Sample records for linear regression logistic

  1. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  2. London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    PubMed Central

    Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith

    2017-01-01

    Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343

  3. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  4. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  5. Logistic models--an odd(s) kind of regression.

    PubMed

    Jupiter, Daniel C

    2013-01-01

    The logistic regression model bears some similarity to the multivariable linear regression with which we are familiar. However, the differences are great enough to warrant a discussion of the need for and interpretation of logistic regression. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Predicting U.S. Army Reserve Unit Manning Using Market Demographics

    DTIC Science & Technology

    2015-06-01

    develops linear regression , classification tree, and logistic regression models to determine the ability of the location to support manning requirements... logistic regression model delivers predictive results that allow decision-makers to identify locations with a high probability of meeting unit...manning requirements. The recommendation of this thesis is that the USAR implement the logistic regression model. 14. SUBJECT TERMS U.S

  7. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  8. The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…

  9. Naval Research Logistics Quarterly. Volume 28. Number 3,

    DTIC Science & Technology

    1981-09-01

    denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions

  10. [Application of SAS macro to evaluated multiplicative and additive interaction in logistic and Cox regression in clinical practices].

    PubMed

    Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q

    2016-05-01

    Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.

  11. Fungible weights in logistic regression.

    PubMed

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.

    PubMed

    Pfeiffer, R M; Riedl, R

    2015-08-15

    We assess the asymptotic bias of estimates of exposure effects conditional on covariates when summary scores of confounders, instead of the confounders themselves, are used to analyze observational data. First, we study regression models for cohort data that are adjusted for summary scores. Second, we derive the asymptotic bias for case-control studies when cases and controls are matched on a summary score, and then analyzed either using conditional logistic regression or by unconditional logistic regression adjusted for the summary score. Two scores, the propensity score (PS) and the disease risk score (DRS) are studied in detail. For cohort analysis, when regression models are adjusted for the PS, the estimated conditional treatment effect is unbiased only for linear models, or at the null for non-linear models. Adjustment of cohort data for DRS yields unbiased estimates only for linear regression; all other estimates of exposure effects are biased. Matching cases and controls on DRS and analyzing them using conditional logistic regression yields unbiased estimates of exposure effect, whereas adjusting for the DRS in unconditional logistic regression yields biased estimates, even under the null hypothesis of no association. Matching cases and controls on the PS yield unbiased estimates only under the null for both conditional and unconditional logistic regression, adjusted for the PS. We study the bias for various confounding scenarios and compare our asymptotic results with those from simulations with limited sample sizes. To create realistic correlations among multiple confounders, we also based simulations on a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Prediction of siRNA potency using sparse logistic regression.

    PubMed

    Hu, Wei; Hu, John

    2014-06-01

    RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.

  14. Clustering performance comparison using K-means and expectation maximization algorithms.

    PubMed

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  15. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  16. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  17. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    PubMed

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Understanding logistic regression analysis.

    PubMed

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  19. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  20. Comparing Linear Discriminant Function with Logistic Regression for the Two-Group Classification Problem.

    ERIC Educational Resources Information Center

    Fan, Xitao; Wang, Lin

    The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…

  1. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.

    PubMed

    Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G

    2007-08-01

    A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.

  2. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  3. Applications of statistics to medical science, III. Correlation and regression.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.

  4. Logistic regression for circular data

    NASA Astrophysics Data System (ADS)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  5. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    PubMed

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  6. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  7. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    PubMed

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  8. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  9. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  10. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    PubMed

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  11. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.

    PubMed

    Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg

    2009-11-01

    G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

  12. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  13. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis

    PubMed Central

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655

  14. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    PubMed

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  15. Association of Brain-Derived Neurotrophic Factor and Vitamin D with Depression and Obesity: A Population-Based Study.

    PubMed

    Goltz, Annemarie; Janowitz, Deborah; Hannemann, Anke; Nauck, Matthias; Hoffmann, Johanna; Seyfart, Tom; Völzke, Henry; Terock, Jan; Grabe, Hans Jörgen

    2018-06-19

    Depression and obesity are widespread and closely linked. Brain-derived neurotrophic factor (BDNF) and vitamin D are both assumed to be associated with depression and obesity. Little is known about the interplay between vitamin D and BDNF. We explored the putative associations and interactions between serum BDNF and vitamin D levels with depressive symptoms and abdominal obesity in a large population-based cohort. Data were obtained from the population-based Study of Health in Pomerania (SHIP)-Trend (n = 3,926). The associations of serum BDNF and vitamin D levels with depressive symptoms (measured using the Patient Health Questionnaire) were assessed with binary and multinomial logistic regression models. The associations of serum BDNF and vitamin D levels with obesity (measured by the waist-to-hip ratio [WHR]) were assessed with binary logistic and linear regression models with restricted cubic splines. Logistic regression models revealed inverse associations of vitamin D with depression (OR = 0.966; 95% CI 0.951-0.981) and obesity (OR = 0.976; 95% CI 0.967-0.985). No linear association of serum BDNF with depression or obesity was found. However, linear regression models revealed a U-shaped association of BDNF with WHR (p < 0.001). Vitamin D was inversely associated with depression and obesity. BDNF was associated with abdominal obesity, but not with depression. At the population level, our results support the relevant roles of vitamin D and BDNF in mental and physical health-related outcomes. © 2018 S. Karger AG, Basel.

  16. Assessing risk factors for periodontitis using regression

    NASA Astrophysics Data System (ADS)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  17. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.

  18. A computational approach to compare regression modelling strategies in prediction research.

    PubMed

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  19. Testing for gene-environment interaction under exposure misspecification.

    PubMed

    Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong

    2017-11-09

    Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.

  20. The Effect of Latent Binary Variables on the Uncertainty of the Prediction of a Dichotomous Outcome Using Logistic Regression Based Propensity Score Matching.

    PubMed

    Szekér, Szabolcs; Vathy-Fogarassy, Ágnes

    2018-01-01

    Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.

  1. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression

    PubMed Central

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.

    2013-01-01

    Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839

  2. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    PubMed

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A

    2013-01-01

    Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  3. New robust statistical procedures for the polytomous logistic regression models.

    PubMed

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  4. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  5. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  6. Estimating interaction on an additive scale between continuous determinants in a logistic regression model.

    PubMed

    Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I

    2007-10-01

    To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.

  7. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  8. The association of serum prolactin concentration with inflammatory biomarkers - cross-sectional findings from the population-based Study of Health in Pomerania.

    PubMed

    Friedrich, Nele; Schneider, Harald J; Spielhagen, Christin; Markus, Marcello Ricardo Paulista; Haring, Robin; Grabe, Hans J; Buchfelder, Michael; Wallaschofski, Henri; Nauck, Matthias

    2011-10-01

    Prolactin (PRL) is involved in immune regulation and may contribute to an atherogenic phenotype. Previous results on the association of PRL with inflammatory biomarkers have been conflicting and limited by small patient studies. Therefore, we used data from a large population-based sample to assess the cross-sectional associations between serum PRL concentration and high-sensitivity C-reactive protein (hsCRP), fibrinogen, interleukin-6 (IL-6), and white blood cell (WBC) count. From the population-based Study of Health in Pomerania (SHIP), a total of 3744 subjects were available for the present analyses. PRL and inflammatory biomarkers were measured. Linear and logistic regression models adjusted for age, sex, body-mass-index, total cholesterol and glucose were analysed. Multivariable linear regression models revealed a positive association of PRL with WBC. Multivariable logistic regression analyses showed a significant association of PRL with increased IL-6 in non-smokers [highest vs lowest quintile: odds ratio 1·69 (95% confidence interval 1·10-2·58), P = 0·02] and smokers [OR 2·06 (95%-CI 1·10-3·89), P = 0·02]. Similar results were found for WBC in non-smokers [highest vs lowest quintile: OR 2·09 (95%-CI 1·21-3·61), P = 0·01)] but not in smokers. Linear and logistic regression analyses revealed no significant associations of PRL with hsCRP or fibrinogen. Serum PRL concentrations are associated with inflammatory biomarkers including IL-6 and WBC, but not hsCRP or fibrinogen. The suggested role of PRL in inflammation needs further investigation in future prospective studies. © 2011 Blackwell Publishing Ltd.

  9. Derivation of the linear-logistic model and Cox's proportional hazard model from a canonical system description.

    PubMed

    Voit, E O; Knapp, R G

    1997-08-15

    The linear-logistic regression model and Cox's proportional hazard model are widely used in epidemiology. Their successful application leaves no doubt that they are accurate reflections of observed disease processes and their associated risks or incidence rates. In spite of their prominence, it is not a priori evident why these models work. This article presents a derivation of the two models from the framework of canonical modeling. It begins with a general description of the dynamics between risk sources and disease development, formulates this description in the canonical representation of an S-system, and shows how the linear-logistic model and Cox's proportional hazard model follow naturally from this representation. The article interprets the model parameters in terms of epidemiological concepts as well as in terms of general systems theory and explains the assumptions and limitations generally accepted in the application of these epidemiological models.

  10. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    PubMed Central

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075

  11. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics.

    PubMed

    Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.

  12. Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation

    PubMed Central

    Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian

    2018-01-01

    Background Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. Objective The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). Methods We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Results Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. Conclusions We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. PMID:29666041

  13. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  14. Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2006-01-01

    Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.

  15. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

    PubMed

    Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

    2006-01-01

    Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

  16. Aided diagnosis methods of breast cancer based on machine learning

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wang, Nian; Cui, Xiaoyu

    2017-08-01

    In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.

  17. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery - part II: an illustrative example.

    PubMed

    Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo

    2007-11-22

    Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.

  18. Active Travel to School: Findings from the Survey of US Health Behavior in School-Aged Children, 2009-2010

    ERIC Educational Resources Information Center

    Yang, Yong; Ivey, Stephanie S.; Levy, Marian C.; Royne, Marla B.; Klesges, Lisa M.

    2016-01-01

    Background: Whereas children's active travel to school (ATS) has confirmed benefits, only a few large national surveys of ATS exist. Methods: Using data from the Health Behavior in School-aged Children (HBSC) 2009-2010 US survey, we conducted a logistic regression model to estimate the odds ratios of ATS and a linear regression model to estimate…

  19. The arcsine is asinine: the analysis of proportions in ecology.

    PubMed

    Warton, David I; Hui, Francis K C

    2011-01-01

    The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.

  20. Assessing the potential for improving S2S forecast skill through multimodel ensembling

    NASA Astrophysics Data System (ADS)

    Vigaud, N.; Robertson, A. W.; Tippett, M. K.; Wang, L.; Bell, M. J.

    2016-12-01

    Non-linear logistic regression is well suited to probability forecasting and has been successfully applied in the past to ensemble weather and climate predictions, providing access to the full probabilities distribution without any Gaussian assumption. However, little work has been done at sub-monthly lead times where relatively small re-forecast ensembles and lengths represent new challenges for which post-processing avenues have yet to be investigated. A promising approach consists in extending the definition of non-linear logistic regression by including the quantile of the forecast distribution as one of the predictors. So-called Extended Logistic Regression (ELR), which enables mutually consistent individual threshold probabilities, is here applied to ECMWF, CFSv2 and CMA re-forecasts from the S2S database in order to produce rainfall probabilities at weekly resolution. The ELR model is trained on seasonally-varying tercile categories computed for lead times of 1 to 4 weeks. It is then tested in a cross-validated manner, i.e. allowing real-time predictability applications, to produce rainfall tercile probabilities from individual weekly hindcasts that are finally combined by equal pooling. Results will be discussed over a broader North American region, where individual and MME forecasts generated out to 4 weeks lead are characterized by good probabilistic reliability but low sharpness, exhibiting systematically more skill in winter than summer.

  1. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  2. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  3. Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation.

    PubMed

    Kim, Miran; Song, Yongsoo; Wang, Shuang; Xia, Yuhou; Jiang, Xiaoqian

    2018-04-17

    Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis. The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression). We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques. Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset. We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still. ©Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.04.2018.

  4. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  5. Explicit criteria for prioritization of cataract surgery

    PubMed Central

    Ma Quintana, José; Escobar, Antonio; Bilbao, Amaia

    2006-01-01

    Background Consensus techniques have been used previously to create explicit criteria to prioritize cataract extraction; however, the appropriateness of the intervention was not included explicitly in previous studies. We developed a prioritization tool for cataract extraction according to the RAND method. Methods Criteria were developed using a modified Delphi panel judgment process. A panel of 11 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the effect of all variables on the final panel score using general linear and logistic regression models. Priority scoring systems were developed by means of optimal scaling and general linear models. The explicit criteria developed were summarized by means of regression tree analysis. Results Eight variables were considered to create the indications. Of the 310 indications that the panel evaluated, 22.6% were considered high priority, 52.3% intermediate priority, and 25.2% low priority. Agreement was reached for 31.9% of the indications and disagreement for 0.3%. Logistic regression and general linear models showed that the preoperative visual acuity of the cataractous eye, visual function, and anticipated visual acuity postoperatively were the most influential variables. Alternative and simple scoring systems were obtained by optimal scaling and general linear models where the previous variables were also the most important. The decision tree also shows the importance of the previous variables and the appropriateness of the intervention. Conclusion Our results showed acceptable validity as an evaluation and management tool for prioritizing cataract extraction. It also provides easy algorithms for use in clinical practice. PMID:16512893

  6. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Treesearch

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  7. Environmental factors and flow paths related to Escherichia coli concentrations at two beaches on Lake St. Clair, Michigan, 2002–2005

    USGS Publications Warehouse

    Holtschlag, David J.; Shively, Dawn; Whitman, Richard L.; Haack, Sheridan K.; Fogarty, Lisa R.

    2008-01-01

    Regression analyses and hydrodynamic modeling were used to identify environmental factors and flow paths associated with Escherichia coli (E. coli) concentrations at Memorial and Metropolitan Beaches on Lake St. Clair in Macomb County, Mich. Lake St. Clair is part of the binational waterway between the United States and Canada that connects Lake Huron with Lake Erie in the Great Lakes Basin. Linear regression, regression-tree, and logistic regression models were developed from E. coli concentration and ancillary environmental data. Linear regression models on log10 E. coli concentrations indicated that rainfall prior to sampling, water temperature, and turbidity were positively associated with bacteria concentrations at both beaches. Flow from Clinton River, changes in water levels, wind conditions, and log10 E. coli concentrations 2 days before or after the target bacteria concentrations were statistically significant at one or both beaches. In addition, various interaction terms were significant at Memorial Beach. Linear regression models for both beaches explained only about 30 percent of the variability in log10 E. coli concentrations. Regression-tree models were developed from data from both Memorial and Metropolitan Beaches but were found to have limited predictive capability in this study. The results indicate that too few observations were available to develop reliable regression-tree models. Linear logistic models were developed to estimate the probability of E. coli concentrations exceeding 300 most probable number (MPN) per 100 milliliters (mL). Rainfall amounts before bacteria sampling were positively associated with exceedance probabilities at both beaches. Flow of Clinton River, turbidity, and log10 E. coli concentrations measured before or after the target E. coli measurements were related to exceedances at one or both beaches. The linear logistic models were effective in estimating bacteria exceedances at both beaches. A receiver operating characteristic (ROC) analysis was used to determine cut points for maximizing the true positive rate prediction while minimizing the false positive rate. A two-dimensional hydrodynamic model was developed to simulate horizontal current patterns on Lake St. Clair in response to wind, flow, and water-level conditions at model boundaries. Simulated velocity fields were used to track hypothetical massless particles backward in time from the beaches along flow paths toward source areas. Reverse particle tracking for idealized steady-state conditions shows changes in expected flow paths and traveltimes with wind speeds and directions from 24 sectors. The results indicate that three to four sets of contiguous wind sectors have similar effects on flow paths in the vicinity of the beaches. In addition, reverse particle tracking was used for transient conditions to identify expected flow paths for 10 E. coli sampling events in 2004. These results demonstrate the ability to track hypothetical particles from the beaches, backward in time, to likely source areas. This ability, coupled with a greater frequency of bacteria sampling, may provide insight into changes in bacteria concentrations between source and sink areas.

  8. Protocol Analysis as a Tool in Function and Task Analysis

    DTIC Science & Technology

    1999-10-01

    Autocontingency The use of log-linear and logistic regression methods to analyse sequential data seems appealing , and is strongly advocated by...collection and analysis of observational data. Behavior Research Methods, Instruments, and Computers, 23(3), 415-429. Patrick, J. D. (1991). Snob : A

  9. Advanced Statistics for Exotic Animal Practitioners.

    PubMed

    Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G

    2017-09-01

    Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  11. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models

    PubMed Central

    Jiang, Dingfeng; Huang, Jian

    2013-01-01

    Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing the concave penalized solutions in generalized linear models. In contrast to the existing algorithms that use local quadratic or local linear approximation to the penalty function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy makes it possible to avoid the computation of a scaling factor in each update of the solutions, which improves the efficiency of coordinate descent. Under certain regularity conditions, we establish theoretical convergence property of the MMCD. We implement this algorithm for a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size. PMID:25309048

  12. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397

  13. A secure distributed logistic regression protocol for the detection of rare adverse drug events.

    PubMed

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-05-01

    There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models.

  14. Positive Parenting Practices Associated with Subsequent Childhood Weight Change

    ERIC Educational Resources Information Center

    Avula, Rasmi; Gonzalez, Wendy; Shapiro, Cheri J.; Fram, Maryah S.; Beets, Michael W.; Jones, Sonya J.; Blake, Christine E.; Frongillo, Edward A.

    2011-01-01

    We aimed to identify positive parenting practices that set children on differential weight-trajectories. Parenting practices studied were cognitively stimulating activities, limit-setting, disciplinary practices, and parent warmth. Data from two U.S. national longitudinal data sets and linear and logistic regression were used to examine…

  15. A regularization corrected score method for nonlinear regression models with covariate error.

    PubMed

    Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna

    2013-03-01

    Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.

  16. Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

    DTIC Science & Technology

    2016-11-22

    structure of the graph, we replace the ℓ1- norm by the nonconvex Capped -ℓ1 norm , and obtain the Generalized Capped -ℓ1 regularized logistic regression...X. M. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 82(281):301...better approximations of ℓ0- norm theoretically and computationally beyond ℓ1- norm , for example, the compressive sensing (Xiao et al., 2011). The

  17. Predicting Madura cattle growth curve using non-linear model

    NASA Astrophysics Data System (ADS)

    Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.

    2018-03-01

    Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (<6 months, 6-12 months, 1-2years, 2-3years, 3-5years and >5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (p<0.05). The logistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.

  18. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  19. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  20. Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood

    PubMed Central

    Yan, Fang-Rong; Lin, Jin-Guan; Liu, Yu

    2011-01-01

    The objective of the present study is to find out the quantitative relationship between progression of liver fibrosis and the levels of certain serum markers using mathematic model. We provide the sparse logistic regression by using smoothly clipped absolute deviation (SCAD) penalized function to diagnose the liver fibrosis in rats. Not only does it give a sparse solution with high accuracy, it also provides the users with the precise probabilities of classification with the class information. In the simulative case and the experiment case, the proposed method is comparable to the stepwise linear discriminant analysis (SLDA) and the sparse logistic regression with least absolute shrinkage and selection operator (LASSO) penalty, by using receiver operating characteristic (ROC) with bayesian bootstrap estimating area under the curve (AUC) diagnostic sensitivity for selected variable. Results show that the new approach provides a good correlation between the serum marker levels and the liver fibrosis induced by thioacetamide (TAA) in rats. Meanwhile, this approach might also be used in predicting the development of liver cirrhosis. PMID:21716672

  1. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  2. Diversity and Educational Benefits: Moving Beyond Self-Reported Questionnaire Data

    ERIC Educational Resources Information Center

    Herzog, Serge

    2007-01-01

    Effects of ethnic/racial diversity among students and faculty on cognitive growth of undergraduate students are estimated via a series of hierarchical linear and multinomial logistic regression models. Using objective measures of compositional, curricular, and interactional diversity based on actuarial course enrollment records of over 6,000…

  3. A Comparison of Strategies for Estimating Conditional DIF

    ERIC Educational Resources Information Center

    Moses, Tim; Miao, Jing; Dorans, Neil J.

    2010-01-01

    In this study, the accuracies of four strategies were compared for estimating conditional differential item functioning (DIF), including raw data, logistic regression, log-linear models, and kernel smoothing. Real data simulations were used to evaluate the estimation strategies across six items, DIF and No DIF situations, and four sample size…

  4. Association of sleep disturbances with cognitive impairment and depression in maintenance memodialysis patients

    USDA-ARS?s Scientific Manuscript database

    There are few data on the relationship of sleep with measures of cognitive function and symptoms of depression in dialysis patients. We evaluated the relationship of sleep with cognitive function and symptoms of depression in 168 hemodialysis patients, using multivariable linear and logistic regress...

  5. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  6. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  7. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  8. Higher direct bilirubin levels during mid-pregnancy are associated with lower risk of gestational diabetes mellitus.

    PubMed

    Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong

    2017-01-01

    Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.

  9. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.

    PubMed

    Churpek, Matthew M; Yuen, Trevor C; Winslow, Christopher; Meltzer, David O; Kattan, Michael W; Edelson, Dana P

    2016-02-01

    Machine learning methods are flexible prediction algorithms that may be more accurate than conventional regression. We compared the accuracy of different techniques for detecting clinical deterioration on the wards in a large, multicenter database. Observational cohort study. Five hospitals, from November 2008 until January 2013. Hospitalized ward patients None Demographic variables, laboratory values, and vital signs were utilized in a discrete-time survival analysis framework to predict the combined outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines) were compared to several different machine learning methods. The models were derived in the first 60% of the data by date and then validated in the next 40%. For model derivation, each event time window was matched to a non-event window. All models were compared to each other and to the Modified Early Warning score, a commonly cited early warning score, using the area under the receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the validation dataset, the random forest model was the most accurate model (AUC, 0.80 [95% CI, 0.80-0.80]). The logistic regression model with spline predictors was more accurate than the model utilizing linear predictors (AUC, 0.77 vs 0.74; p < 0.01), and all models were more accurate than the MEWS (AUC, 0.70 [95% CI, 0.70-0.70]). In this multicenter study, we found that several machine learning methods more accurately predicted clinical deterioration than logistic regression. Use of detection algorithms derived from these techniques may result in improved identification of critically ill patients on the wards.

  10. Mapping of the DLQI scores to EQ-5D utility values using ordinal logistic regression.

    PubMed

    Ali, Faraz Mahmood; Kay, Richard; Finlay, Andrew Y; Piguet, Vincent; Kupfer, Joerg; Dalgard, Florence; Salek, M Sam

    2017-11-01

    The Dermatology Life Quality Index (DLQI) and the European Quality of Life-5 Dimension (EQ-5D) are separate measures that may be used to gather health-related quality of life (HRQoL) information from patients. The EQ-5D is a generic measure from which health utility estimates can be derived, whereas the DLQI is a specialty-specific measure to assess HRQoL. To reduce the burden of multiple measures being administered and to enable a more disease-specific calculation of health utility estimates, we explored an established mathematical technique known as ordinal logistic regression (OLR) to develop an appropriate model to map DLQI data to EQ-5D-based health utility estimates. Retrospective data from 4010 patients were randomly divided five times into two groups for the derivation and testing of the mapping model. Split-half cross-validation was utilized resulting in a total of ten ordinal logistic regression models for each of the five EQ-5D dimensions against age, sex, and all ten items of the DLQI. Using Monte Carlo simulation, predicted health utility estimates were derived and compared against those observed. This method was repeated for both OLR and a previously tested mapping methodology based on linear regression. The model was shown to be highly predictive and its repeated fitting demonstrated a stable model using OLR as well as linear regression. The mean differences between OLR-predicted health utility estimates and observed health utility estimates ranged from 0.0024 to 0.0239 across the ten modeling exercises, with an average overall difference of 0.0120 (a 1.6% underestimate, not of clinical importance). This modeling framework developed in this study will enable researchers to calculate EQ-5D health utility estimates from a specialty-specific study population, reducing patient and economic burden.

  11. Internet gaming disorder in early adolescence: Associations with parental and adolescent mental health.

    PubMed

    Wartberg, L; Kriston, L; Kramer, M; Schwedler, A; Lincoln, T M; Kammerl, R

    2017-06-01

    Internet gaming disorder (IGD) has been included in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Currently, associations between IGD in early adolescence and mental health are largely unexplained. In the present study, the relation of IGD with adolescent and parental mental health was investigated for the first time. We surveyed 1095 family dyads (an adolescent aged 12-14 years and a related parent) with a standardized questionnaire for IGD as well as for adolescent and parental mental health. We conducted linear (dimensional approach) and logistic (categorical approach) regression analyses. Both with dimensional and categorical approaches, we observed statistically significant associations between IGD and male gender, a higher degree of adolescent antisocial behavior, anger control problems, emotional distress, self-esteem problems, hyperactivity/inattention and parental anxiety (linear regression model: corrected R 2 =0.41, logistic regression model: Nagelkerke's R 2 =0.41). IGD appears to be associated with internalizing and externalizing problems in adolescents. Moreover, the findings of the present study provide first evidence that not only adolescent but also parental mental health is relevant to IGD in early adolescence. Adolescent and parental mental health should be considered in prevention and intervention programs for IGD in adolescence. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Motivations and Benefits for Attaining HR Certifications

    ERIC Educational Resources Information Center

    Lester, Scott W.; Dwyer, Dale J.

    2012-01-01

    Purpose: The aim of this paper is to examine the motivations and benefits for pursuing or not pursuing the PHR and SPHR. Design/methodology/approach: Using a sample of 1,862 participants, the study used multinomial logistic and hierarchical linear regression to test six hypotheses. Findings: Participants pursuing SPHR were more likely to report…

  13. Determinants of Anabolic-Androgenic Steroid Risk Perceptions in Youth Populations: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Denham, Bryan E.

