrexon, Nicolas; Pétrier, Christian
2010-06-01
Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H(2)O(2) formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H(2)O(2) formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255-262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634-2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.'s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.'s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.'s model. The Serpone et al.'s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution. (c) 2010 Elsevier B.V. All rights reserved.
Aerobic Fitness Does Not Contribute to Prediction of Orthostatic Intolerance
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Sather, Tom M.; Goldwater, Danielle J.; Alford, William R.
1986-01-01
Several investigations have suggested that orthostatic tolerance may be inversely related to aerobic fitness (VO (sub 2max)). To test this hypothesis, 18 males (age 29 to 51 yr) underwent both treadmill VO(sub 2max) determination and graded lower body negative pressures (LBNP) exposure to tolerance. VO(2max) was measured during the last minute of a Bruce treadmill protocol. LBNP was terminated based on pre-syncopal symptoms and LBNP tolerance (peak LBNP) was expressed as the cumulative product of LBNP and time (torr-min). Changes in heart rate, stroke volume cardiac output, blood pressure and impedance rheographic indices of mid-thigh-leg initial accumulation were measured at rest and during the final minute of LBNP. For all 18 subjects, mean (plus or minus SE) fluid accumulation index and leg venous compliance index at peak LBNP were 139 plus or minus 3.9 plus or minus 0.4 ml-torr-min(exp -2) x 10(exp 3), respectively. Pearson product-moment correlations and step-wise linear regression were used to investigate relationships with peak LBNP. Variables associated with endurance training, such as VO(sub 2max) and percent body fat were not found to correlate significantly (P is less than 0.05) with peak LBNP and did not add sufficiently to the prediction of peak LBNP to be included in the step-wise regression model. The step-wise regression model included only fluid accumulation index leg venous compliance index, and blood volume and resulted in a squared multiple correlation coefficient of 0.978. These data do not support the hypothesis that orthostatic tolerance as measured by LBNP is lower in individuals with high aerobic fitness.
Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve
Vlaanderen, Jelle; Portengen, Lützen; Rothman, Nathaniel; Lan, Qing; Kromhout, Hans; Vermeulen, Roel
2010-01-01
Background Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Methods We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Results The natural spline showed a supralinear shape at cumulative exposures less than 100 ppm-years, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (> 100 ppm-years) but that predicted risks for the low exposure range (< 50 ppm-years) were robust. Conclusions Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95% confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. PMID:20064779
NASA Astrophysics Data System (ADS)
Rao, M.; Vuong, H.
2013-12-01
The overall objective of this study is to develop a method for estimating total aboveground biomass of redwood stands in Jackson Demonstration State Forest, Mendocino, California using airborne LiDAR data. LiDAR data owing to its vertical and horizontal accuracy are increasingly being used to characterize landscape features including ground surface elevation and canopy height. These LiDAR-derived metrics involving structural signatures at higher precision and accuracy can help better understand ecological processes at various spatial scales. Our study is focused on two major species of the forest: redwood (Sequoia semperirens [D.Don] Engl.) and Douglas-fir (Pseudotsuga mensiezii [Mirb.] Franco). Specifically, the objectives included linear regression models fitting tree diameter at breast height (dbh) to LiDAR derived height for each species. From 23 random points on the study area, field measurement (dbh and tree coordinate) were collected for more than 500 trees of Redwood and Douglas-fir over 0.2 ha- plots. The USFS-FUSION application software along with its LiDAR Data Viewer (LDV) were used to to extract Canopy Height Model (CHM) from which tree heights would be derived. Based on the LiDAR derived height and ground based dbh, a linear regression model was developed to predict dbh. The predicted dbh was used to estimate the biomass at the single tree level using Jenkin's formula (Jenkin et al 2003). The linear regression models were able to explain 65% of the variability associated with Redwood's dbh and 80% of that associated with Douglas-fir's dbh.
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
Kauhanen, Heikki; Komi, Paavo V; Häkkinen, Keijo
2002-02-01
The problems in comparing the performances of Olympic weightlifters arise from the fact that the relationship between body weight and weightlifting results is not linear. In the present study, this relationship was examined by using a nonparametric curve fitting technique of robust locally weighted regression (LOWESS) on relatively large data sets of the weightlifting results made in top international competitions. Power function formulas were derived from the fitted LOWESS values to represent the relationship between the 2 variables in a way that directly compares the snatch, clean-and-jerk, and total weightlifting results of a given athlete with those of the world-class weightlifters (golden standards). A residual analysis of several other parametric models derived from the initial results showed that they all experience inconsistencies, yielding either underestimation or overestimation of certain body weights. In addition, the existing handicapping formulas commonly used in normalizing the performances of Olympic weightlifters did not yield satisfactory results when applied to the present data. It was concluded that the devised formulas may provide objective means for the evaluation of the performances of male weightlifters, regardless of their body weights, ages, or performance levels.
Fernández-Novales, Juan; López, María-Isabel; González-Caballero, Virginia; Ramírez, Pilar; Sánchez, María-Teresa
2011-06-01
Volumic mass-a key component of must quality control tests during alcoholic fermentation-is of great interest to the winemaking industry. Transmitance near-infrared (NIR) spectra of 124 must samples over the range of 200-1,100-nm were obtained using a miniature spectrometer. The performance of this instrument to predict volumic mass was evaluated using partial least squares (PLS) regression and multiple linear regression (MLR). The validation statistics coefficient of determination (r(2)) and the standard error of prediction (SEP) were r(2) = 0.98, n = 31 and r(2) = 0.96, n = 31, and SEP = 5.85 and 7.49 g/dm(3) for PLS and MLR equations developed to fit reference data for volumic mass and spectral data. Comparison of results from MLR and PLS demonstrates that a MLR model with six significant wavelengths (P < 0.05) fit volumic mass data to transmittance (1/T) data slightly worse than a more sophisticated PLS model using the full scanning range. The results suggest that NIR spectroscopy is a suitable technique for predicting volumic mass during alcoholic fermentation, and that a low-cost NIR instrument can be used for this purpose.
Javed, Faizan; Savkin, Andrey V; Chan, Gregory S H; Middleton, Paul M; Malouf, Philip; Steel, Elizabeth; Mackie, James; Lovell, Nigel H
2009-11-01
This study aims to assess the blood volume and heart rate (HR) responses during haemodialysis in fluid overloaded patients by a nonparametric nonlinear regression approach based on a support vector machine (SVM). Relative blood volume (RBV) and electrocardiogram (ECG) was recorded from 23 haemodynamically stable renal failure patients during regular haemodialysis. Modelling was performed on 18 fluid overloaded patients (fluid removal of >2 L). SVM-based regression was used to obtain the models of RBV change with time as well as the percentage change in HR with respect to RBV. Mean squared error (MSE) and goodness of fit (R(2)) were used for comparison among different kernel functions. The design parameters were estimated using a grid search approach and the selected models were validated by a k-fold cross-validation technique. For the model of HR versus RBV change, a radial basis function (RBF) kernel (MSE = 17.37 and R(2) = 0.932) gave the least MSE compared to linear (MSE = 25.97 and R(2) = 0.898) and polynomial (MSE = 18.18 and R(2)= 0.929). The MSE was significantly lower for training data set when using RBF kernel compared to other kernels (p < 0.01). The RBF kernel also provided a slightly better fit of RBV change with time (MSE = 1.12 and R(2) = 0.91) compared to a linear kernel (MSE = 1.46 and R(2) = 0.88). The modelled HR response was characterized by an initial drop and a subsequent rise during progressive reduction in RBV, which may be interpreted as the reflex response to a transition from central hypervolaemia to hypovolaemia. These modelled curves can be used as references to a controller that can be designed to regulate the haemodynamic variables to ensure the stability of patients undergoing haemodialysis.
Lu, Liming; Shi, Leiyu; Zeng, Jingchun; Wen, Zehuai
2017-01-01
Background Previous meta-analyses on the relationship between aspirin use and breast cancer risk have drawn inconsistent results. In addition, the threshold effect of different doses, frequencies and durations of aspirin use in preventing breast cancer have yet to be established. Results The search yielded 13 prospective cohort studies (N=857,831 participants) that reported an average of 7.6 cases/1,000 person-years of breast cancer during a follow-up period of from 4.4 to 14 years. With a random effects model, a borderline significant inverse association was observed between overall aspirin use and breast cancer risk, with a summarized RR = 0.94 (P = 0.051, 95% CI 0.87-1.01). The linear regression model was a better fit for the dose-response relationship, which displayed a potential relationship between the frequency of aspirin use and breast cancer risk (RR = 0.97, 0.95 and 0.90 for 5, 10 and 20 times/week aspirin use, respectively). It was also a better fit for the duration of aspirin use and breast cancer risk (RR = 0.86, 0.73 and 0.54 for 5, 10 and 20 years of aspirin use). Methods We searched MEDLINE, EMBASE and CENTRAL databases through early October 2016 for relevant prospective cohort studies of aspirin use and breast cancer risk. Meta-analysis of relative risks (RR) estimates associated with aspirin intake were presented by fixed or random effects models. The dose-response meta-analysis was performed by linear trend regression and restricted cubic spline regression. Conclusion Our study confirmed a dose-response relationship between aspirin use and breast cancer risk. For clinical prevention, long term (>5 years) consistent use (2-7 times/week) of aspirin appears to be more effective in achieving a protective effect against breast cancer. PMID:28418881
Lu, Liming; Shi, Leiyu; Zeng, Jingchun; Wen, Zehuai
2017-06-20
Previous meta-analyses on the relationship between aspirin use and breast cancer risk have drawn inconsistent results. In addition, the threshold effect of different doses, frequencies and durations of aspirin use in preventing breast cancer have yet to be established. The search yielded 13 prospective cohort studies (N=857,831 participants) that reported an average of 7.6 cases/1,000 person-years of breast cancer during a follow-up period of from 4.4 to 14 years. With a random effects model, a borderline significant inverse association was observed between overall aspirin use and breast cancer risk, with a summarized RR = 0.94 (P = 0.051, 95% CI 0.87-1.01). The linear regression model was a better fit for the dose-response relationship, which displayed a potential relationship between the frequency of aspirin use and breast cancer risk (RR = 0.97, 0.95 and 0.90 for 5, 10 and 20 times/week aspirin use, respectively). It was also a better fit for the duration of aspirin use and breast cancer risk (RR = 0.86, 0.73 and 0.54 for 5, 10 and 20 years of aspirin use). We searched MEDLINE, EMBASE and CENTRAL databases through early October 2016 for relevant prospective cohort studies of aspirin use and breast cancer risk. Meta-analysis of relative risks (RR) estimates associated with aspirin intake were presented by fixed or random effects models. The dose-response meta-analysis was performed by linear trend regression and restricted cubic spline regression. Our study confirmed a dose-response relationship between aspirin use and breast cancer risk. For clinical prevention, long term (>5 years) consistent use (2-7 times/week) of aspirin appears to be more effective in achieving a protective effect against breast cancer.
NASA Astrophysics Data System (ADS)
Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.
2017-06-01
Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.
NASA Astrophysics Data System (ADS)
Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.
2015-06-01
The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.
Ambient temperature and FIT performance in the Emilia-Romagna colorectal cancer screening programme.
De Girolamo, Gianfranco; Goldoni, Carlo A; Corradini, Rossella; Giuliani, Orietta; Falcini, Fabio; Sassoli De'Bianchi, Priscilla; Naldoni, Carlo; Zauli Sajani, Stefano
2016-12-01
To assess the impact of ambient temperature on faecal immunochemical test (FIT) performance in the colorectal cancer screening programme of Emilia-Romagna (Italy). A population-based retrospective cohort study on data from 2005 to 2011. Positive rate, detection rate, and positive predictive value rate for cancers and adenomas, and incidence rate of interval cancers after negative tests were analysed using Poisson regression models. In addition to ambient temperature, gender, age, screening history, and Local Health Unit were also considered. In 1,521,819 tests analysed, the probability of a positive result decreased linearly with increasing temperature. Point estimates and 95% Confidence Intervals were estimated for six temperature classes (<5, 5 |-10, 10 |-15, 15 |-20, 20|-25 and ≥25℃), and referred to the 5|-10℃ class. The positive rate ratio was significantly related to temperature increase: 0.99 (0.97-1.02), 1, 0.98 (0.96-1.00), 0.96 (0.94-0.99), 0.93 (0.91-0.96), 0.92 (0.89-0.95). A linear trend was also evident for advanced adenoma detection rate ratio: 1.00 (0.96-1.04), 1, 0.98 (0.93-1.02), 0.96 (0.92-1.00), 0.92 (0.88-0.96), 0.94 (0.88-1.01). The effect was less linear, but still important, for cancer detection rates: 0.95 (0.85-1.06), 1, 1.00 (0.90-1.10), 0.94 (0.85-1.05), 0.81 (0.72-0.92), 0.93 (0.80-1.09). No association or linear trend was found for positive predictive values or risk of interval cancer, despite an excess of +16% in the highest temperature class for interval cancer. Ambient temperatures can affect screening performance. Continued monitoring is needed to verify the effect of introducing FIT tubes with a new buffer, which should guarantee a higher stability of haemoglobin. © The Author(s) 2016.
Kendall, G M; Wakeford, R; Athanson, M; Vincent, T J; Carter, E J; McColl, N P; Little, M P
2016-03-01
Gamma radiation from natural sources (including directly ionising cosmic rays) is an important component of background radiation. In the present paper, indoor measurements of naturally occurring gamma rays that were undertaken as part of the UK Childhood Cancer Study are summarised, and it is shown that these are broadly compatible with an earlier UK National Survey. The distribution of indoor gamma-ray dose rates in Great Britain is approximately normal with mean 96 nGy/h and standard deviation 23 nGy/h. Directly ionising cosmic rays contribute about one-third of the total. The expanded dataset allows a more detailed description than previously of indoor gamma-ray exposures and in particular their geographical variation. Various strategies for predicting indoor natural background gamma-ray dose rates were explored. In the first of these, a geostatistical model was fitted, which assumes an underlying geologically determined spatial variation, superimposed on which is a Gaussian stochastic process with Matérn correlation structure that models the observed tendency of dose rates in neighbouring houses to correlate. In the second approach, a number of dose-rate interpolation measures were first derived, based on averages over geologically or administratively defined areas or using distance-weighted averages of measurements at nearest-neighbour points. Linear regression was then used to derive an optimal linear combination of these interpolation measures. The predictive performances of the two models were compared via cross-validation, using a randomly selected 70 % of the data to fit the models and the remaining 30 % to test them. The mean square error (MSE) of the linear-regression model was lower than that of the Gaussian-Matérn model (MSE 378 and 411, respectively). The predictive performance of the two candidate models was also evaluated via simulation; the OLS model performs significantly better than the Gaussian-Matérn model.
Baldi, F; Albuquerque, L G; Alencar, M M
2010-08-01
The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49,011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal's age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi-trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
[Research of prevalence of schistosomiasis in Hunan province, 1984-2015].
Li, F Y; Tan, H Z; Ren, G H; Jiang, Q; Wang, H L
2017-03-10
Objective: To analyze the prevalence of schistosomiasis in Hunan province, and provide scientific evidence for the control and elimination of schistosomiasis. Methods: The changes of infection rates of Schistosoma ( S .) japonicum among residents and cattle in Hunan from 1984 to 2015 were analyzed by using dynamic trend diagram; and the time regression model was used to fit the infection rates of S. japonicum , and predict the recent infection rate. Results: The overall infection rates of S. japonicum in Hunan from 1984 to 2015 showed downward trend (95.29% in residents and 95.16% in cattle). By using the linear regression model, the actual values of infection rates in residents and cattle were all in the 95% confidence intervals of the value predicted; and the prediction showed that the infection rates in the residents and cattle would continue to decrease from 2016 to 2020. Conclusion: The prevalence of schistosomiasis was in decline in Hunan. The regression model has a good effect in the short-term prediction of schistosomiasis prevalence.
Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M
2012-08-01
This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S
2018-05-31
Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Usui, Chiyoko; Asaka, Meiko; Kawano, Hiroshi; Aoyama, Tomoko; Ishijima, Toshimichi; Sakamoto, Shizuo; Higuchi, Mitsuru
2010-01-01
Abdominal adiposity and low cardiorespiratory fitness are associated with insulin resistance in people with impaired glucose tolerance and type 2 diabetes. However, little is known about which factor precedes insulin resistance in people with impaired glucose tolerance and type 2 diabetes, and which is the stronger predictor of insulin resistance in non-diabetic people. The purpose of this study was to examine the relationship between insulin resistance and cardiorespiratory fitness, visceral fat, and subcutaneous fat in non-diabetic people. Subjects included 87 men and 77 women aged 30-72 y (mean+/-SD, 51.3+/-12.3 y). Cardiorespiratory fitness was assessed by measuring the maximal oxygen uptake (VO2max) in a progressive continuous test to exhaustion on a cycle ergometer. The visceral and subcutaneous fat areas were measured by magnetic resonance imaging. The homeostasis model assessment of insulin resistance (HOMA-R) was calculated from the fasting concentrations of glucose and insulin. Stepwise multiple linear regression analysis revealed that visceral and subcutaneous fat were significant correlates of HOMA-R, explaining 24% and 6% of the variance, respectively, whereas sex, age, and VO2max were not significant independent determinants. Abdominal fat deposition rather than cardiorespiratory fitness is a significant predictor of insulin resistance in non-diabetic people; visceral fat is the most important factor.
Modeling workplace bullying using catastrophe theory.
Escartin, J; Ceja, L; Navarro, J; Zapf, D
2013-10-01
Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work.