    2009-01-01

    Grounded conceptually in social cognitive theory, this research examines how personal, behavioral, and environmental factors are associated with risk perceptions of anabolic-androgenic steroids. Ordinal logistic regression and logit log-linear models applied to data gathered from high-school seniors (N = 2,160) in the 2005 Monitoring the Future…

  14. Measuring the Impact of Inquiry-Based Learning on Outcomes and Student Satisfaction

    ERIC Educational Resources Information Center

    Zafra-Gómez, José Luis; Román-Martínez, Isabel; Gómez-Miranda, María Elena

    2015-01-01

    The aim of this study is to determine the impact of inquiry-based learning (IBL) on students' academic performance and to assess their satisfaction with the process. Linear and logistic regression analyses show that examination grades are positively related to attendance at classes and tutorials; moreover, there is a positive significant…

  15. Predictors and Neuropsychiatric Profile of Nucleus Basalis of Meynert Degeneration in Parkinson Disease

    DTIC Science & Technology

    2017-10-01

    baseline were available for 228 PD subjects. In a logistic regression model adjusted for age and sex , Ch4 density was associated with lower risk of...events, there were no significant differences in age or sex (p>0.05). PD subjects with 2 or more psychotic events had significantly lower baseline Ch4...Aim 1 and 2 include use of linear regression models to adjust for age, sex , and other significant covariates. Aim 3 is a cross-sectional controlled

  16. An introduction to g methods.

    PubMed

    Naimi, Ashley I; Cole, Stephen R; Kennedy, Edward H

    2017-04-01

    Robins' generalized methods (g methods) provide consistent estimates of contrasts (e.g. differences, ratios) of potential outcomes under a less restrictive set of identification conditions than do standard regression methods (e.g. linear, logistic, Cox regression). Uptake of g methods by epidemiologists has been hampered by limitations in understanding both conceptual and technical details. We present a simple worked example that illustrates basic concepts, while minimizing technical complications. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  17. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries.

    PubMed

    Cunningham, Marc; Bock, Ariella; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-09-01

    Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. © Cunningham et al.

  18. Estimating Contraceptive Prevalence Using Logistics Data for Short-Acting Methods: Analysis Across 30 Countries

    PubMed Central

    Cunningham, Marc; Brown, Niquelle; Sacher, Suzy; Hatch, Benjamin; Inglis, Andrew; Aronovich, Dana

    2015-01-01

    Background: Contraceptive prevalence rate (CPR) is a vital indicator used by country governments, international donors, and other stakeholders for measuring progress in family planning programs against country targets and global initiatives as well as for estimating health outcomes. Because of the need for more frequent CPR estimates than population-based surveys currently provide, alternative approaches for estimating CPRs are being explored, including using contraceptive logistics data. Methods: Using data from the Demographic and Health Surveys (DHS) in 30 countries, population data from the United States Census Bureau International Database, and logistics data from the Procurement Planning and Monitoring Report (PPMR) and the Pipeline Monitoring and Procurement Planning System (PipeLine), we developed and evaluated 3 models to generate country-level, public-sector contraceptive prevalence estimates for injectable contraceptives, oral contraceptives, and male condoms. Models included: direct estimation through existing couple-years of protection (CYP) conversion factors, bivariate linear regression, and multivariate linear regression. Model evaluation consisted of comparing the referent DHS prevalence rates for each short-acting method with the model-generated prevalence rate using multiple metrics, including mean absolute error and proportion of countries where the modeled prevalence rate for each method was within 1, 2, or 5 percentage points of the DHS referent value. Results: For the methods studied, family planning use estimates from public-sector logistics data were correlated with those from the DHS, validating the quality and accuracy of current public-sector logistics data. Logistics data for oral and injectable contraceptives were significantly associated (P<.05) with the referent DHS values for both bivariate and multivariate models. For condoms, however, that association was only significant for the bivariate model. With the exception of the CYP-based model for condoms, models were able to estimate public-sector prevalence rates for each short-acting method to within 2 percentage points in at least 85% of countries. Conclusions: Public-sector contraceptive logistics data are strongly correlated with public-sector prevalence rates for short-acting methods, demonstrating the quality of current logistics data and their ability to provide relatively accurate prevalence estimates. The models provide a starting point for generating interim estimates of contraceptive use when timely survey data are unavailable. All models except the condoms CYP model performed well; the regression models were most accurate but the CYP model offers the simplest calculation method. Future work extending the research to other modern methods, relating subnational logistics data with prevalence rates, and tracking that relationship over time is needed. PMID:26374805

  19. Use of logistic regression for modelling risk factors: with application to non-melanoma skin cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitaliano, P.P.

    Logistic regression was used to estimate the relative risk of basal and squamous skin cancer for such factors as cumulative lifetime solar exposure, age, complexion, and tannability. In previous reports, a subject's exposure was estimated indirectly, by latitude, or by the number of sun days in a subject's habitat. In contrast, these results are based on interview data gathered for each subject. A relatively new technique was used to estimate relative risk by controlling for confounding and testing for effect modification. A linear effect for the relative risk of cancer versus exposure was found. Tannability was shown to be amore » more important risk factor than complexion. This result is consistent with the work of Silverstone and Searle.« less

  20. Explaining Match Outcome During The Men’s Basketball Tournament at The Olympic Games

    PubMed Central

    Leicht, Anthony S.; Gómez, Miguel A.; Woods, Carl T.

    2017-01-01

    In preparation for the Olympics, there is a limited opportunity for coaches and athletes to interact regularly with team performance indicators providing important guidance to coaches for enhanced match success at the elite level. This study examined the relationship between match outcome and team performance indicators during men’s basketball tournaments at the Olympic Games. Twelve team performance indicators were collated from all men’s teams and matches during the basketball tournament of the 2004-2016 Olympic Games (n = 156). Linear and non-linear analyses examined the relationship between match outcome and team performance indicator characteristics; namely, binary logistic regression and a conditional interference (CI) classification tree. The most parsimonious logistic regression model retained ‘assists’, ‘defensive rebounds’, ‘field-goal percentage’, ‘fouls’, ‘fouls against’, ‘steals’ and ‘turnovers’ (delta AIC <0.01; Akaike weight = 0.28) with a classification accuracy of 85.5%. Conversely, four performance indicators were retained with the CI classification tree with an average classification accuracy of 81.4%. However, it was the combination of ‘field-goal percentage’ and ‘defensive rebounds’ that provided the greatest probability of winning (93.2%). Match outcome during the men’s basketball tournaments at the Olympic Games was identified by a unique combination of performance indicators. Despite the average model accuracy being marginally higher for the logistic regression analysis, the CI classification tree offered a greater practical utility for coaches through its resolution of non-linear phenomena to guide team success. Key points A unique combination of team performance indicators explained 93.2% of winning observations in men’s basketball at the Olympics. Monitoring of these team performance indicators may provide coaches with the capability to devise multiple game plans or strategies to enhance their likelihood of winning. Incorporation of machine learning techniques with team performance indicators may provide a valuable and strategic approach to explain patterns within multivariate datasets in sport science. PMID:29238245

  1. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  2. Age and mortality after injury: is the association linear?

    PubMed

    Friese, R S; Wynne, J; Joseph, B; Hashmi, A; Diven, C; Pandit, V; O'Keeffe, T; Zangbar, B; Kulvatunyou, N; Rhee, P

    2014-10-01

    Multiple studies have demonstrated a linear association between advancing age and mortality after injury. An inflection point, or an age at which outcomes begin to differ, has not been previously described. We hypothesized that the relationship between age and mortality after injury is non-linear and an inflection point exists. We performed a retrospective cohort analysis at our urban level I center from 2007 through 2009. All patients aged 65 years and older with the admission diagnosis of injury were included. Non-parametric logistic regression was used to identify the functional form between mortality and age. Multivariate logistic regression was utilized to explore the association between age and mortality. Age 65 years was used as the reference. Significance was defined as p < 0.05. A total of 1,107 patients were included in the analysis. One-third required intensive care unit (ICU) admission and 48 % had traumatic brain injury. 229 patients (20.6 %) were 84 years of age or older. The overall mortality was 7.2 %. Our model indicates that mortality is a quadratic function of age. After controlling for confounders, age is associated with mortality with a regression coefficient of 1.08 for the linear term (p = 0.02) and a regression coefficient of -0.006 for the quadratic term (p = 0.03). The model identified 84.4 years of age as the inflection point at which mortality rates begin to decline. The risk of death after injury varies linearly with age until 84 years. After 84 years of age, the mortality rates decline. These findings may reflect the varying severity of comorbidities and differences in baseline functional status in elderly trauma patients. Specifically, a proportion of our injured patient population less than 84 years old may be more frail, contributing to increased mortality after trauma, whereas a larger proportion of our injured patients over 84 years old, by virtue of reaching this advanced age, may, in fact, be less frail, contributing to less risk of death.

  3. Survival Data and Regression Models

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.

  4. Does clinical pretest probability influence image quality and diagnostic accuracy in dual-source coronary CT angiography?

    PubMed

    Thomas, Christoph; Brodoefel, Harald; Tsiflikas, Ilias; Bruckner, Friederike; Reimann, Anja; Ketelsen, Dominik; Drosch, Tanja; Claussen, Claus D; Kopp, Andreas; Heuschmid, Martin; Burgstahler, Christof

    2010-02-01

    To prospectively evaluate the influence of the clinical pretest probability assessed by the Morise score onto image quality and diagnostic accuracy in coronary dual-source computed tomography angiography (DSCTA). In 61 patients, DSCTA and invasive coronary angiography were performed. Subjective image quality and accuracy for stenosis detection (>50%) of DSCTA with invasive coronary angiography as gold standard were evaluated. The influence of pretest probability onto image quality and accuracy was assessed by logistic regression and chi-square testing. Correlations of image quality and accuracy with the Morise score were determined using linear regression. Thirty-eight patients were categorized into the high, 21 into the intermediate, and 2 into the low probability group. Accuracies for the detection of significant stenoses were 0.94, 0.97, and 1.00, respectively. Logistic regressions and chi-square tests showed statistically significant correlations between Morise score and image quality (P < .0001 and P < .001) and accuracy (P = .0049 and P = .027). Linear regression revealed a cutoff Morise score for a good image quality of 16 and a cutoff for a barely diagnostic image quality beyond the upper Morise scale. Pretest probability is a weak predictor of image quality and diagnostic accuracy in coronary DSCTA. A sufficient image quality for diagnostic images can be reached with all pretest probabilities. Therefore, coronary DSCTA might be suitable also for patients with a high pretest probability. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  5. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less

  6. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  7. A Multilevel Study of Students' Motivations of Studying Accounting: Implications for Employers

    ERIC Educational Resources Information Center

    Law, Philip; Yuen, Desmond

    2012-01-01

    Purpose: The purpose of this study is to examine the influence of factors affecting students' choice of accounting as a study major in Hong Kong. Design/methodology/approach: Multinomial logistic regression and Hierarchical Generalized Linear Modeling (HGLM) are used to analyze the survey data for the level one and level two data, which is the…

  8. Relationship between Type of Trauma Exposure and Posttraumatic Stress Disorder among Urban Children and Adolescents

    ERIC Educational Resources Information Center

    Luthra, Rohini; Abramovitz, Robert; Greenberg, Rick; Schoor, Alan; Newcorn, Jeffrey; Schmeidler, James; Levine, Paul; Nomura, Yoko; Chemtob, Claude M.

    2009-01-01

    This study examines the association between trauma exposure and posttraumatic stress disorder (PTSD) among 157 help-seeking children (aged 8-17). Structured clinical interviews are carried out, and linear and logistic regression analyses are conducted to examine the relationship between PTSD and type of trauma exposure controlling for age, gender,…

  9. Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan

    PubMed Central

    2011-01-01

    Background The relationship between asthma and traffic-related pollutants has received considerable attention. The use of individual-level exposure measures, such as residence location or proximity to emission sources, may avoid ecological biases. Method This study focused on the pediatric Medicaid population in Detroit, MI, a high-risk population for asthma-related events. A population-based matched case-control analysis was used to investigate associations between acute asthma outcomes and proximity of residence to major roads, including freeways. Asthma cases were identified as all children who made at least one asthma claim, including inpatient and emergency department visits, during the three-year study period, 2004-06. Individually matched controls were randomly selected from the rest of the Medicaid population on the basis of non-respiratory related illness. We used conditional logistic regression with distance as both categorical and continuous variables, and examined non-linear relationships with distance using polynomial splines. The conditional logistic regression models were then extended by considering multiple asthma states (based on the frequency of acute asthma outcomes) using polychotomous conditional logistic regression. Results Asthma events were associated with proximity to primary roads with an odds ratio of 0.97 (95% CI: 0.94, 0.99) for a 1 km increase in distance using conditional logistic regression, implying that asthma events are less likely as the distance between the residence and a primary road increases. Similar relationships and effect sizes were found using polychotomous conditional logistic regression. Another plausible exposure metric, a reduced form response surface model that represents atmospheric dispersion of pollutants from roads, was not associated under that exposure model. Conclusions There is moderately strong evidence of elevated risk of asthma close to major roads based on the results obtained in this population-based matched case-control study. PMID:21513554

  10. Neural network modeling for surgical decisions on traumatic brain injury patients.

    PubMed

    Li, Y C; Liu, L; Chiu, W T; Jian, W S

    2000-01-01

    Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.

  11. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio.

    PubMed

    Lloyd-Jones, Luke R; Robinson, Matthew R; Yang, Jian; Visscher, Peter M

    2018-04-01

    Genome-wide association studies (GWAS) have identified thousands of loci that are robustly associated with complex diseases. The use of linear mixed model (LMM) methodology for GWAS is becoming more prevalent due to its ability to control for population structure and cryptic relatedness and to increase power. The odds ratio (OR) is a common measure of the association of a disease with an exposure ( e.g. , a genetic variant) and is readably available from logistic regression. However, when the LMM is applied to all-or-none traits it provides estimates of genetic effects on the observed 0-1 scale, a different scale to that in logistic regression. This limits the comparability of results across studies, for example in a meta-analysis, and makes the interpretation of the magnitude of an effect from an LMM GWAS difficult. In this study, we derived transformations from the genetic effects estimated under the LMM to the OR that only rely on summary statistics. To test the proposed transformations, we used real genotypes from two large, publicly available data sets to simulate all-or-none phenotypes for a set of scenarios that differ in underlying model, disease prevalence, and heritability. Furthermore, we applied these transformations to GWAS summary statistics for type 2 diabetes generated from 108,042 individuals in the UK Biobank. In both simulation and real-data application, we observed very high concordance between the transformed OR from the LMM and either the simulated truth or estimates from logistic regression. The transformations derived and validated in this study improve the comparability of results from prospective and already performed LMM GWAS on complex diseases by providing a reliable transformation to a common comparative scale for the genetic effects. Copyright © 2018 by the Genetics Society of America.

  12. Biomass Stoves and Lens Opacity and Cataract in Nepalese Women

    PubMed Central

    Pokhrel, Amod K.; Bates, Michael N.; Shrestha, Sachet P.; Bailey, Ian L.; DiMartino, Robert B.; Smith, Kirk R.; Joshi, N. D.

    2014-01-01

    Purpose Cataract is the most prevalent cause of blindness in Nepal. Several epidemiologic studies have associated cataracts with use of biomass cookstoves. These studies, however, have had limitations, including potential control selection bias and limited adjustment for possible confounding. This study, in Pokhara city, in an area of Nepal where biomass cookstoves are widely used without direct venting of the smoke to the outdoors, focuses on pre-clinical measures of opacity, while avoiding selection bias and taking into account comprehensive data on potential confounding factors Methods Using a cross-sectional study design, severity of lenticular damage, judged on the LOCS III scales, was investigated in females (n=143), aged 20-65 years, without previously diagnosed cataract. Linear and logistic regression analyses were used to examine the relationships with stove type and length of use. Clinically significant cataract, used in the logistic regression models, was defined as a LOCS III score > 2. Results Using gas cookstoves as the reference group, logistic regression analysis for nuclear cataract showed the evidence of relationships with stove type: for biomass stoves, the odds ratio (OR) was 2.58 (95% confidence interval [CI]: 1.22-5.46) and, for kerosene stoves, the OR was 5.18 (95% CI: 0.88-30.38). Similar results were found for nuclear color (LOCS III score > 2), but no association was found with cortical cataracts. Supporting a relationship between biomass stoves and nuclear cataract was a trend with years of exposure to biomass cookstoves (p=0.01). Linear regression analyses did not show clear evidence of an association between lenticular damage and stove types. Biomass fuel used for heating was not associated with any form of opacity. Conclusions This study provides support for associations of biomass and kerosene cookstoves with nuclear opacity and change in nuclear color. The novel associations with kerosene cookstove use deserve further investigation. PMID:23400024

  13. Association between metabolic syndrome and intravesical prostatic protrusion in patients with benign prostatic enlargement and lower urinary tract symptoms (MIPS Study).

    PubMed

    Russo, Giorgio I; Regis, Federica; Spatafora, Pietro; Frizzi, Jacopo; Urzì, Daniele; Cimino, Sebastiano; Serni, Sergio; Carini, Marco; Gacci, Mauro; Morgia, Giuseppe

    2018-05-01

    To investigate the association between metabolic syndrome (MetS) and morphological features of benign prostatic enlargement (BPE), including total prostate volume (TPV), transitional zone volume (TZV) and intravesical prostatic protrusion (IPP). Between January 2015 and January 2017, 224 consecutive men aged >50 years presenting with lower urinary tract symptoms (LUTS) suggestive of BPE were recruited to this multicentre cross-sectional study. MetS was defined according to International Diabetes Federation criteria. Multivariate linear and logistic regression models were performed to verify factors associated with IPP, TZV and TPV. Patients with MetS were observed to have a significant increase in IPP (P < 0.01), TPV (P < 0.01) and TZV (P = 0.02). On linear regression analysis, adjusted for age and metabolic factors of MetS, we found that high-density lipoprotein (HDL) cholesterol was negatively associated with IPP (r = -0.17), TPV (r = -0.19) and TZV (r = -0.17), while hypertension was positively associated with IPP (r = 0.16), TPV (r = 0.19) and TZV (r = 0.16). On multivariate logistic regression analysis adjusted for age and factors of MetS, hypertension (categorical; odds ratio [OR] 2.95), HDL cholesterol (OR 0.94) and triglycerides (OR 1.01) were independent predictors of TPV ≥ 40 mL. We also found that HDL cholesterol (OR 0.86), hypertension (OR 2.0) and waist circumference (OR 1.09) were significantly associated with TZV ≥ 20 mL. On age-adjusted logistic regression analysis, MetS was significantly associated with IPP ≥ 10 mm (OR 34.0; P < 0.01), TZV ≥ 20 mL (OR 4.40; P < 0.01) and TPV ≥ 40 mL (OR 5.89; P = 0.03). We found an association between MetS and BPE, demonstrating a relationship with IPP. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  14. Prevalence and correlates of cognitive impairment in kidney transplant recipients.

    PubMed

    Gupta, Aditi; Mahnken, Jonathan D; Johnson, David K; Thomas, Tashra S; Subramaniam, Dipti; Polshak, Tyler; Gani, Imran; John Chen, G; Burns, Jeffrey M; Sarnak, Mark J

    2017-05-12

    There is a high prevalence of cognitive impairment in dialysis patients. The prevalence of cognitive impairment after kidney transplantation is unknown. Study Design: Cross-sectional study. Single center study of prevalent kidney transplant recipients from a transplant clinic in a large academic center. Assessment of cognition using the Montreal Cognitive Assessment (MoCA). Demographic and clinical variables associated with cognitive impairment were also examined. Outcomes and Measurements: a) Prevalence of cognitive impairment defined by a MoCA score of <26. b) Multivariable linear and logistic regression to examine the association of demographic and clinical factors with cognitive impairment. Data from 226 patients were analyzed. Mean (SD) age was 54 (13.4) years, 73% were white, 60% were male, 37% had diabetes, 58% had an education level of college or above, and the mean (SD) time since kidney transplant was 3.4 (4.1) years. The prevalence of cognitive impairment was 58.0%. Multivariable linear regression demonstrated that older age, male gender and absence of diabetes were associated with lower MoCA scores (p < 0.01 for all). Estimated glomerular filtration rate (eGFR) was not associated with level of cognition. The logistic regression analysis confirmed the association of older age with cognitive impairment. Cognitive impairment is common in prevalent kidney transplant recipients, at a younger age compared to general population, and is associated with certain demographic variables, but not level of eGFR.

  15. Predicting location of recurrence using FDG, FLT, and Cu-ATSM PET in canine sinonasal tumors treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert

    2015-07-01

    Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R2 and pseudo R2 were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R2 ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R2 = 0.31), but there was still large variability between patients in R2. The R2 from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.

  16. Predicting location of recurrence using FDG, FLT, and Cu-ATSM PET in canine sinonasal tumors treated with radiotherapy.

    PubMed

    Bradshaw, Tyler; Fu, Rau; Bowen, Stephen; Zhu, Jun; Forrest, Lisa; Jeraj, Robert

    2015-07-07

    Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R(2) and pseudo R(2) were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R(2) ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R(2) = 0.31), but there was still large variability between patients in R(2). The R(2) from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target.

  17. Forecasting Workload for Defense Logistics Agency Distribution

    DTIC Science & Technology

    2014-12-01

    Distribution workload ...........................18 Monthly DD Sales for the four primary supply chains ( Avn , Land, Maritime, Ind HW) plotted to...average AVN Aviation BSM Business Systems Modernization CIT consumable items transfer C&E Construction and Equipment C&T Clothing...992081.437 See Figure 2 below for the graphical output of the linear regression. Monthly DD Sales for the four primary supply chains ( Avn , Land

  18. Placement Model for First-Time Freshmen in Calculus I (Math 131): University of Northern Colorado

    ERIC Educational Resources Information Center

    Heiny, Robert L.; Heiny, Erik L.; Raymond, Karen

    2017-01-01

    Two approaches, Linear Discriminant Analysis, and Logistic Regression are used and compared to predict success or failure for first-time freshmen in the first calculus course at a medium-sized public, 4-year institution prior to Fall registration. The predictor variables are high school GPA, the number, and GPA's of college prep mathematics…

  19. Analysis of the Effects of the Commander’s Battle Positioning on Unit Combat Performance

    DTIC Science & Technology

    1991-03-01

    Analysis ......... .. 58 Logistic Regression Analysis ......... .. 61 Canonical Correlation Analysis ........ .. 62 Descriminant Analysis...entails classifying objects into two or more distinct groups, or responses. Dillon defines descriminant analysis as "deriving linear combinations of the...object given it’s predictor variables. The second objective is, through analysis of the parameters of the descriminant functions, determine those

  20. Sex differences in the effect of aging on dry eye disease.

    PubMed

    Ahn, Jong Ho; Choi, Yoon-Hyeong; Paik, Hae Jung; Kim, Mee Kum; Wee, Won Ryang; Kim, Dong Hyun

    2017-01-01

    Aging is a major risk factor in dry eye disease (DED), and understanding sexual differences is very important in biomedical research. However, there is little information about sex differences in the effect of aging on DED. We investigated sex differences in the effect of aging and other risk factors for DED. This study included data of 16,824 adults from the Korea National Health and Nutrition Examination Survey (2010-2012), which is a population-based cross-sectional survey. DED was defined as the presence of frequent ocular dryness or a previous diagnosis by an ophthalmologist. Basic sociodemographic factors and previously known risk factors for DED were included in the analyses. Linear regression modeling and multivariate logistic regression modeling were used to compare the sex differences in the effect of risk factors for DED; we additionally performed tests for interactions between sex and other risk factors for DED in logistic regression models. In our linear regression models, the prevalence of DED symptoms in men increased with age ( R =0.311, P =0.012); however, there was no association between aging and DED in women ( P >0.05). Multivariate logistic regression analyses showed that aging in men was not associated with DED (DED symptoms/diagnosis: odds ratio [OR] =1.01/1.04, each P >0.05), while aging in women was protectively associated with DED (DED symptoms/diagnosis: OR =0.94/0.91, P =0.011/0.003). Previous ocular surgery was significantly associated with DED in both men and women (men/women: OR =2.45/1.77 [DED symptoms] and 3.17/2.05 [DED diagnosis], each P <0.001). Tests for interactions of sex revealed significantly different aging × sex and previous ocular surgery × sex interactions ( P for interaction of sex: DED symptoms/diagnosis - 0.044/0.011 [age] and 0.012/0.006 [previous ocular surgery]). There were distinct sex differences in the effect of aging on DED in the Korean population. DED following ocular surgery also showed sexually different patterns. Age matching and sex matching are strongly recommended in further studies about DED, especially DED following ocular surgery.

  1. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    PubMed

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  2. Prevalence and risk factors of non-carious cervical lesions related to occupational exposure to acid mists.

    PubMed

    Bomfim, Rafael Aiello; Crosato, Edgard; Mazzilli, Luiz Eugênio Nigro; Frias, Antonio Carlos

    2015-01-01

    This study evaluates the prevalence and risk factors of non-carious cervical lesions (NCCLs) in a Brazilian population of workers exposed and non-exposed to acid mists and chemical products. One hundred workers (46 exposed and 54 non-exposed) were evaluated in a Centro de Referência em Saúde do Trabalhador - CEREST (Worker's Health Reference Center). The workers responded to questionnaires regarding their personal information and about alcohol consumption and tobacco use. A clinical examination was conducted to evaluate the presence of NCCLs, according to WHO parameters. Statistical analyses were performed by unconditional logistic regression and multiple linear regression, with the critical level of p < 0.05. NCCLs were significantly associated with age groups (18-34, 35-44, 45-68 years). The unconditional logistic regression showed that the presence of NCCLs was better explained by age group (OR = 4.04; CI 95% 1.77-9.22) and occupational exposure to acid mists and chemical products (OR = 3.84; CI 95% 1.10-13.49), whereas the linear multiple regression revealed that NCCLs were better explained by years of smoking (p = 0.01) and age group (p = 0.04). The prevalence of NCCLs in the study population was particularly high (76.84%), and the risk factors for NCCLs were age, exposure to acid mists and smoking habit. Controlling risk factors through preventive and educative measures, allied to the use of personal protective equipment to prevent the occupational exposure to acid mists, may contribute to minimizing the prevalence of NCCLs.