Mathcad in the Chemistry Curriculum Symbolic Software in the Chemistry Curriculum
NASA Astrophysics Data System (ADS)
Zielinski, Theresa Julia
2000-05-01
Physical chemistry is such a broad discipline that the topics we expect average students to complete in two semesters usually exceed their ability for meaningful learning. Consequently, the number and kind of topics and the efficiency with which students can learn them are important concerns. What topics are essential and what can we do to provide efficient and effective access to those topics? How do we accommodate the fact that students come to upper-division chemistry courses with a variety of nonuniformly distributed skills, a bit of calculus, and some physics studied one or more years before physical chemistry? The critical balance between depth and breadth of learning in courses and curricula may be achieved through appropriate use of technology and especially through the use of symbolic mathematics software. Software programs such as Mathcad, Mathematica, and Maple, however, have learning curves that diminish their effectiveness for novices. There are several ways to address the learning curve conundrum. First, basic instruction in the software provided during laboratory sessions should be followed by requiring laboratory reports that use the software. Second, one should assign weekly homework that requires the software and builds student skills within the discipline and with the software. Third, a complementary method, supported by this column, is to provide students with Mathcad worksheets or templates that focus on one set of related concepts and incorporate a variety of features of the software that they are to use to learn chemistry. In this column we focus on two significant topics for young chemists. The first is curve-fitting and the statistical analysis of the fitting parameters. The second is the analysis of the rotation/vibration spectrum of a diatomic molecule, HCl. A broad spectrum of Mathcad documents exists for teaching chemistry. One collection of 50 documents can be found at http://www.monmouth.edu/~tzielins/mathcad/Lists/index.htm. Another collection of peer-reviewed documents is developing through this column at the JCE Internet Web site, http://jchemed.chem.wisc.edu/JCEWWW/Features/ McadInChem/index.html. With this column we add three peer-reviewed and tested Mathcad documents to the JCE site. In Linear Least-Squares Regression, Sidney H. Young and Andrzej Wierzbicki demonstrate various implicit and explicit methods for determining the slope and intercept of the regression line for experimental data. The document shows how to determine the standard deviation for the slope, the intercept, and the standard deviation of the overall fit. Students are next given the opportunity to examine the confidence level for the fit through the Student's t-test. Examination of the residuals of the fit leads students to explore the possibility of rejecting points in a set of data. The document concludes with a discussion of and practice with adding a quadratic term to create a polynomial fit to a set of data and how to determine if the quadratic term is statistically significant. There is full documentation of the various steps used throughout the exposition of the statistical concepts. Although the statistical methods presented in this worksheet are generally accessible to average physical chemistry students, an instructor would be needed to explain the finer points of the matrix methods used in some sections of the worksheet. The worksheet is accompanied by a set of data for students to use to practice the techniques presented. It would be worthwhile for students to spend one or two laboratory periods learning to use the concepts presented and then to apply them to experimental data they have collected for themselves. Any linear or linearizable data set would be appropriate for use with this Mathcad worksheet. Alternatively, instructors may select sections of the document suited to the skill level of their students and the laboratory tasks at hand. In a second Mathcad document, Non-Linear Least-Squares Regression, Young and Wierzbicki introduce the basic concepts of nonlinear curve-fitting and develop the techniques needed to fit a variety of mathematical functions to experimental data. This approach is especially important when mathematical models for chemical processes cannot be linearized. In Mathcad the Levenberg-Marquardt algorithm is used to determine the best fitting parameters for a particular mathematical model. As in linear least-squares, the goal of the fitting process is to find the values for the fitting parameters that minimize the sum of the squares of the deviations between the data and the mathematical model. Students are asked to determine the fitting parameters, use the Hessian matrix to compute the standard deviation of the fitting parameters, test for the significance of the parameters using Student's t-test, use residual analysis to test for data points to remove, and repeat the calculations for another set of data. The nonlinear least-squares procedure follows closely on the pattern set up for linear least-squares by the same authors (see above). If students master the linear least-squares worksheet content they will be able to master the nonlinear least-squares technique (see also refs 1, 2). In the third document, The Analysis of the Vibrational Spectrum of a Linear Molecule by Richard Schwenz, William Polik, and Sidney Young, the authors build on the concepts presented in the curve fitting worksheets described above. This vibrational analysis document, which supports a classic experiment performed in the physical chemistry laboratory, shows how a Mathcad worksheet can increase the efficiency by which a set of complicated manipulations for data reduction can be made more accessible for students. The increase in efficiency frees up time for students to develop a fuller understanding of the physical chemistry concepts important to the interpretation of spectra and understanding of bond vibrations in general. The analysis of the vibration/rotation spectrum for a linear molecule worksheet builds on the rich literature for this topic (3). Before analyzing their own spectral data, students practice and learn the concepts and methods of the HCl spectral analysis by using the fundamental and first harmonic vibrational frequencies provided by the authors. This approach has a fundamental pedagogical advantage. Most explanations in laboratory texts are very concise and lack mathematical details required by average students. This Mathcad worksheet acts as a tutor; it guides students through the essential concepts for data reduction and lets them focus on learning important spectroscopic concepts. The Mathcad worksheet is amply annotated. Students who have moderate skill with the software and have learned about regression analysis from the curve-fitting worksheets described in this column will be able to complete and understand their analysis of the IR spectrum of HCl. The three Mathcad worksheets described here stretch the physical chemistry curriculum by presenting important topics in forms that students can use with only moderate Mathcad skills. The documents facilitate learning by giving students opportunities to interact with the material in meaningful ways in addition to using the documents as sources of techniques for building their own data-reduction worksheets. However, working through these Mathcad worksheets is not a trivial task for the average student. Support needs to be provided by the instructor to ease students through more advanced mathematical and Mathcad processes. These worksheets raise the question of how much we can ask diligent students to do in one course and how much time they need to spend to master the essential concepts of that course. The Mathcad documents and associated PDF versions are available at the JCE Internet WWW site. The Mathcad documents require Mathcad version 6.0 or higher and the PDF files require Adobe Acrobat. Every effort has been made to make the documents fully compatible across the various Mathcad versions. Users may need to refer to Mathcad manuals for functions that vary with the Mathcad version number. Literature Cited 1. Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill: New York, 1969. 2. Zielinski, T. J.; Allendoerfer, R. D. J. Chem. Educ. 1997, 74, 1001. 3. Schwenz, R. W.; Polik, W. F. J. Chem. Educ. 1999, 76, 1302.
Granato, Gregory E.
2012-01-01
A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.
Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum
Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.
2015-01-01
Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713
Fast and exact Newton and Bidirectional fitting of Active Appearance Models.
Kossaifi, Jean; Tzimiropoulos, Yorgos; Pantic, Maja
2016-12-21
Active Appearance Models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose and occlusion when trained in the wild, while not requiring large training dataset like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper we extend Active Appearance Models in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of Active Appearance Models, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated inthe- wild datasets, and investigate fitting accuracy, convergence properties and the influence of noise in the initialisation. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.
Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D
2018-08-01
Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pakes, D; Boulding, E G
2010-08-01
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell-thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator-mediated selection on local snail populations.
Evaluation of weighted regression and sample size in developing a taper model for loblolly pine
Kenneth L. Cormier; Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold
1992-01-01
A stem profile model, fit using pseudo-likelihood weighted regression, was used to estimate merchantable volume of loblolly pine (Pinus taeda L.) in the southeast. The weighted regression increased model fit marginally, but did not substantially increase model performance. In all cases, the unweighted regression models performed as well as the...
Induction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.
Hada, Megumi; Chappell, Lori J; Wang, Minli; George, Kerry A; Cucinotta, Francis A
2014-10-01
The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with oxygen (77 keV/μm), silicon (99 keV/μm) or Fe (175 keV/μm), Fe (195 keV/μm) or Fe (240 keV/μm) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Nonlinear regression models were used to evaluate possible linear and nonlinear dose-response models based on these data. Dose responses for simple exchanges for human fibroblasts irradiated under confluent culture conditions were best fit by nonlinear models motivated by a nontargeted effect (NTE). The best fits for dose response data for human lymphocytes irradiated in blood tubes were a linear response model for all particles. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low-particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high-LET radiation at the relevant range of low doses.
Vossoughi, Mehrdad; Ayatollahi, S M T; Towhidi, Mina; Ketabchi, Farzaneh
2012-03-22
The summary measure approach (SMA) is sometimes the only applicable tool for the analysis of repeated measurements in medical research, especially when the number of measurements is relatively large. This study aimed to describe techniques based on summary measures for the analysis of linear trend repeated measures data and then to compare performances of SMA, linear mixed model (LMM), and unstructured multivariate approach (UMA). Practical guidelines based on the least squares regression slope and mean of response over time for each subject were provided to test time, group, and interaction effects. Through Monte Carlo simulation studies, the efficacy of SMA vs. LMM and traditional UMA, under different types of covariance structures, was illustrated. All the methods were also employed to analyze two real data examples. Based on the simulation and example results, it was found that the SMA completely dominated the traditional UMA and performed convincingly close to the best-fitting LMM in testing all the effects. However, the LMM was not often robust and led to non-sensible results when the covariance structure for errors was misspecified. The results emphasized discarding the UMA which often yielded extremely conservative inferences as to such data. It was shown that summary measure is a simple, safe and powerful approach in which the loss of efficiency compared to the best-fitting LMM was generally negligible. The SMA is recommended as the first choice to reliably analyze the linear trend data with a moderate to large number of measurements and/or small to moderate sample sizes.
Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue
2010-03-01
To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.
Advanced statistical methods for improved data analysis of NASA astrophysics missions
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.
1992-01-01
The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.
Developing a dengue forecast model using machine learning: A case study in China.
Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun
2017-10-01
In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.
Flood quantile estimation at ungauged sites by Bayesian networks
NASA Astrophysics Data System (ADS)
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Traveling by Private Motorized Vehicle and Physical Fitness in Taiwanese Adults.
Liao, Yung; Tsai, Hsiu-Hua; Wang, Ho-Seng; Lin, Ching-Ping; Wu, Min-Chen; Chen, Jui-Fu
2016-08-01
Although the time spent sitting in motorized vehicles has been determined to be adversely associated with cardiometabolic health, its association with other health indicators remains unclear. This study examined associations between traveling by private motorized vehicle and 4 indicators of physical fitness in adults. Data from 52,114 Taiwanese adults aged 20 to 65 years who participated in the 2013 National Adults Fitness Survey were used. The examined variables were height, body mass, and performance in modified sit-and-reach (flexibility), bent-leg sit-up (abdominal muscular strength and endurance), and a 3-min step test (cardiorespiratory endurance). Participants were asked on how many days they had used a private car or motorcycle for traveling from place to place and categorized as non-, occasional, and daily private motorized vehicle travelers. Logistic and linear regression models were used to examine associations between the categories of using private motorized vehicles to travel and physical fitness performance. After an adjustment for potential demographic and behavioral confounders, daily traveling by private motorized vehicle was associated with a higher probability of overweight (odds ratio = 1.18), lower performance of abdominal muscular strength and endurance (-0.37 times/min), and lower cardiorespiratory fitness (-0.60 physical fitness index) than was traveling that did not involve private motorized vehicles. The results suggest that in addition to unfavorable cardiorespiratory fitness and a risk of overweight, daily traveling by private motorized vehicle is associated with poor performance in abdominal muscular strength and endurance.
García-Hermoso, Antonio; Esteban-Cornejo, Irene; Olloquequi, Jordi; Ramírez-Vélez, Robinson
2017-08-01
To examine the combined association of fatness and physical fitness components (cardiorespiratory fitness [CRF] and muscular strength) with academic achievement, and to determine whether CRF and muscular strength are mediators of the association between fatness and academic achievement in a nationally representative sample of adolescents from Chile. Data were obtained for a sample of 36 870 adolescents (mean age, 13.8 years; 55.2% boys) from the Chilean System for the Assessment of Educational Quality test for eighth grade in 2011, 2013, and 2014. Physical fitness tests included CRF (20-m shuttle run) and muscular strength (standing long jump). Weight, height, and waist circumference were assessed, and body mass index and waist circumference-to-height ratio were calculated. Academic achievement in language and mathematics was assessed using standardized tests. The PROCESS script developed by Hayes was used for mediation analysis. Compared with unfit and high-fatness adolescents, fit and low-fatness adolescents had significantly higher odds for attaining high academic achievement in language and mathematics. However, in language, unfit and low-fatness adolescents did not have significantly higher odds for obtaining high academic achievement. Those with high fatness had higher academic achievement (both language and mathematics) if they were fit. Linear regression models suggest a partial or full mediation of physical fitness in the association of fatness variables with academic achievement. CRF and muscular strength may attenuate or even counteract the adverse influence of fatness on academic achievement in adolescents. Copyright © 2017 Elsevier Inc. All rights reserved.
Robbins, Lorraine B; Pfeiffer, Karin A; Maier, Kimberly S; Lo, Yun-Jia; Wesolek Ladrig, Stacey M
2012-08-01
The primary purpose of the study was to determine whether girls in one school receiving nurse counseling plus an after-school physical activity club showed greater improvement in physical activity, cardiovascular fitness, and body composition than girls assigned to an attention control condition in another school (N = 69). Linear regressions controlling for baseline measures showed no statistically significant group differences, but the directionality of differences was consistent with greater intervention group improvement for minutes of moderate to vigorous physical activity/hour (t = 0.95, p = .35), cardiovascular fitness (t = 1.26, p = .22), body mass index (BMI; t = -1.47, p = .15), BMI z score (t = -1.19, p = .24), BMI percentile (t = -0.59, p = .56), percentage body fat (t = -0.86, p = .39), and waist circumference (t = -0.19, p = .85). Findings support testing with a larger sample.
Robbins, Lorraine B.; Pfeiffer, Karin A.; Maier, Kimberly S.; Lo, Yun-Jia; Wesolek, Stacey M.
2012-01-01
The primary purpose of the study was to determine if girls in one school receiving nurse counseling plus an after-school Physical Activity Club showed greater improvement in physical activity, cardiovascular fitness, and body composition than girls assigned to an attention control condition in another school (N = 69). Linear regressions controlling for baseline measures showed no statistically significant group differences, but directionality of differences was consistent with greater intervention group improvement for minutes of moderate to vigorous physical activity/hour (t = 0.95, p = .35), cardiovascular fitness (t = 1.26, p = .22), body mass index (BMI; t = −1.47, p = .15), BMI z-score (t = −1.19, p = .24), BMI percentile (t = −0.59, p = .56), percent body fat (t = −0.86, p = .39), and waist circumference (t = −0.19, p = .85). Findings support testing with a larger sample. PMID:22472632
Garnier, Alain; Gaillet, Bruno
2015-12-01
Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatum, J.L.; Burke, T.S.; Sugerman, H.T.
1982-04-01
Eleven patients with suspected adult respiratory distress syndrome (ARDS) and five control patients were studied using a computerized gamma imaging and analysis technique and /sup 99m/Tc-labeled human serum albumin. The heart and right lung were imaged, lung:heart ratio was plotted vs. time, and a linear regression was fitted to the data points displayed. The slope of this fit was termed the ''slope index.'' An index value of 2 standard deviations greater than the control mean was considered positive. Radiographs from the six positive studies revealed typical diffuse air-space disease. Radiographs from two of the five negative studies demonstrated air-space consolidation.more » Both of these patients had elevated pulmonary capillary wedge pressure, cardiomegaly, and clinical course consistent with cardiogenic pulmonary edema. These preliminary data demonstrated a good correlation between positive slope index and clinical ARDS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatum, J.L.; Burke, T.S.; Sugerman, H.J.
1982-04-01
Eleven patients with suspected adult respiratory distress syndrome (ARDS) and five control patients were studied using a computerized gamma imaging and analysis technique and 99mTc-labeled human serum albumin. The heart and right lung were imaged, lung:heart ratio was plotted vs. time, and a linear regression was fitted to the data points displayed. The slope of this fit was termed the ''slope index.'' An index value of 2 standard deviations greater than the control mean was considered positive. Radiographs from the six positive studies revealed typical diffuse air-space disease. Radiographs from two of the five negative studies demonstrated air-space consolidation. Bothmore » of these patients had elevated pulmonary capillary wedge pressure, cardiomegaly, and clinical course consistent with cardiogenic pulmonary edema. These preliminary data demonstrated a good correlation between positive slope index and clinical ARDS.« less
MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
Gouvêa, Ana Cristina M S; Melo, Armindo; Santiago, Manuela C P A; Peixoto, Fernanda M; Freitas, Vitor; Godoy, Ronoel L O; Ferreira, Isabel M P L V O
2015-10-15
Neomitranthes obscura (DC.) N. Silveira is a Brazilian fruit belonging to the Myrtaceae family that contains anthocyanins in the peel and was studied for the first time in this work. Delphinidin-3-O-galactoside, delphinidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, petunidin-3-O-glucoside, pelargonidin-3-O-glucoside, peonidin-3-O-galactoside, peonidin-3-O-glucoside, cyanidin-3-O-xyloside were separated and identified by LC/DAD/MS and by co-elution with standards. Reliable quantification of anthocyanins in the mature fruits was performed by HPLC/DAD using weighted linear regression model from 0.05 to 50mg of cyaniding-3-O-glucoside L(-1) because it gave better fit quality than least squares linear regression. Good precision and accuracy were obtained. The total anthocyanin content of mature fruits was 263.6 ± 8.2 mg of cyanidin-3-O-glucoside equivalents 100 g(-1) fresh weight, which was in the same range found in literature for anthocyanin rich fruits. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Sahoo, Sasmita; Jha, Madan K.
2013-12-01
The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.
A flexible count data regression model for risk analysis.
Guikema, Seth D; Coffelt, Jeremy P; Goffelt, Jeremy P
2008-02-01
In many cases, risk and reliability analyses involve estimating the probabilities of discrete events such as hardware failures and occurrences of disease or death. There is often additional information in the form of explanatory variables that can be used to help estimate the likelihood of different numbers of events in the future through the use of an appropriate regression model, such as a generalized linear model. However, existing generalized linear models (GLM) are limited in their ability to handle the types of variance structures often encountered in using count data in risk and reliability analysis. In particular, standard models cannot handle both underdispersed data (variance less than the mean) and overdispersed data (variance greater than the mean) in a single coherent modeling framework. This article presents a new GLM based on a reformulation of the Conway-Maxwell Poisson (COM) distribution that is useful for both underdispersed and overdispersed count data and demonstrates this model by applying it to the assessment of electric power system reliability. The results show that the proposed COM GLM can provide as good of fits to data as the commonly used existing models for overdispered data sets while outperforming these commonly used models for underdispersed data sets.
A non-linear data mining parameter selection algorithm for continuous variables
Razavi, Marianne; Brady, Sean
2017-01-01
In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829
Social determinants of childhood asthma symptoms: an ecological study in urban Latin America.
Fattore, Gisel L; Santos, Carlos A T; Barreto, Mauricio L
2014-04-01
Asthma is an important public health problem in urban Latin America. This study aimed to analyze the role of socioeconomic and environmental factors as potential determinants of asthma symptoms prevalence in children from Latin American (LA) urban centers. We selected 31 LA urban centers with complete data, and an ecological analysis was performed. According to our theoretical framework, the explanatory variables were classified in three levels: distal, intermediate, and proximate. The association between variables in the three levels and prevalence of asthma symptoms was examined by bivariate and multivariate linear regression analysis weighed by sample size. In a second stage, we fitted several linear regression models introducing sequentially the variables according to the predefined hierarchy. In the final hierarchical model Gini Index, crowding, sanitation, variation in infant mortality rates and homicide rates, explained great part of the variance in asthma prevalence between centers (R(2) = 75.0 %). We found a strong association between socioeconomic and environmental variables and prevalence of asthma symptoms in LA urban children, and according to our hierarchical framework and the results found we suggest that social inequalities (measured by the Gini Index) is a central determinant to explain high prevalence of asthma in LA.
Barros, L M; Martins, R T; Ferreira-Keppler, R L; Gutjahr, A L N
2017-08-04
Information on biomass is substantial for calculating growth rates and may be employed in the medicolegal and economic importance of Hermetia illucens (Linnaeus, 1758). Although biomass is essential to understanding many ecological processes, it is not easily measured. Biomass may be determined by directly weighing or indirectly through regression models of fresh/dry mass versus body dimensions. In this study, we evaluated the association between morphometry and fresh/dry mass of immature H. illucens using linear, exponential, and power regression models. We measured width and length of the cephalic capsule, overall body length, and width of the largest abdominal segment of 280 larvae. Overall body length and width of the largest abdominal segment were the best predictors for biomass. Exponential models best fitted body dimensions and biomass (both fresh and dry), followed by power and linear models. In all models, fresh and dry biomass were strongly correlated (>75%). Values estimated by the models did not differ from observed ones, and prediction power varied from 27 to 79%. Accordingly, the correspondence between biomass and body dimensions should facilitate and motivate the development of applied studies involving H. illucens in the Amazon region.
Ryberg, Karen R.; Vecchia, Aldo V.
2006-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.
NASA Astrophysics Data System (ADS)
Hasan, Haliza; Ahmad, Sanizah; Osman, Balkish Mohd; Sapri, Shamsiah; Othman, Nadirah
2017-08-01
In regression analysis, missing covariate data has been a common problem. Many researchers use ad hoc methods to overcome this problem due to the ease of implementation. However, these methods require assumptions about the data that rarely hold in practice. Model-based methods such as Maximum Likelihood (ML) using the expectation maximization (EM) algorithm and Multiple Imputation (MI) are more promising when dealing with difficulties caused by missing data. Then again, inappropriate methods of missing value imputation can lead to serious bias that severely affects the parameter estimates. The main objective of this study is to provide a better understanding regarding missing data concept that can assist the researcher to select the appropriate missing data imputation methods. A simulation study was performed to assess the effects of different missing data techniques on the performance of a regression model. The covariate data were generated using an underlying multivariate normal distribution and the dependent variable was generated as a combination of explanatory variables. Missing values in covariate were simulated using a mechanism called missing at random (MAR). Four levels of missingness (10%, 20%, 30% and 40%) were imposed. ML and MI techniques available within SAS software were investigated. A linear regression analysis was fitted and the model performance measures; MSE, and R-Squared were obtained. Results of the analysis showed that MI is superior in handling missing data with highest R-Squared and lowest MSE when percent of missingness is less than 30%. Both methods are unable to handle larger than 30% level of missingness.
Separation mechanism of nortriptyline and amytriptyline in RPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2005-08-01
The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C{sub 18}-bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parametersmore » of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected.« less
Improving RNA nearest neighbor parameters for helices by going beyond the two-state model.
Spasic, Aleksandar; Berger, Kyle D; Chen, Jonathan L; Seetin, Matthew G; Turner, Douglas H; Mathews, David H
2018-06-01
RNA folding free energy change nearest neighbor parameters are widely used to predict folding stabilities of secondary structures. They were determined by linear regression to datasets of optical melting experiments on small model systems. Traditionally, the optical melting experiments are analyzed assuming a two-state model, i.e. a structure is either complete or denatured. Experimental evidence, however, shows that structures exist in an ensemble of conformations. Partition functions calculated with existing nearest neighbor parameters predict that secondary structures can be partially denatured, which also directly conflicts with the two-state model. Here, a new approach for determining RNA nearest neighbor parameters is presented. Available optical melting data for 34 Watson-Crick helices were fit directly to a partition function model that allows an ensemble of conformations. Fitting parameters were the enthalpy and entropy changes for helix initiation, terminal AU pairs, stacks of Watson-Crick pairs and disordered internal loops. The resulting set of nearest neighbor parameters shows a 38.5% improvement in the sum of residuals in fitting the experimental melting curves compared to the current literature set.