  3. Work stress, asthma control and asthma-specific quality of life: Initial evidence from a cross-sectional study.

    PubMed

    Hartmann, Bettina; Leucht, Verena; Loerbroks, Adrian

    2017-03-01

    Research has suggested that psychological stress is positively associated with asthma morbidity. One major source of stress in adulthood is one's occupation. However, to date, potential links of work stress with asthma control or asthma-specific quality of life have not been examined. We aimed to address this knowledge gap. In 2014/2015, we conducted a cross-sectional study among adults with asthma in Germany (n = 362). For the current analyses that sample was restricted to participants in employment and reporting to have never been diagnosed with chronic obstructive pulmonary disease (n = 94). Work stress was operationalized by the 16-item effort-reward-imbalance (ERI) questionnaire, which measures the subcomponents "effort", "reward" and "overcommitment." Participants further completed the Asthma Control Test and the Asthma Quality of Life Questionnaire-Sydney. Multivariable associations were quantified by linear regression and logistic regression. Effort, reward and their ratio (i.e. ERI ratio) did not show meaningful associations with asthma morbidity. By contrast, increasing levels of overcommitment were associated with poorer asthma control and worse quality of life in both linear regression (ß = -0.26, p = 0.01 and ß = 0.44, p < 0.01, respectively) and logistic regression (odds ratio [OR] = 1.87, 95% confidence interval [CI] = 1.14-3.07 and OR = 2.34, 95% CI = 1.32-4.15, respectively). The present study provides initial evidence of a positive relationship of work-related overcommitment with asthma control and asthma-specific quality of life. Longitudinal studies with larger samples are needed to confirm our findings and to disentangle the potential causality of associations.

  4. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  5. Role of social support in adolescent suicidal ideation and suicide attempts.

    PubMed

    Miller, Adam Bryant; Esposito-Smythers, Christianne; Leichtweis, Richard N

    2015-03-01

    The present study examined the relative contributions of perceptions of social support from parents, close friends, and school on current suicidal ideation (SI) and suicide attempt (SA) history in a clinical sample of adolescents. Participants were 143 adolescents (64% female; 81% white; range, 12-18 years; M = 15.38; standard deviation = 1.43) admitted to a partial hospitalization program. Data were collected with well-validated assessments and a structured clinical interview. Main and interactive effects of perceptions of social support on SI were tested with linear regression. Main and interactive effects of social support on the odds of SA were tested with logistic regression. Results from the linear regression analysis revealed that perceptions of lower school support independently predicted greater severity of SI, accounting for parent and close friend support. Further, the relationship between lower perceived school support and SI was the strongest among those who perceived lower versus higher parental support. Results from the logistic regression analysis revealed that perceptions of lower parental support independently predicted SA history, accounting for school and close friend support. Further, those who perceived lower support from school and close friends reported the greatest odds of an SA history. Results address a significant gap in the social support and suicide literature by demonstrating that perceptions of parent and school support are relatively more important than peer support in understanding suicidal thoughts and history of suicidal behavior. Results suggest that improving social support across these domains may be important in suicide prevention efforts. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  6. The effect of high leverage points on the logistic ridge regression estimator having multicollinearity

    NASA Astrophysics Data System (ADS)

    Ariffin, Syaiba Balqish; Midi, Habshah

    2014-06-01

    This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.

  7. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    PubMed Central

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  8. Sample size determination for logistic regression on a logit-normal distribution.

    PubMed

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  9. A comparison of Cox and logistic regression for use in genome-wide association studies of cohort and case-cohort design.

    PubMed

    Staley, James R; Jones, Edmund; Kaptoge, Stephen; Butterworth, Adam S; Sweeting, Michael J; Wood, Angela M; Howson, Joanna M M

    2017-06-01

    Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort designs, as it is less computationally expensive. Although Cox and logistic regression models have been compared previously in cohort studies, this work does not completely cover the GWAS setting nor extend to the case-cohort study design. Here, we evaluated Cox and logistic regression applied to cohort and case-cohort genetic association studies using simulated data and genetic data from the EPIC-CVD study. In the cohort setting, there was a modest improvement in power to detect SNP-disease associations using Cox regression compared with logistic regression, which increased as the disease incidence increased. In contrast, logistic regression had more power than (Prentice weighted) Cox regression in the case-cohort setting. Logistic regression yielded inflated effect estimates (assuming the hazard ratio is the underlying measure of association) for both study designs, especially for SNPs with greater effect on disease. Given logistic regression is substantially more computationally efficient than Cox regression in both settings, we propose a two-step approach to GWAS in cohort and case-cohort studies. First to analyse all SNPs with logistic regression to identify associated variants below a pre-defined P-value threshold, and second to fit Cox regression (appropriately weighted in case-cohort studies) to those identified SNPs to ensure accurate estimation of association with disease.

  10. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  11. The Association of Sitting Time With Sarcopenia Status and Physical Performance at Baseline and 18-Month Follow-Up in the Residential Aged Care Setting.

    PubMed

    Reid, Natasha; Keogh, Justin W; Swinton, Paul; Gardiner, Paul A; Henwood, Timothy R

    2018-06-18

    This study investigated the association of sitting time with sarcopenia and physical performance in residential aged care residents at baseline and 18-month follow-up. Measures included the International Physical Activity Questionnaire (sitting time), European Working Group definition of sarcopenia, and the short physical performance battery (physical performance). Logistic regression and linear regression analyses were used to investigate associations. For each hour of sitting, the unadjusted odds ratio of sarcopenia was 1.16 (95% confidence interval [0.98, 1.37]). Linear regression showed that each hour of sitting was significantly associated with a 0.2-unit lower score for performance. Associations of baseline sitting with follow-up sarcopenia status and performance were nonsignificant. Cross-sectionally, increased sitting time in residential aged care may be detrimentally associated with sarcopenia and physical performance. Based on current reablement models of care, future studies should investigate if reducing sedentary time improves performance among adults in end of life care.

  12. Comparative analysis on the probability of being a good payer

    NASA Astrophysics Data System (ADS)

    Mihova, V.; Pavlov, V.

    2017-10-01

    Credit risk assessment is crucial for the bank industry. The current practice uses various approaches for the calculation of credit risk. The core of these approaches is the use of multiple regression models, applied in order to assess the risk associated with the approval of people applying for certain products (loans, credit cards, etc.). Based on data from the past, these models try to predict what will happen in the future. Different data requires different type of models. This work studies the causal link between the conduct of an applicant upon payment of the loan and the data that he completed at the time of application. A database of 100 borrowers from a commercial bank is used for the purposes of the study. The available data includes information from the time of application and credit history while paying off the loan. Customers are divided into two groups, based on the credit history: Good and Bad payers. Linear and logistic regression are applied in parallel to the data in order to estimate the probability of being good for new borrowers. A variable, which contains value of 1 for Good borrowers and value of 0 for Bad candidates, is modeled as a dependent variable. To decide which of the variables listed in the database should be used in the modelling process (as independent variables), a correlation analysis is made. Due to the results of it, several combinations of independent variables are tested as initial models - both with linear and logistic regression. The best linear and logistic models are obtained after initial transformation of the data and following a set of standard and robust statistical criteria. A comparative analysis between the two final models is made and scorecards are obtained from both models to assess new customers at the time of application. A cut-off level of points, bellow which to reject the applications and above it - to accept them, has been suggested for both the models, applying the strategy to keep the same Accept Rate as in the current data.

  13. The crux of the method: assumptions in ordinary least squares and logistic regression.

    PubMed

    Long, Rebecca G

    2008-10-01

    Logistic regression has increasingly become the tool of choice when analyzing data with a binary dependent variable. While resources relating to the technique are widely available, clear discussions of why logistic regression should be used in place of ordinary least squares regression are difficult to find. The current paper compares and contrasts the assumptions of ordinary least squares with those of logistic regression and explains why logistic regression's looser assumptions make it adept at handling violations of the more important assumptions in ordinary least squares.

  14. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    PubMed Central

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  15. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  16. Association of comorbid mental health symptoms and physical health conditions with employee productivity.

    PubMed

    Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela

    2009-10-01

    This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.

  17. Burnout does not help predict depression among French school teachers.

    PubMed

    Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric

    2015-11-01

    Burnout has been viewed as a phase in the development of depression. However, supportive research is scarce. We examined whether burnout predicted depression among French school teachers. We conducted a 2-wave, 21-month study involving 627 teachers (73% female) working in French primary and secondary schools. Burnout was assessed with the Maslach Burnout Inventory and depression with the 9-item depression module of the Patient Health Questionnaire (PHQ-9). The PHQ-9 grades depressive symptom severity and provides a provisional diagnosis of major depression. Depression was treated both as a continuous and categorical variable using linear and logistic regression analyses. We controlled for gender, age, and length of employment. Controlling for baseline depressive symptoms, linear regression analysis showed that burnout symptoms at time 1 (T1) did not predict depressive symptoms at time 2 (T2). Baseline depressive symptoms accounted for about 88% of the association between T1 burnout and T2 depressive symptoms. Only baseline depressive symptoms predicted depressive symptoms at follow-up. Similarly, logistic regression analysis revealed that burnout symptoms at T1 did not predict incident cases of major depression at T2 when depressive symptoms at T1 were included in the predictive model. Only baseline depressive symptoms predicted cases of major depression at follow-up. This study does not support the view that burnout is a phase in the development of depression. Assessing burnout symptoms in addition to "classical" depressive symptoms may not always improve our ability to predict future depression.

  18. The association between a body shape index and cardiovascular risk in overweight and obese children and adolescents.

    PubMed

    Mameli, Chiara; Krakauer, Nir Y; Krakauer, Jesse C; Bosetti, Alessandra; Ferrari, Chiara Matilde; Moiana, Norma; Schneider, Laura; Borsani, Barbara; Genoni, Teresa; Zuccotti, Gianvincenzo

    2018-01-01

    A Body Shape Index (ABSI) and normalized hip circumference (Hip Index, HI) have been recently shown to be strong risk factors for mortality and for cardiovascular disease in adults. We conducted an observational cross-sectional study to evaluate the relationship between ABSI, HI and cardiometabolic risk factors and obesity-related comorbidities in overweight and obese children and adolescents aged 2-18 years. We performed multivariate linear and logistic regression analyses with BMI, ABSI, and HI age and sex normalized z scores as predictors to examine the association with cardiometabolic risk markers (systolic and diastolic blood pressure, fasting glucose and insulin, total cholesterol and its components, transaminases, fat mass % detected by bioelectrical impedance analysis) and obesity-related conditions (including hepatic steatosis and metabolic syndrome). We recruited 217 patients (114 males), mean age 11.3 years. Multivariate linear regression showed a significant association of ABSI z score with 10 out of 15 risk markers expressed as continuous variables, while BMI z score showed a significant correlation with 9 and HI only with 1. In multivariate logistic regression to predict occurrence of obesity-related conditions and above-threshold values of risk factors, BMI z score was significantly correlated to 7 out of 12, ABSI to 5, and HI to 1. Overall, ABSI is an independent anthropometric index that was significantly associated with cardiometabolic risk markers in a pediatric population affected by overweight and obesity.

  19. Applying Kaplan-Meier to Item Response Data

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2018-01-01

    Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…

  20. Plasma amino acid profile associated with fatty liver disease and co-occurrence of metabolic risk factors.

    PubMed

    Yamakado, Minoru; Tanaka, Takayuki; Nagao, Kenji; Imaizumi, Akira; Komatsu, Michiharu; Daimon, Takashi; Miyano, Hiroshi; Tani, Mizuki; Toda, Akiko; Yamamoto, Hiroshi; Horimoto, Katsuhisa; Ishizaka, Yuko

    2017-11-03

    Fatty liver disease (FLD) increases the risk of diabetes, cardiovascular disease, and steatohepatitis, which leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, the early detection of FLD is necessary. We aimed to find a quantitative and feasible model for discriminating the FLD, based on plasma free amino acid (PFAA) profiles. We constructed models of the relationship between PFAA levels in 2,000 generally healthy Japanese subjects and the diagnosis of FLD by abdominal ultrasound scan by multiple logistic regression analysis with variable selection. The performance of these models for FLD discrimination was validated using an independent data set of 2,160 subjects. The generated PFAA-based model was able to identify FLD patients. The area under the receiver operating characteristic curve for the model was 0.83, which was higher than those of other existing liver function-associated markers ranging from 0.53 to 0.80. The value of the linear discriminant in the model yielded the adjusted odds ratio (with 95% confidence intervals) for a 1 standard deviation increase of 2.63 (2.14-3.25) in the multiple logistic regression analysis with known liver function-associated covariates. Interestingly, the linear discriminant values were significantly associated with the progression of FLD, and patients with nonalcoholic steatohepatitis also exhibited higher values.

  1. Depressive disorder in pregnant Latin women: does intimate partner violence matter?

    PubMed

    Fonseca-Machado, Mariana de Oliveira; Alves, Lisiane Camargo; Monteiro, Juliana Cristina Dos Santos; Stefanello, Juliana; Nakano, Ana Márcia Spanó; Haas, Vanderlei José; Gomes-Sponholz, Flávia

    2015-05-01

    To identify the association of antenatal depressive symptoms with intimate partner violence during the current pregnancy in Brazilian women. Intimate partner violence is an important risk factor for antenatal depression. To the authors' knowledge, there has been no study to date that assessed the association between intimate partner violence during pregnancy and antenatal depressive symptoms among Brazilian women. Cross-sectional study. Three hundred and fifty-eight pregnant women were enrolled in the study. The Edinburgh Postnatal Depression Scale and an adapted version of the instrument used in the World Health Organization Multi-country Study on Women's Health and Domestic Violence were used to measure antenatal depressive symptoms and psychological, physical and sexual acts of intimate partner violence during the current pregnancy respectively. Multiple logistic regression and multiple linear regression were used for data analysis. The prevalence of antenatal depressive symptoms, as determined by the cut-off score of 12 in the Edinburgh Postnatal Depression Scale, was 28·2% (101). Of the participants, 63 (17·6%) reported some type of intimate partner violence during pregnancy. Among them, 60 (95·2%) reported suffering psychological violence, 23 (36·5%) physical violence and one (1·6%) sexual violence. Multiple logistic regression and multiple linear regression indicated that antenatal depressive symptoms are extremely associated with intimate partner violence during pregnancy. Among Brazilian women, exposure to intimate partner violence during pregnancy increases the chances of experiencing antenatal depressive symptoms. Clinical nurses and nurses midwifes should pay attention to the particularities of Brazilian women, especially with regard to the occurrence of intimate partner violence, whose impacts on the mental health of this population are extremely significant, both during the gestational period and postpartum. © 2015 John Wiley & Sons Ltd.

  2. Coping Styles in Heart Failure Patients with Depressive Symptoms

    PubMed Central

    Trivedi, Ranak B.; Blumenthal, James A.; O'Connor, Christopher; Adams, Kirkwood; Hinderliter, Alan; Sueta-Dupree, Carla; Johnson, Kristy; Sherwood, Andrew

    2009-01-01

    Objective Elevated depressive symptoms have been linked to poorer prognosis in heart failure (HF) patients. Our objective was to identify coping styles associated with depressive symptoms in HF patients. Methods 222 stable HF patients (32.75% female, 45.4% non-Hispanic Black) completed multiple questionnaires. Beck Depression Inventory (BDI) assessed depressive symptoms, Life Orientation Test (LOT-R) assessed optimism, ENRICHD Social Support Inventory (ESSI) and Perceived Social Support Scale (PSSS) assessed social support, and COPE assessed coping styles. Linear regression analyses were employed to assess the association of coping styles with continuous BDI scores. Logistic regression analyses were performed using BDI scores dichotomized into BDI<10 versus BDI≥10, to identify coping styles accompanying clinically significant depressive symptoms. Results In linear regression models, higher BDI scores were associated with lower scores on the acceptance (β=-.14), humor (β=-.15), planning (β=-.15), and emotional support (β=-.14) subscales of the COPE, and higher scores on the behavioral disengagement (β=.41), denial (β=.33), venting (β=.25), and mental disengagement (β=.22) subscales. Higher PSSS and ESSI scores were associated with lower BDI scores (β=-.32 and -.25, respectively). Higher LOT-R scores were associated with higher BDI scores (β=.39, p<.001). In logistical regression models, BDI≥10 was associated with greater likelihood of behavioral disengagement (OR=1.3), denial (OR=1.2), mental disengagement (OR=1.3), venting (OR=1.2), and pessimism (OR=1.2), and lower perceived social support measured by PSSS (OR=.92) and ESSI (OR=.92). Conclusion Depressive symptoms in HF patients are associated with avoidant coping, lower perceived social support, and pessimism. Results raise the possibility that interventions designed to improve coping may reduce depressive symptoms. PMID:19773027

  3. Household Debt and Relation to Intimate Partner Violence and Husbands' Attitudes Toward Gender Norms: A Study Among Young Married Couples in Rural Maharashtra, India

    PubMed Central

    Donta, Balaiah; Dasgupta, Anindita; Ghule, Mohan; Battala, Madhusudana; Nair, Saritha; Silverman, Jay G.; Jadhav, Arun; Palaye, Prajakta; Saggurti, Niranjan; Raj, Anita

    2015-01-01

    Objective Evidence has linked economic hardship with increased intimate partner violence (IPV) perpetration among males. However, less is known about how economic debt or gender norms related to men's roles in relationships or the household, which often underlie IPV perpetration, intersect in or may explain these associations. We assessed the intersection of economic debt, attitudes toward gender norms, and IPV perpetration among married men in India. Methods Data were from the evaluation of a family planning intervention among young married couples (n=1,081) in rural Maharashtra, India. Crude and adjusted logistic regression models for dichotomous outcome variables and linear regression models for continuous outcomes were used to examine debt in relation to husbands' attitudes toward gender-based norms (i.e., beliefs supporting IPV and beliefs regarding male dominance in relationships and the household), as well as sexual and physical IPV perpetration. Results Twenty percent of husbands reported debt. In adjusted linear regression models, debt was associated with husbands' attitudes supportive of IPV (b=0.015, p=0.004) and norms supporting male dominance in relationships and the household (b=0.006, p=0.003). In logistic regression models adjusted for relevant demographics, debt was associated with perpetration of physical IPV (adjusted odds ratio [AOR] = 1.4, 95% confidence interval [CI] 1.1, 1.9) and sexual IPV (AOR=1.6, 95% CI 1.1, 2.1) from husbands. These findings related to debt and relation to IPV were slightly attenuated when further adjusted for men's attitudes toward gender norms. Conclusion Findings suggest the need for combined gender equity and economic promotion interventions to address high levels of debt and related IPV reported among married couples in rural India. PMID:26556938

  4. Household Debt and Relation to Intimate Partner Violence and Husbands' Attitudes Toward Gender Norms: A Study Among Young Married Couples in Rural Maharashtra, India.

    PubMed

    Reed, Elizabeth; Donta, Balaiah; Dasgupta, Anindita; Ghule, Mohan; Battala, Madhusudana; Nair, Saritha; Silverman, Jay G; Jadhav, Arun; Palaye, Prajakta; Saggurti, Niranjan; Raj, Anita

    2015-01-01

    Evidence has linked economic hardship with increased intimate partner violence (IPV) perpetration among males. However, less is known about how economic debt or gender norms related to men's roles in relationships or the household, which often underlie IPV perpetration, intersect in or may explain these associations. We assessed the intersection of economic debt, attitudes toward gender norms, and IPV perpetration among married men in India. Data were from the evaluation of a family planning intervention among young married couples (n=1,081) in rural Maharashtra, India. Crude and adjusted logistic regression models for dichotomous outcome variables and linear regression models for continuous outcomes were used to examine debt in relation to husbands' attitudes toward gender-based norms (i.e., beliefs supporting IPV and beliefs regarding male dominance in relationships and the household), as well as sexual and physical IPV perpetration. Twenty percent of husbands reported debt. In adjusted linear regression models, debt was associated with husbands' attitudes supportive of IPV (b=0.015, p=0.004) and norms supporting male dominance in relationships and the household (b=0.006, p=0.003). In logistic regression models adjusted for relevant demographics, debt was associated with perpetration of physical IPV (adjusted odds ratio [AOR] = 1.4, 95% confidence interval [CI] 1.1, 1.9) and sexual IPV (AOR=1.6, 95% CI 1.1, 2.1) from husbands. These findings related to debt and relation to IPV were slightly attenuated when further adjusted for men's attitudes toward gender norms. Findings suggest the need for combined gender equity and economic promotion interventions to address high levels of debt and related IPV reported among married couples in rural India.

  5. Speech prosody impairment predicts cognitive decline in Parkinson's disease.

    PubMed

    Rektorova, Irena; Mekyska, Jiri; Janousova, Eva; Kostalova, Milena; Eliasova, Ilona; Mrackova, Martina; Berankova, Dagmar; Necasova, Tereza; Smekal, Zdenek; Marecek, Radek

    2016-08-01

    Impairment of speech prosody is characteristic for Parkinson's disease (PD) and does not respond well to dopaminergic treatment. We assessed whether baseline acoustic parameters, alone or in combination with other predominantly non-dopaminergic symptoms may predict global cognitive decline as measured by the Addenbrooke's cognitive examination (ACE-R) and/or worsening of cognitive status as assessed by a detailed neuropsychological examination. Forty-four consecutive non-depressed PD patients underwent clinical and cognitive testing, and acoustic voice analysis at baseline and at the two-year follow-up. Influence of speech and other clinical parameters on worsening of the ACE-R and of the cognitive status was analyzed using linear and logistic regression. The cognitive status (classified as normal cognition, mild cognitive impairment and dementia) deteriorated in 25% of patients during the follow-up. The multivariate linear regression model consisted of the variation in range of the fundamental voice frequency (F0VR) and the REM Sleep Behavioral Disorder Screening Questionnaire (RBDSQ). These parameters explained 37.2% of the variability of the change in ACE-R. The most significant predictors in the univariate logistic regression were the speech index of rhythmicity (SPIR; p = 0.012), disease duration (p = 0.019), and the RBDSQ (p = 0.032). The multivariate regression analysis revealed that SPIR alone led to 73.2% accuracy in predicting a change in cognitive status. Combining SPIR with RBDSQ improved the prediction accuracy of SPIR alone by 7.3%. Impairment of speech prosody together with symptoms of RBD predicted rapid cognitive decline and worsening of PD cognitive status during a two-year period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Coping styles in heart failure patients with depressive symptoms.

    PubMed

    Trivedi, Ranak B; Blumenthal, James A; O'Connor, Christopher; Adams, Kirkwood; Hinderliter, Alan; Dupree, Carla; Johnson, Kristy; Sherwood, Andrew

    2009-10-01

    Elevated depressive symptoms have been linked to poorer prognosis in heart failure (HF) patients. Our objective was to identify coping styles associated with depressive symptoms in HF patients. A total of 222 stable HF patients (32.75% female, 45.4% non-Hispanic black) completed multiple questionnaires. Beck Depression Inventory (BDI) assessed depressive symptoms, Life Orientation Test (LOT-R) assessed optimism, ENRICHD Social Support Inventory (ESSI) and Perceived Social Support Scale (PSSS) assessed social support, and COPE assessed coping styles. Linear regression analyses were employed to assess the association of coping styles with continuous BDI scores. Logistic regression analyses were performed using BDI scores dichotomized into BDI<10 vs. BDI> or =10, to identify coping styles accompanying clinically significant depressive symptoms. In linear regression models, higher BDI scores were associated with lower scores on the acceptance (beta=-.14), humor (beta=-.15), planning (beta=-.15), and emotional support (beta=-.14) subscales of the COPE, and higher scores on the behavioral disengagement (beta=.41), denial (beta=.33), venting (beta=.25), and mental disengagement (beta=.22) subscales. Higher PSSS and ESSI scores were associated with lower BDI scores (beta=-.32 and -.25, respectively). Higher LOT-R scores were associated with higher BDI scores (beta=.39, P<.001). In logistical regression models, BDI> or =10 was associated with greater likelihood of behavioral disengagement (OR=1.3), denial (OR=1.2), mental disengagement (OR=1.3), venting (OR=1.2), and pessimism (OR=1.2), and lower perceived social support measured by PSSS (OR=.92) and ESSI (OR=.92). Depressive symptoms in HF patients are associated with avoidant coping, lower perceived social support, and pessimism. Results raise the possibility that interventions designed to improve coping may reduce depressive symptoms.

  7. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  8. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    PubMed Central

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  9. Comparison of multinomial logistic regression and logistic regression: which is more efficient in allocating land use?

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun

    2014-12-01

    Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.