Trapé, Átila Alexandre; Marques, Renato Francisco Rodrigues; Lizzi, Elisângela Aparecida da Silva; Yoshimura, Fernando Eidi; Franco, Laercio Joel; Zago, Anderson Saranz
2017-01-01
To investigate the association between both demographic and socioeconomic conditions with physical fitness and regular practice of physical exercises in participants of community projects, supervised by a physical education teacher. This enabled to investigate whether the adoption of an active lifestyle depends only on the personal choice or has any influence of socioeconomic factors. 213 individuals aged over 50 years joined the study, and provided information about their socioeconomic status (age, gender, education/years of study, and income); usual level of physical activity (ULPA); and physical fitness, by a physical battery tests which allowed the calculation of general functional fitness index (GFFI). The generalized linear model showed that participants ranked in the highest GFFI groups (good and very good) had more years of study and higher income (p < 0.05). The multiple linear regression model complements the previous analysis, demonstrating the magnitude of the change in the GFFI in association with the years of study (group > 15), income (all groups) and age (p < 0.05). By means of analysis of variance, a difference between the groups was verified and longer practice of exercises (> 6 months) were also associated with education and income (p < 0.05); among the groups with exercise practice whether greater than or equal to six months, that supervised showed better results in the GFFI (p < 0.05). The association between variables strengthens the hypothesis that adherence and maintenance of physical exercise might not be only dependent of individual's choice, but also the socioeconomic factors, which can influence the choice for any active lifestyle.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.
Mapping Soil pH Buffering Capacity of Selected Fields
NASA Technical Reports Server (NTRS)
Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.
2003-01-01
Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)
1998-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.
NASA Technical Reports Server (NTRS)
Trejo, L. J.; Shensa, M. J.
1999-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.
Remote sensing of PM2.5 from ground-based optical measurements
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.
2014-12-01
Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.
Groundwater depth prediction in a shallow aquifer in north China by a quantile regression model
NASA Astrophysics Data System (ADS)
Li, Fawen; Wei, Wan; Zhao, Yong; Qiao, Jiale
2017-01-01
There is a close relationship between groundwater level in a shallow aquifer and the surface ecological environment; hence, it is important to accurately simulate and predict the groundwater level in eco-environmental construction projects. The multiple linear regression (MLR) model is one of the most useful methods to predict groundwater level (depth); however, the predicted values by this model only reflect the mean distribution of the observations and cannot effectively fit the extreme distribution data (outliers). The study reported here builds a prediction model of groundwater-depth dynamics in a shallow aquifer using the quantile regression (QR) method on the basis of the observed data of groundwater depth and related factors. The proposed approach was applied to five sites in Tianjin city, north China, and the groundwater depth was calculated in different quantiles, from which the optimal quantile was screened out according to the box plot method and compared to the values predicted by the MLR model. The results showed that the related factors in the five sites did not follow the standard normal distribution and that there were outliers in the precipitation and last-month (initial state) groundwater-depth factors because the basic assumptions of the MLR model could not be achieved, thereby causing errors. Nevertheless, these conditions had no effect on the QR model, as it could more effectively describe the distribution of original data and had a higher precision in fitting the outliers.
Physical Fitness in Young Adults Born Preterm.
Tikanmäki, Marjaana; Tammelin, Tuija; Sipola-Leppänen, Marika; Kaseva, Nina; Matinolli, Hanna-Maria; Miettola, Satu; Eriksson, Johan G; Järvelin, Marjo-Riitta; Vääräsmäki, Marja; Kajantie, Eero
2016-01-01
Young adults born preterm have higher levels of cardiometabolic risk factors than their term-born peers. Muscular and cardiorespiratory fitness have important cardiometabolic and other health benefits. We assessed muscular, cardiorespiratory, and self-rated fitness in preterm-born young adults. We studied unimpaired participants of the ESTER (Ennenaikainen syntymä ja aikuisiän terveys [Preterm Birth and Early-Life Programming of Adult Health and Disease]) birth cohort study at age 23.3 (SD: 1.2) years: 139 born early preterm (EPT; <34 weeks), 247 late preterm (LPT; 34-36 weeks), and 352 at term (control group). We measured muscular fitness with the number of modified push-ups performed in 40 seconds and maximal handgrip strength of the dominant hand, cardiovascular fitness with heart rate at the end of a 4-minute step test, and self-rated fitness. Data were analyzed with linear regression. Young adults born EPT (-0.8; 95% confidence interval: -1.5 to -0.1; adjusted for gender, age, and source cohort) and LPT (-0.8; -1.4 to -0.3) performed fewer modified push-ups than controls. Handgrip strength was 23.8 (0.9-46.8) N lower in EPT participants. Cardiorespiratory fitness, measured by submaximal step test, was similar. On a self-rated fitness scale (1-5), the EPT adults reported 0.2 (0.0-0.4) lower scores than controls. After adjustment for early-life confounders, the results remained. They attenuated after further adjustment for mediating factors. Young adults born EPT and LPT had lower muscular fitness than controls, which may predispose them to cardiometabolic and other chronic diseases. Adults born EPT also perceived themselves as less fit than controls. Copyright © 2016 by the American Academy of Pediatrics.
Estimating the effect of multiple environmental stressors on coral bleaching and mortality.
Welle, Paul D; Small, Mitchell J; Doney, Scott C; Azevedo, Inês L
2017-01-01
Coral cover has been declining in recent decades due to increased temperatures and environmental stressors. However, the extent to which different stressors contribute both individually and in concert to bleaching and mortality is still very uncertain. We develop and use a novel regression approach, using non-linear parametric models that control for unobserved time invariant effects to estimate the effects on coral bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors using historical data from a large bleaching event in 2005 across the Caribbean. Two separate models are created, one to predict coral bleaching, and the other to predict near-term mortality. A large ensemble of supporting data is assembled to control for omitted variable bias and improve fit, and a significant improvement in fit is observed from univariate linear regression based on temperature alone. The results suggest that climate stressors (temperature and radiation) far outweighed direct anthropogenic stressors (using distance from shore and nearby human population density as a proxy for such stressors) in driving coral health outcomes during the 2005 event. Indeed, temperature was found to play a role ~4 times greater in both the bleaching and mortality response than population density across their observed ranges. The empirical models tested in this study have large advantages over ordinary-least squares-they offer unbiased estimates for censored data, correct for spatial correlation, and are capable of handling more complex relationships between dependent and independent variables. The models offer a framework for preparing for future warming events and climate change; guiding monitoring and attribution of other bleaching and mortality events regionally and around the globe; and informing adaptive management and conservation efforts.
Estimating the effect of multiple environmental stressors on coral bleaching and mortality
Welle, Paul D.; Small, Mitchell J.; Doney, Scott C.; Azevedo, Inês L.
2017-01-01
Coral cover has been declining in recent decades due to increased temperatures and environmental stressors. However, the extent to which different stressors contribute both individually and in concert to bleaching and mortality is still very uncertain. We develop and use a novel regression approach, using non-linear parametric models that control for unobserved time invariant effects to estimate the effects on coral bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors using historical data from a large bleaching event in 2005 across the Caribbean. Two separate models are created, one to predict coral bleaching, and the other to predict near-term mortality. A large ensemble of supporting data is assembled to control for omitted variable bias and improve fit, and a significant improvement in fit is observed from univariate linear regression based on temperature alone. The results suggest that climate stressors (temperature and radiation) far outweighed direct anthropogenic stressors (using distance from shore and nearby human population density as a proxy for such stressors) in driving coral health outcomes during the 2005 event. Indeed, temperature was found to play a role ~4 times greater in both the bleaching and mortality response than population density across their observed ranges. The empirical models tested in this study have large advantages over ordinary-least squares–they offer unbiased estimates for censored data, correct for spatial correlation, and are capable of handling more complex relationships between dependent and independent variables. The models offer a framework for preparing for future warming events and climate change; guiding monitoring and attribution of other bleaching and mortality events regionally and around the globe; and informing adaptive management and conservation efforts. PMID:28472031
2014-01-01
Background This study aimed to clarify how community mental healthcare systems can be improved. Methods We included 79 schizophrenic patients, aged 20 to 80 years, residing in the Tokyo metropolitan area who regularly visited rehabilitation facilities offering assistance to psychiatric patients and were receiving treatment on an outpatient basis. No subjects had severe cognitive disorders or were taking medication with side effects that could prevent the completion of questionnaires. Questionnaires included items related to quality of life, self-efficacy, self-esteem, psychosis based on the Behavior and Symptom Identification Scale, health locus of control, and socio-demographic factors. We performed multiple linear regression analysis with quality of life as the dependent variable and, based on covariance structural analysis, evaluated the goodness of fit of the resulting structural equations models. Results Self-efficacy, self-esteem, and degree of psychosis significantly impacted quality of life. Marital status, age, and types of medications also influenced quality of life. Multiple linear regression analysis revealed psychiatric symptoms (Behavior and Symptom Identification Scale-32 [daily living and role functioning] (Beta = −0.537, p < 0.001) and self-efficacy (Beta = 0.249, p < 0.05) to be predictors of total quality of life score. Based on covariance structural analysis, the resulting model was found to exhibit reasonable goodness of fit. Conclusions Self-efficacy had an especially strong and direct impact on QOL. Therefore, it is important to provide more positive feedback to patients, provide social skills training based on cognitive behavioral therapy, and engage patients in role playing to improve self-efficacy and self-concept. PMID:25101143
Wyrobek, Andrew J; Britten, Richard A
2016-06-01
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Steves, Claire J.; Mehta, Mitul M.; Jackson, Stephen H.D.; Spector, Tim D.
2016-01-01
Background Many observational studies have shown a protective effect of physical activity on cognitive ageing, but interventional studies have been less convincing. This may be due to short time scales of interventions, suboptimal interventional regimes or lack of lasting effect. Confounding through common genetic and developmental causes is also possible. Objectives We aimed to test whether muscle fitness (measured by leg power) could predict cognitive change in a healthy older population over a 10-year time interval, how this performed alongside other predictors of cognitive ageing, and whether this effect was confounded by factors shared by twins. In addition, we investigated whether differences in leg power were predictive of differences in brain structure and function after 12 years of follow-up in identical twin pairs. Methods A total of 324 healthy female twins (average age at baseline 55, range 43-73) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) at two time points 10 years apart. Linear regression modelling was used to assess the relationships between baseline leg power, physical activity and subsequent cognitive change, adjusting comprehensively for baseline covariates (including heart disease, diabetes, blood pressure, fasting blood glucose, lipids, diet, body habitus, smoking and alcohol habits, reading IQ, socioeconomic status and birthweight). A discordant twin approach was used to adjust for factors shared by twins. A subset of monozygotic pairs then underwent magnetic resonance imaging. The relationship between muscle fitness and brain structure and function was assessed using linear regression modelling and paired t tests. Results A striking protective relationship was found between muscle fitness (leg power) and both 10-year cognitive change [fully adjusted model standardised β-coefficient (Stdβ) = 0.174, p = 0.002] and subsequent total grey matter (Stdβ = 0.362, p = 0.005). These effects were robust in discordant twin analyses, where within-pair difference in physical fitness was also predictive of within-pair difference in lateral ventricle size. There was a weak independent effect of self-reported physical activity. Conclusion Leg power predicts both cognitive ageing and global brain structure, despite controlling for common genetics and early life environment shared by twins. Interventions targeted to improve leg power in the long term may help reach a universal goal of healthy cognitive ageing. PMID:26551663
Steves, Claire J; Mehta, Mitul M; Jackson, Stephen H D; Spector, Tim D
2016-01-01
Many observational studies have shown a protective effect of physical activity on cognitive ageing, but interventional studies have been less convincing. This may be due to short time scales of interventions, suboptimal interventional regimes or lack of lasting effect. Confounding through common genetic and developmental causes is also possible. We aimed to test whether muscle fitness (measured by leg power) could predict cognitive change in a healthy older population over a 10-year time interval, how this performed alongside other predictors of cognitive ageing, and whether this effect was confounded by factors shared by twins. In addition, we investigated whether differences in leg power were predictive of differences in brain structure and function after 12 years of follow-up in identical twin pairs. A total of 324 healthy female twins (average age at baseline 55, range 43-73) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) at two time points 10 years apart. Linear regression modelling was used to assess the relationships between baseline leg power, physical activity and subsequent cognitive change, adjusting comprehensively for baseline covariates (including heart disease, diabetes, blood pressure, fasting blood glucose, lipids, diet, body habitus, smoking and alcohol habits, reading IQ, socioeconomic status and birthweight). A discordant twin approach was used to adjust for factors shared by twins. A subset of monozygotic pairs then underwent magnetic resonance imaging. The relationship between muscle fitness and brain structure and function was assessed using linear regression modelling and paired t tests. A striking protective relationship was found between muscle fitness (leg power) and both 10-year cognitive change [fully adjusted model standardised β-coefficient (Stdβ) = 0.174, p = 0.002] and subsequent total grey matter (Stdβ = 0.362, p = 0.005). These effects were robust in discordant twin analyses, where within-pair difference in physical fitness was also predictive of within-pair difference in lateral ventricle size. There was a weak independent effect of self-reported physical activity. Leg power predicts both cognitive ageing and global brain structure, despite controlling for common genetics and early life environment shared by twins. Interventions targeted to improve leg power in the long term may help reach a universal goal of healthy cognitive ageing. © 2015 The Author(s) Published by S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.
2018-01-01
The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.
Gacesa, Jelena Popadic; Ivancevic, Tijana; Ivancevic, Nik; Paljic, Feodora Popic; Grujic, Nikola
2010-08-26
Our aim was to determine the dynamics in muscle strength increase and fatigue development during repetitive maximal contraction in specific maximal self-perceived elbow extensors training program. We will derive our functional model for m. triceps brachii in spirit of traditional Hill's two-component muscular model and after fitting our data, develop a prediction tool for this specific training system. Thirty-six healthy young men (21 +/- 1.0 y, BMI 25.4 +/- 7.2 kg/m(2)), who did not take part in any formal resistance exercise regime, volunteered for this study. The training protocol was performed on the isoacceleration dynamometer, lasted for 12 weeks, with a frequency of five sessions per week. Each training session included five sets of 10 maximal contractions (elbow extensions) with a 1 min resting period between each set. The non-linear dynamic system model was used for fitting our data in conjunction with the Levenberg-Marquardt regression algorithm. As a proper dynamical system, our functional model of m. triceps brachii can be used for prediction and control. The model can be used for the predictions of muscular fatigue in a single series, the cumulative daily muscular fatigue and the muscular growth throughout the training process. In conclusion, the application of non-linear dynamics in this particular training model allows us to mathematically explain some functional changes in the skeletal muscle as a result of its adaptation to programmed physical activity-training. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bin; Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013; Lin, Boqiang, E-mail: bqlin@xmu.edu.cn
China is currently the world's largest carbon dioxide (CO{sub 2}) emitter. Moreover, total energy consumption and CO{sub 2} emissions in China will continue to increase due to the rapid growth of industrialization and urbanization. Therefore, vigorously developing the high–tech industry becomes an inevitable choice to reduce CO{sub 2} emissions at the moment or in the future. However, ignoring the existing nonlinear links between economic variables, most scholars use traditional linear models to explore the impact of the high–tech industry on CO{sub 2} emissions from an aggregate perspective. Few studies have focused on nonlinear relationships and regional differences in China. Basedmore » on panel data of 1998–2014, this study uses the nonparametric additive regression model to explore the nonlinear effect of the high–tech industry from a regional perspective. The estimated results show that the residual sum of squares (SSR) of the nonparametric additive regression model in the eastern, central and western regions are 0.693, 0.054 and 0.085 respectively, which are much less those that of the traditional linear regression model (3.158, 4.227 and 7.196). This verifies that the nonparametric additive regression model has a better fitting effect. Specifically, the high–tech industry produces an inverted “U–shaped” nonlinear impact on CO{sub 2} emissions in the eastern region, but a positive “U–shaped” nonlinear effect in the central and western regions. Therefore, the nonlinear impact of the high–tech industry on CO{sub 2} emissions in the three regions should be given adequate attention in developing effective abatement policies. - Highlights: • The nonlinear effect of the high–tech industry on CO{sub 2} emissions was investigated. • The high–tech industry yields an inverted “U–shaped” effect in the eastern region. • The high–tech industry has a positive “U–shaped” nonlinear effect in other regions. • The linear impact of the high–tech industry in the eastern region is the strongest.« less
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Meteorological adjustment of yearly mean values for air pollutant concentration comparison
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Neustadter, H. E.
1976-01-01
Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.
Confidence limits for data mining models of options prices
NASA Astrophysics Data System (ADS)
Healy, J. V.; Dixon, M.; Read, B. J.; Cai, F. F.
2004-12-01
Non-parametric methods such as artificial neural nets can successfully model prices of financial options, out-performing the Black-Scholes analytic model (Eur. Phys. J. B 27 (2002) 219). However, the accuracy of such approaches is usually expressed only by a global fitting/error measure. This paper describes a robust method for determining prediction intervals for models derived by non-linear regression. We have demonstrated it by application to a standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100 index options ( http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid special neural net architectures and use standard regression procedures to determine local error bars. The method is appropriate for target data with non constant variance (or volatility).
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Anderson, Carl A; McRae, Allan F; Visscher, Peter M
2006-07-01
Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.
A diagnostic analysis of the VVP single-doppler retrieval technique
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
1995-01-01
A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
Modeling vertebrate diversity in Oregon using satellite imagery
NASA Astrophysics Data System (ADS)
Cablk, Mary Elizabeth
Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.
Egg production forecasting: Determining efficient modeling approaches.
Ahmad, H A
2011-12-01
Several mathematical or statistical and artificial intelligence models were developed to compare egg production forecasts in commercial layers. Initial data for these models were collected from a comparative layer trial on commercial strains conducted at the Poultry Research Farms, Auburn University. Simulated data were produced to represent new scenarios by using means and SD of egg production of the 22 commercial strains. From the simulated data, random examples were generated for neural network training and testing for the weekly egg production prediction from wk 22 to 36. Three neural network architectures-back-propagation-3, Ward-5, and the general regression neural network-were compared for their efficiency to forecast egg production, along with other traditional models. The general regression neural network gave the best-fitting line, which almost overlapped with the commercial egg production data, with an R(2) of 0.71. The general regression neural network-predicted curve was compared with original egg production data, the average curves of white-shelled and brown-shelled strains, linear regression predictions, and the Gompertz nonlinear model. The general regression neural network was superior in all these comparisons and may be the model of choice if the initial overprediction is managed efficiently. In general, neural network models are efficient, are easy to use, require fewer data, and are practical under farm management conditions to forecast egg production.
Yount, Kathryn M; Krause, Kathleen H
2017-01-01
To provide the first study in Vietnam of how gendered social learning about violence and exposure to non-family institutions influence women's attitudes about a wife's recourse after physical IPV. A probability sample of 532 married women, ages 18-50 years, was surveyed in July-August, 2012 in Mỹ Hào district. We fit a multivariate linear regression model to estimate correlates of favoring recourse in six situations using a validated attitudinal scale. We split attitudes towards recourse into three subscales (disfavor silence, favor informal recourse, favor formal recourse) and fit one multivariate ordinal logistic regression model for each behavior to estimate correlates of favoring recourse. On average, women favored recourse in 2.8 situations. Women who were older and had witnessed physical IPV in childhood had less favorable attitudes about recourse. Women who were hit as children, had completed more schooling, worked outside agriculture, and had sought recourse after IPV had more favorable attitudes about recourse. Normative change among women may require efforts to curb family violence, counsel those exposed to violence in childhood, and enhance women's opportunities for higher schooling and non-agricultural wage work. The state and organizations working on IPV might overcome pockets of unfavorable public opinion by enforcing accountability for IPV rather than seeking to alter ideas about recourse among women.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
Applying Occam's Razor To The Proton Radius Puzzle
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas
2016-09-01
Over the past five decades, ever more complex mathematical functions have been used to extract the radius of the proton from electron scattering data. For example, in 1963 the proton radius was extracted with linear and quadratic fits of low Q2 data (< 3 fm-2) and by 2014 a non-linear regression of two tenth order power series functions with thirty-one normalization parameters and data out to 25 fm-2 was used. But for electron scattering, the radius of the proton is determined by extracting the slope of the charge form factor at a Q2 of zero. By using higher precision data than was available in 1963 and focusing on the low Q2 data from 1974 to today, we find extrapolating functions consistently produce a proton radius of around 0.84 fm. A result that is in agreement with modern Lamb shift measurements.
NASA Technical Reports Server (NTRS)
Stankiewicz, N.
1982-01-01
The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.
Analysis of relativistic nucleus-nucleus interactions in emulsion chambers
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1987-01-01
The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.