  10. Postmolar gestational trophoblastic neoplasia: beyond the traditional risk factors.

    PubMed

    Bakhtiyari, Mahmood; Mirzamoradi, Masoumeh; Kimyaiee, Parichehr; Aghaie, Abbas; Mansournia, Mohammd Ali; Ashrafi-Vand, Sepideh; Sarfjoo, Fatemeh Sadat

    2015-09-01

    To investigate the slope of linear regression of postevacuation serum hCG as an independent risk factor for postmolar gestational trophoblastic neoplasia (GTN). Multicenter retrospective cohort study. Academic referral health care centers. All subjects with confirmed hydatidiform mole and at least four measurements of β-hCG titer. None. Type and magnitude of the relationship between the slope of linear regression of β-hCG as a new risk factor and GTN using Bayesian logistic regression with penalized log-likelihood estimation. Among the high-risk and low-risk molar pregnancy cases, 11 (18.6%) and 19 cases (13.3%) had GTN, respectively. No significant relationship was found between the components of a high-risk pregnancy and GTN. The β-hCG return slope was higher in the spontaneous cure group. However, the initial level of this hormone in the first measurement was higher in the GTN group compared with in the spontaneous recovery group. The average time for diagnosing GTN in the high-risk molar pregnancy group was 2 weeks less than that of the low-risk molar pregnancy group. In addition to slope of linear regression of β-hCG (odds ratio [OR], 12.74, confidence interval [CI], 5.42-29.2), abortion history (OR, 2.53; 95% CI, 1.27-5.04) and large uterine height for gestational age (OR, 1.26; CI, 1.04-1.54) had the maximum effects on GTN outcome, respectively. The slope of linear regression of β-hCG was introduced as an independent risk factor, which could be used for clinical decision making based on records of β-hCG titer and subsequent prevention program. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. GWAS with longitudinal phenotypes: performance of approximate procedures

    PubMed Central

    Sikorska, Karolina; Montazeri, Nahid Mostafavi; Uitterlinden, André; Rivadeneira, Fernando; Eilers, Paul HC; Lesaffre, Emmanuel

    2015-01-01

    Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model (LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly. In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs. The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate the type I error rate and implies only a minimal loss of power. PMID:25712081

  12. Varicella infection is not associated with increasing prevalence of eczema: a U.S. population-based study.

    PubMed

    Li, J C; Silverberg, J I

    2015-11-01

    Chickenpox infection early in childhood has previously been shown to protect against the development of childhood eczema in line with the hygiene hypothesis. In 1995, the American Academy of Pediatrics recommended routine vaccination against varicella zoster virus in the United States. Subsequently, rates of chickenpox infection have dramatically decreased in childhood. We sought to understand the impact of declining rates of chickenpox infection on the prevalence of eczema. We analysed data from 207 007 children in the 1997-2013 National Health Interview Survey. One-year prevalence of eczema and 'ever had' history of chickenpox were analysed. Associations between chickenpox infection and eczema were tested using survey-weighted logistic regression. The impact of chickenpox on trends of eczema prevalence was tested using survey logistic regression and generalized linear models. Children with a history of chickenpox compared with those without chickenpox had a lower prevalence [survey-weighted logistic regression (95% confidence interval, CI)] of eczema [8·8% (8·5-9·0%) vs. 10·6% (10·4-10·8%)]. In pooled multivariate models controlling for age, sex, race/ethnicity, household income, highest level of household education, insurance coverage, U.S. birthplace and family size, eczema was inversely associated with chickenpox [adjusted odds ratio (95% CI), 0·90 (0·86-0·94), P < 0·001]. The prevalence of eczema significantly increased over time (Tukey post-hoc test, P < 0·001 for comparisons of survey years 2001-13 vs. 1997-2000, 2008-13 vs. 2001-04 and 2008-13 vs. 2005-07). In multivariate generalized linear models, the odds of eczema was not associated with chickenpox in 2001-13 (P ≥ 0·06). These findings suggest that lower rates of chickenpox infection secondary to widespread vaccination against varicella zoster virus are not contributing to higher rates of childhood eczema in the U.S. © 2015 British Association of Dermatologists.

  13. Blood Based Biomarkers of Early Onset Breast Cancer

    DTIC Science & Technology

    2016-12-01

    discretizes the data, and also using logistic elastic net – a form of linear regression - we were unable to build a classifier that could accurately...classifier for differentiating cases from controls off discretized data. The first pass analysis demonstrated a 35 gene signature that differentiated...to the discretized data for mRNA gene signature, the samples used to “train” were also included in the final samples used to “test” the algorithm

  14. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations.

    PubMed

    Hayes, Andrew F; Matthes, Jörg

    2009-08-01

    Researchers often hypothesize moderated effects, in which the effect of an independent variable on an outcome variable depends on the value of a moderator variable. Such an effect reveals itself statistically as an interaction between the independent and moderator variables in a model of the outcome variable. When an interaction is found, it is important to probe the interaction, for theories and hypotheses often predict not just interaction but a specific pattern of effects of the focal independent variable as a function of the moderator. This article describes the familiar pick-a-point approach and the much less familiar Johnson-Neyman technique for probing interactions in linear models and introduces macros for SPSS and SAS to simplify the computations and facilitate the probing of interactions in ordinary least squares and logistic regression. A script version of the SPSS macro is also available for users who prefer a point-and-click user interface rather than command syntax.

  15. Avoiding overstating the strength of forensic evidence: Shrunk likelihood ratios/Bayes factors.

    PubMed

    Morrison, Geoffrey Stewart; Poh, Norman

    2018-05-01

    When strength of forensic evidence is quantified using sample data and statistical models, a concern may be raised as to whether the output of a model overestimates the strength of evidence. This is particularly the case when the amount of sample data is small, and hence sampling variability is high. This concern is related to concern about precision. This paper describes, explores, and tests three procedures which shrink the value of the likelihood ratio or Bayes factor toward the neutral value of one. The procedures are: (1) a Bayesian procedure with uninformative priors, (2) use of empirical lower and upper bounds (ELUB), and (3) a novel form of regularized logistic regression. As a benchmark, they are compared with linear discriminant analysis, and in some instances with non-regularized logistic regression. The behaviours of the procedures are explored using Monte Carlo simulated data, and tested on real data from comparisons of voice recordings, face images, and glass fragments. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A trend analysis of laboratory positive propoxyphene workplace urine drug screens before and after the product recall.

    PubMed

    Price, James

    2015-01-01

    Propoxyphene was withdrawn from the US market in November 2010. This drug is still tested for in the workplace as part of expanded panel nonregulated testing. A convenience sample of urine specimens (n = 7838) were provided by workers from various industries. The percentage of positive specimens with 95% confidence intervals was calculated for each year of the study. Logistic regression was used to assess the impact of the year upon the propoxyphene result. The prevalence of positive propoxyphene tests was much higher before the product's withdrawal from the market. Logistic regression provided evidence of a decreasing linear trend (P < 0.000; β = -0.71). The odds ratio signifies that for every additional year the urine specimens were 0.49 times less likely to be positive for propoxyphene. This favors the determination that the change in propoxyphene positive drug test over the years is not by chance. The conclusion supports no longer performing nonregulated workplace propoxyphene urine drug testing for this population.

  17. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  18. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Specific factors for prenatal lead exposure in the border area of China.

    PubMed

    Kawata, Kimiko; Li, Yan; Liu, Hao; Zhang, Xiao Qin; Ushijima, Hiroshi

    2006-07-01

    The objectives of this study are to examine the prevalence of increased blood lead concentrations in mothers and their umbilical cords, and to identify risk factors for prenatal lead exposure in Kunming city, Yunnan province, China. The study was conducted at two obstetrics departments, and 100 peripartum women were enrolled. The mean blood lead concentrations of the mothers and the umbilical cords were 67.3microg/l and 53.1microg/l, respectively. In multiple linear regression analysis, maternal occupational exposure, maternal consumption of homemade dehydrated vegetables and maternal habitation period in Kunming city were significantly associated with an increase of umbilical cord blood lead concentration. In addition, logistic regression analysis was used to assess the association of umbilical cord blood lead concentrations that possibly have adverse effects on brain development of newborns with each potential risk factor. Maternal frequent use of tableware with color patterns inside was significantly associated with higher cord blood lead concentration in addition to the three items in the multiple linear regression analysis. These points should be considered as specific recommendations for maternal and fetal lead exposure in this city.

  20. On the equivalence of case-crossover and time series methods in environmental epidemiology.

    PubMed

    Lu, Yun; Zeger, Scott L

    2007-04-01

    The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.

  1. Physical Function in Older Men With Hyperkyphosis

    PubMed Central

    Harrison, Stephanie L.; Fink, Howard A.; Marshall, Lynn M.; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M.; Kado, Deborah M.

    2015-01-01

    Background. Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. Methods. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71–98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. Results. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5–1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Conclusions. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. PMID:25431353

  2. Extension of the Peters–Belson method to estimate health disparities among multiple groups using logistic regression with survey data

    PubMed Central

    Li, Y.; Graubard, B. I.; Huang, P.; Gastwirth, J. L.

    2015-01-01

    Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease. An observed difference in the mean outcome between an advantaged group (AG) and disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters–Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. We focus on applying the PB method to estimate the disparity based on binary/multinomial/proportional odds logistic regression models using data collected from complex surveys with more than one DG. Estimators of the unexplained disparity, an analytic variance–covariance estimator that is based on the Taylor linearization variance–covariance estimation method, as well as a Wald test for testing a joint null hypothesis of zero for unexplained disparities between two or more minority groups and a majority group, are provided. Simulation studies with data selected from simple random sampling and cluster sampling, as well as the analyses of disparity in body mass index in the National Health and Nutrition Examination Survey 1999–2004, are conducted. Empirical results indicate that the Taylor linearization variance–covariance estimation is accurate and that the proposed Wald test maintains the nominal level. PMID:25382235

  3. Should metacognition be measured by logistic regression?

    PubMed

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  5. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  6. An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries.

    PubMed

    Cabral, Ana Caroline; Stark, Jonathan S; Kolm, Hedda E; Martins, César C

    2018-04-01

    Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators. Logistic regression was performed with all data and separately for two sampling seasons, using 800 and 100 MPN 100 mL -1 of E. coli and enterococci, respectively, as the microbiological limits of sewage contamination. Threshold values of coprostanol varied depending on the FIB and season, ranging between 1.00 and 2.23 μg g -1 SPM. The range of threshold values of coprostanol for SPM are relatively higher and more variable than those suggested in literature for sediments (0.10-0.50 μg g -1 ), probably due to higher concentration of coprostanol in SPM than in sediment. Temperature may affect the relationship between microbiological indicators and coprostanol, since the threshold value of coprostanol found here was similar to tropical areas, but lower than those found during winter in temperate areas, reinforcing the idea that threshold values should be calibrated for different climatic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets.

    PubMed

    Chen, Jie-Hao; Zhao, Zi-Qian; Shi, Ji-Yun; Zhao, Chong

    2017-01-01

    In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%.

  8. A New Approach for Mobile Advertising Click-Through Rate Estimation Based on Deep Belief Nets

    PubMed Central

    Zhao, Zi-Qian; Shi, Ji-Yun; Zhao, Chong

    2017-01-01

    In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate (CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation algorithms. However, most of these methods are insufficient to extract the data features and cannot reflect the nonlinear relationship between different features. In order to solve these problems, we propose a new model based on Deep Belief Nets to predict the CTR of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief Nets, with the advantage of simplicity of traditional Logistic Regression models. Based on the training dataset with the information of over 40 million mobile advertisements during a period of 10 days, our experiments show that our new model has better estimation accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%. PMID:29209363

  9. Association of the FGA and SLC6A4 genes with autistic spectrum disorder in a Korean population.

    PubMed

    Ro, Myungja; Won, Seongsik; Kang, Hyunjun; Kim, Su-Yeon; Lee, Seung Ku; Nam, Min; Bang, Hee Jung; Yang, Jae Won; Choi, Kyung-Sik; Kim, Su Kang; Chung, Joo-Ho; Kwack, Kyubum

    2013-01-01

    Autism spectrum disorder (ASD) is a neurobiological disorder characterized by distinctive impairments in cognitive function, language, and behavior. Linkage and population studies suggest a genetic association between solute carrier family 6 member 4 (SLC6A4) variants and ASD. Logistic regression was used to identify associations between single-nucleotide polymorphisms (SNPs) and ASD with 3 alternative models (additive, dominant, and recessive). Linear regression analysis was performed to determine the influence of SNPs on Childhood Autism Rating Scale (CARS) scores as a quantitative phenotype. In the present study, we examined the associations of SNPs in the SLC6A4 gene and the fibrinogen alpha chain (FGA) gene. Logistic regression analysis showed a significant association between the risk of ASD and rs2070025 and rs2070011 in the FGA gene. The gene-gene interaction between SLC6A4 and FGA was not significantly associated with ASD susceptibility. However, polymorphisms in both SLC6A4 and the FGA gene significantly affected the symptoms of ASD. Our findings indicate that FGA and SLC6A4 gene interactions may contribute to the phenotypes of ASD rather than the incidence of ASD. © 2013 S. Karger AG, Basel.

  10. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    PubMed

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  11. Evaluating risk factors for endemic human Salmonella Enteritidis infections with different phage types in Ontario, Canada using multinomial logistic regression and a case-case study approach

    PubMed Central

    2012-01-01

    Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531

  12. The association of remotely sensed outdoor fine particulate matter with cancer incidence of respiratory system in the USA.

    PubMed

    Al-Hamdan, Ashraf Z; Albashaireh, Reem N; Al-Hamdan, Mohammad Z; Crosson, William L

    2017-05-12

    This study aimed to assess the association between exposure to fine particulate matter (PM 2.5 ) and respiratory system cancer incidence in the US population (n = 295,404,580) using a satellite-derived estimate of PM 2.5 concentrations. Linear and logistic regression analyses were performed to determine whether PM 2.5 was related to the odds of respiratory system cancer (RSC) incidence based on gender and race. Positive linear regressions were found between PM 2.5 concentrations and the age-adjusted RSC incidence rates for all groups (Males, Females, Whites, and Blacks) except for Asians and American Indians. The linear relationships between PM 2.5 and RSC incidence rate per 1 μg/m 3 PM 2.5 increase for Males, Females, Whites, Blacks, and all categories combined had slopes of, respectively, 7.02 (R 2 = 0.36), 2.14 (R 2 = 0.14), 3.92 (R 2 = 0.23), 5.02 (R 2 = 0.21), and 4.15 (R 2 = 0.28). Similarly, the logistic regression odds ratios per 10 μg/m 3 increase of PM 2.5 were greater than one for all categories except for Asians and American Indians, indicating that PM 2.5 is related to the odds of RSC incidence. The age-adjusted odds ratio for males (OR = 2.16, 95% CI = 1.56-3.01) was higher than that for females (OR = 1.50, 95% CI = 1.09-2.06), and it was higher for Blacks (OR = 2.12, 95% CI = 1.43-3.14) than for Whites (OR = 1.72, 95% CI = 1.23-2.42). The odds ratios for all categories were attenuated with the inclusion of the smoking covariate, reflecting the effect of smoking on RSC incidence besides PM 2.5 .

  13. Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios

    NASA Astrophysics Data System (ADS)

    Lagergaard Pedersen, Niels; Sand-Jensen, Kaj

    2007-01-01

    Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright

  14. Prenatal Lead Exposure and Fetal Growth: Smaller Infants Have Heightened Susceptibility

    PubMed Central

    Rodosthenous, Rodosthenis S.; Burris, Heather H.; Svensson, Katherine; Amarasiriwardena, Chitra J.; Cantoral, Alejandra; Schnaas, Lourdes; Mercado-García, Adriana; Coull, Brent A.; Wright, Robert O.; Téllez-Rojo, Martha M.; Baccarelli, Andrea A.

    2016-01-01

    Background As population lead levels decrease, the toxic effects of lead may be distributed to more sensitive populations, such as infants with poor fetal growth. Objectives To determine the association of prenatal lead exposure and fetal growth; and to evaluate whether infants with poor fetal growth are more susceptible to lead toxicity than those with normal fetal growth. Methods We examined the association of second trimester maternal blood lead levels (BLL) with birthweight-for-gestational age (BWGA) z-score in 944 mother-infant participants of the PROGRESS cohort. We determined the association between maternal BLL and BWGA z-score by using both linear and quantile regression. We estimated odds ratios for small-for-gestational age (SGA) infants between maternal BLL quartiles using logistic regression. Maternal age, body mass index, socioeconomic status, parity, household smoking exposure, hemoglobin levels, and infant sex were included as confounders. Results While linear regression showed a negative association between maternal BLL and BWGA z-score (β=−0.06 z-score units per log2 BLL increase; 95% CI: −0.13, 0.003; P=0.06), quantile regression revealed larger magnitudes of this association in the <30th percentiles of BWGA z-score (β range [−0.08, −0.13] z-score units per log2 BLL increase; all P values <0.05). Mothers in the highest BLL quartile had an odds ratio of 1.62 (95% CI: 0.99–2.65) for having a SGA infant compared to the lowest BLL quartile. Conclusions While both linear and quantile regression showed a negative association between prenatal lead exposure and birthweight, quantile regression revealed that smaller infants may represent a more susceptible subpopulation. PMID:27923585

  15. Prenatal lead exposure and fetal growth: Smaller infants have heightened susceptibility.

    PubMed

    Rodosthenous, Rodosthenis S; Burris, Heather H; Svensson, Katherine; Amarasiriwardena, Chitra J; Cantoral, Alejandra; Schnaas, Lourdes; Mercado-García, Adriana; Coull, Brent A; Wright, Robert O; Téllez-Rojo, Martha M; Baccarelli, Andrea A

    2017-02-01

    As population lead levels decrease, the toxic effects of lead may be distributed to more sensitive populations, such as infants with poor fetal growth. To determine the association of prenatal lead exposure and fetal growth; and to evaluate whether infants with poor fetal growth are more susceptible to lead toxicity than those with normal fetal growth. We examined the association of second trimester maternal blood lead levels (BLL) with birthweight-for-gestational age (BWGA) z-score in 944 mother-infant participants of the PROGRESS cohort. We determined the association between maternal BLL and BWGA z-score by using both linear and quantile regression. We estimated odds ratios for small-for-gestational age (SGA) infants between maternal BLL quartiles using logistic regression. Maternal age, body mass index, socioeconomic status, parity, household smoking exposure, hemoglobin levels, and infant sex were included as confounders. While linear regression showed a negative association between maternal BLL and BWGA z-score (β=-0.06 z-score units per log 2 BLL increase; 95% CI: -0.13, 0.003; P=0.06), quantile regression revealed larger magnitudes of this association in the <30th percentiles of BWGA z-score (β range [-0.08, -0.13] z-score units per log 2 BLL increase; all P values<0.05). Mothers in the highest BLL quartile had an odds ratio of 1.62 (95% CI: 0.99-2.65) for having a SGA infant compared to the lowest BLL quartile. While both linear and quantile regression showed a negative association between prenatal lead exposure and birthweight, quantile regression revealed that smaller infants may represent a more susceptible subpopulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combining biological and psychosocial baseline variables did not improve prediction of outcome of a very-low-energy diet in a clinic referral population.

    PubMed

    Sumithran, P; Purcell, K; Kuyruk, S; Proietto, J; Prendergast, L A

    2018-02-01

    Consistent, strong predictors of obesity treatment outcomes have not been identified. It has been suggested that broadening the range of predictor variables examined may be valuable. We explored methods to predict outcomes of a very-low-energy diet (VLED)-based programme in a clinically comparable setting, using a wide array of pre-intervention biological and psychosocial participant data. A total of 61 women and 39 men (mean ± standard deviation [SD] body mass index: 39.8 ± 7.3 kg/m 2 ) underwent an 8-week VLED and 12-month follow-up. At baseline, participants underwent a blood test and assessment of psychological, social and behavioural factors previously associated with treatment outcomes. Logistic regression, linear discriminant analysis, decision trees and random forests were used to model outcomes from baseline variables. Of the 100 participants, 88 completed the VLED and 42 attended the Week 60 visit. Overall prediction rates for weight loss of ≥10% at weeks 8 and 60, and attrition at Week 60, using combined data were between 77.8 and 87.6% for logistic regression, and lower for other methods. When logistic regression analyses included only baseline demographic and anthropometric variables, prediction rates were 76.2-86.1%. In this population, considering a wide range of biological and psychosocial data did not improve outcome prediction compared to simply-obtained baseline characteristics. © 2017 World Obesity Federation.

  17. Statistical Methods for Quality Control of Steel Coils Manufacturing Process using Generalized Linear Models

    NASA Astrophysics Data System (ADS)

    García-Díaz, J. Carlos

    2009-11-01

    Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.

  18. Logistic quantile regression provides improved estimates for bounded avian counts: A case study of California Spotted Owl fledgling production

    USGS Publications Warehouse

    Cade, Brian S.; Noon, Barry R.; Scherer, Rick D.; Keane, John J.

    2017-01-01

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical conditional distribution of a bounded discrete random variable. The logistic quantile regression model requires that counts are randomly jittered to a continuous random variable, logit transformed to bound them between specified lower and upper values, then estimated in conventional linear quantile regression, repeating the 3 steps and averaging estimates. Back-transformation to the original discrete scale relies on the fact that quantiles are equivariant to monotonic transformations. We demonstrate this statistical procedure by modeling 20 years of California Spotted Owl fledgling production (0−3 per territory) on the Lassen National Forest, California, USA, as related to climate, demographic, and landscape habitat characteristics at territories. Spotted Owl fledgling counts increased nonlinearly with decreasing precipitation in the early nesting period, in the winter prior to nesting, and in the prior growing season; with increasing minimum temperatures in the early nesting period; with adult compared to subadult parents; when there was no fledgling production in the prior year; and when percentage of the landscape surrounding nesting sites (202 ha) with trees ≥25 m height increased. Changes in production were primarily driven by changes in the proportion of territories with 2 or 3 fledglings. Average variances of the discrete cumulative distributions of the estimated fledgling counts indicated that temporal changes in climate and parent age class explained 18% of the annual variance in owl fledgling production, which was 34% of the total variance. Prior fledgling production explained as much of the variance in the fledgling counts as climate, parent age class, and landscape habitat predictors. Our logistic quantile regression model can be used for any discrete response variables with fixed upper and lower bounds.

  19. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    NASA Astrophysics Data System (ADS)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  20. ADCYAP1R1 and asthma in Puerto Rican children.

    PubMed

    Chen, Wei; Boutaoui, Nadia; Brehm, John M; Han, Yueh-Ying; Schmitz, Cassandra; Cressley, Alex; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Baccarelli, Andrea A; Weeks, Daniel E; Kolls, Jay K; Canino, Glorisa; Celedón, Juan C

    2013-03-15

    Epigenetic and/or genetic variation in the gene encoding the receptor for adenylate-cyclase activating polypeptide 1 (ADCYAP1R1) has been linked to post-traumatic stress disorder in adults and anxiety in children. Psychosocial stress has been linked to asthma morbidity in Puerto Rican children. To examine whether epigenetic or genetic variation in ADCYAP1R1 is associated with childhood asthma in Puerto Ricans. We conducted a case-control study of 516 children ages 6-14 years living in San Juan, Puerto Rico. We assessed methylation at a CpG site in the promoter of ADCYAP1R1 (cg11218385) using a pyrosequencing assay in DNA from white blood cells. We tested whether cg11218385 methylation (range, 0.4-6.1%) is associated with asthma using logistic regression. We also examined whether exposure to violence (assessed by the Exposure to Violence [ETV] Scale in children 9 yr and older) is associated with cg11218385 methylation (using linear regression) or asthma (using logistic regression). Logistic regression was used to test for association between a single nucleotide polymorphism in ADCYAP1R1 (rs2267735) and asthma under an additive model. All multivariate models were adjusted for age, sex, household income, and principal components. EACH 1% increment in cg11218385 methylation was associated with increased odds of asthma (adjusted odds ratio, 1.3; 95% confidence interval, 1.0-1.6; P = 0.03). Among children 9 years and older, exposure to violence was associated with cg11218385 methylation. The C allele of single nucleotide polymorphism rs2267735 was significantly associated with increased odds of asthma (adjusted odds ratio, 1.3; 95% confidence interval, 1.02-1.67; P = 0.03). Epigenetic and genetic variants in ADCYAP1R1 are associated with asthma in Puerto Rican children.

  1. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    EPA Science Inventory

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  2. Analyzing Student Learning Outcomes: Usefulness of Logistic and Cox Regression Models. IR Applications, Volume 5

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2005-01-01

    Logistic and Cox regression methods are practical tools used to model the relationships between certain student learning outcomes and their relevant explanatory variables. The logistic regression model fits an S-shaped curve into a binary outcome with data points of zero and one. The Cox regression model allows investigators to study the duration…

  3. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    PubMed

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  4. Weight Fluctuation and Postmenopausal Breast Cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-Up Study.

    PubMed

    Komaroff, Marina

    2016-01-01

    The aim of this study is to investigate if weight fluctuation is an independent risk factor for postmenopausal breast cancer (PBC) among women who gained weight in adult years. NHANES I Epidemiologic Follow-Up Study (NHEFS) database was used in the study. Women that were cancers-free at enrollment and diagnosed for the first time with breast cancer at age 50 or greater were considered cases. Controls were chosen from the subset of cancers-free women and matched to cases by years of follow-up and status of body mass index (BMI) at 25 years of age. Weight fluctuation was measured by the root-mean-square-error (RMSE) from a simple linear regression model for each woman with their body mass index (BMI) regressed on age (started at 25 years) while women with the positive slope from this regression were defined as weight gainers. Data were analyzed using conditional logistic regression models. A total of 158 women were included into the study. The conditional logistic regression adjusted for weight gain demonstrated positive association between weight fluctuation in adult years and postmenopausal breast cancers (odds ratio/OR = 1.67; 95% confidence interval/CI: 1.06-2.66). The data suggested that long-term weight fluctuation was significant risk factor for PBC among women who gained weight in adult years. This finding underscores the importance of maintaining lost weight and avoiding weight fluctuation.

  5. Weight Fluctuation and Postmenopausal Breast Cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-Up Study

    PubMed Central

    Komaroff, Marina

    2016-01-01

    Objective. The aim of this study is to investigate if weight fluctuation is an independent risk factor for postmenopausal breast cancer (PBC) among women who gained weight in adult years. Methods. NHANES I Epidemiologic Follow-Up Study (NHEFS) database was used in the study. Women that were cancers-free at enrollment and diagnosed for the first time with breast cancer at age 50 or greater were considered cases. Controls were chosen from the subset of cancers-free women and matched to cases by years of follow-up and status of body mass index (BMI) at 25 years of age. Weight fluctuation was measured by the root-mean-square-error (RMSE) from a simple linear regression model for each woman with their body mass index (BMI) regressed on age (started at 25 years) while women with the positive slope from this regression were defined as weight gainers. Data were analyzed using conditional logistic regression models. Results. A total of 158 women were included into the study. The conditional logistic regression adjusted for weight gain demonstrated positive association between weight fluctuation in adult years and postmenopausal breast cancers (odds ratio/OR = 1.67; 95% confidence interval/CI: 1.06–2.66). Conclusions. The data suggested that long-term weight fluctuation was significant risk factor for PBC among women who gained weight in adult years. This finding underscores the importance of maintaining lost weight and avoiding weight fluctuation. PMID:26953120

  6. Logistic Regression: Concept and Application

    ERIC Educational Resources Information Center

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  7. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  8. The Mantel-Haenszel procedure revisited: models and generalizations.

    PubMed

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.

  9. The Mantel-Haenszel Procedure Revisited: Models and Generalizations

    PubMed Central

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented. PMID:23516463

  10. [Associations between dormitory environment/other factors and sleep quality of medical students].

    PubMed

    Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun

    2016-03-01

    To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.

  11. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    PubMed Central

    Weiss, Brandi A.; Dardick, William

    2015-01-01

    This article introduces an entropy-based measure of data–model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data–model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data–model fit to assess how well logistic regression models classify cases into observed categories. PMID:29795897

  12. Logistic regression applied to natural hazards: rare event logistic regression with replications

    NASA Astrophysics Data System (ADS)

    Guns, M.; Vanacker, V.