Screen time impairs the relationship between physical fitness and academic attainment in children.
Aguilar, Macarena M; Vergara, Felipe A; Velásquez, Erikson J A; Marina, Raquel; García-Hermoso, Antonio
2015-01-01
The purpose of this study was twofold: to analyze the association between physical fitness and academic attainment, and to determine the influence of screen time on the association between physical fitness and academic attainment. A cross-sectional study including 395 schoolchildren from seven schools of the Maule Region, Chile (mean age 12.1 years; 50.4% boys) participated in the autumn of 2014 (March to June). Self-reported physical activity and screen time were evaluated. The study measured academic achievement (mean of the grades obtained in several core subjects), physical fitness (cardiorespiratory fitness and muscular strength), weight, height, parental education, and socioeconomic status. Linear regression analysis was used to analyze the relationships between physical fitness and academic attainment after adjusting for potential confounders by gender. Analysis of variance was used to analyze the differences in academic attainment according to fitness and screen time categories (< 2 hours/day and ≥ 2 hours/day). In both genders good cardiorespiratory fitness levels were associated with high language (β=0.272-0.153) and mean academic attainment (β=0.192-0.156) grades; however, after adjusting for screen time and other potential confounders, these associations disappear. Similarly, no relationship was observed after analyzing those children who spend more hours of screen time (≥ 2 hours/day). Academic attainment is associated with higher cardiorespiratory fitness levels; however, it was weakly impaired by screen time. These findings seem to suggest that parents and policymakers should minimize the negative effects of screen time on children's lives to maximize the beneficial effect of healthy habits on academic attainment. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Gibbs, Bethany Barone; Brancati, Frederick L; Chen, Haiying; Coday, Mace; Jakicic, John M; Lewis, Cora E; Stewart, Kerry J; Clark, Jeanne M
2014-05-01
Because lifestyle-induced improvements in cardiovascular risk factors vary substantially across individuals with type 2 diabetes, we investigated the extent to which increases in fitness explain cardiovascular risk factor improvements independent of weight loss in a lifestyle intervention. We studied 1-year changes in Look AHEAD, a randomized trial comparing an intensive lifestyle intervention (ILI) to a diabetes support and education (DSE) control group in adults with type 2 diabetes. Assessments included weight, fitness, blood pressure (BP), glucose, HbA1c, and lipids. We evaluated the effects of changes in weight and fitness on changes in cardiovascular risk factors by study arm, using R (2) from multiple linear regression. Analyses included participants with fitness data at baseline and 1-year (n = 4408; 41% male, 36% non-white; mean age 58.7 ± 6.8 years). Weight change alone improved R (2) for explaining changes in risk factors up to 8.2% in ILI and 1.7% in DSE. Fitness change alone improved R (2) up to 3.9% in ILI and 0.8% in DSE. After adjusting for weight change, fitness was independently associated (p < 0.05) with improvements in R (2) for glucose (+0.7%), HbA1c (+1.1%), high-density lipoprotein (HDL) cholesterol (+0.4%), and triglycerides (+0.2%) in ILI and diastolic BP (+0.3%), glucose (+0.3%), HbA1c (+0.4%), and triglycerides (+0.1%) in DSE. Taken together, weight and fitness changes explained from 0.1-9.3% of the variability in cardiovascular risk factor changes. Increased fitness explained statistically significant but small improvements in several cardiovascular risk factors beyond weight loss. Further research identifying other factors that explain cardiovascular risk factor change is needed.
Recruit Fitness as a Predictor of Police Academy Graduation.
Shusko, M; Benedetti, L; Korre, M; Eshleman, E J; Farioli, A; Christophi, C A; Kales, S N
2017-10-01
Suboptimal recruit fitness may be a risk factor for poor performance, injury, illness, and lost time during police academy training. To assess the probability of successful completion and graduation from a police academy as a function of recruits' baseline fitness levels at the time of academy entry. Retrospective study where all available records from recruit training courses held (2006-2012) at all Massachusetts municipal police academies were reviewed and analysed. Entry fitness levels were quantified from the following measures, as recorded at the start of each training class: body composition, push-ups, sit-ups, sit-and-reach, and 1.5-mile run-time. The primary outcome of interest was the odds of not successfully graduating from an academy. We used generalized linear mixed models in order to fit logistic regression models with random intercepts for assessing the probability of not graduating, based on entry-level fitness. The primary analyses were restricted to recruits with complete entry-level fitness data. The fitness measures most strongly associated with academy failure were lesser number of push-ups completed (odds ratio [OR] = 5.2, 95% confidence interval [CI] 2.3-11.7, for 20 versus 41-60 push-ups) and slower run times (OR = 3.8, 95% CI 1.8-7.8, [1.5 mile run time of ≥15'20″] versus [12'33″ to 10'37″]). Baseline pushups and 1.5-mile run-time showed the best ability to predict successful academy graduation, especially when considered together. Future research should include prospective validation of entry-level fitness as a predictor of subsequent police academy success. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine.
A computational approach to compare regression modelling strategies in prediction research.
Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H
2016-08-25
It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.
Linear regression crash prediction models : issues and proposed solutions.
DOT National Transportation Integrated Search
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Erfle, Stephen E; Gamble, Abigail
2015-01-01
In 2009, the Pennsylvania Department of Health developed the Active Schools Program (ASP) which required 30 minutes of daily physical education (PE) in middle schools to reduce childhood obesity. This investigation evaluated the ASP effects on physical fitness and weight status in middle school adolescents throughout 1 academic year. A quasi-experimental design was used to recruit middle schools into an intervention group (N = 30) or control group (N = 9). Physical fitness outcomes had larger intervention effects than weight status outcomes. These effects were most profound among at-risk students. Multiple linear regression analysis provided a best-guess effect of daily PE on body mass index (BMI) percentile of -1.2, 95% confidence interval (CI) (-1.9, -0.5) for at-risk females and -0.8, 95% CI (-1.5, -0.1) for at-risk males. Much of this benefit is attributable to the differential increase in physical fitness achieved by students with the benefit of having daily PE. Thirty minutes of daily PE can be considered a scientific approach to ameliorate health outcomes in at-risk middle school adolescents, particularly among females. Improvements on BMI percentile among at-risk youth are presaged by greater improvements in physical fitness. This investigation supports a school-based approach aimed to improve behavioral risk factors as a means to reduce childhood obesity. © 2014, American School Health Association.
[Structural empowerment and work-family fit in nurses].
Orłowska, Agnieszka; Łaguna, Mariola
2016-12-22
The goal of the study was to investigate the relationship between structural empowerment and work-family fit in Polish nurses. Structural empowerment is a strategy for managing by providing the employees with opportunities, information, support and resources essential for the effective performance of work duties. Work-family fit takes 2 forms of relationships between these 2 spheres: conflict (functioning in one role is more difficult because of participation in the other role) and facilitation (fulfilling the duties associated with one role enriches filling up the other role). A total of 159 nurses employed in hospitals took part in the study. The Polish versions of the Conditions of Work Effectiveness Questionnaire and the Work-Family Fit Questionnaire were used. Hierarchical linear regression analysis was applied for data analysis. The results show statistically signifficant relationships between structural empowerment and work-family fit in nurses. In the hospital environment, characterized by a high degree of empowerment, nurses experience a lower level of work-family conflict and a higher level of facilitation in both directions. Hospital management strategy based on structural empowerment of nurses favors reconciliation of professional and family roles. Therefore, it is important for hospitals to create appropriate working conditions that allow nurses to effectively deal with demands arising from work and family spheres. Med Pr 2016;67(6):787-800. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Health-related quality of life, obesity, and fitness in schoolchildren: the Cuenca study.
Morales, Pablo Franquelo; Sánchez-López, Mairena; Moya-Martínez, Pablo; García-Prieto, Jorge Cañete; Martínez-Andrés, María; García, Noelia Lahoz; Martínez-Vizcaíno, Vicente
2013-09-01
The purpose of this study was to analyze the association of weight status and physical fitness with health-related quality of life (HRQoL) and to examine the independent association of body mass index (BMI), cardiorespiratory fitness (CRF) and musculoskeletal fitness (MF) with HRQoL in schoolchildren. Cross-sectional study of 1,158 schoolchildren, 8-11 years, from 20 schools in the Cuenca province, Spain. We measured weight, height, and physical fitness, measured by CRF (20-m shuttle run test) and MF index by summing the age-sex z scores of handgrip strength test/weight + standing broad jump test. Self-reported HRQoL was measured by KIDSCREEN-52 questionnaire. Normal weight boys scored better in physical well-being, mood and emotions, autonomy, and social support and peers dimensions than overweight/obese boys. The mean in self-perception dimensions was lower in obese girls compared to normal weight or overweight girls. Higher levels of CRF and MF were associated with better physical well-being in both genders. Multiple linear regression models showed that the influence of MF in boys and CRF in girls on HRQoL was greater than that of overweight. This is one of the first studies that assess the association of CRF and MF with HRQoL while controlling for BMI. CRF and MF are closely related to HRQoL, in particular to physical well-being. Improving fitness could be a strategy of particular interest for improving the HRQoL of schoolchildren.
Physical fitness, injuries, and team performance in soccer.
Arnason, Arni; Sigurdsson, Stefan B; Gudmundsson, Arni; Holme, Ingar; Engebretsen, Lars; Bahr, Roald
2004-02-01
To investigate the relationship between physical fitness and team success in soccer, and to test for differences in physical fitness between different player positions. Participants were 306 male soccer players from 17 teams in the two highest divisions in Iceland. Just before the start of the 1999 soccer season, the following variables were tested: height and weight, body composition, flexibility, leg extension power, jump height, and peak O2 uptake. Injuries and player participation in matches and training were recorded through the 4-month competitive season. Team average physical fitness was compared with team success (final league standing) using a linear regression model. Physical fitness was also compared between players in different playing positions. A significant relationship was found between team average jump height (countermovement jump and standing jump) and team success (P = 0.009 and P = 0.012, respectively). The same trend was also found for leg extension power (P = 0.097), body composition (% body fat, P = 0.07), and the total number of injury days per team (P = 0.09). Goalkeepers demonstrated different fitness characteristics from outfield players. They were taller and heavier, more flexible in hip extension and knee flexion, and had higher leg extension power and a lower peak O2 uptake. However, only minor differences were observed between defenders, midfield players, and attackers. Coaches and medical support teams should pay more attention to jump and power training, as well as preventive measures and adequate rehabilitation of previous injuries to increase team success.
Hernández Alava, Mónica; Wailoo, Allan; Wolfe, Fred; Michaud, Kaleb
2014-10-01
Analysts frequently estimate health state utility values from other outcomes. Utility values like EQ-5D have characteristics that make standard statistical methods inappropriate. We have developed a bespoke, mixture model approach to directly estimate EQ-5D. An indirect method, "response mapping," first estimates the level on each of the 5 dimensions of the EQ-5D and then calculates the expected tariff score. These methods have never previously been compared. We use a large observational database from patients with rheumatoid arthritis (N = 100,398). Direct estimation of UK EQ-5D scores as a function of the Health Assessment Questionnaire (HAQ), pain, and age was performed with a limited dependent variable mixture model. Indirect modeling was undertaken with a set of generalized ordered probit models with expected tariff scores calculated mathematically. Linear regression was reported for comparison purposes. Impact on cost-effectiveness was demonstrated with an existing model. The linear model fits poorly, particularly at the extremes of the distribution. The bespoke mixture model and the indirect approaches improve fit over the entire range of EQ-5D. Mean average error is 10% and 5% lower compared with the linear model, respectively. Root mean squared error is 3% and 2% lower. The mixture model demonstrates superior performance to the indirect method across almost the entire range of pain and HAQ. These lead to differences in cost-effectiveness of up to 20%. There are limited data from patients in the most severe HAQ health states. Modeling of EQ-5D from clinical measures is best performed directly using the bespoke mixture model. This substantially outperforms the indirect method in this example. Linear models are inappropriate, suffer from systematic bias, and generate values outside the feasible range. © The Author(s) 2013.
Optimizing complex phenotypes through model-guided multiplex genome engineering
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.; ...
2017-05-25
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Optimizing complex phenotypes through model-guided multiplex genome engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Gleb; Goodman, Daniel B.; Filsinger, Gabriel T.
Here, we present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.ΔA. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.
Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR
NASA Astrophysics Data System (ADS)
Ma, Yongjun
The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.
Monitoring Springs in the Mojave Desert Using Landsat Time Series Analysis
NASA Technical Reports Server (NTRS)
Potter, Christopher S.
2018-01-01
The purpose of this study, based on Landsat satellite data was to characterize variations and trends over 30 consecutive years (1985-2016) in perennial vegetation green cover at over 400 confirmed Mojave Desert spring locations. These springs were surveyed between in 2015 and 2016 on lands managed in California by the U.S. Bureau of Land Management (BLM) and on several land trusts within the Barstow, Needles, and Ridgecrest BLM Field Offices. The normalized difference vegetation index (NDVI) from July Landsat images was computed at each spring location and a trend model was first fit to the multi-year NDVI time series using least squares linear regression.Â
Modeling of adipose/blood partition coefficient for environmental chemicals.
Papadaki, K C; Karakitsios, S P; Sarigiannis, D A
2017-12-01
A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Paul, Suman; Ali, Muhammad; Chatterjee, Rima
2018-01-01
Velocity of compressional wave ( V P) of coal and non-coal lithology is predicted from five wells from the Bokaro coalfield (CF), India. Shear sonic travel time logs are not recorded for all wells under the study area. Shear wave velocity ( Vs) is available only for two wells: one from east and other from west Bokaro CF. The major lithologies of this CF are dominated by coal, shaly coal of Barakar formation. This paper focuses on the (a) relationship between Vp and Vs, (b) prediction of Vp using regression and neural network modeling and (c) estimation of maximum horizontal stress from image log. Coal characterizes with low acoustic impedance (AI) as compared to the overlying and underlying strata. The cross-plot between AI and Vp/ Vs is able to identify coal, shaly coal, shale and sandstone from wells in Bokaro CF. The relationship between Vp and Vs is obtained with excellent goodness of fit ( R 2) ranging from 0.90 to 0.93. Linear multiple regression and multi-layered feed-forward neural network (MLFN) models are developed for prediction Vp from two wells using four input log parameters: gamma ray, resistivity, bulk density and neutron porosity. Regression model predicted Vp shows poor fit (from R 2 = 0.28) to good fit ( R 2 = 0.79) with the observed velocity. MLFN model predicted Vp indicates satisfactory to good R2 values varying from 0.62 to 0.92 with the observed velocity. Maximum horizontal stress orientation from a well at west Bokaro CF is studied from Formation Micro-Imager (FMI) log. Breakouts and drilling-induced fractures (DIFs) are identified from the FMI log. Breakout length of 4.5 m is oriented towards N60°W whereas the orientation of DIFs for a cumulative length of 26.5 m is varying from N15°E to N35°E. The mean maximum horizontal stress in this CF is towards N28°E.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
Weiss, Brandi A.; Dardick, William
2015-01-01
This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.
Weiss, Brandi A; Dardick, William
2016-12-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.
Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo
2015-08-01
Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rice, F; Park, R; Stayner, L; Smith, R; Gilbert, S; Checkoway, H
2001-01-01
OBJECTIVE—To use various exposure-response models to estimate the risk of mortality from lung cancer due to occupational exposure to respirable crystalline silica dust. METHODS—Data from a cohort mortality study of 2342 white male California diatomaceous earth mining and processing workers exposed to crystalline silica dust (mainly cristobalite) were reanalyzed with Poisson regression and Cox's proportional hazards models. Internal and external adjustments were used to control for potential confounding from the effects of time since first observation, calendar time, age, and Hispanic ethnicity. Cubic smoothing spline models were used to assess the fit of the models. Exposures were lagged by 10 years. Evaluations of the fit of the models were performed by comparing their deviances. Lifetime risks of lung cancer were estimated up to age 85 with an actuarial approach that accounted for competing causes of death. RESULTS—Exposure to respirable crystalline silica dust was a significant predictor (p<0.05) in nearly all of the models evaluated and the linear relative rate model with a 10 year exposure lag seemed to give the best fit in the Poisson regression analysis. For those who died of lung cancer the linear relative rate model predicted rate ratios for mortality from lung cancer of about 1.6 for the mean cumulative exposure to respirable silica compared with no exposure. The excess lifetime risk (to age 85) of mortality from lung cancer for white men exposed for 45 years and with a 10 year lag period at the current Occupational Safety and Health Administration (OSHA) standard of about 0.05 mg/m3 for respirable cristobalite dust is 19/1000 (95% confidence interval (95% CI) 5/1000 to 46/1000). CONCLUSIONS—There was a significant risk of mortality from lung cancer that increased with cumulative exposure to respirable crystalline silica dust. The predicted number of deaths from lung cancer suggests that current occupational health standards may not be adequately protecting workers from the risk of lung cancer. Keywords: crystalline silica; cristobalite; lung cancer PMID:11119633
The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring
ERIC Educational Resources Information Center
Haberman, Shelby J.; Sinharay, Sandip
2010-01-01
Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…
Relationships Between Glycemic Control and Cardiovascular Fitness.
Moxley, Elizabeth W; Smith, Donald; Quinn, Lauretta; Park, Chang
2018-07-01
Diabetes is a serious health problem affecting approximately 29.1 million individuals in the United States. Another 86 million have prediabetes. The development and implementation of lifestyle modifications such as physical activity for these persons are among the most effective methods for prevention and treatment. The aim of this study was to examine relationships between glycemic control (HbA1c) and cardiovascular fitness (peak maximal oxygen uptake [VO 2 peak] and ventilatory threshold [VT]) in overweight/obese subjects with and without type 2 diabetes (T2DM). In addition, the influences of body mass index (BMI) and insulin sensitivity (homeostasis model assessment [HOMA %S]) on the relationship between glycemic control and cardiovascular fitness were explored. Data were abstracted from a completed study that included 51 overweight or obese subjects with T2DM ( n = 18), impaired glucose tolerance ( n = 8), or normal glucose tolerance ( n = 25). Relationships between glycemic control (HbA1c) and cardiovascular fitness (VO 2 peak and VT) were determined using correlational analysis and multiple linear regression analyses. A statistically significant relationship was observed between HbA1c and cardiovascular fitness. However, BMI and HOMA %S did not influence the relationship between glycemic control and cardiovascular fitness. HbA1c contributes to VO 2 peak and VT in obese and overweight subjects across glucose tolerance categories. Significant results were achieved despite the fact that there was a limited range of HbA1c based on the study inclusion criteria. This finding suggests that even a mild decrease in glycemic control can negatively influence cardiovascular fitness.
Application of artificial neural network to fMRI regression analysis.
Misaki, Masaya; Miyauchi, Satoru
2006-01-15
We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.
Mapping urban environmental noise: a land use regression method.
Xie, Dan; Liu, Yi; Chen, Jining
2011-09-01
Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.
Nonparametric methods for drought severity estimation at ungauged sites
NASA Astrophysics Data System (ADS)
Sadri, S.; Burn, D. H.
2012-12-01
The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.
Reconstruction of missing daily streamflow data using dynamic regression models
NASA Astrophysics Data System (ADS)
Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault
2015-12-01
River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.
Han, Fu Liang; Li, Zheng; Xu, Yan
2015-12-01
Monomeric anthocyanin contributions to young red wine color were investigated using partial least square regression (PLSR) and aqueous alcohol solutions in this study. Results showed that the correlation between the anthocyanin concentration and the solution color fitted in a quadratic regression rather than linear or cubic regression. Malvidin-3-O-glucoside was estimated to show the highest contribution to young red wine color according to its concentration in wine, whereas peonidin-3-O-glucoside in its concentration contributed the least. The PLSR suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside under the same concentration resulted in a stronger color of young red wine compared with malvidin-3-O-glucoside. These estimates were further confirmed by their color in aqueous alcohol solutions. These results suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside were primary anthocyanins to enhance young red wine color by increasing their concentrations. This study could provide an alternative approach to improve young red wine color by adjusting anthocyanin composition and concentration. © 2015 Institute of Food Technologists®
[In vitro testing of yeast resistance to antimycotic substances].
Potel, J; Arndt, K
1982-01-01
Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Wong, William W.; Strizich, Garrett; Heo, Moonseong; Heymsfield, Steven B.; Himes, John H.; Rock, Cheryl L.; Gellman, Marc D.; Siega-Riz, Anna Maria; Sotres-Alvarez, Daniela; Davis, Sonia M.; Arredondo, Elva M.; Van Horn, Linda; Wylie-Rosett, Judith; Sanchez-Johnsen, Lisa; Kaplan, Robert; Mossavar-Rahmani, Yasmin
2016-01-01
Objective To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut-points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. Methods %BF by bioelectrical impedance analysis (BIA) was corrected against %BF by 18O dilution in 476 participants of the ancillary Hispanic Community Health/Latinos Studies. Corrected %BF were regressed against 1/BMI in the parent study (n=15,261), fitting models for each age group, by sex and Hispanic/Latino background; predicted %BF was then computed for each BMI cut-point. Results BIA underestimated %BF by 8.7 ± 0.3% in women and 4.6 ± 0.3% in men (P < 0.0001). The %BF-BMI relationshp was non-linear and linear for 1/BMI. Sex- and age-specific regression parameters between %BF and 1/BMI were consistent across Hispanic/Latino backgrounds (P > 0.05). The precision of the %BF-1/BMI association weakened with increasing age in men but not women. The proportion of participants classified as non-obese by BMI but obese by %BF was generally higher among women and older adults (16.4% in women vs. 12.0% in men aged 50-74 y). Conclusions %BF was linearly related to 1/BMI with consistent relationship across Hispanic/Lation backgrounds. BMI cut-points consistently underestimated the proportion of Hispanics/Latinos with excess adiposity. PMID:27184359
Ito, Hiroshi; Yokoi, Takashi; Ikoma, Yoko; Shidahara, Miho; Seki, Chie; Naganawa, Mika; Takahashi, Hidehiko; Takano, Harumasa; Kimura, Yuichi; Ichise, Masanori; Suhara, Tetsuya
2010-01-01
In positron emission tomography (PET) studies with radioligands for neuroreceptors, tracer kinetics have been described by the standard two-tissue compartment model that includes the compartments of nondisplaceable binding and specific binding to receptors. In the present study, we have developed a new graphic plot analysis to determine the total distribution volume (V(T)) and nondisplaceable distribution volume (V(ND)) independently, and therefore the binding potential (BP(ND)). In this plot, Y(t) is the ratio of brain tissue activity to time-integrated arterial input function, and X(t) is the ratio of time-integrated brain tissue activity to time-integrated arterial input function. The x-intercept of linear regression of the plots for early phase represents V(ND), and the x-intercept of linear regression of the plots for delayed phase after the equilibrium time represents V(T). BP(ND) can be calculated by BP(ND)=V(T)/V(ND)-1. Dynamic PET scanning with measurement of arterial input function was performed on six healthy men after intravenous rapid bolus injection of [(11)C]FLB457. The plot yielded a curve in regions with specific binding while it yielded a straight line through all plot data in regions with no specific binding. V(ND), V(T), and BP(ND) values calculated by the present method were in good agreement with those by conventional non-linear least-squares fitting procedure. This method can be used to distinguish graphically whether the radioligand binding includes specific binding or not.
Predicting Madura cattle growth curve using non-linear model
NASA Astrophysics Data System (ADS)
Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.
2018-03-01
Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (<6 months, 6-12 months, 1-2years, 2-3years, 3-5years and >5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (p<0.05). The logistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.
NASA Astrophysics Data System (ADS)
Chen, Pengfei; Jing, Qi
2017-02-01
An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.
NASA Astrophysics Data System (ADS)
Ronsmans, Gaétane; Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François
2018-04-01
This study aims to understand the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008-2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions which are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the Northern Hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the those defined as significant (p value < 0.05) by a selection algorithm are retained for each equivalent latitude band. Overall, the regression gives a good representation of HNO3 variability, with especially good results at high latitudes (60-80 % of the observed variability explained by the model). The regressions show the dominance of annual variability in all latitudinal bands, which is related to specific chemistry and dynamics depending on the latitudes. We find that the polar stratospheric clouds (PSCs) also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large portion of HNO3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not included in the regression model (such as vegetation fires or lightning) may be at play.
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
An advanced method to assess the diet of free-ranging large carnivores based on scats.
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P; Jago, Mark; Hofer, Heribert
2012-01-01
The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.
An Advanced Method to Assess the Diet of Free-Ranging Large Carnivores Based on Scats
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P.; Jago, Mark; Hofer, Heribert
2012-01-01
Background The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Methodology/Principal Findings Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Conclusion/Significance Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores. PMID:22715373
Saucedo-Reyes, Daniela; Carrillo-Salazar, José A; Román-Padilla, Lizbeth; Saucedo-Veloz, Crescenciano; Reyes-Santamaría, María I; Ramírez-Gilly, Mariana; Tecante, Alberto
2018-03-01
High hydrostatic pressure inactivation kinetics of Escherichia coli ATCC 25922 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028 ( S. typhimurium) in a low acid mamey pulp at four pressure levels (300, 350, 400, and 450 MPa), different exposure times (0-8 min), and temperature of 25 ± 2℃ were obtained. Survival curves showed deviations from linearity in the form of a tail (upward concavity). The primary models tested were the Weibull model, the modified Gompertz equation, and the biphasic model. The Weibull model gave the best goodness of fit ( R 2 adj > 0.956, root mean square error < 0.290) in the modeling and the lowest Akaike information criterion value. Exponential-logistic and exponential decay models, and Bigelow-type and an empirical models for b'( P) and n( P) parameters, respectively, were tested as alternative secondary models. The process validation considered the two- and one-step nonlinear regressions for making predictions of the survival fraction; both regression types provided an adequate goodness of fit and the one-step nonlinear regression clearly reduced fitting errors. The best candidate model according to the Akaike theory information, with better accuracy and more reliable predictions was the Weibull model integrated by the exponential-logistic and exponential decay secondary models as a function of time and pressure (two-step procedure) or incorporated as one equation (one-step procedure). Both mathematical expressions were used to determine the t d parameter, where the desired reductions ( 5D) (considering d = 5 ( t 5 ) as the criterion of 5 Log 10 reduction (5 D)) in both microorganisms are attainable at 400 MPa for 5.487 ± 0.488 or 5.950 ± 0.329 min, respectively, for the one- or two-step nonlinear procedure.
Coupé, Christophe
2018-01-01
As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298
Coupé, Christophe
2018-01-01
As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.
Sahin, Rubina; Tapadia, Kavita
2015-01-01
The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.
Patel, Deepak; Lambert, Estelle V; da Silva, Roseanne; Greyling, Mike; Kolbe-Alexander, Tracy; Noach, Adam; Conradie, Jaco; Nossel, Craig; Borresen, Jill; Gaziano, Thomas
2011-01-01
A retrospective, longitudinal study examined changes in participation in fitness-related activities and hospital claims over 5 years amongst members of an incentivized health promotion program offered by a private health insurer. A 3-year retrospective observational analysis measuring gym visits and participation in documented fitness-related activities, probability of hospital admission, and associated costs of admission. A South African private health plan, Discovery Health and the Vitality health promotion program. 304,054 adult members of the Discovery medical plan, 192,467 of whom registered for the health promotion program and 111,587 members who were not on the program. Members were incentivised for fitness-related activities on the basis of the frequency of gym visits. Changes in electronically documented gym visits and registered participation in fitness-related activities over 3 years and measures of association between changes in participation (years 1-3) and subsequent probability and costs of hospital admission (years 4-5). Hospital admissions and associated costs are based on claims extracted from the health insurer database. The probability of a claim modeled by using linear logistic regression and costs of claims examined by using general linear models. Propensity scores were estimated and included age, gender, registration for chronic disease benefits, plan type, and the presence of a claim during the transition period, and these were used as covariates in the final model. There was a significant decrease in the prevalence of inactive members (76% to 68%) over 5 years. Members who remained highly active (years 1-3) had a lower probability (p < .05) of hospital admission in years 4 to 5 (20.7%) compared with those who remained inactive (22.2%). The odds of admission were 13% lower for two additional gym visits per week (odds ratio, .87; 95% confidence interval [CI], .801-.949). We observed an increase in fitness-related activities over time amongst members of this incentive-based health promotion program, which was associated with a lower probability of hospital admission and lower hospital costs in the subsequent 2 years. Copyright © 2011 by American Journal of Health Promotion, Inc.
Regression Models for Identifying Noise Sources in Magnetic Resonance Images
Zhu, Hongtu; Li, Yimei; Ibrahim, Joseph G.; Shi, Xiaoyan; An, Hongyu; Chen, Yashen; Gao, Wei; Lin, Weili; Rowe, Daniel B.; Peterson, Bradley S.
2009-01-01
Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities, and other noise components in magnetic resonance images (MRIs) can introduce serious bias into any measurements made with those images. We formally introduce three regression models including a Rician regression model and two associated normal models to characterize stochastic noise in various magnetic resonance imaging modalities, including diffusion-weighted imaging (DWI) and functional MRI (fMRI). Estimation algorithms are introduced to maximize the likelihood function of the three regression models. We also develop a diagnostic procedure for systematically exploring MR images to identify noise components other than simple stochastic noise, and to detect discrepancies between the fitted regression models and MRI data. The diagnostic procedure includes goodness-of-fit statistics, measures of influence, and tools for graphical display. The goodness-of-fit statistics can assess the key assumptions of the three regression models, whereas measures of influence can isolate outliers caused by certain noise components, including motion artifacts. The tools for graphical display permit graphical visualization of the values for the goodness-of-fit statistic and influence measures. Finally, we conduct simulation studies to evaluate performance of these methods, and we analyze a real dataset to illustrate how our diagnostic procedure localizes subtle image artifacts by detecting intravoxel variability that is not captured by the regression models. PMID:19890478
Merecz, Dorota; Andysz, Aleksandra
2012-06-01
[corrected] Person-Environment fit (P-E fit) paradigm, seems to be especially useful in explaining phenomena related to work attitudes and occupational health. The study explores the relationship between a specific facet of P-E fit as Person-Organization fit (P-O fit) and health. Research was conducted on the random sample of 600 employees. Person-Organization Fit Questionnaire was used to asses the level of Person-Organization fit; mental health status was measured by General Health Questionnaire (GHQ-28); and items from Work Ability Index allowed for evaluation of somatic health. Data was analyzed using non parametric statistical tests. The predictive value of P-O fit for various aspects of health was checked by means of linear regression models. A comparison between the groups distinguished on the basis of their somatic and mental health indicators showed significant differences in the level of overall P-O fit (χ(2) = 23.178; p < 0.001) and its subdimensions: for complementary fit (χ(2) = 29.272; p < 0.001), supplementary fit (χ(2) = 23.059; p < 0.001), and identification with organization (χ(2) = 8.688; p = 0.034). From the perspective of mental health, supplementary P-O fit seems to be important for men's well-being and explains almost 9% of variance in GHQ-28 scores, while in women, complementary fit (5% explained variance in women's GHQ score) and identification with organization (1% explained variance in GHQ score) are significant predictors of mental well-being. Interestingly, better supplementary and complementary fit are related to better mental health, but stronger identification with organization in women produces adverse effect on their mental health. The results show that obtaining the optimal level of P-O fit can be beneficial not only for the organization (e.g. lower turnover, better work effectiveness and commitment), but also for the employees themselves. Optimal level of P-O fit can be considered as a factor maintaining workers' health. However, prospective research is needed to confirm the results obtained in this exploratory study.
Chen, Chen; Xie, Yuanchang
2016-06-01
Annual Average Daily Traffic (AADT) is often considered as a main covariate for predicting crash frequencies at urban and suburban intersections. A linear functional form is typically assumed for the Safety Performance Function (SPF) to describe the relationship between the natural logarithm of expected crash frequency and covariates derived from AADTs. Such a linearity assumption has been questioned by many researchers. This study applies Generalized Additive Models (GAMs) and Piecewise Linear Negative Binomial (PLNB) regression models to fit intersection crash data. Various covariates derived from minor-and major-approach AADTs are considered. Three different dependent variables are modeled, which are total multiple-vehicle crashes, rear-end crashes, and angle crashes. The modeling results suggest that a nonlinear functional form may be more appropriate. Also, the results show that it is important to take into consideration the joint safety effects of multiple covariates. Additionally, it is found that the ratio of minor to major-approach AADT has a varying impact on intersection safety and deserves further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush.
Bonin, Stephanie J; Gardiner, John C; Onar-Thomas, Arzu; Asfour, Shihab S; Siegmund, Gunter P
2017-09-01
Proper helmet fit is important for optimizing head protection during an impact, yet many motorcyclists wear helmets that do not properly fit their heads. The goals of this study are i) to quantify how a mismatch in headform size and motorcycle helmet size affects headform peak acceleration and head injury criteria (HIC), and ii) to determine if peak acceleration, HIC, and impact speed can be estimated from the foam liner's maximum residual crush depth or residual crush volume. Shorty-style helmets (4 sizes of a single model) were tested on instrumented headforms (4 sizes) during linear impacts between 2.0 and 10.5m/s to the forehead region. Helmets were CT scanned to quantify residual crush depth and volume. Separate linear regression models were used to quantify how the response variables (peak acceleration (g), HIC, and impact speed (m/s)) were related to the predictor variables (maximum crush depth (mm), crush volume (cm 3 ), and the difference in circumference between the helmet and headform (cm)). Overall, we found that increasingly oversized helmets reduced peak headform acceleration and HIC for a given impact speed for maximum residual crush depths less than 7.9mm and residual crush volume less than 40cm 3 . Below these levels of residual crush, we found that peak headform acceleration, HIC, and impact speed can be estimated from a helmet's residual crush. Above these crush thresholds, large variations in headform kinematics are present, possibly related to densification of the foam liner during the impact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moran, John L; Solomon, Patricia J
2012-05-16
For the analysis of length-of-stay (LOS) data, which is characteristically right-skewed, a number of statistical estimators have been proposed as alternatives to the traditional ordinary least squares (OLS) regression with log dependent variable. Using a cohort of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 2008-2009, 12 different methods were used for estimation of intensive care (ICU) length of stay. These encompassed risk-adjusted regression analysis of firstly: log LOS using OLS, linear mixed model [LMM], treatment effects, skew-normal and skew-t models; and secondly: unmodified (raw) LOS via OLS, generalised linear models [GLMs] with log-link and 4 different distributions [Poisson, gamma, negative binomial and inverse-Gaussian], extended estimating equations [EEE] and a finite mixture model including a gamma distribution. A fixed covariate list and ICU-site clustering with robust variance were utilised for model fitting with split-sample determination (80%) and validation (20%) data sets, and model simulation was undertaken to establish over-fitting (Copas test). Indices of model specification using Bayesian information criterion [BIC: lower values preferred] and residual analysis as well as predictive performance (R2, concordance correlation coefficient (CCC), mean absolute error [MAE]) were established for each estimator. The data-set consisted of 111663 patients from 131 ICUs; with mean(SD) age 60.6(18.8) years, 43.0% were female, 40.7% were mechanically ventilated and ICU mortality was 7.8%. ICU length-of-stay was 3.4(5.1) (median 1.8, range (0.17-60)) days and demonstrated marked kurtosis and right skew (29.4 and 4.4 respectively). BIC showed considerable spread, from a maximum of 509801 (OLS-raw scale) to a minimum of 210286 (LMM). R2 ranged from 0.22 (LMM) to 0.17 and the CCC from 0.334 (LMM) to 0.149, with MAE 2.2-2.4. Superior residual behaviour was established for the log-scale estimators. There was a general tendency for over-prediction (negative residuals) and for over-fitting, the exception being the GLM negative binomial estimator. The mean-variance function was best approximated by a quadratic function, consistent with log-scale estimation; the link function was estimated (EEE) as 0.152(0.019, 0.285), consistent with a fractional-root function. For ICU length of stay, log-scale estimation, in particular the LMM, appeared to be the most consistently performing estimator(s). Neither the GLM variants nor the skew-regression estimators dominated.
Kinung’hi, Safari; Magnussen, Pascal; Kaatano, Godfrey
2016-01-01
Background Infection with Schistosoma mansoni negatively impact children’s physical health and may influence their general well-being. The aim of this study was to investigate the effect of S. mansoni infections on a panel of morbidity indicators with emphasis on quality of life (PedsQL; measured in four different dimensions) and physical fitness (measured as VO2 max) among 572 schoolchildren aged 7–8 years. Methodology/Principal findings Prevalence of S. mansoni infections was 58.7%, with an arithmetic mean (95% CI) among positives of 207.3 (169.2–245.4) eggs per gram (epg). Most infections were light (56.5%), while 16.4% had heavy infections. Girls had significantly higher arithmetic mean intensities (95% CI) than boys (247.4 (189.2–305.6) vs. 153.2 (110.6–195.8); P = 0.004). A total of 30.1% were anaemic with no sex difference. Stunting and wasting was found in less than 10% of the population. There was no association between S. mansoni prevalence or intensities and the following parameters: anthropometry, anaemia, liver or spleen pathology in neither univariable nor multivariable linear regression analyses. However, in univariable analyses children with S. mansoni infection had a significantly lower score in emotional PedsQL (95% CI) than uninfected (77.3 (74.5–80.1) vs. 82.7 (79.9–85.5); P = 0.033) and infected children had a higher VO2 max (95% CI) compared to uninfected (51.4 (51.0–51.8) vs. 50.8 (50.3–51.3); P = 0.042). In multivariable linear regression analyses, age, S. mansoni infection, haemoglobin and VO2 max were significant predictors for emotional PedsQL while significant predictors for VO2 max were physical PedsQL, height, age and haemoglobin. S. mansoni infection was thus not retained in the multivariable regression analyses on VO2 max. Conclusions/Significance Of the measured morbidity parameters, S. mansoni infection had a significant effect on the emotional dimension of quality of life, but not on physical fitness. If PedsQL should be a useful tool to measure schistosome related morbidity, more in depth studies are needed in order to refine the tool so it focuses more on aspects of quality of life that may be affected by schistosome infections. PMID:28027317
The association of health-related fitness with indicators of academic performance in Texas schools.
Welk, Gregory J; Jackson, Allen W; Morrow, James R; Haskell, William H; Meredith, Marilu D; Cooper, Kenneth H
2010-09-01
This study examined the associations between indicators of health-related physical fitness (cardiovascular fitness and body mass index) and academic performance (Texas Assessment of Knowledge and Skills). Partial correlations were generally stronger for cardiovascular fitness than body mass index and consistently stronger in the middle school grades. Mixed-model regression analyses revealed modest associations between fitness and academic achievement after controlling for potentially confounding variables. The effects of fitness on academic achievement were positive but small. A separate logistic regression analysis indicated that higher fitness rates increased the odds of schools achieving exemplary/recognized school status within the state. School fitness attainment is an indicator of higher performing schools. Direction of causality cannot be inferred due to the cross-sectional nature of the data.
Han, Hyung Joon; Choi, Sae Byeol; Park, Man Sik; Lee, Jin Suk; Kim, Wan Bae; Song, Tae Jin; Choi, Sang Yong
2011-07-01
Single port laparoscopic surgery has come to the forefront of minimally invasive surgery. For those familiar with conventional techniques, however, this type of operation demands a different type of eye/hand coordination and involves unfamiliar working instruments. Herein, the authors describe the learning curve and the clinical outcomes of single port laparoscopic cholecystectomy for 150 consecutive patients with benign gallbladder disease. All patients underwent single port laparoscopic cholecystectomy using a homemade glove port by one of five operators with different levels of experiences of laparoscopic surgery. The learning curve for each operator was fitted using the non-linear ordinary least squares method based on a non-linear regression model. Mean operating time was 77.6 ± 28.5 min. Fourteen patients (6.0%) were converted to conventional laparoscopic cholecystectomy. Complications occurred in 15 patients (10.0%), as follows: bile duct injury (n = 2), surgical site infection (n = 8), seroma (n = 2), and wound pain (n = 3). One operator achieved a learning curve plateau at 61.4 min per procedure after 8.5 cases and his time improved by 95.3 min as compared with initial operation time. Younger surgeons showed significant decreases in mean operation time and achieved stable mean operation times. In particular, younger surgeons showed significant decreases in operation times after 20 cases. Experienced laparoscopic surgeons can safely perform single port laparoscopic cholecystectomy using conventional or angled laparoscopic instruments. The present study shows that an operator can overcome the single port laparoscopic cholecystectomy learning curve in about eight cases.
Prediction of Cancer Incidence and Mortality in Korea, 2018.
Jung, Kyu-Won; Won, Young-Joo; Kong, Hyun-Joo; Lee, Eun Sook
2018-04-01
This study aimed to report on cancer incidence and mortality for the year 2018 to estimate Korea's current cancer burden. Cancer incidence data from 1999 to 2015 were obtained from the Korea National Cancer Incidence Database, and cancer mortality data from 1993 to 2016 were acquired from Statistics Korea. Cancer incidence and mortality were projected by fitting a linear regression model to observed age-specific cancer rates against observed years, then multiplying the projected age-specific rates by the age-specific population. The Joinpoint regression model was used to determine at which year the linear trend changed significantly, we only used the data of the latest trend. A total of 204,909 new cancer cases and 82,155 cancer deaths are expected to occur in Korea in 2018. The most common cancer sites were lung, followed by stomach, colorectal, breast and liver. These five cancers represent half of the overall burden of cancer in Korea. For mortality, the most common sites were lung cancer, followed by liver, colorectal, stomach and pancreas. The incidence rate of all cancer in Korea are estimated to decrease gradually, mainly due to decrease of thyroid cancer. These up-to-date estimates of the cancer burden in Korea could be an important resource for planning and evaluation of cancer-control programs.