    2012-06-01

    Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.

  13. Large unbalanced credit scoring using Lasso-logistic regression ensemble.

    PubMed

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.

  14. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression.

    PubMed

    Weiss, Brandi A; Dardick, William

    2016-12-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify the quality of classification and separation of group membership. Entropy complements preexisting measures of data-model fit and provides unique information not contained in other measures. Hypothetical data scenarios, an applied example, and Monte Carlo simulation results are used to demonstrate the application of entropy in logistic regression. Entropy should be used in conjunction with other measures of data-model fit to assess how well logistic regression models classify cases into observed categories.

  15. The Trend Odds Model for Ordinal Data‡

    PubMed Central

    Capuano, Ana W.; Dawson, Jeffrey D.

    2013-01-01

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values (Peterson and Harrell, 1990). We consider a trend odds version of this constrained model, where the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc Nlmixed, and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical dataset is used to illustrate the interpretation of the trend odds model, and we apply this model to a Swine Influenza example where the proportional odds assumption appears to be violated. PMID:23225520

  16. The trend odds model for ordinal data.

    PubMed

    Capuano, Ana W; Dawson, Jeffrey D

    2013-06-15

    Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values. We consider a trend odds version of this constrained model, wherein the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc NLMIXED and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical data set is used to illustrate the interpretation of the trend odds model, and we apply this model to a swine influenza example wherein the proportional odds assumption appears to be violated. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Only One Third of Tehran's Physicians are Familiar with 'Evidence-Based Clinical Guidelines'.

    PubMed

    Mounesan, Leila; Nedjat, Saharnaz; Majdzadeh, Reza; Rashidian, Arash; Gholami, Jaleh

    2013-03-01

    Clinical guidelines have increasingly been used as tools for applying new knowledge and research findings. Although, efforts have been made to produce clinical guidelines in Iran, it is not clear whether they have been used by physicians and what factors are associated with them?. Four hundred and forty three practicing physicians in Tehran were selected from private clinics through weighted random sampling. The data collection tool was a questionnaire on familiarity and attitude toward clinical guidelines. The descriptive and analytical findings were analyzed with t-tests, Chi(2), logistic and linear multivariate regression by SPSS, version 16. 31.8% of physicians were familiar with clinical guidelines. Based on the logistic regression model physicians' familiarity with clinical guidelines was positively and significantly associated with 'working experience in a health service delivery point' OR = 2.13 (95% CI, 1.17-3.90), 'familiarity with therapeutic protocols' OR = 2.09 (95% CI, 1.22-3.57) and 'holding a specialty degree' OR = 2.51 (95% CI, 1.24-5.07). The mean overall attitude scores in the 'usefulness', 'reliability', and 'problems and barriers' domains were, respectively, 78.9 (SD = 16.5), 78.9 (SD = 19.7) and 50.4 (SD = 15.9) out of a total of 100 scores in each domain. No significant association was observed between attitude domains and other independent variables using multivariate linear regression. Little familiarity with clinical guidelines may represent weakness in of production and distribution of domestic evidence. Although, physicians considered guidelines as useful and reliable tools, but problems such as difficult access to guidelines and lack of facilities to apply them were stated as well.

  18. Association between oxidized low-density lipoprotein and cognitive impairment in patients with ischemic stroke.

    PubMed

    Wang, A; Liu, J; Meng, X; Li, J; Wang, H; Wang, Y; Su, Z; Zhang, N; Dai, L; Wang, Y; Wang, Y

    2018-01-01

    The association between oxidized low-density lipoprotein (oxLDL) and cognitive impairment is unclear. This study aimed to investigate the potential association between oxLDL and cognitive impairment among patients with acute ischemic stroke. We measured the levels of oxLDL and recorded the Mini-Mental State Examination (MMSE) score in patients with acute ischemic stroke who were recruited from the Study of Oxidative Stress in Patients with Acute Ischemic Stroke. Cognitive impairment was defined as an MMSE score of <24. The association between oxLDL and cognitive impairment was assessed by multivariate logistic or linear regression analysis. Other clinical variables of interest were also studied. A total of 3726 patients [1287 (34.54%) female] were included in this study, with a mean age of 63.62 ± 11.96 years. After adjusting for potential confounders in our logistic regression model, each SD increase in oxLDL was associated with a 26% increase in the prevalence of cognitive impairment (odds radio, 1.26; 95% confidence interval, 1.13-1.39; P < 0.0001). Similarly, higher oxLDL was associated with lower MMSE scores, with a 0.56-point decrease in MMSE score for every SD increase in oxLDL in a linear regression analysis (β = -0.56; 95% confidence interval, -0.81 to -0.32; P < 0.0001). There were no significant interactions between oxLDL and age, sex or education levels for cognitive impairment (all interactions, P > 0.05). Elevated levels of oxLDL were associated with a higher prevalence of cognitive impairment in patients with ischemic stroke. © 2017 EAN.

  19. Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica

    PubMed Central

    Brehm, John M.; Celedón, Juan C.; Soto-Quiros, Manuel E.; Avila, Lydiana; Hunninghake, Gary M.; Forno, Erick; Laskey, Daniel; Sylvia, Jody S.; Hollis, Bruce W.; Weiss, Scott T.; Litonjua, Augusto A.

    2009-01-01

    Rationale: Maternal vitamin D intake during pregnancy has been inversely associated with asthma symptoms in early childhood. However, no study has examined the relationship between measured vitamin D levels and markers of asthma severity in childhood. Objectives: To determine the relationship between measured vitamin D levels and both markers of asthma severity and allergy in childhood. Methods: We examined the relation between 25-hydroxyvitamin D levels (the major circulating form of vitamin D) and markers of allergy and asthma severity in a cross-sectional study of 616 Costa Rican children between the ages of 6 and 14 years. Linear, logistic, and negative binomial regressions were used for the univariate and multivariate analyses. Measurements and Main Results: Of the 616 children with asthma, 175 (28%) had insufficient levels of vitamin D (<30 ng/ml). In multivariate linear regression models, vitamin D levels were significantly and inversely associated with total IgE and eosinophil count. In multivariate logistic regression models, a log10 unit increase in vitamin D levels was associated with reduced odds of any hospitalization in the previous year (odds ratio [OR], 0.05; 95% confidence interval [CI], 0.004–0.71; P = 0.03), any use of antiinflammatory medications in the previous year (OR, 0.18; 95% CI, 0.05–0.67; P = 0.01), and increased airway responsiveness (a ≤8.58-μmol provocative dose of methacholine producing a 20% fall in baseline FEV1 [OR, 0.15; 95% CI, 0.024–0.97; P = 0.05]). Conclusions: Our results suggest that vitamin D insufficiency is relatively frequent in an equatorial population of children with asthma. In these children, lower vitamin D levels are associated with increased markers of allergy and asthma severity. PMID:19179486

  20. Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson's disease.

    PubMed

    Dafsari, Haidar Salimi; Weiß, Luisa; Silverdale, Monty; Rizos, Alexandra; Reddy, Prashanth; Ashkan, Keyoumars; Evans, Julian; Reker, Paul; Petry-Schmelzer, Jan Niklas; Samuel, Michael; Visser-Vandewalle, Veerle; Antonini, Angelo; Martinez-Martin, Pablo; Ray-Chaudhuri, K; Timmermann, Lars

    2018-02-24

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in advanced Parkinson's disease (PD). However, considerable inter-individual variability has been observed for QoL outcome. We hypothesized that demographic and preoperative NMS characteristics can predict postoperative QoL outcome. In this ongoing, prospective, multicenter study (Cologne, Manchester, London) including 88 patients, we collected the following scales preoperatively and on follow-up 6 months postoperatively: PDQuestionnaire-8 (PDQ-8), NMSScale (NMSS), NMSQuestionnaire (NMSQ), Scales for Outcomes in PD (SCOPA)-motor examination, -complications, and -activities of daily living, levodopa equivalent daily dose. We dichotomized patients into "QoL responders"/"non-responders" and screened for factors associated with QoL improvement with (1) Spearman-correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions using aforementioned "responders/non-responders" as dependent variable. All outcomes improved significantly on follow-up. However, approximately 44% of patients were categorized as "QoL non-responders". Spearman-correlations, linear and logistic regression analyses were significant for NMSS and NMSQ but not for SCOPA-motor examination. Post-hoc, we identified specific NMS (flat moods, difficulties experiencing pleasure, pain, bladder voiding) as significant contributors to QoL outcome. Our results provide evidence that QoL improvement after STN-DBS depends on preoperative NMS characteristics. These findings are important in the advising and selection of individuals for DBS therapy. Future studies investigating motor and non-motor PD clusters may enable stratifying QoL outcomes and help predict patients' individual prospects of benefiting from DBS. Copyright © 2018. Published by Elsevier Inc.

  1. Physical function in older men with hyperkyphosis.

    PubMed

    Katzman, Wendy B; Harrison, Stephanie L; Fink, Howard A; Marshall, Lynn M; Orwoll, Eric; Barrett-Connor, Elizabeth; Cawthon, Peggy M; Kado, Deborah M

    2015-05-01

    Age-related hyperkyphosis has been associated with poor physical function and is a well-established predictor of adverse health outcomes in older women, but its impact on health in older men is less well understood. We conducted a cross-sectional study to evaluate the association of hyperkyphosis and physical function in 2,363 men, aged 71-98 (M = 79) from the Osteoporotic Fractures in Men Study. Kyphosis was measured using the Rancho Bernardo Study block method. Measurements of grip strength and lower extremity function, including gait speed over 6 m, narrow walk (measure of dynamic balance), repeated chair stands ability and time, and lower extremity power (Nottingham Power Rig) were included separately as primary outcomes. We investigated associations of kyphosis and each outcome in age-adjusted and multivariable linear or logistic regression models, controlling for age, clinic, education, race, bone mineral density, height, weight, diabetes, and physical activity. In multivariate linear regression, we observed a dose-related response of worse scores on each lower extremity physical function test as number of blocks increased, p for trend ≤.001. Using a cutoff of ≥4 blocks, 20% (N = 469) of men were characterized with hyperkyphosis. In multivariate logistic regression, men with hyperkyphosis had increased odds (range 1.5-1.8) of being in the worst quartile of performing lower extremity physical function tasks (p < .001 for each outcome). Kyphosis was not associated with grip strength in any multivariate analysis. Hyperkyphosis is associated with impaired lower extremity physical function in older men. Further studies are needed to determine the direction of causality. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Machine learning techniques for energy optimization in mobile embedded systems

    NASA Astrophysics Data System (ADS)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  3. Locomotive syndrome is associated not only with physical capacity but also degree of depression.

    PubMed

    Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro

    2016-05-01

    Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica.

    PubMed

    Alobuia, Wilson M; Missikpode, Celestin; Aung, Maung; Jolly, Pauline E

    2015-01-01

    Outbreaks of vector-borne diseases (VBDs) such as dengue and malaria can overwhelm health systems in resource-poor countries. Environmental management strategies that reduce or eliminate vector breeding sites combined with improved personal prevention strategies can help to significantly reduce transmission of these infections. The aim of this study was to assess the knowledge, attitudes, and practices (KAPs) of residents in western Jamaica regarding control of mosquito vectors and protection from mosquito bites. A cross-sectional study was conducted between May and August 2010 among patients or family members of patients waiting to be seen at hospitals in western Jamaica. Participants completed an interviewer-administered questionnaire on sociodemographic factors and KAPs regarding VBDs. KAP scores were calculated and categorized as high or low based on the number of correct or positive responses. Logistic regression analyses were conducted to identify predictors of KAP and linear regression analysis conducted to determine if knowledge and attitude scores predicted practice scores. In all, 361 (85 men and 276 women) people participated in the study. Most participants (87%) scored low on knowledge and practice items (78%). Conversely, 78% scored high on attitude items. By multivariate logistic regression, housewives were 82% less likely than laborers to have high attitude scores; homeowners were 65% less likely than renters to have high attitude scores. Participants from households with 1 to 2 children were 3.4 times more likely to have high attitude scores compared with those from households with no children. Participants from households with at least 5 people were 65% less likely than those from households with fewer than 5 people to have high practice scores. By multivariable linear regression knowledge and attitude scores were significant predictors of practice score. The study revealed poor knowledge of VBDs and poor prevention practices among participants. It identified specific groups that can be targeted with vector control and personal protection interventions to decrease transmission of the infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Nutrition Risk in Critically Ill Versus the Nutritional Risk Screening 2002: Are They Comparable for Assessing Risk of Malnutrition in Critically Ill Patients?

    PubMed

    Canales, Cecilia; Elsayes, Ali; Yeh, D Dante; Belcher, Donna; Nakayama, Anna; McCarthy, Caitlin M; Chokengarmwong, Nalin; Quraishi, Sadeq A

    2018-05-30

    Malnutrition influences clinical outcomes. Although various screening tools are available to assess nutrition status, their use in the intensive care unit (ICU) has not been rigorously studied. Our goal was to compare the Nutrition Risk in Critically Ill (NUTRIC) to the Nutritional Risk Screening (NRS) 2002 in terms of their associations with macronutrient deficit in ICU patients. We performed a retrospective analysis to investigate the relationship between NUTRIC vs NRS 2002 and macronutrient deficit (protein and calories) in critically ill patients. We performed linear regression analyses, controlling for age, sex, race, body mass index, and ICU length of stay. We then dichotomized our primary exposures and outcomes to perform logistic regression analyses, controlling for the same covariates. The analytic cohort included 312 adults. Mean NUTRIC and NRS 2002 scores were 4 ± 2 and 4 ± 1, respectively. Linear regression demonstrated that each increment in NUTRIC score was associated with a 49 g higher protein deficit (β = 48.70: 95% confidence interval [CI] 29.23-68.17) and a 752 kcal higher caloric deficit (β = 751.95; 95% CI 447.80-1056.09). Logistic regression demonstrated that NUTRIC scores >4 had over twice the odds of protein deficits ≥300 g (odds ratio [OR] 2.35; 95% CI 1.43-3.85) and caloric deficits ≥6000 kcal (OR 2.73; 95% CI 1.66-4.50) compared with NUTRIC scores ≤4. We did not observe an association of NRS 2002 scores with macronutrient deficit. Our data suggest that NUTRIC is superior to NRS 2002 for assessing malnutrition risk in ICU patients. Randomized, controlled studies are needed to determine whether nutrition interventions, stratified by NUTRIC score, can improve patient outcomes. © 2018 American Society for Parenteral and Enteral Nutrition.

  6. Physician burnout, work engagement and the quality of patient care.

    PubMed

    Loerbroks, A; Glaser, J; Vu-Eickmann, P; Angerer, P

    2017-07-01

    Research suggests that burnout in physicians is associated with poorer patient care, but evidence is inconclusive. More recently, the concept of work engagement has emerged (i.e. the beneficial counterpart of burnout) and has been associated with better care. Evidence remains markedly sparse however. To examine the associations of burnout and work engagement with physicians' self-perceived quality of care. We drew on cross-sectional data from physicians in Germany. We used a six-item version of the Maslach Burnout Inventory measuring exhaustion and depersonalization. We employed the nine-item Utrecht Work Engagement Scale to assess work engagement and its subcomponents: vigour, dedication and absorption. We measured physicians' own perceptions of their quality of care by a six-item instrument covering practices and attitudes. We used continuous and categorized dependent and independent variables in linear and logistic regression analyses. There were 416 participants. In multivariable linear regression analyses, increasing burnout total scores were associated with poorer perceived quality of care [unstandardized regression coefficient (b) = 0.45, 95% confidence interval (CI) 0.37, 0.54]. This association was stronger for depersonalization (b = 0.37, 95% CI 0.29, 0.44) than for exhaustion (b = 0.26, 95% CI 0.18, 0.33). Increasing work engagement was associated with higher perceived quality care (b for the total score = -0.20, 95% CI -0.28, -0.11). This was confirmed for each subcomponent with stronger associations for vigour (b = -0.21, 95% CI -0.29, -0.13) and dedication (b = -0.16, 95% CI -0.24, -0.09) than for absorption (b = -0.12, 95% CI -0.20, -0.04). Logistic regression analyses yielded comparable results. Physician burnout was associated with self-perceived poorer patient care, while work engagement related to self-reported better care. Studies are needed to corroborate these findings, particularly for work engagement. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Vitamin D is associated with testosterone and hypogonadism in Chinese men: Results from a cross-sectional SPECT-China study.

    PubMed

    Wang, Ningjian; Han, Bing; Li, Qin; Chen, Yi; Chen, Yingchao; Xia, Fangzhen; Lin, Dongping; Jensen, Michael D; Lu, Yingli

    2015-07-16

    To date, no study has explored the association between androgen levels and 25-hydroxyvitamin D (25(OH)D) levels in Chinese men. We aimed to investigate the relationship between 25(OH)D levels and total and free testosterone (T), sex hormone binding globulin (SHBG), estradiol, and hypogonadism in Chinese men. Our data, which were based on the population, were collected from 16 sites in East China. There were 2,854 men enrolled in the study, with a mean (SD) age of 53.0 (13.5) years. Hypogonadism was defined as total T <11.3 nmol/L or free T <22.56 pmol/L. The 25(OH)D, follicle-stimulating hormone, luteinizing hormone, total T, estradiol and SHBG were measured using chemiluminescence and free T by enzyme-linked immune-sorbent assay. The associations between 25(OH)D and reproductive hormones and hypogonadism were analyzed using linear regression and binary logistic regression analyses, respectively. A total of 713 (25.0 %) men had hypogonadism with significantly lower 25(OH)D levels but greater BMI and HOMA-IR. Using linear regression, after fully adjusting for age, residence area, economic status, smoking, BMI, HOMA-IR, diabetes and systolic pressure, 25(OH)D was associated with total T and estradiol (P < 0.05). In the logistic regression analyses, increased quartiles of 25(OH)D were associated with significantly decreased odds ratios of hypogonadism (P for trend <0.01). This association, which was considerably attenuated by BMI and HOMA-IR, persisted in the fully adjusted model (P for trend <0.01) in which for the lowest compared with the highest quartile of 25(OH)D, the odds ratio of hypogonadism was 1.50 (95 % CI, 1.14, 1.97). A lower vitamin D level was associated with a higher prevalence of hypogonadism in Chinese men. This association might, in part, be explained by adiposity and insulin resistance and warrants additional investigation.

  8. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    ERIC Educational Resources Information Center

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  9. A Methodology for Generating Placement Rules that Utilizes Logistic Regression

    ERIC Educational Resources Information Center

    Wurtz, Keith

    2008-01-01

    The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…

  10. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing

    Treesearch

    John Hogland; Nedret Billor; Nathaniel Anderson

    2013-01-01

    Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...

  11. Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble

    PubMed Central

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  12. Comparison between a Weibull proportional hazards model and a linear model for predicting the genetic merit of US Jersey sires for daughter longevity.

    PubMed

    Caraviello, D Z; Weigel, K A; Gianola, D

    2004-05-01

    Predicted transmitting abilities (PTA) of US Jersey sires for daughter longevity were calculated using a Weibull proportional hazards sire model and compared with predictions from a conventional linear animal model. Culling data from 268,008 Jersey cows with first calving from 1981 to 2000 were used. The proportional hazards model included time-dependent effects of herd-year-season contemporary group and parity by stage of lactation interaction, as well as time-independent effects of sire and age at first calving. Sire variances and parameters of the Weibull distribution were estimated, providing heritability estimates of 4.7% on the log scale and 18.0% on the original scale. The PTA of each sire was expressed as the expected risk of culling relative to daughters of an average sire. Risk ratios (RR) ranged from 0.7 to 1.3, indicating that the risk of culling for daughters of the best sires was 30% lower than for daughters of average sires and nearly 50% lower than than for daughters of the poorest sires. Sire PTA from the proportional hazards model were compared with PTA from a linear model similar to that used for routine national genetic evaluation of length of productive life (PL) using cross-validation in independent samples of herds. Models were compared using logistic regression of daughters' stayability to second, third, fourth, or fifth lactation on their sires' PTA values, with alternative approaches for weighting the contribution of each sire. Models were also compared using logistic regression of daughters' stayability to 36, 48, 60, 72, and 84 mo of life. The proportional hazards model generally yielded more accurate predictions according to these criteria, but differences in predictive ability between methods were smaller when using a Kullback-Leibler distance than with other approaches. Results of this study suggest that survival analysis methodology may provide more accurate predictions of genetic merit for longevity than conventional linear models.

  13. The weighted priors approach for combining expert opinions in logistic regression experiments

    DOE PAGES

    Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.

    2017-04-24

    When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less

  14. The weighted priors approach for combining expert opinions in logistic regression experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.

    When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less

  15. Preoperative Fasting C-Peptide Predicts Type 2 Diabetes Mellitus Remission in Low-BMI Chinese Patients After Roux-en-Y Gastric Bypass.

    PubMed

    Zhao, Lei; Li, Weizheng; Su, Zhihong; Liu, Yong; Zhu, Liyong; Zhu, Shaihong

    2018-05-29

    This study investigated the role of preoperative fasting C-peptide (FCP) levels in predicting diabetic outcomes in low-BMI Chinese patients following Roux-en-Y gastric bypass (RYGB) by comparing the metabolic outcomes of patients with FCP > 1 ng/ml versus FCP ≤ 1 ng/ml. The study sample included 78 type 2 diabetes mellitus patients with an average BMI < 30 kg/m 2 at baseline. Patients' parameters were analyzed before and after surgery, with a 2-year follow-up. A univariate logistic regression analysis and multivariate analysis of variance between the remission and improvement group were performed to determine factors that were associated with type 2 diabetes remission after RYGB. Linear correlation analyses between FCP and metabolic parameters were performed. Patients were divided into two groups: FCP > 1 ng/ml and FCP ≤ 1 ng/ml, with measured parameters compared between the groups. Patients' fasting plasma glucose, 2-h postprandial plasma glucose, FCP, and HbA1c improved significantly after surgery (p < 0.05). Factors associated with type 2 diabetes remission were BMI, 2hINS, and FCP at the univariate logistic regression analysis (p < 0.05). Multivariate logistic regression analysis was performed then showed the results were more related to FCP (OR = 2.39). FCP showed a significant linear correlation with fasting insulin and BMI (p < 0.05). There was a significant difference in remission rate between the FCP > 1 ng/ml and FCP ≤ 1 ng/ml groups (p = 0.01). The parameters of patients with FCP > 1 ng/ml, including BMI, plasma glucose, HbA1c, and plasma insulin, decreased markedly after surgery (p < 0.05). FCP level is a significant predictor of diabetes outcomes after RYGB in low-BMI Chinese patients. An FCP level of 1 ng/ml may be a useful threshold for predicting surgical prognosis, with FCP > 1 ng/ml predicting better clinical outcomes following RYGB.

  16. Association of daily asthma emergency department visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: time-series and time-stratified case-crossover analyses with threshold effects.

    PubMed

    Li, Shi; Batterman, Stuart; Wasilevich, Elizabeth; Wahl, Robert; Wirth, Julie; Su, Feng-Chiao; Mukherjee, Bhramar

    2011-11-01

    Asthma morbidity has been associated with ambient air pollutants in time-series and case-crossover studies. In such study designs, threshold effects of air pollutants on asthma outcomes have been relatively unexplored, which are of potential interest for exploring concentration-response relationships. This study analyzes daily data on the asthma morbidity experienced by the pediatric Medicaid population (ages 2-18 years) of Detroit, Michigan and concentrations of pollutants fine particles (PM2.5), CO, NO2 and SO2 for the 2004-2006 period, using both time-series and case-crossover designs. We use a simple, testable and readily implementable profile likelihood-based approach to estimate threshold parameters in both designs. Evidence of significant increases in daily acute asthma events was found for SO2 and PM2.5, and a significant threshold effect was estimated for PM2.5 at 13 and 11 μg m(-3) using generalized additive models and conditional logistic regression models, respectively. Stronger effect sizes above the threshold were typically noted compared to standard linear relationship, e.g., in the time series analysis, an interquartile range increase (9.2 μg m(-3)) in PM2.5 (5-day-moving average) had a risk ratio of 1.030 (95% CI: 1.001, 1.061) in the generalized additive models, and 1.066 (95% CI: 1.031, 1.102) in the threshold generalized additive models. The corresponding estimates for the case-crossover design were 1.039 (95% CI: 1.013, 1.066) in the conditional logistic regression, and 1.054 (95% CI: 1.023, 1.086) in the threshold conditional logistic regression. This study indicates that the associations of SO2 and PM2.5 concentrations with asthma emergency department visits and hospitalizations, as well as the estimated PM2.5 threshold were fairly consistent across time-series and case-crossover analyses, and suggests that effect estimates based on linear models (without thresholds) may underestimate the true risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression

    ERIC Educational Resources Information Center

    Weiss, Brandi A.; Dardick, William

    2016-01-01

    This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…

  18. What Are the Odds of that? A Primer on Understanding Logistic Regression

    ERIC Educational Resources Information Center

    Huang, Francis L.; Moon, Tonya R.

    2013-01-01

    The purpose of this Methodological Brief is to present a brief primer on logistic regression, a commonly used technique when modeling dichotomous outcomes. Using data from the National Education Longitudinal Study of 1988 (NELS:88), logistic regression techniques were used to investigate student-level variables in eighth grade (i.e., enrolled in a…

  19. On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis

    ERIC Educational Resources Information Center

    Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas

    2011-01-01

    The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…

  20. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  2. Radiographic assessment of lower third molar eruption in different anteroposterior skeletal patterns and age-related groups.