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications
Austin, Peter C.
2017-01-01
Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954
A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.
Austin, Peter C
2017-08-01
Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).
1974-01-01
REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans
Element enrichment factor calculation using grain-size distribution and functional data regression.
Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R
2015-01-01
In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
Health-related quality of life of Spanish children with cystic fibrosis.
Groeneveld, Iris F; Sosa, Elena S; Pérez, Margarita; Fiuza-Luces, Carmen; Gonzalez-Saiz, Laura; Gallardo, Cristian; López-Mojares, Luis M; Ruiz, Jonatan R; Lucia, Alejandro
2012-12-01
To investigate (1) the contributions of sex, age, nutritional status- and physical-fitness-related variables on health-related quality of life (HRQOL) in Spanish children with cystic fibrosis, and (2) the agreement on HRQOL between children and their parents. In 28 children aged 6-17 years, body mass index percentile, percentage body fat, physical activity, pulmonary function, cardiorespiratory fitness, functional mobility, and dynamic muscle strength were determined using objective measures. HRQOL was measured using the revised version of the cystic fibrosis questionnaire. Simple and multiple linear regression analyses were performed to determine the variables associated with HRQOL. To assess the agreement on HRQOL between children and parents, intra-class correlation coefficients (ICCs) were calculated. Girls reported worse emotional functioning, a higher treatment burden, and more respiratory problems than boys. Greater functional mobility appeared associated with a less favourable body image and more eating disturbances. Agreement on HRQOL between children and parents was good to excellent, except for the domain of treatment burden. Sex and age were stronger predictors of HRQOL than nutritional status- or physical-fitness-related variables. Children reported a lower treatment burden than their parents perceived them to have.
Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.
Maldonado, G; Greenland, S
1998-07-01
A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.
Surface complexation modeling of zinc sorption onto ferrihydrite.
Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L
2004-02-01
A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength dependence of sorption. The results of this research and previous work with Pb(II) indicate that the existing thermodynamic framework for the modified TLM is able to reproduce the metal sorption data only over a limited range of conditions. For this reason, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the TLM.
Kumar, K Vasanth
2006-08-21
The experimental equilibrium data of malachite green onto activated carbon were fitted to the Freundlich, Langmuir and Redlich-Peterson isotherms by linear and non-linear method. A comparison between linear and non-linear of estimating the isotherm parameters was discussed. The four different linearized form of Langmuir isotherm were also discussed. The results confirmed that the non-linear method as a better way to obtain isotherm parameters. The best fitting isotherm was Langmuir and Redlich-Peterson isotherm. Redlich-Peterson is a special case of Langmuir when the Redlich-Peterson isotherm constant g was unity.
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
NASA Astrophysics Data System (ADS)
Geszke-Moritz, Małgorzata; Moritz, Michał
2016-04-01
Four mesoporous siliceous materials such as SBA-16, SBA-15, PHTS and MCF functionalized with (3-aminopropyl)triethoxysilane were successfully prepared and applied as the carriers for poorly water-soluble drug diflunisal. Several techniques including nitrogen sorption analysis, XRD, TEM, FTIR and thermogravimetric analysis were employed to characterize mesoporous matrices. Adsorption isotherms were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. In order to find the best-fit isotherm for each model, both linear and nonlinear regressions were carried out. The equilibrium data were best fitted by the Langmuir isotherm model revealing maximum adsorption capacity of 217.4 mg/g for aminopropyl group-modified SBA-15. The negative values of Gibbs free energy change indicated that the adsorption of diflunisal is a spontaneous process. Weibull release model was employed to describe the dissolution profile of diflunisal. At pH 4.5 all prepared mesoporous matrices exhibited the improvement of drug dissolution kinetics as compared to the dissolution rate of pure diflunisal.
Zhai, Chun-Hui; Xuan, Jian-Bang; Fan, Hai-Liu; Zhao, Teng-Fei; Jiang, Jian-Lan
2018-05-03
In order to make a further optimization of process design via increasing the stability of design space, we brought in the model of Support Vector Regression (SVR). In this work, the extraction of podophyllotoxin was researched as a case study based on Quality by Design (QbD). We compared the fitting effect of SVR and the most used quadratic polynomial model (QPM) in QbD, and an analysis was made between the two design spaces obtained by SVR and QPM. As a result, the SVR stayed ahead of QPM in prediction accuracy, the stability of model and the generalization ability. The introduction of SVR into QbD made the extraction process of podophyllotoxin well designed and easier to control. The better fitting effect of SVR improved the application effect of QbD and the universal applicability of SVR, especially for non-linear, complicated and weak-regularity problems, widened the application field of QbD.
Multivariate meta-analysis using individual participant data
Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.
2016-01-01
When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484
Narazaki, Kenji; Matsuo, Eri; Honda, Takanori; Nofuji, Yu; Yonemoto, Koji; Kumagai, Shuzo
2014-09-01
Detecting signs of cognitive impairment as early as possible is one of the most urgent challenges in preventive care of dementia. It has still been unclear whether physical fitness measures can serve as markers of low cognitive function, a sign of cognitive impairment, in older people free from dementia. The aim of the present study was to examine an association between each of five physical fitness measures and global cognition in Japanese community-dwelling older adults without apparent cognitive problems. The baseline research of the Sasaguri Genkimon Study was conducted from May to August 2011 in Sasaguri town, Fukuoka, Japan. Of the 2,629 baseline subjects who were aged 65 years or older and not certified as individuals requiring nursing care by the town, 1,552 participants without apparent cognitive problems (Mini-Mental State Examination score ≥24) were involved in the present study (59.0% of the baseline subjects, median age: 72 years, men: 40.1%). Global cognitive function was measured by the Japanese version of the Montreal Cognitive Assessment. Handgrip strength, leg strength, sit-to-stand rate, gait speed, and one-leg stand time were examined as physical fitness measures. In multiple linear regression analyses, each of the five physical fitness measures was positively associated with the Montreal Cognitive Assessment score after adjusting for age and sex (p < 0.001). These associations were preserved after additional adjustment for years of formal education, body mass index, and other confounding factors (p < 0.001). The present study first demonstrated the associations between multiple aspects of physical fitness and global cognitive function in Japanese community-dwelling older people without apparent cognitive problems. These results suggest that each of the physical fitness measures has a potential as a single marker of low cognitive function in older populations free from dementia and thereby can be useful in community-based preventive care of dementia. Key pointsThere is a great need for identifying lifestyle-related markers which help detect subtle cognitive impairment in the preclinical or earlier phase of dementia.In the present study, each of the five physical fitness measures employed was linearly and positively associated with the Montreal Cognitive Assessment score in the present older adults without apparent cognitive problems, after adjusting for age, sex, education, body mass index, and other confounding factors.The results suggest the potential of each physical fitness measure as a single lifestyle-related marker of low cognitive function in the population, which can be useful in community-based preventive care of dementia.
Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis
NASA Technical Reports Server (NTRS)
Chappelli, Lori J.; Cucinotta, Francis A.
2010-01-01
BACKGROUND: There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies. DOSE RESPONSE MODELS: The Harderian Gland data of Alpen et al.[1-3] was re-analyzed [4] using non-linear least square regression. The data set measured the induction of Harderian gland tumors in mice by high-energy protons, helium, neon, iron, niobium and lanthanum with LET s ranging from 0.4 to 950 keV/micron. We were able to strengthen the individual ion models by combining data for all ions into a model that relates both radiation dose and LET for the ion to tumor prevalence. We compared models based on Targeted Effects (TE) to one motivated by Non-targeted Effects (NTE) that included a bystander term that increased tumor induction at low doses non-linearly. When comparing fitted models to the experimental data, we considered the adjusted R2, the Akaike Information Criteria (AIC), and the Bayesian Information Criteria (BIC) to test for Goodness of fit.In the adjusted R2test, the model with the highest R2values provides a better fit to the available data. In the AIC and BIC tests, the model with the smaller values of the summary value provides the better fit. The non-linear NTE models fit the combined data better than the TE models that are linear at low doses. We evaluated the differences in the relative biological effectiveness (RBE) and found the NTE model provides a higher RBE at low dose compared to the TE model. POWER ANALYSIS: The final NTE model estimates were used to simulate example data to consider the design of new experiments to detect NTE at low dose for validation. Power and sample sizes were calculated for a variety of radiation qualities including some not considered in the Harderian Gland data set and with different background tumor incidences. We considered different experimental designs with varying number of doses and varying low doses dependant on the LET of the radiation. The optimal design to detect a NTE for an individual ion had 4 doses equally spaced below a maximal dose where bending due to cell sterilization was < 2%. For example at 100 keV/micron we would irradiate at 0.03 Gy, 0.065 Gy, 0.13 Gy, and 0.26 Gy and require 850 mice including a control dose for a sensitivity to detect NTE with 80% power. Sample sizes could be improved by combining ions similar to the methods used with the Harderian Gland data.
Developing a dengue forecast model using machine learning: A case study in China
Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun
2017-01-01
Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169
Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.
Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam
2017-11-01
The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S
2017-10-01
Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.
Zaqout, Mahmoud; Vandekerckhove, Kristof; Michels, Nathalie; Bove, Thierry; François, Katrien; De Wolf, Daniel
2017-12-01
To determine whether children who underwent surgery for congenital heart disease (CHD) are as fit as their peers. We studied 66 children (6-14 years) who underwent surgery for ventricular septal defect (n = 19), coarctation of aorta (n = 10), tetralogy of Fallot (n = 15), and transposition of great arteries (n = 22); and 520 healthy children (6-12 years). All children performed physical fitness tests: cardiorespiratory fitness, muscular strength, balance, flexibility, and speed. Metabolic score was assessed through z-score standardization using 4 components: waist circumference, blood pressure, blood lipids, and insulin resistance. Assessment also included self-reported and accelerometer-measured physical activity. Linear regression analyses with group (CHD vs control) as a predictor were adjusted for age, body mass index, physical activity, and parental education. Measured physical activity level, body mass index, cardiorespiratory fitness, flexibility, and total metabolic score did not differ between children with CHD and controls, whereas reported physical activity was greater in the CHD group than control group. Boys with CHD were less strong in upper muscular strength, speed, and balance, whereas girls with CHD were better in lower muscular strength and worse in balance. High-density lipoprotein was greater in boys and girls with CHD, whereas boys with CHD showed unhealthier glucose homeostasis. Appropriate physical fitness was achieved in children after surgery for CHD, especially in girls. Consequently, children with CHD were not at increased total metabolic risk. Lifestyle counseling should be part of every patient interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Cardiovascular fitness is associated with cognition in young adulthood.
Aberg, Maria A I; Pedersen, Nancy L; Torén, Kjell; Svartengren, Magnus; Bäckstrand, Björn; Johnsson, Tommy; Cooper-Kuhn, Christiana M; Aberg, N David; Nilsson, Michael; Kuhn, H Georg
2009-12-08
During early adulthood, a phase in which the central nervous system displays considerable plasticity and in which important cognitive traits are shaped, the effects of exercise on cognition remain poorly understood. We performed a cohort study of all Swedish men born in 1950 through 1976 who were enlisted for military service at age 18 (N = 1,221,727). Of these, 268,496 were full-sibling pairs, 3,147 twin pairs, and 1,432 monozygotic twin pairs. Physical fitness and intelligence performance data were collected during conscription examinations and linked with other national databases for information on school achievement, socioeconomic status, and sibship. Relationships between cardiovascular fitness and intelligence at age 18 were evaluated by linear models in the total cohort and in subgroups of full-sibling pairs and twin pairs. Cardiovascular fitness, as measured by ergometer cycling, positively associated with intelligence after adjusting for relevant confounders (regression coefficient b = 0.172; 95% CI, 0.168-0.176). Similar results were obtained within monozygotic twin pairs. In contrast, muscle strength was not associated with cognitive performance. Cross-twin cross-trait analyses showed that the associations were primarily explained by individual specific, non-shared environmental influences (> or = 80%), whereas heritability explained < 15% of covariation. Cardiovascular fitness changes between age 15 and 18 y predicted cognitive performance at 18 y. Cox proportional-hazards models showed that cardiovascular fitness at age 18 y predicted educational achievements later in life. These data substantiate that physical exercise could be an important instrument for public health initiatives to optimize educational achievements, cognitive performance, as well as disease prevention at the society level.
Arango, Carlos M; Parra, Diana C; Gómez, Luis F; Lema, Lucía; Lobelo, Felipe; Ekelund, Ulf
2014-09-01
To explore the association between electronic media exposure (television viewing time, personal computer/video game use, total screen time), and waist circumference and body mass index, and study whether this association is independent of cardiorespiratory fitness, in a representative sample of adolescents from Montería, Colombia. Cross-sectional study analyzing data from 546 students aged 11-18 years, from fourteen randomly selected schools. Z-scores for WC and BMI were calculated. The physical activity module of the Global School Health Survey 2007 was used to determine EME, and the shuttle run test was used to assess CRF. Linear regression models adjusted by age, school location, physical activity level, type of institution (public or private), consumption of sweetened beverages, fast food, and fried food were used. Among boys, independently of cardiorespiratory fitness, high television viewing time (≥ 2 h/day) (β=+0.22; p<0.02), was positively associated with waist circumference. High total screen time (>3h/day) was positively associated with waist circumference (β=+0.34; p<0.01), and body mass index (β=+0.39; p<0.01). Among girls, sedentary behavior was not associated with adiposity, but cardiorespiratory fitness (β=-0.04; p<0.02) was negatively associated with body mass index. These findings support the evidence on the negative impact of excessive electronic media exposure and low cardiorespiratory fitness, and highlight the need for interventions and prevention strategies. Copyright © 2013 Sports Medicine Australia. All rights reserved.
Maas, Iris L; Nolte, Sandra; Walter, Otto B; Berger, Thomas; Hautzinger, Martin; Hohagen, Fritz; Lutz, Wolfgang; Meyer, Björn; Schröder, Johanna; Späth, Christina; Klein, Jan Philipp; Moritz, Steffen; Rose, Matthias
2017-02-01
To compare treatment effect estimates obtained from a regression discontinuity (RD) design with results from an actual randomized controlled trial (RCT). Data from an RCT (EVIDENT), which studied the effect of an Internet intervention on depressive symptoms measured with the Patient Health Questionnaire (PHQ-9), were used to perform an RD analysis, in which treatment allocation was determined by a cutoff value at baseline (PHQ-9 = 10). A linear regression model was fitted to the data, selecting participants above the cutoff who had received the intervention (n = 317) and control participants below the cutoff (n = 187). Outcome was PHQ-9 sum score 12 weeks after baseline. Robustness of the effect estimate was studied; the estimate was compared with the RCT treatment effect. The final regression model showed a regression coefficient of -2.29 [95% confidence interval (CI): -3.72 to -.85] compared with a treatment effect found in the RCT of -1.57 (95% CI: -2.07 to -1.07). Although the estimates obtained from two designs are not equal, their confidence intervals overlap, suggesting that an RD design can be a valid alternative for RCTs. This finding is particularly important for situations where an RCT may not be feasible or ethical as is often the case in clinical research settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Barclay, Kieron; Myrskylä, Mikko
2014-12-01
Physical fitness at young adult ages is an important determinant of physical health, cognitive ability, and mortality. However, few studies have addressed the relationship between early life conditions and physical fitness in adulthood. An important potential factor influencing physical fitness is birth order, which prior studies associate with several early- and later-life outcomes such as height and mortality. This is the first study to analyse the association between birth order and physical fitness in late adolescence. We use military conscription data on 218,873 Swedish males born between 1965 and 1977. Physical fitness is measured by a test of maximal working capacity, a measure of cardiovascular fitness closely related to V02max. We use linear regression with sibling fixed effects, meaning a within-family comparison, to eliminate the confounding influence of unobserved factors that vary between siblings. To understand the mechanism we further analyse whether the association between birth order and physical fitness varies by sibship size, parental socioeconomic status, birth cohort or length of the birth interval. We find a strong, negative and monotonic relationship between birth order and physical fitness. For example, third-born children have a maximal working capacity approximately 0.1 (p < 0.000) standard deviations lower than first-born children. The association exists both in small (3 or less children) and large families (4 or more children), in high and low socioeconomic status families, and amongst cohorts born in the 1960s and the 1970s. While in the whole population the birth order effect does not depend on the length of the birth intervals, in two-child families a longer birth interval strengthens the advantage of the first-born. Our results illustrate the importance of birth order for physical fitness, and suggest that the first-born advantage already arises in late adolescence. Copyright © 2014 Elsevier Ltd. All rights reserved.
Longitudinal Physical Activity, Body Composition, and Physical Fitness in Preschoolers.
Leppänen, Marja H; Henriksson, Pontus; Delisle Nyström, Christine; Henriksson, Hanna; Ortega, Francisco B; Pomeroy, Jeremy; Ruiz, Jonatan R; Cadenas-Sanchez, Cristina; Löf, Marie
2017-10-01
This study aimed to investigate longitudinal associations of objectively measured physical activity (PA) and sedentary behavior (SB) with body composition and physical fitness at a 12-month follow-up in healthy Swedish 4-yr-old children. The data from the population-based MINISTOP trial were collected between 2014 and 2016, and this study included the 138 children who were in the control group. PA and SB were assessed using the wrist-worn ActiGraph (wGT3x-BT) accelerometer during seven 24-h periods and, subsequently, defined as SB, light-intensity PA, moderate-intensity PA, vigorous-intensity PA (VPA), and moderate-to-vigorous PA (MVPA). Body composition was measured using air-displacement plethysmography and physical fitness (cardiorespiratory fitness, lower and upper muscular strength as well as motor fitness) by the PREFIT fitness battery. Linear regression and isotemporal substitution models were applied. Greater VPA and MVPA at the age of 4.5 yr were associated with higher fat-free mass index (FFMI) at 5.5 yr (P < 0.001 and P = 0.044, respectively). Furthermore, greater VPA and MVPA at the age of 4.5 yr were associated with higher scores for cardiorespiratory fitness, lower body muscular strength, and motor fitness at 12-month follow-up (P = 0.001 to P = 0.031). Substituting 5 min·d of SB, light-intensity PA, or moderate-intensity PA for VPA at the age of 4.5 yr were associated with higher FFMI, and with greater upper and lower muscular strength at 12-month follow-up (P < 0.001 to P = 0.046). Higher VPA and MVPA at the age of 4.5 yr were significantly associated with higher FFMI and better physical fitness at 12-month follow-up. Our results indicate that promoting high-intensity PA at young ages may have long-term beneficial effects on childhood body composition and physical fitness, in particular muscular strength.
Plasma myelin basic protein assay using Gilford enzyme immunoassay cuvettes.
Groome, N P
1981-10-01
The assay of myelin basic protein in body fluids has potential clinical importance as a routine indicator of demyelination. Preliminary details of a competitive enzyme immunoassay for this protein have previously been published by the author (Groome, N. P. (1980) J. Neurochem. 35, 1409-1417). The present paper now describes the adaptation of this assay for use on human plasma and various aspects of routine data processing. A commercially available cuvette system was found to have advantages over microtitre plates but required a permuted arrangement of sample replicates for consistent results. For dose interpolation, the standard curve could be fitted to a three parameter non-linear equation by regression analysis or linearised by the logit/log transformation.
Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei
2015-05-19
To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Loprinzi, Paul D; Cardinal, Bradley J; Cardinal, Marita K; Corbin, Charles B
2018-03-01
The purpose of this study was to examine the associations between physical education (PE) and sports involvement with physical activity (PA), physical fitness, and beliefs about PA among a national sample of adolescents. Data from the National Health and Nutrition Examination Survey National Youth Fitness Survey were used. A total of 459 adolescents aged 12 to 15 years. Adolescents self-reported engagement in the above parameters; muscular fitness objectively determined. Multivariable linear regression. Adolescents who had PE during school days had a higher enjoyment of participating in PE (β = 0.32; P = .01), engaged in more days of being physically active for ≥60 min/d (β = 1.02; P < .001), and performed the plank fitness test longer (β = 17.2; P = .002). Adolescents who played school sports reported that more PA was needed for good health (β = 0.23; P = .04), had a higher enjoyment of participating in PE (β = 0.31; P = .003), engaged in more days of being physically active for ≥60 min/d (β = 0.70; P = .01), performed more pull-ups (β = 2.33; P = .008), had a stronger grip strength (β = 2.5; P = .01), and performed the plank fitness test longer (β = 11.6; P = .04). Adolescents who had PE during school, who had more frequent and long-lasting PE, and who played school sports generally had more accurate perceptions of the amount of PA needed for good health, had greater enjoyment of PE, were more physically active, and performed better on several muscular fitness-related tests. This underscores the importance of PE integration in the schools and encouragement of school sports participation.