    PubMed

    Jakovljevic, Aleksandar; Lazic, Emira; Soldatovic, Ivan; Nedeljkovic, Nenad; Andric, Miroslav

    2015-07-01

    To analyze radiographic predictors for lower third molar eruption among subjects with different anteroposterior skeletal relations and of different age groups. In total, 300 lower third molars were recorded on diagnostic digital orthopantomograms (DPTs) and lateral cephalograms (LCs). The radiographs were grouped according to sagittal intermaxillary angle (ANB), subject age, and level of lower third molar eruption. The DPT was used to analyze retromolar space, mesiodistal crown width, space/width ratio, third and second molar angulation (α, γ), third molar inclination (β), and gonion angle. The LC was used to determine ANB, angles of maxillar and mandibular prognathism (SNA, SNB), mandibular plane angle (SN/MP), and mandibular lengths. A logistic regression model was created using the statistically significant predictors. The logistic regression analysis revealed a statistically significant impact of β angle and distance between gonion and gnathion (Go-Gn) on the level of lower third molar eruption (P < .001 and P < .015, respectively). The retromolar space was significantly increased in the adult subgroup for all skeletal classes. The lower third molar impaction rate was significantly higher in the adult subgroup with the Class II (62.3%) compared with Class III subjects (31.7%; P < .013). The most favorable values of linear and angular predictors of mandibular third molar eruption were measured in Class III subjects. For valid estimation of mandibular third molar eruption, certain linear and angular measures (β angle, Go-Gn), as well as the size of the retromolar space, need to be considered.

  3. Mobile phone use during driving: Effects on speed and effectiveness of driver compensatory behaviour.

    PubMed

    Choudhary, Pushpa; Velaga, Nagendra R

    2017-09-01

    This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    PubMed

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prediction of Depression in Cancer Patients With Different Classification Criteria, Linear Discriminant Analysis versus Logistic Regression.

    PubMed

    Shayan, Zahra; Mohammad Gholi Mezerji, Naser; Shayan, Leila; Naseri, Parisa

    2015-11-03

    Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the data. When categorical and continuous variables used simultaneously, the optimal choice between the two models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared LR and LDA models using classification indices. This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR and LDA models. CE revealed the a lack of superiority for one model over the other, but the results showed that LR performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that the B and Q indices are appropriate for selection of an optimal model. The results of this study showed that LR performs better in some cases and LDA in others when based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better and offered more efficient criteria for comparison and discrimination between groups.

  6. Logistic regression for risk factor modelling in stuttering research.

    PubMed

    Reed, Phil; Wu, Yaqionq

    2013-06-01

    To outline the uses of logistic regression and other statistical methods for risk factor analysis in the context of research on stuttering. The principles underlying the application of a logistic regression are illustrated, and the types of questions to which such a technique has been applied in the stuttering field are outlined. The assumptions and limitations of the technique are discussed with respect to existing stuttering research, and with respect to formulating appropriate research strategies to accommodate these considerations. Finally, some alternatives to the approach are briefly discussed. The way the statistical procedures are employed are demonstrated with some hypothetical data. Research into several practical issues concerning stuttering could benefit if risk factor modelling were used. Important examples are early diagnosis, prognosis (whether a child will recover or persist) and assessment of treatment outcome. After reading this article you will: (a) Summarize the situations in which logistic regression can be applied to a range of issues about stuttering; (b) Follow the steps in performing a logistic regression analysis; (c) Describe the assumptions of the logistic regression technique and the precautions that need to be checked when it is employed; (d) Be able to summarize its advantages over other techniques like estimation of group differences and simple regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Dynamic Dimensionality Selection for Bayesian Classifier Ensembles

    DTIC Science & Technology

    2015-03-19

    learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but much more...classifier, Generative learning, Discriminative learning, Naïve Bayes, Feature selection, Logistic regression , higher order attribute independence 16...discriminative learning of weights in an otherwise generatively learned naive Bayes classifier. WANBIA-C is very cometitive to Logistic Regression but

  8. A review of logistic regression models used to predict post-fire tree mortality of western North American conifers

    Treesearch

    Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen Fitzgerald

    2012-01-01

    Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...

  9. Preserving Institutional Privacy in Distributed binary Logistic Regression.

    PubMed

    Wu, Yuan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.

  10. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

    PubMed Central

    Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

  11. Differentially private distributed logistic regression using private and public data.

    PubMed

    Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila

    2014-01-01

    Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.

  12. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules

    PubMed Central

    Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030

  13. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules.

    PubMed

    Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.

  14. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  15. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.

  16. Serum Fatty Acids, Desaturase Activities and Abdominal Obesity – A Population-Based Study of 60-Year Old Men and Women

    PubMed Central

    Alsharari, Zayed D.; Risérus, Ulf; Leander, Karin; Sjögren, Per; Carlsson, Axel C.; Vikström, Max; Laguzzi, Federica; Gigante, Bruna; Cederholm, Tommy; De Faire, Ulf; Hellénius, Mai-Lis

    2017-01-01

    Abdominal obesity is a key contributor of metabolic disease. Recent trials suggest that dietary fat quality affects abdominal fat content, where palmitic acid and linoleic acid influence abdominal obesity differently, while effects of n-3 polyunsaturated fatty acids are less studied. Also, fatty acid desaturation may be altered in abdominal obesity. We aimed to investigate cross-sectional associations of serum fatty acids and desaturases with abdominal obesity prevalence in a population-based cohort study. Serum cholesteryl ester fatty acids composition was measured by gas chromatography in 60-year old men (n = 1883) and women (n = 2015). Cross-sectional associations of fatty acids with abdominal obesity prevalence and anthropometric measures (e.g., sagittal abdominal diameter) were evaluated in multivariable-adjusted logistic and linear regression models, respectively. Similar models were employed to investigate relations between desaturase activities (estimated by fatty acid ratios) and abdominal obesity. In logistic regression analyses, palmitic acid, stearoyl-CoA-desaturase and Δ6-desaturase indices were associated with abdominal obesity; multivariable-adjusted odds ratios (95% confidence intervals) for highest versus lowest quartiles were 1.45 (1.19–1.76), 4.06 (3.27–5.05), and 3.07 (2.51–3.75), respectively. Linoleic acid, α-linolenic acid, docohexaenoic acid, and Δ5-desaturase were inversely associated with abdominal obesity; multivariable-adjusted odds ratios (95% confidence intervals): 0.39 (0.32–0.48), 0.74 (0.61–0.89), 0.76 (0.62–0.93), and 0.40 (0.33–0.49), respectively. Eicosapentaenoic acid was not associated with abdominal obesity. Similar results were obtained from linear regression models evaluating associations with different anthropometric measures. Sex-specific and linear associations were mainly observed for n3-polyunsaturated fatty acids, while associations of the other exposures were generally non-linear and similar across sexes. In accordance with findings from short-term trials, abdominal obesity was more common among individuals with relatively high proportions of palmitic acid, whilst the contrary was true for linoleic acid. Further trials should examine the potential role of linoleic acid and its main dietary source, vegetable oils, in abdominal obesity prevention. PMID:28125662

  17. Surgery for left ventricular aneurysm: early and late survival after simple linear repair and endoventricular patch plasty.

    PubMed

    Lundblad, Runar; Abdelnoor, Michel; Svennevig, Jan Ludvig

    2004-09-01

    Simple linear resection and endoventricular patch plasty are alternative techniques to repair postinfarction left ventricular aneurysm. The aim of the study was to compare these 2 methods with regard to early mortality and long-term survival. We retrospectively reviewed 159 patients undergoing operations between 1989 and 2003. The epidemiologic design was of an exposed (simple linear repair, n = 74) versus nonexposed (endoventricular patch plasty, n = 85) cohort with 2 endpoints: early mortality and long-term survival. The crude effect of aneurysm repair technique versus endpoint was estimated by odds ratio, rate ratio, or relative risk and their 95% confidence intervals. Stratification analysis by using the Mantel-Haenszel method was done to quantify confounders and pinpoint effect modifiers. Adjustment for multiconfounders was performed by using logistic regression and Cox regression analysis. Survival curves were analyzed with the Breslow test and the log-rank test. Early mortality was 8.2% for all patients, 13.5% after linear repair and 3.5% after endoventricular patch plasty. When adjusted for multiconfounders, the risk of early mortality was significantly higher after simple linear repair than after endoventricular patch plasty (odds ratio, 4.4; 95% confidence interval, 1.1-17.8). Mean follow-up was 5.8 +/- 3.8 years (range, 0-14.0 years). Overall 5-year cumulative survival was 78%, 70.1% after linear repair and 91.4% after endoventricular patch plasty. The risk of total mortality was significantly higher after linear repair than after endoventricular patch plasty when controlled for multiconfounders (relative risk, 4.5; 95% confidence interval, 2.0-9.7). Linear repair dominated early in the series and patch plasty dominated later, giving a possible learning-curve bias in favor of patch plasty that could not be adjusted for in the regression analysis. Postinfarction left ventricular aneurysm can be repaired with satisfactory early and late results. Surgical risk was lower and long-term survival was higher after endoventricular patch plasty than simple linear repair. Differences in outcome should be interpreted with care because of the retrospective study design and the chronology of the 2 repair methods.

  18. Association between Personality Traits and Sleep Quality in Young Korean Women

    PubMed Central

    Kim, Han-Na; Cho, Juhee; Chang, Yoosoo; Ryu, Seungho

    2015-01-01

    Personality is a trait that affects behavior and lifestyle, and sleep quality is an important component of a healthy life. We analyzed the association between personality traits and sleep quality in a cross-section of 1,406 young women (from 18 to 40 years of age) who were not reporting clinically meaningful depression symptoms. Surveys were carried out from December 2011 to February 2012, using the Revised NEO Personality Inventory and the Pittsburgh Sleep Quality Index (PSQI). All analyses were adjusted for demographic and behavioral variables. We considered beta weights, structure coefficients, unique effects, and common effects when evaluating the importance of sleep quality predictors in multiple linear regression models. Neuroticism was the most important contributor to PSQI global scores in the multiple regression models. By contrast, despite being strongly correlated with sleep quality, conscientiousness had a near-zero beta weight in linear regression models, because most variance was shared with other personality traits. However, conscientiousness was the most noteworthy predictor of poor sleep quality status (PSQI≥6) in logistic regression models and individuals high in conscientiousness were least likely to have poor sleep quality, which is consistent with an OR of 0.813, with conscientiousness being protective against poor sleep quality. Personality may be a factor in poor sleep quality and should be considered in sleep interventions targeting young women. PMID:26030141

  19. Logistic regression for dichotomized counts.

    PubMed

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  20. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    PubMed

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of more than 10% over the standard classification models, which can be translated to correct labeling of additional 400 - 500 readmissions for heart failure patients in the state of California over a year. Lastly, several key predictor identified from the HCUP data include the disposition location from discharge, the number of chronic conditions, and the number of acute procedures. It would be beneficial to apply simple decision rules obtained from the decision tree in an ad-hoc manner to guide the cohort stratification. It could be potentially beneficial to explore the effect of pairwise interactions between influential predictors when building the logistic regression models for different data strata. Judicious use of the ad-hoc CLR models developed offers insights into future development of prediction models for hospital readmissions, which can lead to better intuition in identifying high-risk patients and developing effective post-discharge care strategies. Lastly, this paper is expected to raise the awareness of collecting data on additional markers and developing necessary database infrastructure for larger-scale exploratory studies on readmission risk prediction.

  1. A predictive model for early mortality after surgical treatment of heart valve or prosthesis infective endocarditis. The EndoSCORE.

    PubMed

    Di Mauro, Michele; Dato, Guglielmo Mario Actis; Barili, Fabio; Gelsomino, Sandro; Santè, Pasquale; Corte, Alessandro Della; Carrozza, Antonio; Ratta, Ester Della; Cugola, Diego; Galletti, Lorenzo; Devotini, Roger; Casabona, Riccardo; Santini, Francesco; Salsano, Antonio; Scrofani, Roberto; Antona, Carlo; Botta, Luca; Russo, Claudio; Mancuso, Samuel; Rinaldi, Mauro; De Vincentiis, Carlo; Biondi, Andrea; Beghi, Cesare; Cappabianca, Giangiuseppe; Tarzia, Vincenzo; Gerosa, Gino; De Bonis, Michele; Pozzoli, Alberto; Nicolini, Francesco; Benassi, Filippo; Rosato, Francesco; Grasso, Elena; Livi, Ugolino; Sponga, Sandro; Pacini, Davide; Di Bartolomeo, Roberto; De Martino, Andrea; Bortolotti, Uberto; Onorati, Francesco; Faggian, Giuseppe; Lorusso, Roberto; Vizzardi, Enrico; Di Giammarco, Gabriele; Marinelli, Daniele; Villa, Emmanuel; Troise, Giovanni; Picichè, Marco; Musumeci, Francesco; Paparella, Domenico; Margari, Vito; Tritto, Francesco; Damiani, Girolamo; Scrascia, Giuseppe; Zaccaria, Salvatore; Renzulli, Attilio; Serraino, Giuseppe; Mariscalco, Giovanni; Maselli, Daniele; Foschi, Massimiliano; Parolari, Alessandro; Nappi, Giannantonio

    2017-08-15

    The aim of this large retrospective study was to provide a logistic risk model along an additive score to predict early mortality after surgical treatment of patients with heart valve or prosthesis infective endocarditis (IE). From 2000 to 2015, 2715 patients with native valve endocarditis (NVE) or prosthesis valve endocarditis (PVE) were operated on in 26 Italian Cardiac Surgery Centers. The relationship between early mortality and covariates was evaluated with logistic mixed effect models. Fixed effects are parameters associated with the entire population or with certain repeatable levels of experimental factors, while random effects are associated with individual experimental units (centers). Early mortality was 11.0% (298/2715); At mixed effect logistic regression the following variables were found associated with early mortality: age class, female gender, LVEF, preoperative shock, COPD, creatinine value above 2mg/dl, presence of abscess, number of treated valve/prosthesis (with respect to one treated valve/prosthesis) and the isolation of Staphylococcus aureus, Fungus spp., Pseudomonas Aeruginosa and other micro-organisms, while Streptococcus spp., Enterococcus spp. and other Staphylococci did not affect early mortality, as well as no micro-organisms isolation. LVEF was found linearly associated with outcomes while non-linear association between mortality and age was tested and the best model was found with a categorization into four classes (AUC=0.851). The following study provides a logistic risk model to predict early mortality in patients with heart valve or prosthesis infective endocarditis undergoing surgical treatment, called "The EndoSCORE". Copyright © 2017. Published by Elsevier B.V.

  2. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

    PubMed

    Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

    2017-02-06

    Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

  3. Differentially private distributed logistic regression using private and public data

    PubMed Central

    2014-01-01

    Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786

  4. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Mei, Zhixiong; Wu, Hao; Li, Shiyun

    2018-06-01

    The Conversion of Land Use and its Effects at Small regional extent (CLUE-S), which is a widely used model for land-use simulation, utilizes logistic regression to estimate the relationships between land use and its drivers, and thus, predict land-use change probabilities. However, logistic regression disregards possible spatial autocorrelation and self-organization in land-use data. Autologistic regression can depict spatial autocorrelation but cannot address self-organization, while logistic regression by considering only self-organization (NElogistic regression) fails to capture spatial autocorrelation. Therefore, this study developed a regression (NE-autologistic regression) method, which incorporated both spatial autocorrelation and self-organization, to improve CLUE-S. The Zengcheng District of Guangzhou, China was selected as the study area. The land-use data of 2001, 2005, and 2009, as well as 10 typical driving factors, were used to validate the proposed regression method and the improved CLUE-S model. Then, three future land-use scenarios in 2020: the natural growth scenario, ecological protection scenario, and economic development scenario, were simulated using the improved model. Validation results showed that NE-autologistic regression performed better than logistic regression, autologistic regression, and NE-logistic regression in predicting land-use change probabilities. The spatial allocation accuracy and kappa values of NE-autologistic-CLUE-S were higher than those of logistic-CLUE-S, autologistic-CLUE-S, and NE-logistic-CLUE-S for the simulations of two periods, 2001-2009 and 2005-2009, which proved that the improved CLUE-S model achieved the best simulation and was thereby effective to a certain extent. The scenario simulation results indicated that under all three scenarios, traffic land and residential/industrial land would increase, whereas arable land and unused land would decrease during 2009-2020. Apparent differences also existed in the simulated change sizes and locations of each land-use type under different scenarios. The results not only demonstrate the validity of the improved model but also provide a valuable reference for relevant policy-makers.

  6. Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.

    PubMed

    Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai

    2017-04-01

    This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.

  7. Determining factors influencing survival of breast cancer by fuzzy logistic regression model.

    PubMed

    Nikbakht, Roya; Bahrampour, Abbas

    2017-01-01

    Fuzzy logistic regression model can be used for determining influential factors of disease. This study explores the important factors of actual predictive survival factors of breast cancer's patients. We used breast cancer data which collected by cancer registry of Kerman University of Medical Sciences during the period of 2000-2007. The variables such as morphology, grade, age, and treatments (surgery, radiotherapy, and chemotherapy) were applied in the fuzzy logistic regression model. Performance of model was determined in terms of mean degree of membership (MDM). The study results showed that almost 41% of patients were in neoplasm and malignant group and more than two-third of them were still alive after 5-year follow-up. Based on the fuzzy logistic model, the most important factors influencing survival were chemotherapy, morphology, and radiotherapy, respectively. Furthermore, the MDM criteria show that the fuzzy logistic regression have a good fit on the data (MDM = 0.86). Fuzzy logistic regression model showed that chemotherapy is more important than radiotherapy in survival of patients with breast cancer. In addition, another ability of this model is calculating possibilistic odds of survival in cancer patients. The results of this study can be applied in clinical research. Furthermore, there are few studies which applied the fuzzy logistic models. Furthermore, we recommend using this model in various research areas.

  8. Resident Self-Assessment and Learning Goal Development: Evaluation of Resident-Reported Competence and Future Goals.

    PubMed

    Li, Su-Ting T; Paterniti, Debora A; Tancredi, Daniel J; Burke, Ann E; Trimm, R Franklin; Guillot, Ann; Guralnick, Susan; Mahan, John D

    2015-01-01

    To determine incidence of learning goals by competency area and to assess which goals fall into competency areas with lower self-assessment scores. Cross-sectional analysis of existing deidentified American Academy of Pediatrics' PediaLink individualized learning plan data for the academic year 2009-2010. Residents self-assessed competencies in the 6 Accreditation Council for Graduate Medical Education (ACGME) competency areas and wrote learning goals. Textual responses for goals were mapped to 6 ACGME competency areas, future practice, or personal attributes. Adjusted mean differences and associations were estimated using multiple linear and logistic regression. A total of 2254 residents reported 6078 goals. Residents self-assessed their systems-based practice (51.8) and medical knowledge (53.0) competencies lowest and professionalism (68.9) and interpersonal and communication skills (62.2) highest. Residents were most likely to identify goals involving medical knowledge (70.5%) and patient care (50.5%) and least likely to write goals on systems-based practice (11.0%) and professionalism (6.9%). In logistic regression analysis adjusting for postgraduate year (PGY), gender, and degree type (MD/DO), resident-reported goal area showed no association with the learner's relative self-assessment score for that competency area. In the conditional logistic regression analysis, with each learner serving as his or her own control, senior residents (PGY2/3+s) who rated themselves relatively lower in a competency area were more likely to write a learning goal in that area than were PGY1s. Senior residents appear to develop better skills and/or motivation to explicitly turn self-assessed learning gaps into learning goals, suggesting that individualized learning plans may help improve self-regulated learning during residency. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  9. Use of neural networks to model complex immunogenetic associations of disease: human leukocyte antigen impact on the progression of human immunodeficiency virus infection.

    PubMed

    Ioannidis, J P; McQueen, P G; Goedert, J J; Kaslow, R A

    1998-03-01

    Complex immunogenetic associations of disease involving a large number of gene products are difficult to evaluate with traditional statistical methods and may require complex modeling. The authors evaluated the performance of feed-forward backpropagation neural networks in predicting rapid progression to acquired immunodeficiency syndrome (AIDS) for patients with human immunodeficiency virus (HIV) infection on the basis of major histocompatibility complex variables. Networks were trained on data from patients from the Multicenter AIDS Cohort Study (n = 139) and then validated on patients from the DC Gay cohort (n = 102). The outcome of interest was rapid disease progression, defined as progression to AIDS in <6 years from seroconversion. Human leukocyte antigen (HLA) variables were selected as network inputs with multivariate regression and a previously described algorithm selecting markers with extreme point estimates for progression risk. Network performance was compared with that of logistic regression. Networks with 15 HLA inputs and a single hidden layer of five nodes achieved a sensitivity of 87.5% and specificity of 95.6% in the training set, vs. 77.0% and 76.9%, respectively, achieved by logistic regression. When validated on the DC Gay cohort, networks averaged a sensitivity of 59.1% and specificity of 74.3%, vs. 53.1% and 61.4%, respectively, for logistic regression. Neural networks offer further support to the notion that HIV disease progression may be dependent on complex interactions between different class I and class II alleles and transporters associated with antigen processing variants. The effect in the current models is of moderate magnitude, and more data as well as other host and pathogen variables may need to be considered to improve the performance of the models. Artificial intelligence methods may complement linear statistical methods for evaluating immunogenetic associations of disease.

  10. [Comparison of arterial stiffness in non-hypertensive and hypertensive population of various age groups].

    PubMed

    Zhang, Y J; Wu, S L; Li, H Y; Zhao, Q H; Ning, C H; Zhang, R Y; Yu, J X; Li, W; Chen, S H; Gao, J S

    2018-01-24

    Objective: To investigate the impact of blood pressure and age on arterial stiffness in general population. Methods: Participants who took part in 2010, 2012 and 2014 Kailuan health examination were included. Data of brachial ankle pulse wave velocity (baPWV) examination were analyzed. According to the WHO criteria of age, participants were divided into 3 age groups: 18-44 years group ( n= 11 608), 45-59 years group ( n= 12 757), above 60 years group ( n= 5 002). Participants were further divided into hypertension group and non-hypertension group according to the diagnostic criteria for hypertension (2010 Chinese guidelines for the managemengt of hypertension). Multiple linear regression analysis was used to analyze the association between systolic blood pressure (SBP) with baPWV in the total participants and then stratified by age groups. Multivariate logistic regression model was used to analyze the influence of blood pressure on arterial stiffness (baPWV≥1 400 cm/s) of various groups. Results: (1)The baseline characteristics of all participants: 35 350 participants completed 2010, 2012 and 2014 Kailuan examinations and took part in baPWV examination. 2 237 participants without blood pressure measurement values were excluded, 1 569 participants with history of peripheral artery disease were excluded, we also excluded 1 016 participants with history of cardiac-cerebral vascular disease. Data from 29 367 participants were analyzed. The age was (48.0±12.4) years old, 21 305 were males (72.5%). (2) Distribution of baPWV in various age groups: baPWV increased with aging. In non-hypertension population, baPWV in 18-44 years group, 45-59 years group, above 60 years group were as follows: 1 299.3, 1 428.7 and 1 704.6 cm/s, respectively. For hypertension participants, the respective values of baPWV were: 1 498.4, 1 640.7 and 1 921.4 cm/s. BaPWV was significantly higher in hypertension group than non-hypertension group of respective age groups ( P< 0.05). (3) Multiple linear regression analysis defined risk factors of baPWV: Multivariate linear regression analysis showed that baPWV was positively correlated with SBP( t= 39.30, P< 0.001), and same results were found in the sub-age groups ( t -value was 37.72, 27.30, 9.15, all P< 0.001, respectively) after adjustment for other confounding factors, including age, sex, pulse pressure(PP), body mass index (BMI), fasting blood glucose (FBG), total cholesterol (TC), smoking, drinking, physical exercise, antihypertensive medications, lipid-lowering medication. (4) Multivariate logistic regression analysis of baPWV-related factors: After adjustment for other confounding factors, including age, sex, PP, BMI, FBG, TC, smoking, drinking, physical exercise, antihypertensive medication, lipid-lowering medication, multivariate logistic regression analysis showed that risks for increased arterial stiffness in hypertension group were higher than those in non-hypertension group, the OR in participants with hypertension was 2.54 (2.35-2.74) in the total participants, and same results were also found in sub-age groups, the OR s were 3.22(2.86-3.63), 2.48(2.23-2.76), and 1.91(1.42-2.56), respectively, in each sub-age group. Conclusion: SBP is positively related to arterial stiffness in different age groups, and hypertension is a risk factor for increased arterial stiffness in different age groups. Clinical Trial Registry Chinese Clinical Trial Registry, ChiCTR-TNC-11001489.

  11. Missing heritability in the tails of quantitative traits? A simulation study on the impact of slightly altered true genetic models.

    PubMed

    Pütter, Carolin; Pechlivanis, Sonali; Nöthen, Markus M; Jöckel, Karl-Heinz; Wichmann, Heinz-Erich; Scherag, André

    2011-01-01

    Genome-wide association studies have identified robust associations between single nucleotide polymorphisms and complex traits. As the proportion of phenotypic variance explained is still limited for most of the traits, larger and larger meta-analyses are being conducted to detect additional associations. Here we investigate the impact of the study design and the underlying assumption about the true genetic effect in a bimodal mixture situation on the power to detect associations. We performed simulations of quantitative phenotypes analysed by standard linear regression and dichotomized case-control data sets from the extremes of the quantitative trait analysed by standard logistic regression. Using linear regression, markers with an effect in the extremes of the traits were almost undetectable, whereas analysing extremes by case-control design had superior power even for much smaller sample sizes. Two real data examples are provided to support our theoretical findings and to explore our mixture and parameter assumption. Our findings support the idea to re-analyse the available meta-analysis data sets to detect new loci in the extremes. Moreover, our investigation offers an explanation for discrepant findings when analysing quantitative traits in the general population and in the extremes. Copyright © 2011 S. Karger AG, Basel.