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Developing GIS-based eastern equine encephalitis vector-host models in Tuskegee, Alabama.
Jacob, Benjamin G; Burkett-Cadena, Nathan D; Luvall, Jeffrey C; Parcak, Sarah H; McClure, Christopher J W; Estep, Laura K; Hill, Geoffrey E; Cupp, Eddie W; Novak, Robert J; Unnasch, Thomas R
2010-02-24
A site near Tuskegee, Alabama was examined for vector-host activities of eastern equine encephalomyelitis virus (EEEV). Land cover maps of the study site were created in ArcInfo 9.2 from QuickBird data encompassing visible and near-infrared (NIR) band information (0.45 to 0.72 microm) acquired July 15, 2008. Georeferenced mosquito and bird sampling sites, and their associated land cover attributes from the study site, were overlaid onto the satellite data. SAS 9.1.4 was used to explore univariate statistics and to generate regression models using the field and remote-sampled mosquito and bird data. Regression models indicated that Culex erracticus and Northern Cardinals were the most abundant mosquito and bird species, respectively. Spatial linear prediction models were then generated in Geostatistical Analyst Extension of ArcGIS 9.2. Additionally, a model of the study site was generated, based on a Digital Elevation Model (DEM), using ArcScene extension of ArcGIS 9.2. For total mosquito count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.041 km, nugget of 6.325 km, lag size of 7.076 km, and range of 31.43 km, using 12 lags. For total adult Cx. erracticus count, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 5.764 km, nugget of 6.114 km, lag size of 7.472 km, and range of 32.62 km, using 12 lags. For the total bird count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 4.998 km, nugget of 5.413 km, lag size of 7.549 km and range of 35.27 km, using 12 lags. For the Northern Cardinal count data, a first-order trend ordinary kriging process was fitted to the semivariogram at a partial sill of 6.387 km, nugget of 5.935 km, lag size of 8.549 km and a range of 41.38 km, using 12 lags. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled mosquito data and elevation (R2 = -.4262; p < .0001), with a standard deviation (SD) of 10.46, and total sampled bird data and elevation (R2 = -.5111; p < .0001), with a SD of 22.97. DEM statistics also indicated a significant inverse linear relationship between total sampled Cx. erracticus data and elevation (R2 = -.4711; p < .0001), with a SD of 11.16, and the total sampled Northern Cardinal data and elevation (R2 = -.5831; p < .0001), SD of 11.42. These data demonstrate that GIS/remote sensing models and spatial statistics can capture space-varying functional relationships between field-sampled mosquito and bird parameters for determining risk for EEEV transmission.
Krause, Kathleen H.
2015-01-01
Objective To provide the first study in Vietnam of how gendered social learning about violence and exposure to non-family institutions influence women’s attitudes about a wife’s recourse after physical IPV. Method A probability sample of 532 married women, ages 18–50 years, was surveyed in July–August, 2012 in Mỹ Hào district. We fit a multivariate linear regression model to estimate correlates of favoring recourse in six situations using a validated attitudinal scale. We split attitudes towards recourse into three subscales (disfavor silence, favor informal recourse, favor formal recourse) and fit one multivariate ordinal logistic regression model for each behavior to estimate correlates of favoring recourse. Results On average, women favored recourse in 2.8 situations. Women who were older and had witnessed physical IPV in childhood had less favorable attitudes about recourse. Women who were hit as children, had completed more schooling, worked outside agriculture, and had sought recourse after IPV had more favorable attitudes about recourse. Conclusions Normative change among women may require efforts to curb family violence, counsel those exposed to violence in childhood, and enhance women’s opportunities for higher schooling and non-agricultural wage work. The state and organizations working on IPV might overcome pockets of unfavorable public opinion by enforcing accountability for IPV rather than seeking to alter ideas about recourse among women. PMID:28392967
A simple approach to lifetime learning in genetic programming-based symbolic regression.
Azad, Raja Muhammad Atif; Ryan, Conor
2014-01-01
Genetic programming (GP) coarsely models natural evolution to evolve computer programs. Unlike in nature, where individuals can often improve their fitness through lifetime experience, the fitness of GP individuals generally does not change during their lifetime, and there is usually no opportunity to pass on acquired knowledge. This paper introduces the Chameleon system to address this discrepancy and augment GP with lifetime learning by adding a simple local search that operates by tuning the internal nodes of individuals. Although not the first attempt to combine local search with GP, its simplicity means that it is easy to understand and cheap to implement. A simple cache is added which leverages the local search to reduce the tuning cost to a small fraction of the expected cost, and we provide a theoretical upper limit on the maximum tuning expense given the average tree size of the population and show that this limit grows very conservatively as the average tree size of the population increases. We show that Chameleon uses available genetic material more efficiently by exploring more actively than with standard GP, and demonstrate that not only does Chameleon outperform standard GP (on both training and test data) over a number of symbolic regression type problems, it does so by producing smaller individuals and it works harmoniously with two other well-known extensions to GP, namely, linear scaling and a diversity-promoting tournament selection method.
NASA Astrophysics Data System (ADS)
Yeung, Yau Yuen; Tanner, Peter A.
2013-12-01
The experimental free ion 4f2 energy level data sets comprising 12 or 13 J-multiplets of La+, Ce2+, Pr3+ and Nd4+ have been fitted by a semiempirical atomic Hamiltonian comprising 8, 10, or 12 freely-varying parameters. The root mean square errors were 16.1, 1.3, 0.3 and 0.3 cm-1, respectively for fits with 10 parameters. The fitted inter-electronic repulsion and magnetic parameters vary linearly with ionic charge, i, but better linear fits are obtained with (4-i)2, although the reason is unclear at present. The two-body configuration interaction parameters α and β exhibit a linear relation with [ΔE(bc)]-1, where ΔE(bc) is the energy difference between the 4f2 barycentre and that of the interacting configuration, namely 4f6p for La+, Ce2+, and Pr3+, and 5p54f3 for Nd4+. The linear fit provides the rationale for the negative value of α for the case of La+, where the interacting configuration is located below 4f2.
Morse Code, Scrabble, and the Alphabet
ERIC Educational Resources Information Center
Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss
2004-01-01
In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…
Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.
2015-01-01
Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235
A decline in the prevalence of injecting drug users in Estonia, 2005–2009
Uusküla, A; Rajaleid, K; Talu, A; Abel-Ollo, K; Des Jarlais, DC
2013-01-01
Aims and setting Descriptions of behavioural epidemics have received little attention compared with infectious disease epidemics in Eastern Europe. Here we report a study aimed at estimating trends in the prevalence of injection drug use between 2005 and 2009 in Estonia. Design and methods The number of injection drug users (IDUs) aged 15–44 each year between 2005 and 2009 was estimated using capture-recapture methodology based on 4 data sources (2 treatment data bases: drug abuse and non-fatal overdose treatment; criminal justice (drug related offences) and mortality (injection drug use related deaths) data). Poisson log-linear regression models were applied to the matched data, with interactions between data sources fitted to replicate the dependencies between the data sources. Linear regression was used to estimate average change over time. Findings there were 24305, 12292, 238, 545 records and 8100, 1655, 155, 545 individual IDUs identified in the four capture sources (Police, drug treatment, overdose, and death registry, accordingly) over the period 2005 – 2009. The estimated prevalence of IDUs among the population aged 15–44 declined from 2.7% (1.8–7.9%) in 2005 to 2.0% (1.4–5.0%) in 2008, and 0.9% (0.7–1.7%) in 2009. Regression analysis indicated an average reduction of over 1700 injectors per year. Conclusion While the capture-recapture method has known limitations, the results are consistent with other data from Estonia. Identifying the drivers of change in the prevalence of injection drug use warrants further research. PMID:23290632
NASA Astrophysics Data System (ADS)
Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd
2017-08-01
The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.
Cardiorespiratory fitness and future risk of pneumonia: a long-term prospective cohort study.
Kunutsor, Setor K; Laukkanen, Tanjaniina; Laukkanen, Jari A
2017-09-01
We aimed to assess the prospective association of cardiorespiratory fitness (CRF) with the risk of pneumonia. Cardiorespiratory fitness, as measured by maximal oxygen uptake, was assessed using a respiratory gas exchange analyzer in 2244 middle-aged men in the Kuopio Ischemic Heart Disease cohort. We corrected for within-person variability in CRF levels using data from repeat measurements taken several years apart. During a median follow-up of 25.8 years, 369 men received a hospital diagnosis of pneumonia. The age-adjusted regression dilution ratio of CRF was 0.58 (95% confidence interval: 0.53-0.63). Cardiorespiratory fitness was linearly associated with pneumonia risk. The hazard ratio (95% confidence interval) for pneumonia per 1 standard deviation increase in CRF in analysis adjusted for several risk factors for pneumonia was 0.77 (0.68-0.87). The association remained consistent on additional adjustment for total energy intake, socioeconomic status, physical activity, and C-reactive protein 0.82 (0.72-0.94). The corresponding adjusted hazard ratios (95% confidence intervals) were 0.58 (0.41-0.80) and 0.67 (0.48-0.95) respectively, when comparing the extreme quartiles of CRF levels. Our findings indicate a graded inverse and independent association between CRF and the future risk of pneumonia in a general male population. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernandes, Amanda Paula; Andrade, Amanda Cristina de Souza; Ramos, Cynthia Graciane Carvalho; Friche, Amélia Augusta de Lima; Dias, Maria Angélica de Salles; Xavier, César Coelho; Proietti, Fernando Augusto; Caiaffa, Waleska Teixeira
2015-11-01
This study analyzed leisure-time physical activity among 1,621 adults who were non-users of the Academias da Cidade Program in Belo Horizonte, Minas Gerais State, Brazil, but who lived in the vicinity of a fitness center in operation (exposed Group I) or in the vicinity of two sites reserved for future installation of centers (control Groups II and III). The dependent variable was leisure-time physical activity, and linear distance from the households to the fitness centers was the exposure variable, categorized in radial buffers: < 500m; 500-1,000m; and 1,000-1,500m. Binary logistic regression was performed with the Generalized Estimation Equations method. Residents living within < 500m of the fitness center gave better ratings to the physical environment when compared to those living in the 1,000 and 1,500m buffers and showed higher odds of leisure-time physical activity (OR = 1.16; 95%CI: 1.03-1.30), independently of socio-demographic factors; the same was not observed in the control groups (II and III). The findings suggests the program's potential for influencing physical activity in the population living closer to the fitness center and thus provide a strategic alternative for mitigating inequalities in leisure-time physical activity.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Kinetics of mineralization of organic compounds at low concentrations in soil.
Scow, K M; Simkins, S; Alexander, M
1986-01-01
The kinetics of mineralization of 14C-labeled phenol and aniline were measured at initial concentrations ranging from 0.32 to 5,000 ng and 0.30 ng to 500 micrograms/g of soil, respectively. Mineralization of phenol at concentrations less than or equal to 32 ng/g of soil and of aniline at all concentrations began immediately, and the curves for the evolution of labeled CO2 were biphasic. The patterns of mineralization of 4.0 ng of 2,4-dichlorophenol per g of soil and 20 ng of nitrilotriacetic acid per g of soil were similar to the patterns for phenol and aniline. The patterns of mineralization of 1.0 to 100 ng of p-nitrophenol and 6.0 ng of benzylamine per g of soil were also biphasic but after a short apparent lag period. The curves of CO2 evolution from higher concentrations of phenol and p-nitrophenol had increasing apparent lag phases and were S-shaped or linear. Cumulative plots of the percentage of substrate converted to CO2 were fit by nonlinear regression to first-order, integrated Monod, logistic, logarithmic, zero-order, three-half-order, and two-compartment models. None of the models of the Monod family provided the curve of best fit to any of the patterns of mineralization. The linear growth form of the three-half-order model provided the best fit for the mineralization of p-nitrophenol, with the exception of the lowest concentrations, and of benzylamine. The two-compartment model provided the best fit for the mineralization of concentrations of phenol below 100 ng/g, of several concentrations of aniline, and of nitrilotriacetic acid. It is concluded that models derived from the Monod equation, including the first-order model, do not adequately describe the kinetics of mineralization of low concentrations of chemicals added to soil. PMID:3729388
Bishai, David; Opuni, Marjorie
2009-01-01
Background Time trends in infant mortality for the 20th century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20th century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP) per capita. We apply the Box Cox transform to infant mortality rate (IMR) time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model) and against the null that λ = 1 (linear model). We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR) on same year GDP per capita against Box Cox transformed models. Results Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log transform. PMID:19698144
Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G
2012-04-01
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Tsuyuki, Kiyomi; Surratt, Hilary L
2015-05-01
Antiretroviral (ARV) medication diversion to the illicit market has been documented in South Florida, and linked to sub-optimal adherence in people living with HIV. ARV diversion reflects an unmet need for care in vulnerable populations that have difficulty engaging in consistent HIV care due to competing needs and co-morbidities. This study applies the Gelberg-Andersen behavioral model of health care utilization for vulnerable populations to understand how social vulnerability is linked to ARV diversion and adherence. Cross-sectional data were collected from a targeted sample of vulnerable people living with HIV in South Florida between 2010 and 2012 (n = 503). Structured interviews collected quantitative data on ARV diversion, access and utilization of care, and ARV adherence. Logistic regression was used to estimate the goodness-of-fit of additive models that test domain fit. Linear regression was used to estimate the effects of social vulnerability and ARV diversion on ARV adherence. The best fitting model to predict ARV diversion identifies having a low monthly income and unstable HIV care as salient enabling factors that promote ARV diversion. Importantly, health care need factors did not protect against ARV diversion, evidence that immediate competing needs are prioritized even in the face of poor health for this sample. We also find that ARV diversion provides a link between social vulnerability and sub-optimal ARV adherence, with ARV diversion and domains from the Behavioral Model explaining 25 % of the variation in ARV adherence. Our analyses reveal great need to improve engagement in HIV care for vulnerable populations by strengthening enabling factors (e.g. patient-provider relationship) to improve retention in HIV care and ARV adherence for vulnerable populations.
Zhao, Desheng; Wang, Lulu; Cheng, Jian; Xu, Jun; Xu, Zhiwei; Xie, Mingyu; Yang, Huihui; Li, Kesheng; Wen, Lingying; Wang, Xu; Zhang, Heng; Wang, Shusi; Su, Hong
2017-03-01
Hand, foot, and mouth disease (HFMD) is one of the most common communicable diseases in China, and current climate change had been recognized as a significant contributor. Nevertheless, no reliable models have been put forward to predict the dynamics of HFMD cases based on short-term weather variations. The present study aimed to examine the association between weather factors and HFMD, and to explore the accuracy of seasonal auto-regressive integrated moving average (SARIMA) model with local weather conditions in forecasting HFMD. Weather and HFMD data from 2009 to 2014 in Huainan, China, were used. Poisson regression model combined with a distributed lag non-linear model (DLNM) was applied to examine the relationship between weather factors and HFMD. The forecasting model for HFMD was performed by using the SARIMA model. The results showed that temperature rise was significantly associated with an elevated risk of HFMD. Yet, no correlations between relative humidity, barometric pressure and rainfall, and HFMD were observed. SARIMA models with temperature variable fitted HFMD data better than the model without it (sR 2 increased, while the BIC decreased), and the SARIMA (0, 1, 1)(0, 1, 0) 52 offered the best fit for HFMD data. In addition, compared with females and nursery children, males and scattered children may be more suitable for using SARIMA model to predict the number of HFMD cases and it has high precision. In conclusion, high temperature could increase the risk of contracting HFMD. SARIMA model with temperature variable can effectively improve its forecast accuracy, which can provide valuable information for the policy makers and public health to construct a best-fitting model and optimize HFMD prevention.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.
Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A
2013-11-01
To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions
Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.
2013-01-01
Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441
NASA Astrophysics Data System (ADS)
Zhao, Desheng; Wang, Lulu; Cheng, Jian; Xu, Jun; Xu, Zhiwei; Xie, Mingyu; Yang, Huihui; Li, Kesheng; Wen, Lingying; Wang, Xu; Zhang, Heng; Wang, Shusi; Su, Hong
2017-03-01
Hand, foot, and mouth disease (HFMD) is one of the most common communicable diseases in China, and current climate change had been recognized as a significant contributor. Nevertheless, no reliable models have been put forward to predict the dynamics of HFMD cases based on short-term weather variations. The present study aimed to examine the association between weather factors and HFMD, and to explore the accuracy of seasonal auto-regressive integrated moving average (SARIMA) model with local weather conditions in forecasting HFMD. Weather and HFMD data from 2009 to 2014 in Huainan, China, were used. Poisson regression model combined with a distributed lag non-linear model (DLNM) was applied to examine the relationship between weather factors and HFMD. The forecasting model for HFMD was performed by using the SARIMA model. The results showed that temperature rise was significantly associated with an elevated risk of HFMD. Yet, no correlations between relative humidity, barometric pressure and rainfall, and HFMD were observed. SARIMA models with temperature variable fitted HFMD data better than the model without it (s R 2 increased, while the BIC decreased), and the SARIMA (0, 1, 1)(0, 1, 0)52 offered the best fit for HFMD data. In addition, compared with females and nursery children, males and scattered children may be more suitable for using SARIMA model to predict the number of HFMD cases and it has high precision. In conclusion, high temperature could increase the risk of contracting HFMD. SARIMA model with temperature variable can effectively improve its forecast accuracy, which can provide valuable information for the policy makers and public health to construct a best-fitting model and optimize HFMD prevention.
Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan
2017-08-15
Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.
NAT2, meat consumption and colorectal cancer incidence: an ecological study among 27 countries.
Ognjanovic, Simona; Yamamoto, Jennifer; Maskarinec, Gertraud; Le Marchand, Loïc
2006-11-01
The polymorphic gene NAT2 is a major determinant of N-acetyltransferase activity and, thus, may be responsible for differences in one's ability to bioactivate heterocyclic amines, a class of procarcinogens in cooked meat. An unusually marked geographic variation in enzyme activity has been described for NAT2. The present study re-examines the international direct correlation reported for meat intake and colorectal cancer (CRC) incidence, and evaluates the potential modifying effects of NAT2 phenotype and other lifestyle factors on this correlation. Country-specific CRC incidence data, per capita consumption data for meat and other dietary factors, prevalence of the rapid/intermediate NAT2 phenotype, and prevalence of smoking for 27 countries were used. Multiple linear regression models were fit and partial correlation coefficients (PCCs) were computed for men and women separately. Inclusion of the rapid/intermediate NAT2 phenotype with meat consumption improved the fit of the regression model for CRC incidence in both sexes (males-R (2) = 0.78, compared to 0.70 for meat alone; p for difference in model fit-0.009; females-R (2) = 0.76 compared to 0.69 for meat alone; p = 0.02). Vegetable consumption (inversely and in both sexes) and fish consumption (directly and in men only) were also weakly correlated with CRC, whereas smoking prevalence and alcohol consumption had no effects on the models. The PCC between NAT2 and CRC incidence was 0.46 in males and 0.48 in females when meat consumption was included in the model, compared to 0.14 and 0.15, respectively, when it was not. These data suggest that, in combination with meat intake, some proportion of the international variability in CRC incidence may be attributable to genetic susceptibility to heterocyclic amines, as determined by NAT2 genotype.
Liao, Zhipeng; Yoda, Nobuhiro; Chen, Junning; Zheng, Keke; Sasaki, Keiichi; Swain, Michael V; Li, Qing
2017-04-01
This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Three-dimensional real-time occlusal loads during maximum voluntary clenching were measured with a piezoelectric force transducer and were incorporated into a computerized tomography-based finite element mandibular model. Virtual X-ray images were generated based on simulation and statistically correlated with clinical data using linear regressions. The strain energy density-driven remodeling parameters were regulated over the time frame considered. A linear single-stage bone remodeling algorithm, with a single set of constant remodeling parameters, was found to poorly fit with clinical data through linear regression (low [Formula: see text] and R), whereas a time-dependent multi-stage algorithm better simulated the remodeling process (high [Formula: see text] and R) against the clinical results. The three-implant-supported and distally cantilevered FPDs presented noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs showed bone resorption or no visible bone formation in some areas. Time-dependent variation of bone remodeling parameters is recommended to better correlate remodeling simulation with clinical follow-up. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodeling. Caution should be exercised when selecting the cantilever FPD due to the risk of overloading bone resorption.