  12. Disconcordance in Statistical Models of Bisphenol A and Chronic Disease Outcomes in NHANES 2003-08

    PubMed Central

    Casey, Martin F.; Neidell, Matthew

    2013-01-01

    Background Bisphenol A (BPA), a high production chemical commonly found in plastics, has drawn great attention from researchers due to the substance’s potential toxicity. Using data from three National Health and Nutrition Examination Survey (NHANES) cycles, we explored the consistency and robustness of BPA’s reported effects on coronary heart disease and diabetes. Methods And Findings We report the use of three different statistical models in the analysis of BPA: (1) logistic regression, (2) log-linear regression, and (3) dose-response logistic regression. In each variation, confounders were added in six blocks to account for demographics, urinary creatinine, source of BPA exposure, healthy behaviours, and phthalate exposure. Results were sensitive to the variations in functional form of our statistical models, but no single model yielded consistent results across NHANES cycles. Reported ORs were also found to be sensitive to inclusion/exclusion criteria. Further, observed effects, which were most pronounced in NHANES 2003-04, could not be explained away by confounding. Conclusions Limitations in the NHANES data and a poor understanding of the mode of action of BPA have made it difficult to develop informative statistical models. Given the sensitivity of effect estimates to functional form, researchers should report results using multiple specifications with different assumptions about BPA measurement, thus allowing for the identification of potential discrepancies in the data. PMID:24223205

  13. Disorganized Symptoms Predicted Worse Functioning Outcome in Schizophrenia Patients with Established Illness.

    PubMed

    Ortiz, Bruno Bertolucci; Gadelha, Ary; Higuchi, Cinthia Hiroko; Noto, Cristiano; Medeiros, Daiane; Pitta, José Cássio do Nascimento; de Araújo Filho, Gerardo Maria; Hallak, Jaime Eduardo Cecílio; Bressan, Rodrigo Affonseca

    Most patients with schizophrenia will have subsequent relapses of the disorder, with continuous impairments in functioning. However, evidence is lacking on how symptoms influence functioning at different phases of the disease. This study aims to investigate the relationship between symptom dimensions and functioning at different phases: acute exacerbation, nonremission and remission. Patients with schizophrenia were grouped into acutely ill (n=89), not remitted (n=89), and remitted (n=69). Three exploratory stepwise linear regression analyses were performed for each phase of schizophrenia, in which the five PANSS factors and demographic variables were entered as the independent variables and the total Global Assessment of Functioning Scale (GAF) score was entered as the dependent variable. An additional exploratory stepwise logistic regression analysis was performed to predict subsequent remission at discharge in the inpatient population. The Disorganized factor was the most significant predictor for acutely ill patients (p<0.001), while the Hostility factor was the most significant for not-remitted patients and the Negative factor was the most significant for remitted patients (p=0.001 and p<0.001, respectively). In the logistic regression, the Disorganized factor score presented a significant negative association with remission (p=0.007). Higher disorganization symptoms showed the greatest impact in functioning at acute phase, and prevented patients from achieving remission, suggesting it may be a marker of symptom severity and worse outcome in schizophrenia.

  14. The relationship between problem gambling and mental and physical health correlates among a nationally representative sample of Canadian women.

    PubMed

    Afifi, Tracie O; Cox, Brian J; Martens, Patricia J; Sareen, Jitender; Enns, Murray W

    2010-01-01

    Gambling has become an increasingly common activity among women since the widespread growth of the gambling industry. Currently, our knowledge of the relationship between problem gambling among women and mental and physical correlates is limited. Therefore, important relationships between problem gambling and health and functioning, mental disorders, physical health conditions, and help-seeking behaviours among women were examined using a nationally representative Canadian sample. Data were from the nationally representative Canadian Community Health Survey Cycle 1.2 (CCHS 1.2; n = 10,056 women aged 15 years and older; data collected in 2002). The statistical analysis included binary logistic regression, multinomial logistic regression, and linear regression models. Past 12-month problem gambling was associated with a significantly higher probability of current lower general health, suicidal ideation and attempts, decreased psychological well-being, increased distress, depression, mania, panic attacks, social phobia, agoraphobia, alcohol dependence, any mental disorder, comorbidity of mental disorders, chronic bronchitis, fibromyalgia, migraine headaches, help-seeking from a professional, attending a self-help group, and calling a telephone help line (odds ratios ranged from 1.5 to 8.2). Problem gambling was associated with a broad range of negative health correlates among women. Problem gambling is an important public health concern. These findings can be used to inform healthy public policies on gambling.

  15. Mixed conditional logistic regression for habitat selection studies.

    PubMed

    Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas

    2010-05-01

    1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.

  16. Advanced colorectal neoplasia risk stratification by penalized logistic regression.

    PubMed

    Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F

    2016-08-01

    Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.

  17. Complexity analysis of spontaneous brain activity in mood disorders: A magnetoencephalography study of bipolar disorder and major depression.

    PubMed

    Fernández, Alberto; Al-Timemy, Ali H; Ferre, Francisco; Rubio, Gabriel; Escudero, Javier

    2018-04-26

    The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Application of conditional moment tests to model checking for generalized linear models.

    PubMed

    Pan, Wei

    2002-06-01

    Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.

  19. Bicycle Use and Cyclist Safety Following Boston’s Bicycle Infrastructure Expansion, 2009–2012

    PubMed Central

    Angriman, Federico; Bellows, Alexandra L.; Taylor, Kathryn

    2016-01-01

    Objectives. To evaluate changes in bicycle use and cyclist safety in Boston, Massachusetts, following the rapid expansion of its bicycle infrastructure between 2007 and 2014. Methods. We measured bicycle lane mileage, a surrogate for bicycle infrastructure expansion, and quantified total estimated number of commuters. In addition, we calculated the number of reported bicycle accidents from 2009 to 2012. Bicycle accident and injury trends over time were assessed via generalized linear models. Multivariable logistic regression was used to examine factors associated with bicycle injuries. Results. Boston increased its total bicycle lane mileage from 0.034 miles in 2007 to 92.2 miles in 2014 (P < .001). The percentage of bicycle commuters increased from 0.9% in 2005 to 2.4% in 2014 (P = .002) and the total percentage of bicycle accidents involving injuries diminished significantly, from 82.7% in 2009 to 74.6% in 2012. The multivariable logistic regression analysis showed that for every 1-year increase in time from 2009 to 2012, there was a 14% reduction in the odds of being injured in an accident. Conclusions. The expansion of Boston’s bicycle infrastructure was associated with increases in both bicycle use and cyclist safety. PMID:27736203

  20. Education level as a predictor of condom use in jail-incarcerated women, with fundamental cause analysis.

    PubMed

    Emerson, Amanda M; Carroll, Hsiang-Feng; Ramaswamy, Megha

    2018-05-27

    To model condom usage by jail-incarcerated women incarcerated in US local jails and understand results in terms of fundamental cause theory. We surveyed 102 women in an urban jail in the Midwest United States. Chi-square tests and generalized linear modeling were used to identify factors of significance for women who used condoms during last sex compared with women who did not. Stepwise multiple logistic regression was conducted to estimate the relation between the outcome variable and variables linked to condom use in the literature. Logistic regression showed that for women who completed high school odds of reporting condom use during last sex were 2.78 times higher (p = .043) than the odds for women with less than a high school education. Among women who responded no to ever having had a sexually transmitted infection, odds of using a condom during last sex were 2.597 times (p = .03) higher than odds for women who responded that they had had a sexually transmitted infection. Education is a fundamental cause of reproductive health risk among incarcerated women. We recommend interventions that creatively target distal over proximal factors. © 2018 Wiley Periodicals, Inc.

  1. Sex discrimination from the acetabulum in a twentieth-century skeletal sample from France using digital photogrammetry.

    PubMed

    Macaluso, P J

    2011-02-01

    Digital photogrammetric methods were used to collect diameter, area, and perimeter data of the acetabulum for a twentieth-century skeletal sample from France (Georges Olivier Collection, Musée de l'Homme, Paris) consisting of 46 males and 36 females. The measurements were then subjected to both discriminant function and logistic regression analyses in order to develop osteometric standards for sex assessment. Univariate discriminant functions and logistic regression equations yielded overall correct classification accuracy rates for both the left and the right acetabula ranging from 84.1% to 89.6%. The multivariate models developed in this study did not provide increased accuracy over those using only a single variable. Classification sex bias ratios ranged between 1.1% and 7.3% for the majority of models. The results of this study, therefore, demonstrate that metric analysis of acetabular size provides a highly accurate, and easily replicable, method of discriminating sex in this documented skeletal collection. The results further suggest that the addition of area and perimeter data derived from digital images may provide a more effective method of sex assessment than that offered by traditional linear measurements alone. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Predictors of course in obsessive-compulsive disorder: logistic regression versus Cox regression for recurrent events.

    PubMed

    Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M

    2007-09-01

    Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.

  3. Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines.

    PubMed

    Santos, Frédéric; Guyomarc'h, Pierre; Bruzek, Jaroslav

    2014-12-01

    Accuracy of identification tools in forensic anthropology primarily rely upon the variations inherent in the data upon which they are built. Sex determination methods based on craniometrics are widely used and known to be specific to several factors (e.g. sample distribution, population, age, secular trends, measurement technique, etc.). The goal of this study is to discuss the potential variations linked to the statistical treatment of the data. Traditional craniometrics of four samples extracted from documented osteological collections (from Portugal, France, the U.S.A., and Thailand) were used to test three different classification methods: linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVM). The Portuguese sample was set as a training model on which the other samples were applied in order to assess the validity and reliability of the different models. The tests were performed using different parameters: some included the selection of the best predictors; some included a strict decision threshold (sex assessed only if the related posterior probability was high, including the notion of indeterminate result); and some used an unbalanced sex-ratio. Results indicated that LR tends to perform slightly better than the other techniques and offers a better selection of predictors. Also, the use of a decision threshold (i.e. p>0.95) is essential to ensure an acceptable reliability of sex determination methods based on craniometrics. Although the Portuguese, French, and American samples share a similar sexual dimorphism, application of Western models on the Thai sample (that displayed a lower degree of dimorphism) was unsuccessful. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Assessing contaminant sensitivity of endangered and threatened aquatic species: part II. Chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species.

    PubMed

    Besser, J M; Wang, N; Dwyer, F J; Mayer, F L; Ingersoll, C G

    2005-02-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at < or = 11 microg/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 microg/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern.

  5. Antibiotics May be Safely Discontinued Within One Week of Percutaneous Cholecystostomy.

    PubMed

    Loftus, Tyler J; Brakenridge, Scott C; Dessaigne, Camille G; Sarosi, George A; Zingarelli, William J; Moore, Frederick A; Jordan, Janeen R; Croft, Chasen A; Smith, R Stephen; Efron, Phillip A; Mohr, Alicia M

    2017-05-01

    For patients with acute cholecystitis managed with percutaneous cholecystostomy (PC), the optimal duration of post-procedural antibiotic therapy is unknown. Our objective was to compare short versus long courses of antibiotics with the hypothesis that patients with persistent signs of systemic inflammation 72 h following PC would receive prolonged antibiotic therapy and that antibiotic duration would not affect outcomes. We performed a retrospective cohort analysis of 81 patients who underwent PC for acute cholecystitis at two hospitals during a 41-month period ending November 2014. Patients who received short (≤7 day) courses of post-procedural antibiotics were compared to patients who received long (>7 day) courses. Treatment response to PC was evaluated by systemic inflammatory response syndrome (SIRS) criteria. Logistic and linear regressions were used to evaluate associations between antibiotic duration and outcomes. Patients who received short (n = 30) and long courses (n = 51) of antibiotics had similar age, comorbidities, severity of cholecystitis, pre-procedural vital signs, treatment response, and culture results. There were no differences in recurrent cholecystitis (13 vs. 12%), requirement for open/converted to open cholecystectomy (23 vs. 22%), or 1-year mortality (20 vs. 18%). On logistic and linear regressions, antibiotic duration as a continuous variable was not predictive of any salient outcomes. Patients who received short and long courses of post-PC antibiotics had similar baseline characteristics and outcomes. Antibiotic duration did not predict recurrent cholecystitis, interval open cholecystectomy, or mortality. These findings suggest that antibiotics may be safely discontinued within one week of uncomplicated PC.

  6. Reducing the number of reconstructions needed for estimating channelized observer performance

    NASA Astrophysics Data System (ADS)

    Pineda, Angel R.; Miedema, Hope; Brenner, Melissa; Altaf, Sana

    2018-03-01

    A challenge for task-based optimization is the time required for each reconstructed image in applications where reconstructions are time consuming. Our goal is to reduce the number of reconstructions needed to estimate the area under the receiver operating characteristic curve (AUC) of the infinitely-trained optimal channelized linear observer. We explore the use of classifiers which either do not invert the channel covariance matrix or do feature selection. We also study the assumption that multiple low contrast signals in the same image of a non-linear reconstruction do not significantly change the estimate of the AUC. We compared the AUC of several classifiers (Hotelling, logistic regression, logistic regression using Firth bias reduction and the least absolute shrinkage and selection operator (LASSO)) with a small number of observations both for normal simulated data and images from a total variation reconstruction in magnetic resonance imaging (MRI). We used 10 Laguerre-Gauss channels and the Mann-Whitney estimator for AUC. For this data, our results show that at small sample sizes feature selection using the LASSO technique can decrease bias of the AUC estimation with increased variance and that for large sample sizes the difference between these classifiers is small. We also compared the use of multiple signals in a single reconstructed image to reduce the number of reconstructions in a total variation reconstruction for accelerated imaging in MRI. We found that AUC estimation using multiple low contrast signals in the same image resulted in similar AUC estimates as doing a single reconstruction per signal leading to a 13x reduction in the number of reconstructions needed.

  7. Structural vascular disease in Africans: Performance of ethnic-specific waist circumference cut points using logistic regression and neural network analyses: The SABPA study.

    PubMed

    Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L

    2013-10-01

    A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  8. Attitude and practice of physical activity and social problem-solving ability among university students.

    PubMed

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend < 0.01). The present findings suggest that regular physical activity or intention to start physical activity may be an effective strategy to improve social problem-solving ability.

  9. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. chronic toxicity of copper and pentachlorophenol to two endangered species and two surrogate species

    USGS Publications Warehouse

    Besser, J.M.; Wang, N.; Dwyer, F.J.; Mayer, F.L.; Ingersoll, C.G.

    2005-01-01

    Early life-stage toxicity tests with copper and pentachlorophenol (PCP) were conducted with two species listed under the United States Endangered Species Act (the endangered fountain darter, Etheostoma fonticola, and the threatened spotfin chub, Cyprinella monacha) and two commonly tested species (fathead minnow, Pimephales promelas, and rainbow trout, Oncorhynchus mykiss). Results were compared using lowest-observed effect concentrations (LOECs) based on statistical hypothesis tests and by point estimates derived by linear interpolation and logistic regression. Sublethal end points, growth (mean individual dry weight) and biomass (total dry weight per replicate) were usually more sensitive than survival. The biomass end point was equally sensitive as growth and had less among-test variation. Effect concentrations based on linear interpolation were less variable than LOECs, which corresponded to effects ranging from 9% to 76% relative to controls and were consistent with thresholds based on logistic regression. Fountain darter was the most sensitive species for both chemicals tested, with effect concentrations for biomass at ??? 11 ??g/L (LOEC and 25% inhibition concentration [IC25]) for copper and at 21 ??g/L (IC25) for PCP, but spotfin chub was no more sensitive than the commonly tested species. Effect concentrations for fountain darter were lower than current chronic water quality criteria for both copper and PCP. Protectiveness of chronic water-quality criteria for threatened and endangered species could be improved by the use of safety factors or by conducting additional chronic toxicity tests with species and chemicals of concern. ?? 2005 Springer Science+Business Media, Inc.

  10. Tea Consumption and Health-Related Quality of Life in Older Adults.

    PubMed

    Pan, C-W; Ma, Q; Sun, H-P; Xu, Y; Luo, N; Wang, P

    2017-01-01

    Although tea consumption has been reported to have various health benefits in humans, its association with health-related quality of life (HRQOL) has not been investigated directly. We aimed to examine the relationship between tea consumption and HRQOL among older Chinese adults. We analyzed community-based cross-sectional data of 5,557 older Chinese individuals aged 60 years or older who participated in the Weitang Geriatric Diseases study. Information on tea consumption and HRQOL assessed by the European Quality of Life-5 dimensions (EQ-5D) were collected by questionnaires. We estimated the relationship of tea consumption and the EQ-5D index score using linear regression models and the association between tea consumption and self-reported EQ-5D health problems using logistic regression models. The EQ-5D index score was higher for habitual tea drinkers than their counterparts. In multivariate linear analyses controlling for socio-demographic conditions, health conditions, and lifestyle habits, the differences in ED-5D index score between individuals with and without tea drinking habits was 0.012 (95% confidence interval, 0.006-0.017). In multivariate logistic analyses, habitual tea drinking was inversely associated with reporting of problems in EQ-5D dimensions mobility (odds ration [OR], 0.44; 95% CI: 0.23-0.84); pain/discomfort (OR, 0.74; 95% CI: 0.61-0.90); and anxiety/depression (OR, 0.60; 95% CI: 0.38-0.97). These associations were more evident for black or oolong tea than green tea. Habitual tea consumption was associated with better HRQOL in older adults.

  11. Estimating the exceedance probability of rain rate by logistic regression

    NASA Technical Reports Server (NTRS)

    Chiu, Long S.; Kedem, Benjamin

    1990-01-01

    Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.

  12. Comparison of naïve Bayes and logistic regression for computer-aided diagnosis of breast masses using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Cary, Theodore W.; Cwanger, Alyssa; Venkatesh, Santosh S.; Conant, Emily F.; Sehgal, Chandra M.

    2012-03-01

    This study compares the performance of two proven but very different machine learners, Naïve Bayes and logistic regression, for differentiating malignant and benign breast masses using ultrasound imaging. Ultrasound images of 266 masses were analyzed quantitatively for shape, echogenicity, margin characteristics, and texture features. These features along with patient age, race, and mammographic BI-RADS category were used to train Naïve Bayes and logistic regression classifiers to diagnose lesions as malignant or benign. ROC analysis was performed using all of the features and using only a subset that maximized information gain. Performance was determined by the area under the ROC curve, Az, obtained from leave-one-out cross validation. Naïve Bayes showed significant variation (Az 0.733 +/- 0.035 to 0.840 +/- 0.029, P < 0.002) with the choice of features, but the performance of logistic regression was relatively unchanged under feature selection (Az 0.839 +/- 0.029 to 0.859 +/- 0.028, P = 0.605). Out of 34 features, a subset of 6 gave the highest information gain: brightness difference, margin sharpness, depth-to-width, mammographic BI-RADs, age, and race. The probabilities of malignancy determined by Naïve Bayes and logistic regression after feature selection showed significant correlation (R2= 0.87, P < 0.0001). The diagnostic performance of Naïve Bayes and logistic regression can be comparable, but logistic regression is more robust. Since probability of malignancy cannot be measured directly, high correlation between the probabilities derived from two basic but dissimilar models increases confidence in the predictive power of machine learning models for characterizing solid breast masses on ultrasound.

  13. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    PubMed

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  14. Variable Selection in Logistic Regression.

    DTIC Science & Technology

    1987-06-01

    23 %. AUTIOR(.) S. CONTRACT OR GRANT NUMBE Rf.i %Z. D. Bai, P. R. Krishnaiah and . C. Zhao F49620-85- C-0008 " PERFORMING ORGANIZATION NAME AND AOORESS...d I7 IOK-TK- d 7 -I0 7’ VARIABLE SELECTION IN LOGISTIC REGRESSION Z. D. Bai, P. R. Krishnaiah and L. C. Zhao Center for Multivariate Analysis...University of Pittsburgh Center for Multivariate Analysis University of Pittsburgh Y !I VARIABLE SELECTION IN LOGISTIC REGRESSION Z- 0. Bai, P. R. Krishnaiah

  15. Multinomial Logistic Regression Predicted Probability Map To Visualize The Influence Of Socio-Economic Factors On Breast Cancer Occurrence in Southern Karnataka

    NASA Astrophysics Data System (ADS)

    Madhu, B.; Ashok, N. C.; Balasubramanian, S.

    2014-11-01

    Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.

  16. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  17. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  18. Growth models of Rhizophora mangle L. seedlings in tropical southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Lima, Karen Otoni de Oliveira; Tognella, Mônica Maria Pereira; Cunha, Simone Rabelo; Andrade, Humber Agrelli de

    2018-07-01

    The present study selected and compared regression models that best describe the growth curves of Rhizophora mangle seedlings based on the height (cm) and time (days) variables. The Linear, Exponential, Power Law, Monomolecular, Logistic, and Gompertz models were adjusted with non-linear formulations and minimization of the sum of the squares of the residues. The Akaike Information Criterion was used to select the best model for each seedling. After this selection, the determination coefficient, which evaluates how well a model describes height variation as a time function, was inspected. Differing from the classic population ecology studies, the Monomolecular, Three-parameter Logistic, and Gompertz models presented the best performance in describing growth, suggesting they are the most adequate options for long-term studies. The different growth curves reflect the complexity of stem growth at the seedling stage for R. mangle. The analysis of the joint distribution of the parameters initial height, growth rate, and, asymptotic size allowed the study of the species ecological attributes and to observe its intraspecific variability in each model. Our results provide a basis for interpretation of the dynamics of seedlings growth during their establishment in a mature forest, as well as its regeneration processes.

  19. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    PubMed

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  20. Poor sleep quality predicts decreased cognitive function independently of chronic mountain sickness score in young soldiers with polycythemia stationed in Tibet.

    PubMed

    Kong, Fan-Yi; Li, Qiang; Liu, Shi-Xiang

    2011-01-01

    Little is known about the association between poor sleep and cognitive function in people with polycythemia at high altitude. The aim of this study was to survey the sleep quality of individuals with polycythemia at high altitude and determine its association with cognitive abilities. We surveyed 230 soldiers stationed in Tibet (all men; mean age 21-52±4.30 yr) at altitudes ranging from 3658 to 3996 m. All participants were given a blood tests for hemoglobin level and a questionnaire survey of cognitive function. Polycythemia was defined as excessive erythrocytosis (Hb≥21 g/dL in men or ≥19 g/dL in women). Poor sleepers were defined as having a global Pittsburgh Sleep Quality Index score (PSQI)>5. Cognitive abilities were determined by the Chinese revision of the Wechsler Adult Intelligence Scale and the Benton Visual Retention Test. Multiple linear regression analysis was used to determine the association between the PSQI and cognitive function. Logistic regression analysis was performed to determine the independent effect of sleep quality on cognitive function. The global PSQI score of enrolled participants was 8.14±3.79. Seventy-five (32.6%) soldiers were diagnosed with polycythemia. The proportion of poor sleepers was 1.45 times greater in those with polycythemia compared with those without polycythemia [95% (confidence interval) CI 1.82-2.56], and they had a statistically significant lower score for cognitive function. Multiple linear regression analysis showed that the global PSQI score was negatively associated with IQ (β=0.11, 95% CI -0.16 to -0.05) and digit symbol scores (β=0.66, 95% CI -0.86 to -0.44). Poor sleep quality was determined to be an independent predictor of impaired IQ [odds ratio (OR) 1.59, 95% CI 1.30-1.95] and digit symbol score (OR 1.18, 95% CI 1.07-1.31) in logistic regression analysis. The present study showed that for young soldiers with polycythemia at high altitude impaired subjective sleep quality was an independent predictor of decreased cognitive function, especially IQ and verbal short-term memory.

  1. Correlates of aortic stiffness progression in patients with type 2 diabetes: importance of glycemic control: the Rio de Janeiro type 2 diabetes cohort study.

    PubMed

    Ferreira, Marcel T; Leite, Nathalie C; Cardoso, Claudia R L; Salles, Gil F

    2015-05-01

    The correlates of serial changes in aortic stiffness in patients with diabetes have never been investigated. We aimed to examine the importance of glycemic control on progression/regression of carotid-femoral pulse wave velocity (cf-PWV) in type 2 diabetes. In a prospective study, two cf-PWV measurements were performed with the Complior equipment in 417 patients with type 2 diabetes over a mean follow-up of 4.2 years. Clinical laboratory data were obtained at baseline and throughout follow-up. Multivariable linear/logistic regressions assessed the independent correlates of changes in cf-PWV. Median cf-PWV increase was 0.11 m/s per year (1.1% per year). Overall, 212 patients (51%) increased/persisted with high cf-PWV, while 205 (49%) reduced/persisted with low cf-PWV. Multivariate linear regression demonstrated direct associations between cf-PWV changes and mean HbA1c during follow-up (partial correlation 0.14, P = 0.005). On logistic regression, a mean HbA1c ≥7.5% (58 mmol/mol) was associated with twofold higher odds of having increased/persistently high cf-PWV during follow-up. Furthermore, the rate of HbA1c reduction relative to baseline levels was inversely associated with cf-PWV changes (partial correlation -0.11, P = 0.011) and associated with reduced risk of having increased/persistently high aortic stiffness (odds ratio 0.82 [95% CI 0.69-0.96]; P = 0.017). Other independent correlates of progression in aortic stiffness were increases in systolic blood pressure and heart rate between the two cf-PWV measurements, older age, female sex, and presence of dyslipidemia and retinopathy. Better glycemic control, together with reductions in blood pressure and heart rate, was the most important correlate to attenuate/prevent progression of aortic stiffness in patients with type 2 diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  3. Adverse effects of maternal lead levels on birth outcomes in the ALSPAC study: a prospective birth cohort study.

    PubMed

    Taylor, C M; Golding, J; Emond, A M

    2015-02-01

    To study the associations of prenatal blood lead levels (B-Pb) with pregnancy outcomes in a large cohort of mother-child pairs in the UK. Prospective birth cohort study. Avon area of Bristol, UK. Pregnant women enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). Whole blood samples were collected and analysed by inductively coupled plasma dynamic reaction cell mass spectrometry (n = 4285). Data collected on the infants included anthropometric variables and gestational age at delivery. Linear regression models for continuous outcomes and logistic regression models for categorical outcomes were adjusted for covariates including maternal height, smoking, parity, sex of the baby and gestational age. Birthweight, head circumference and crown-heel length, preterm delivery and low birthweight. The mean blood lead level (B-Pb) was 3.67 ± 1.47 μg/dl. B-Pb ≥ 5 μg/dl significantly increased the risk of preterm delivery (adjusted odds ratio [OR] 2.00 95% confidence interval [95% CI] 1.35-3.00) but not of having a low birthweight baby (adjusted OR 1.37, 95% CI 0.86-2.18) in multivariable binary logistic models. Increasing B-Pb was significantly associated with reductions in birth weight (β -13.23, 95% CI -23.75 to -2.70), head circumference (β -0.04, 95% CI -0.07 to -0.06) and crown-heel length (β -0.05, 95% CI -0.10 to -0.00) in multivariable linear regression models. There was evidence for adverse effects of maternal B-Pb on the incidence of preterm delivery, birthweight, head circumference and crown-heel length, but not on the incidence of low birthweight, in this group of women. © 2014 The Authors. BJOG An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  4. High doses of folic acid in the periconceptional period and risk of low weight for gestational age at birth in a population based cohort study.