Hager, S.W.; Harmon, D.D.; Alpine, A.E.
1984-01-01
Particulate nitrogen (PN) and chlorophyll a (Chla) were measured in the northern reach of San Francisco Bay throughout 1980. The PN values were calculated as the differences between unfiltered and filtered (0??4 ??m) samples analyzed using the UV-catalyzed peroxide digestion method. The Chla values were measured spectrophotometrically, with corrections made for phaeopigments. The plot of all PN Chla data was found to be non-linear, and the concentration of suspended particulate matter (SPM) was found to be the best selector for linear subsets of the data. The best-fit slopes of PN Chla plots, as determined by linear regression (model II), were interpreted to be the N: Chla ratios of phytoplankton. The Y-intercepts of the regression lines were considered to represent easily-oxidizable detrital nitrogen (EDN). In clear water ( < 10 mg l-1 SPM), the N: Chla ratio was 1??07 ??g-at N per ??g Chla. It decreased to 0??60 in the 10-18 mg l-1 range and averaged 0??31 in the remaining four ranges (18-35, 35-65, 65-155, and 155-470 mg l-1). The EDN values were less than 1 ??g-at N l-1 in the clear water and increased monotonically to almost 12 ??g-at N l-1 in the highest SPM range. The N: Chla ratios for the four highest SPM ranges agree well with data for phytoplankton in light-limited cultures. In these ranges, phytoplankton-N averaged only 20% of the PN, while EDN averaged 39% and refractory-N 41%. ?? 1984.
Candido Dos Reis, Francisco J; Wishart, Gordon C; Dicks, Ed M; Greenberg, David; Rashbass, Jem; Schmidt, Marjanka K; van den Broek, Alexandra J; Ellis, Ian O; Green, Andrew; Rakha, Emad; Maishman, Tom; Eccles, Diana M; Pharoah, Paul D P
2017-05-22
PREDICT is a breast cancer prognostic and treatment benefit model implemented online. The overall fit of the model has been good in multiple independent case series, but PREDICT has been shown to underestimate breast cancer specific mortality in women diagnosed under the age of 40. Another limitation is the use of discrete categories for tumour size and node status resulting in 'step' changes in risk estimates on moving between categories. We have refitted the PREDICT prognostic model using the original cohort of cases from East Anglia with updated survival time in order to take into account age at diagnosis and to smooth out the survival function for tumour size and node status. Multivariable Cox regression models were used to fit separate models for ER negative and ER positive disease. Continuous variables were fitted using fractional polynomials and a smoothed baseline hazard was obtained by regressing the baseline cumulative hazard for each patients against time using fractional polynomials. The fit of the prognostic models were then tested in three independent data sets that had also been used to validate the original version of PREDICT. In the model fitting data, after adjusting for other prognostic variables, there is an increase in risk of breast cancer specific mortality in younger and older patients with ER positive disease, with a substantial increase in risk for women diagnosed before the age of 35. In ER negative disease the risk increases slightly with age. The association between breast cancer specific mortality and both tumour size and number of positive nodes was non-linear with a more marked increase in risk with increasing size and increasing number of nodes in ER positive disease. The overall calibration and discrimination of the new version of PREDICT (v2) was good and comparable to that of the previous version in both model development and validation data sets. However, the calibration of v2 improved over v1 in patients diagnosed under the age of 40. The PREDICT v2 is an improved prognostication and treatment benefit model compared with v1. The online version should continue to aid clinical decision making in women with early breast cancer.
Kobayashi, Tohru; Fuse, Shigeto; Sakamoto, Naoko; Mikami, Masashi; Ogawa, Shunichi; Hamaoka, Kenji; Arakaki, Yoshio; Nakamura, Tsuneyuki; Nagasawa, Hiroyuki; Kato, Taichi; Jibiki, Toshiaki; Iwashima, Satoru; Yamakawa, Masaru; Ohkubo, Takashi; Shimoyama, Shinya; Aso, Kentaro; Sato, Seiichi; Saji, Tsutomu
2016-08-01
Several coronary artery Z score models have been developed. However, a Z score model derived by the lambda-mu-sigma (LMS) method has not been established. Echocardiographic measurements of the proximal right coronary artery, left main coronary artery, proximal left anterior descending coronary artery, and proximal left circumflex artery were prospectively collected in 3,851 healthy children ≤18 years of age and divided into developmental and validation data sets. In the developmental data set, smooth curves were fitted for each coronary artery using linear, logarithmic, square-root, and LMS methods for both sexes. The relative goodness of fit of these models was compared using the Bayesian information criterion. The best-fitting model was tested for reproducibility using the validation data set. The goodness of fit of the selected model was visually compared with that of the previously reported regression models using a Q-Q plot. Because the internal diameter of each coronary artery was not similar between sexes, sex-specific Z score models were developed. The LMS model with body surface area as the independent variable showed the best goodness of fit; therefore, the internal diameter of each coronary artery was transformed into a sex-specific Z score on the basis of body surface area using the LMS method. In the validation data set, a Q-Q plot of each model indicated that the distribution of Z scores in the LMS models was closer to the normal distribution compared with previously reported regression models. Finally, the final models for each coronary artery in both sexes were developed using the developmental and validation data sets. A Microsoft Excel-based Z score calculator was also created, which is freely available online (http://raise.umin.jp/zsp/calculator/). Novel LMS models with which to estimate the sex-specific Z score of each internal coronary artery diameter were generated and validated using a large pediatric population. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Effects of metal- and fiber-reinforced composite root canal posts on flexural properties.
Kim, Su-Hyeon; Oh, Tack-Oon; Kim, Ju-Young; Park, Chun-Woong; Baek, Seung-Ho; Park, Eun-Seok
2016-01-01
The aim of this study was to observe the effects of different test conditions on the flexural properties of root canal post. Metal- and fiber-reinforced composite root canal posts of various diameters were measured to determine flexural properties using a threepoint bending test at different conditions. In this study, the span length/post diameter ratio of root canal posts varied from 3.0 to 10.0. Multiple regression models for maximum load as a dependent variable were statistically significant. The models for flexural properties as dependent variables were statistically significant, but linear regression models could not be fitted to data sets. At a low span length/post diameter ratio, the flexural properties were distorted by occurrence of shear stress in short samples. It was impossible to obtain high span length/post diameter ratio with root canal posts. The addition of parameters or coefficients is necessary to appropriately represent the flexural properties of root canal posts.
WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING
Reiss, Philip T.; Huo, Lan; Zhao, Yihong; Kelly, Clare; Ogden, R. Todd
2016-01-01
An increasingly important goal of psychiatry is the use of brain imaging data to develop predictive models. Here we present two contributions to statistical methodology for this purpose. First, we propose and compare a set of wavelet-domain procedures for fitting generalized linear models with scalar responses and image predictors: sparse variants of principal component regression and of partial least squares, and the elastic net. Second, we consider assessing the contribution of image predictors over and above available scalar predictors, in particular via permutation tests and an extension of the idea of confounding to the case of functional or image predictors. Using the proposed methods, we assess whether maps of a spontaneous brain activity measure, derived from functional magnetic resonance imaging, can meaningfully predict presence or absence of attention deficit/hyperactivity disorder (ADHD). Our results shed light on the role of confounding in the surprising outcome of the recent ADHD-200 Global Competition, which challenged researchers to develop algorithms for automated image-based diagnosis of the disorder. PMID:27330652
A Landsat study of water quality in Lake Okeechobee
NASA Technical Reports Server (NTRS)
Gervin, J. C.; Marshall, M. L.
1976-01-01
This paper uses multiple regression techniques to investigate the relationship between Landsat radiance values and water quality measurements. For a period of over one year, the Central and Southern Florida Flood Control District sampled the water of Lake Okeechobee for chlorophyll, carotenoids, turbidity, and various nutrients at the time of Landsat overpasses. Using an overlay map of the sampling stations, Landsat radiance values were measured from computer compatible tapes using a GE image 100 and averaging over a 22-acre area at each station. These radiance values in four bands were used to form a number of functions (powers, logarithms, exponentials, and ratios), which were then compared with the ground measurements using multiple linear regression techniques. Several dates were used to provide generality and to study possible seasonal variations. Individual correlations were presented for the various water quality parameters and best fit equations were examined for chlorophyll and turbidity. The results and their relationship to past hydrological research were discussed.
Overhead longwave infrared hyperspectral material identification using radiometric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, M. E.
Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimalmore » atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.« less
Recovering Galaxy Properties Using Gaussian Process SED Fitting
NASA Astrophysics Data System (ADS)
Iyer, Kartheik; Awan, Humna
2018-01-01
Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.
The Routine Fitting of Kinetic Data to Models
Berman, Mones; Shahn, Ezra; Weiss, Marjory F.
1962-01-01
A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
Arnaoutakis, George J.; George, Timothy J.; Alejo, Diane E.; Merlo, Christian A.; Baumgartner, William A.; Cameron, Duke E.; Shah, Ashish S.
2011-01-01
Context The impact of Society of Thoracic Surgeons (STS) predicted mortality risk score on resource utilization after aortic valve replacement (AVR) has not been previously studied. Objective We hypothesize that increasing STS risk scores in patients having AVR are associated with greater hospital charges. Design, Setting, and Patients Clinical and financial data for patients undergoing AVR at a tertiary care, university hospital over a ten-year period (1/2000–12/2009) were retrospectively reviewed. The current STS formula (v2.61) for in-hospital mortality was used for all patients. After stratification into risk quartiles (Q), index admission hospital charges were compared across risk strata with Rank-Sum tests. Linear regression and Spearman’s coefficient assessed correlation and goodness of fit. Multivariable analysis assessed relative contributions of individual variables on overall charges. Main Outcome Measures Inflation-adjusted index hospitalization total charges Results 553 patients had AVR during the study period. Average predicted mortality was 2.9% (±3.4) and actual mortality was 3.4% for AVR. Median charges were greater in the upper Q of AVR patients [Q1–3,$39,949 (IQR32,708–51,323) vs Q4,$62,301 (IQR45,952–97,103), p=<0.01]. On univariate linear regression, there was a positive correlation between STS risk score and log-transformed charges (coefficient: 0.06, 95%CI 0.05–0.07, p<0.01). Spearman’s correlation R-value was 0.51. This positive correlation persisted in risk-adjusted multivariable linear regression. Each 1% increase in STS risk score was associated with an added $3,000 in hospital charges. Conclusions This study showed increasing STS risk score predicts greater charges after AVR. As competing therapies such as percutaneous valve replacement emerge to treat high risk patients, these results serve as a benchmark to compare resource utilization. PMID:21497834
Katkov, Igor I
2008-10-01
Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
Quality of life in breast cancer patients--a quantile regression analysis.
Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma
2008-01-01
Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples
Chen, Andrew; Chen, Chiachung
2013-01-01
Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627
Validation and application of single breath cardiac output determinations in man
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Fletcher, E. R.; Myhre, L. G.; Luft, U. C.
1986-01-01
The results of a procedure for estimating cardiac output by a single-breath technique (Qsb), obtained in healthy males during supine rest and during exercise on a bicycle ergometer, were compared with the results on cardiac output obtained by the direct Fick method (QF). The single breath maneuver consisted of a slow exhalation to near residual volume following an inspiration somewhat deeper than normal. The Qsb calculations incorporated an equation of the CO2 dissociation curve and a 'moving spline' sequential curve-fitting technique to calculate the instantaneous R from points on the original expirogram. The resulting linear regression equation indicated a 24-percent underestimation of QF by the Qsb technique. After applying a correction, the Qsb-QF relationship was improved. A subsequent study during upright rest and exercise to 80 percent of VO2(max) in 6 subjects indicated a close linear relationship between Qsb and VO2 for all 95 values obtained, with slope and intercept close to those in published studies in which invasive cardiac output measurements were used.
Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X
2016-09-01
The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.
A Continuous Threshold Expectile Model.
Zhang, Feipeng; Li, Qunhua
2017-12-01
Expectile regression is a useful tool for exploring the relation between the response and the explanatory variables beyond the conditional mean. A continuous threshold expectile regression is developed for modeling data in which the effect of a covariate on the response variable is linear but varies below and above an unknown threshold in a continuous way. The estimators for the threshold and the regression coefficients are obtained using a grid search approach. The asymptotic properties for all the estimators are derived, and the estimator for the threshold is shown to achieve root-n consistency. A weighted CUSUM type test statistic is proposed for the existence of a threshold at a given expectile, and its asymptotic properties are derived under both the null and the local alternative models. This test only requires fitting the model under the null hypothesis in the absence of a threshold, thus it is computationally more efficient than the likelihood-ratio type tests. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic cases. The application of the proposed method on a Dutch growth data and a baseball pitcher salary data reveals interesting insights. The proposed method is implemented in the R package cthreshER .
Hifinger, Monika; Putrik, Polina; Ramiro, Sofia; Keszei, András P; Hmamouchi, Ihsane; Dougados, Maxime; Gossec, Laure; Boonen, Annelies
2016-04-01
To investigate the relationship between country of residence and fatigue in RA, and to explore which country characteristics are related to fatigue. Data from the multinational COMORA study were analysed. Contribution of country of residence to level of fatigue [0-10 on visual analogue scale (VAS)] and presence of severe fatigue (VAS ⩾ 5) was explored in multivariable linear or logistic regression models including first socio-demographics and objective disease outcomes (M1), and then also subjective outcomes (M2). Next, country of residence was replaced by country characteristics: gross domestic product (GDP), human development index (HDI), latitude (as indicator of climate), language and income inequality index (gini-index). Model fit (R(2)) for linear models was compared. A total of 3920 patients from 17 countries were included, mean age 56 years (s.d. 13), 82% females. Mean fatigue across countries ranged from 1.86 (s.d. 2.46) to 4.99 (s.d. 2.64) and proportion of severe fatigue from 14% (Venezuela) to 65% (Egypt). Objective disease outcomes did not explain much of the variation in fatigue ([Formula: see text] = 0.12), while subjective outcomes had a strong negative impact and partly explained the variation in fatigue ([Formula: see text]= 0.27). Country of residence had a significant additional effect (increasing model fit to [Formula: see text] = 0.20 and [Formula: see text] = 0.36, respectively). Remarkably, higher GDP and better HDI were associated with higher fatigue, and explained a large part of the country effect. Logistic regression confirmed the limited contribution of objective outcomes and the relevant contribution of country of residence. Country of residence has an important influence on fatigue. Paradoxically, patients from wealthier countries had higher fatigue. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mira, José J; Navarro, Isabel M; Guilabert, Mercedes; Poblete, Rodrigo; Franco, Astolfo L; Jiménez, Pilar; Aquino, Margarita; Fernández-Trujillo, Francisco J; Lorenzo, Susana; Vitaller, Julián; de Valle, Yohana Díaz; Aibar, Carlos; Aranaz, Jesús M; De Pedro, José A
2015-08-01
To design and validate a questionnaire for assessing attitudes and knowledge about patient safety using a sample of medical and nursing students undergoing clinical training in Spain and four countries in Latin America. In this cross-sectional study, a literature review was carried out and total of 786 medical and nursing students were surveyed at eight universities from five countries (Chile, Colombia, El Salvador, Guatemala, and Spain) to develop and refine a Spanish-language questionnaire on knowledge and attitudes about patient safety. The scope of the questionnaire was based on five dimensions (factors) presented in studies related to patient safety culture found in PubMed and Scopus. Based on the five factors, 25 reactive items were developed. Composite reliability indexes and Cronbach's alpha statistics were estimated for each factor, and confirmatory factor analysis was conducted to assess validity. After a pilot test, the questionnaire was refined using confirmatory models, maximum-likelihood estimation, and the variance-covariance matrix (as input). Multiple linear regression models were used to confirm external validity, considering variables related to patient safety culture as dependent variables and the five factors as independent variables. The final instrument was a structured five-point Likert self-administered survey (the "Latino Student Patient Safety Questionnaire") consisting of 21 items grouped into five factors. Compound reliability indexes (Cronbach's alpha statistic) calculated for the five factors were about 0.7 or higher. The results of the multiple linear regression analyses indicated good model fit (goodness-of-fit index: 0.9). Item-total correlations were higher than 0.3 in all cases. The convergent-discriminant validity was adequate. The questionnaire designed and validated in this study assesses nursing and medical students' attitudes and knowledge about patient safety. This instrument could be used to indirectly evaluate whether or not students in health disciplines are acquiring and thus likely to put into practice the professional skills currently considered most appropriate for patient safety.
Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul
2014-09-01
This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.« less
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Fitting and forecasting coupled dark energy in the non-linear regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less
A quantile count model of water depth constraints on Cape Sable seaside sparrows
Cade, B.S.; Dong, Q.
2008-01-01
1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.
The Roles of IL-6, IL-10, and IL-1RA in Obesity and Insulin Resistance in African-Americans
Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale
2011-01-01
Objective: The aim of the study was to investigate the associations between IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, measures of obesity, and insulin resistance in African-Americans. Research Design and Methods: Nondiabetic participants (n = 1025) of the Howard University Family Study were investigated for associations between serum IL (IL-1RA, IL-6, IL-10), measures of obesity, and insulin resistance, with adjustment for age and sex. Measures of obesity included body mass index, waist circumference, hip circumference, waist-to-hip ratio, and percent fat mass. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Data were analyzed with R statistical software using linear regression and likelihood ratio tests. Results: IL-1RA and IL-6 were associated with measures of obesity and insulin resistance, explaining 4–12.7% of the variance observed (P values < 0.001). IL-1RA was bimodally distributed and therefore was analyzed based on grouping those with low vs. high IL-1RA levels. High IL-1RA explained up to 20 and 12% of the variance in measures of obesity and HOMA-IR, respectively. Among the IL, only high IL-1RA improved the fit of models regressing HOMA-IR on measures of obesity. In contrast, all measures of obesity improved the fit of models regressing HOMA-IR on IL. IL-10 was not associated with obesity measures or HOMA-IR. Conclusions: High IL-1RA levels and obesity measures are associated with HOMA-IR in this population-based sample of African-Americans. The results suggest that obesity and increased levels of IL-1RA both contribute to the development of insulin resistance. PMID:21956416
Determination of time zero from a charged particle detector
Green, Jesse Andrew [Los Alamos, NM
2011-03-15
A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
Hughes, Rachael A.; Kenward, Michael G.; Sterne, Jonathan A. C.; Tilling, Kate
2017-01-01
ABSTRACT The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance). PMID:28515536
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
Canciello, Grazia; de Simone, Giovanni; Izzo, Raffaele; Giamundo, Alessandra; Pacelli, Filomena; Mancusi, Costantino; Galderisi, Maurizio; Trimarco, Bruno; Losi, Maria-Angela
2017-03-01
Measurement of left atrial (LA) volume (LAV) is recommended for quantification of LA size. Only LA anteroposterior diameter (LAd) is available in a number of large cohorts, trials, or registries. The aim of this study was to evaluate whether LAV may be reasonably estimated from LAd. One hundred forty consecutive patients referred to our outpatient clinics were prospectively enrolled to measure LAd from the long-axis view on two-dimensional echocardiography. LA orthogonal dimensions were also taken from apical four- and two-chamber views. LAV was measured using the Simpson, area-length, and ellipsoid (LAV e ) methods. The first 70 patients were the learning series and the last 70 the testing series (TeS). In the learning series, best-fitting regression analysis of LAV-LAd was run using all LAV methods, and the highest values of F were chosen among the regression equations. In the TeS, the best-fitting regressions were used to estimate LAV from LAd. In the learning series, the best-fitting regression was linear for the Spearman method (r 2 = 0.62, F = 111.85, P = .0001) and area-length method (r 2 = 0.62, F = 112.24, P = .0001) and powered for the LAV e method (r 2 = 0.81, F = 288.41, P = .0001). In the TeS, the r 2 value for LAV prediction was substantially better using the LAV e method (r 2 = 0.89) than the Simpson (r 2 = 0.72) or area-length (r 2 = 0.70) method, as was the intraclass correlation (ρ = 0.96 vs ρ = 0.89 and ρ = 0.89, respectively). In the TeS, the sensitivity and specificity of LA dilatation by the estimated LAV e method were 87% and 90%, respectively. LAV can be estimated from LAd using a nonlinear equation with an elliptical model. The proposed method may be used in retrospective analysis of existing data sets in which determination of LAV was not programmed. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Goodness of Fit and Misspecification in Quantile Regressions
ERIC Educational Resources Information Center
Furno, Marilena
2011-01-01
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...
2015-12-10
We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less