    PubMed

    Navarrete-Muñoz, Eva María; Valera-Gran, Desirée; Garcia-de-la-Hera, Manuela; Gonzalez-Palacios, Sandra; Riaño, Isolina; Murcia, Mario; Lertxundi, Aitana; Guxens, Mònica; Tardón, Adonina; Amiano, Pilar; Vrijheid, Martine; Rebagliato, Marisa; Vioque, Jesus

    2017-11-27

    We investigated the association between maternal use of folic acid (FA) during pregnancy and child anthropometric measures at birth. We included 2302 mother-child pairs from a population-based birth cohort in Spain (INMA Project). FA dosages at first and third trimester of pregnancy were assessed using a specific battery questionnaire and were categorized in non-user, < 1000, 1000-4999, and ≥ 5000 µg/day. Anthropometric measures at birth (weight in grams, length and head circumference in centimetres) were obtained from medical records. Small for gestational age according to weight (SGA-w), length (SGA-l) and head circumference (SGA-hc) were defined using the 10th percentile based on Spanish standardized growth reference charts. Multiple linear and logistic regression analyses were used to explore the association between FA dosages in different stages of pregnancy and child anthropometric measures at birth. In the multiple linear regression analysis, we found a tendency for a negative association between the use of high dosages of FA (≥ 5000 µg/day) in the periconceptional period of pregnancy and weight at birth compared to mothers who were non-users of FA (β = - 73.83; 95% CI - 151.71, 4.06). In the multiple logistic regression, a greater risk of SGA-w was also evident among children whose mothers took FA dosages of 1000-4999 (OR = 2.21; 95% CI 1.17, 4.19) and of ≥ 5000 µg/day (OR = 2.32; 95% CI 1.06, 5.08) compared to mothers non-users of FA in the periconceptional period of pregnancy. Our findings suggest that a high dosage of FA (≥ 1000 µg/day) may be associated with an increased risk of SGA-w at birth.

  5. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack.

    PubMed

    Arba, Francesco; Quinn, Terence J; Hankey, Graeme J; Lees, Kennedy R; Wardlaw, Joanna M; Ali, Myzoon; Inzitari, Domenico

    2018-01-01

    Background Previous studies suggested that enlarged perivascular spaces are neuroimaging markers of cerebral small vessel disease. However, it is not clear whether enlarged perivascular spaces are associated with cognitive impairment. We aimed to determine the cross-sectional relationship between enlarged perivascular spaces and small vessel disease, and to investigate the relationship between enlarged perivascular spaces and subsequent cognitive impairment in patients with recent cerebral ischemic event. Methods Anonymized data were accessed from the virtual international stroke trial archive. We rated number of lacunes, white matter hyperintensities, brain atrophy, and enlarged perivascular spaces with validated scales on magnetic resonance brain images after the index stroke. We defined cognitive impairment as a mini mental state examination score of ≤26, recorded at one year post stroke. We examined the associations between enlarged perivascular spaces and clinical and imaging markers of small vessel disease at presentation and clinical evidence of cognitive impairment at one year using linear and logistic regression models. Results We analyzed data on 430 patients with mean (±SD) age 64.7 (±12.7) years, 276 (64%) males. In linear regression analysis, age (β = 0.24; p < 0.001), hypertension (β = 0.09; p = 0.025), and deep white matter hyperintensities (β = 0.31; p < 0.001) were associated with enlarged perivascular spaces. In logistic regression analysis, basal ganglia enlarged perivascular spaces were independently associated with cognitive impairment at one year after adjusting for clinical confounders (OR = 1.72, 95% CI = 1.22-2.42) and for clinical and imaging confounders (OR = 1.54; 95% CI = 1.03-2.31). Conclusions Our data show that in patients with ischemic cerebral events, enlarged perivascular spaces are cross-sectionally associated with age, hypertension, and white matter hyperintensities and suggest that enlarged perivascular spaces in the basal ganglia are associated with cognitive impairment after one year.

  6. Performance on the adult rheumatology in-training examination and relationship to outcomes on the rheumatology certification examination.

    PubMed

    Lohr, Kristine M; Clauser, Amanda; Hess, Brian J; Gelber, Allan C; Valeriano-Marcet, Joanne; Lipner, Rebecca S; Haist, Steven A; Hawley, Janine L; Zirkle, Sarah; Bolster, Marcy B

    2015-11-01

    The American College of Rheumatology (ACR) Adult Rheumatology In-Training Examination (ITE) is a feedback tool designed to identify strengths and weaknesses in the content knowledge of individual fellows-in-training and the training program curricula. We determined whether scores on the ACR ITE, as well as scores on other major standardized medical examinations and competency-based ratings, could be used to predict performance on the American Board of Internal Medicine (ABIM) Rheumatology Certification Examination. Between 2008 and 2012, 629 second-year fellows took the ACR ITE. Bivariate correlation analyses of assessment scores and multiple linear regression analyses were used to determine whether ABIM Rheumatology Certification Examination scores could be predicted on the basis of ACR ITE scores, United States Medical Licensing Examination scores, ABIM Internal Medicine Certification Examination scores, fellowship directors' ratings of overall clinical competency, and demographic variables. Logistic regression was used to evaluate whether these assessments were predictive of a passing outcome on the Rheumatology Certification Examination. In the initial linear model, the strongest predictors of the Rheumatology Certification Examination score were the second-year fellows' ACR ITE scores (β = 0.438) and ABIM Internal Medicine Certification Examination scores (β = 0.273). Using a stepwise model, the strongest predictors of higher scores on the Rheumatology Certification Examination were second-year fellows' ACR ITE scores (β = 0.449) and ABIM Internal Medicine Certification Examination scores (β = 0.276). Based on the findings of logistic regression analysis, ACR ITE performance was predictive of a pass/fail outcome on the Rheumatology Certification Examination (odds ratio 1.016 [95% confidence interval 1.011-1.021]). The predictive value of the ACR ITE score with regard to predicting performance on the Rheumatology Certification Examination supports use of the Adult Rheumatology ITE as a valid feedback tool during fellowship training. © 2015, American College of Rheumatology.

  7. Using Multiple and Logistic Regression to Estimate the Median WillCost and Probability of Cost and Schedule Overrun for Program Managers

    DTIC Science & Technology

    2017-03-23

    PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and

  8. Expression of Proteins Involved in Epithelial-Mesenchymal Transition as Predictors of Metastasis and Survival in Breast Cancer Patients

    DTIC Science & Technology

    2013-11-01

    Ptrend 0.78 0.62 0.75 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of node...Ptrend 0.71 0.67 Unconditional logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for risk of high-grade tumors... logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for the associations between each of the seven SNPs and

  9. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography.

    PubMed

    Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung

    2018-01-01

    The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.

  10. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.

    PubMed

    Yu, Yuanyuan; Li, Hongkai; Sun, Xiaoru; Su, Ping; Wang, Tingting; Liu, Yi; Yuan, Zhongshang; Liu, Yanxun; Xue, Fuzhong

    2017-12-28

    Confounders can produce spurious associations between exposure and outcome in observational studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems of logistic regression and search the alternative method. Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The "do-calculus" was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to evaluate the performances of different strategies. Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome, while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal strategy was to adjust for the parent nodes of outcome, which obtained the highest precision. All adjustment strategies through logistic regression were biased for causal effect estimation, while IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus, IPW-based-MSM was recommended to adjust for confounders set.

  11. Use and interpretation of logistic regression in habitat-selection studies

    USGS Publications Warehouse

    Keating, Kim A.; Cherry, Steve

    2004-01-01

     Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.

  12. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    NASA Astrophysics Data System (ADS)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  13. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    PubMed

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.

  14. Which Frail Older People Are Dehydrated? The UK DRIE Study

    PubMed Central

    Bunn, Diane K.; Downing, Alice; Jimoh, Florence O.; Groves, Joyce; Free, Carol; Cowap, Vicky; Potter, John F.; Hunter, Paul R.; Shepstone, Lee

    2016-01-01

    Background: Water-loss dehydration in older people is associated with increased mortality and disability. We aimed to assess the prevalence of dehydration in older people living in UK long-term care and associated cognitive, functional, and health characteristics. Methods: The Dehydration Recognition In our Elders (DRIE) cohort study included people aged 65 or older living in long-term care without heart or renal failure. In a cross-sectional baseline analysis, we assessed serum osmolality, previously suggested dehydration risk factors, general health, markers of continence, cognitive and functional health, nutrition status, and medications. Univariate linear regression was used to assess relationships between participant characteristics and serum osmolality, then associated characteristics entered into stepwise backwards multivariate linear regression. Results: DRIE included 188 residents (mean age 86 years, 66% women) of whom 20% were dehydrated (serum osmolality >300 mOsm/kg). Linear and logistic regression suggested that renal, cognitive, and diabetic status were consistently associated with serum osmolality and odds of dehydration, while potassium-sparing diuretics, sex, number of recent health contacts, and bladder incontinence were sometimes associated. Thirst was not associated with hydration status. Conclusions: DRIE found high prevalence of dehydration in older people living in UK long-term care, reinforcing the proposed association between cognitive and renal function and hydration. Dehydration is associated with increased mortality and disability in older people, but trials to assess effects of interventions to support healthy fluid intakes in older people living in residential care are needed to enable us to formally assess causal direction and any health benefits of increasing fluid intakes. PMID:26553658

  15. Quantifying the potential impact of measurement error in an investigation of autism spectrum disorder (ASD).

    PubMed

    Heavner, Karyn; Newschaffer, Craig; Hertz-Picciotto, Irva; Bennett, Deborah; Burstyn, Igor

    2014-05-01

    The Early Autism Risk Longitudinal Investigation (EARLI), an ongoing study of a risk-enriched pregnancy cohort, examines genetic and environmental risk factors for autism spectrum disorders (ASDs). We simulated the potential effects of both measurement error (ME) in exposures and misclassification of ASD-related phenotype (assessed as Autism Observation Scale for Infants (AOSI) scores) on measures of association generated under this study design. We investigated the impact on the power to detect true associations with exposure and the false positive rate (FPR) for a non-causal correlate of exposure (X2, r=0.7) for continuous AOSI score (linear model) versus dichotomised AOSI (logistic regression) when the sample size (n), degree of ME in exposure, and strength of the expected (true) OR (eOR)) between exposure and AOSI varied. Exposure was a continuous variable in all linear models and dichotomised at one SD above the mean in logistic models. Simulations reveal complex patterns and suggest that: (1) There was attenuation of associations that increased with eOR and ME; (2) The FPR was considerable under many scenarios; and (3) The FPR has a complex dependence on the eOR, ME and model choice, but was greater for logistic models. The findings will stimulate work examining cost-effective strategies to reduce the impact of ME in realistic sample sizes and affirm the importance for EARLI of investment in biological samples that help precisely quantify a wide range of environmental exposures.

  16. Migration intentions and illicit substance use among youth in central Mexico.

    PubMed

    Marsiglia, Flavio Francisco; Kulis, Stephen; Hoffman, Steven; Calderón-Tena, Carlos Orestes; Becerra, David; Alvarez, Diana

    2011-01-01

    This study explored intentions to emigrate and substance use among youth (ages 14-24) from a central Mexico state with high emigration rates. Questionnaires were completed in 2007 by 702 students attending a probability sample of alternative secondary schools serving remote or poor communities. Linear and logistic regression analyses indicated that stronger intentions to emigrate predicted greater access to drugs, drug offers, and use of illicit drugs (marijuana, cocaine, inhalants), but not alcohol or cigarettes. Results are related to the healthy migrant theory and its applicability to youth with limited educational opportunities. The study's limitations are noted.

  17. Response to antiretroviral therapy (ART): comparing women with previous use of zidovudine monotherapy (ZDVm) in pregnancy with ART naïve women.

    PubMed

    Huntington, Susie; Thorne, Claire; Anderson, Jane; Newell, Marie-Louise; Taylor, Graham P; Pillay, Deenan; Hill, Teresa; Tookey, Pat; Sabin, Caroline

    2014-03-04

    Short-term zidovudine monotherapy (ZDVm) remains an option for some pregnant HIV-positive women not requiring treatment for their own health but may affect treatment responses once antiretroviral therapy (ART) is subsequently started. Data were obtained by linking two UK studies: the UK Collaborative HIV Cohort (UK CHIC) study and the National Study of HIV in Pregnancy and Childhood (NSHPC). Treatment responses were assessed for 2028 women initiating ART at least one year after HIV-diagnosis. Outcomes were compared using logistic regression, proportional hazards regression or linear regression. In adjusted analyses, ART-naïve (n = 1937) and ZDVm-experienced (n = 91) women had similar increases in CD4 count and a similar proportion achieving virological suppression; both groups had a low risk of AIDS. In this setting, antenatal ZDVm exposure did not adversely impact on outcomes once ART was initiated for the woman's health.

  18. Does Group-Level Commitment Predict Employee Well-Being?: A Prospective Analysis.

    PubMed

    Clausen, Thomas; Christensen, Karl Bang; Nielsen, Karina

    2015-11-01

    To investigate the links between group-level affective organizational commitment (AOC) and individual-level psychological well-being, self-reported sickness absence, and sleep disturbances. A total of 5085 care workers from 301 workgroups in the Danish eldercare services participated in both waves of the study (T1 [2005] and T2 [2006]). The three outcomes were analyzed using linear multilevel regression analysis, multilevel Poisson regression analysis, and multilevel logistic regression analysis, respectively. Group-level AOC (T1) significantly predicted individual-level psychological well-being, self-reported sickness absence, and sleep disturbances (T2). The association between group-level AOC (T1) and psychological well-being (T2) was fully mediated by individual-level AOC (T1), and the associations between group-level AOC (T1) and self-reported sickness absence and sleep disturbances (T2) were partially mediated by individual-level AOC (T1). Group-level AOC is an important predictor of employee well-being in contemporary health care organizations.

  19. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Treesearch

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  20. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  1. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    NASA Astrophysics Data System (ADS)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  2. Machine learning in the string landscape

    NASA Astrophysics Data System (ADS)

    Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.

    2017-09-01

    We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

  3. A Primer on Logistic Regression.

    ERIC Educational Resources Information Center

    Woldbeck, Tanya

    This paper introduces logistic regression as a viable alternative when the researcher is faced with variables that are not continuous. If one is to use simple regression, the dependent variable must be measured on a continuous scale. In the behavioral sciences, it may not always be appropriate or possible to have a measured dependent variable on a…

  4. [Influences of environmental factors and interaction of several chemokines gene-environmental on systemic lupus erythematosus].

    PubMed

    Ye, Dong-qing; Hu, Yi-song; Li, Xiang-pei; Huang, Fen; Yang, Shi-gui; Hao, Jia-hu; Yin, Jing; Zhang, Guo-qing; Liu, Hui-hui

    2004-11-01

    To explore the impact of environmental factors, daily lifestyle, psycho-social factors and the interactions between environmental factors and chemokines genes on systemic lupus erythematosus (SLE). Case-control study was carried out and environmental factors for SLE were analyzed by univariate and multivariate unconditional logistic regression. Interactions between environmental factors and chemokines polymorphism contributing to systemic lupus erythematosus were also analyzed by logistic regression model. There were nineteen factors associated with SLE when univariate unconditional logistic regression was used. However, when multivariate unconditional logistic regression was used, only five factors showed having impacts on the disease, in which drinking well water (OR=0.099) was protective factor for SLE, and multiple drug allergy (OR=8.174), over-exposure to sunshine (OR=18.339), taking antibiotics (OR=9.630) and oral contraceptives were risk factors for SLE. When unconditional logistic regression model was used, results showed that there was interaction between eating irritable food and -2518MCP-1G/G genotype (OR=4.387). No interaction between environmental factors was found that contributing to SLE in this study. Many environmental factors were related to SLE, and there was an interaction between -2518MCP-1G/G genotype and eating irritable food.

  5. A deeper look at two concepts of measuring gene-gene interactions: logistic regression and interaction information revisited.

    PubMed

    Mielniczuk, Jan; Teisseyre, Paweł

    2018-03-01

    Detection of gene-gene interactions is one of the most important challenges in genome-wide case-control studies. Besides traditional logistic regression analysis, recently the entropy-based methods attracted a significant attention. Among entropy-based methods, interaction information is one of the most promising measures having many desirable properties. Although both logistic regression and interaction information have been used in several genome-wide association studies, the relationship between them has not been thoroughly investigated theoretically. The present paper attempts to fill this gap. We show that although certain connections between the two methods exist, in general they refer two different concepts of dependence and looking for interactions in those two senses leads to different approaches to interaction detection. We introduce ordering between interaction measures and specify conditions for independent and dependent genes under which interaction information is more discriminative measure than logistic regression. Moreover, we show that for so-called perfect distributions those measures are equivalent. The numerical experiments illustrate the theoretical findings indicating that interaction information and its modified version are more universal tools for detecting various types of interaction than logistic regression and linkage disequilibrium measures. © 2017 WILEY PERIODICALS, INC.

  6. Comparative decision models for anticipating shortage of food grain production in India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Manojit; Mitra, Subrata Kumar

    2018-01-01

    This paper attempts to predict food shortages in advance from the analysis of rainfall during the monsoon months along with other inputs used for crop production, such as land used for cereal production, percentage of area covered under irrigation and fertiliser use. We used six binary classification data mining models viz., logistic regression, Multilayer Perceptron, kernel lab-Support Vector Machines, linear discriminant analysis, quadratic discriminant analysis and k-Nearest Neighbors Network, and found that linear discriminant analysis and kernel lab-Support Vector Machines are equally suitable for predicting per capita food shortage with 89.69 % accuracy in overall prediction and 92.06 % accuracy in predicting food shortage ( true negative rate). Advance information of food shortage can help policy makers to take remedial measures in order to prevent devastating consequences arising out of food non-availability.

  7. Controlling Type I Error Rates in Assessing DIF for Logistic Regression Method Combined with SIBTEST Regression Correction Procedure and DIF-Free-Then-DIF Strategy

    ERIC Educational Resources Information Center

    Shih, Ching-Lin; Liu, Tien-Hsiang; Wang, Wen-Chung

    2014-01-01

    The simultaneous item bias test (SIBTEST) method regression procedure and the differential item functioning (DIF)-free-then-DIF strategy are applied to the logistic regression (LR) method simultaneously in this study. These procedures are used to adjust the effects of matching true score on observed score and to better control the Type I error…

  8. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  9. Changes in the selection differential exerted on a marine snail during the ontogeny of a predatory shore crab.

    PubMed

    Pakes, D; Boulding, E G

    2010-08-01

    Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell-thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator-mediated selection on local snail populations.

  10. Access disparities to Magnet hospitals for patients undergoing neurosurgical operations

    PubMed Central

    Missios, Symeon; Bekelis, Kimon

    2017-01-01

    Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152

  11. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    PubMed

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  12. Periodontal disease in Chinese patients with systemic lupus erythematosus.

    PubMed

    Zhang, Qiuxiang; Zhang, Xiaoli; Feng, Guijaun; Fu, Ting; Yin, Rulan; Zhang, Lijuan; Feng, Xingmei; Li, Liren; Gu, Zhifeng

    2017-08-01

    Disease of systemic lupus erythematosus (SLE) and periodontal disease (PD) shares the common multiple characteristics. The aims of the present study were to evaluate the prevalence and severity of periodontal disease in Chinese SLE patients and to determine the association between SLE features and periodontal parameters. A cross-sectional study of 108 SLE patients together with 108 age- and sex-matched healthy controls was made. Periodontal status was conducted by two dentists independently. Sociodemographic characteristics, lifestyle factors, medication use, and clinical parameters were also assessed. The periodontal status was significantly worse in SLE patients compared to controls. In univariate logistic regression, SLE had a significant 2.78-fold [95% confidence interval (CI) 1.60-4.82] increase in odds of periodontitis compared to healthy controls. Adjusted for potential risk factors, patients with SLE had 13.98-fold (95% CI 5.10-38.33) increased odds against controls. In multiple linear regression model, the independent variable negatively and significantly associated with gingival index was education (P = 0.005); conversely, disease activity (P < 0.001) and plaque index (P = 0.002) were positively associated; Age was the only variable independently associated with periodontitis of SLE in multivariate logistic regression (OR 1.348; 95% CI: 1.183-1.536, P < 0.001). Chinese SLE patients were likely to suffer from higher odds of PD. These findings confirmed the importance of early interventions in combination with medical therapy. It is necessary for a close collaboration between dentists and clinicians when treating those patients.

  13. Prediction of sickness absence: development of a screening instrument

    PubMed Central

    Duijts, S F A; Kant, IJ; Landeweerd, J A; Swaen, G M H

    2006-01-01

    Objectives To develop a concise screening instrument for early identification of employees at risk for sickness absence due to psychosocial health complaints. Methods Data from the Maastricht Cohort Study on “Fatigue at Work” were used to identify items to be associated with an increased risk of sickness absence. The analytical procedures univariate logistic regression, backward stepwise linear regression, and multiple logistic regression were successively applied. For both men and women, sum scores were calculated, and sensitivity and specificity rates of different cut‐off points on the screening instrument were defined. Results In women, results suggested that feeling depressed, having a burnout, being tired, being less interested in work, experiencing obligatory change in working days, and living alone, were strong predictors of sickness absence due to psychosocial health complaints. In men, statistically significant predictors were having a history of sickness absence, compulsive thinking, being mentally fatigued, finding it hard to relax, lack of supervisor support, and having no hobbies. A potential cut‐off point of 10 on the screening instrument resulted in a sensitivity score of 41.7% for women and 38.9% for men, and a specificity score of 91.3% for women and 90.6% for men. Conclusions This study shows that it is possible to identify predictive factors for sickness absence and to develop an instrument for early identification of employees at risk for sickness absence. The results of this study increase the possibility for both employers and policymakers to implement interventions directed at the prevention of sickness absence. PMID:16698807

  14. Downward trends in surgical site and urinary tract infections after cesarean delivery in a French surveillance network, 1997-2003.

    PubMed

    Vincent, Agnès; Ayzac, Louis; Girard, Raphaële; Caillat-Vallet, Emmanuelle; Chapuis, Catherine; Depaix, Florence; Dumas, Anne-Marie; Gignoux, Chantal; Haond, Catherine; Lafarge-Leboucher, Joëlle; Launay, Carine; Tissot-Guerraz, Françoise; Fabry, Jacques

    2008-03-01

    To evaluate whether the adjusted rates of surgical site infection (SSI) and urinary tract infection (UTI) after cesarean delivery decrease in maternity units that perform active healthcare-associated infection surveillance. Trend analysis by means of multiple logistic regression. A total of 80 maternity units participating in the Mater Sud-Est surveillance network. A total of 37,074 cesarean deliveries were included in the surveillance from January 1, 1997, through December 31, 2003. We used a logistic regression model to estimate risk-adjusted post-cesarean delivery infection odds ratios. The variables included were the maternity units' annual rate of operative procedures, the level of dispensed neonatal care, the year of delivery, maternal risk factors, and the characteristics of cesarean delivery. The trend of risk-adjusted odds ratios for SSI and UTI during the study period was studied by linear regression. The crude rates of SSI and UTI after cesarean delivery were 1.5% (571 of 37,074 patients) and 1.8% (685 of 37,074 patients), respectively. During the study period, the decrease in SSI and UTI adjusted odds ratios was statistically significant (R=-0.823 [P=.023] and R=-0.906 [P=.005], respectively). Reductions of 48% in the SSI rate and 52% in the UTI rate were observed in the maternity units. These unbiased trends could be related to progress in preventive practices as a result of the increased dissemination of national standards and a collaborative surveillance with benchmarking of rates.

  15. Environmental tobacco smoke exposure and health disparities: 8-year longitudinal findings from a large cohort of Thai adults.

    PubMed

    Tran, Thanh Tam; Yiengprugsawan, Vasoontara; Chinwong, Dujrudee; Seubsman, Sam-Ang; Sleigh, Adrian

    2015-12-08

    In rich countries, smokers, active or passive, often belong to disadvantaged groups. Less is known of tobacco patterns in the developing world. Hence, we seek out to investigate mental and physical health consequences of smoke exposure as well as tobacco-related inequality in transitional middle-income Thailand. We studied a nationwide cohort of 87,151 middle-aged and older adults that we have been following for eight years (2005-2013) for emerging chronic diseases. Logistic regression was used to identify attributes associated with passive smoke exposure. Longitudinal associations between smoke exposure and wellbeing (SF-8) or psychological distress (Kessler 6) were investigated with multiple linear regression or multivariate logistic regression analysis. A high proportion of cohort members, especially females, were passive smokers at home and at public transport stations; males were more exposed at workplace and recreational places. We observed a social gradient with more passive smoking in poorer people. We also observed a dose response relationship linking graded smoke exposures (current, former, passive, non-exposed) to less wellbeing and more psychological distress (p-trend < 0.001). Female smokers in general had less wellbeing and more distress. Our findings add to current knowledge on the impact of active and passive smoking on health in a transitional economy. Promotion of smoking cessation programs both in public and at home could also potentially reduce adverse disparities in health and wellbeing in middle and lower income settings such as Thailand.

  16. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes.

    PubMed

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-04-15

    Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.

  17. Participant characteristics and intervention processes associated with reductions in television viewing in the High Five for Kids study

    PubMed Central

    Cespedes, Elizabeth M.; Horan, Christine M.; Gillman, Matthew W.; Gortmaker, Steven L.; Price, Sarah; Rifas-Shiman, Sheryl L.; Mitchell, Kathleen; Taveras, Elsie M.

    2014-01-01

    Objective To evaluate the High Five for Kids intervention effect on television (TV) within subgroups, examine participant characteristics associated with process measures and assess perceived helpfulness of TV intervention components. Method High Five (RCT of 445 overweight/obese 2–7 year-olds in Massachusetts [2006–2008]) reduced TV by 0.36 hours/day. 1-year effects on TV, stratified by subgroup, were assessed using linear regression. Among intervention participants (n=253), associations of intervention component helpfulness with TV reduction were examined using linear regression and associations of participant characteristics with processes linked to TV reduction (choosing TV and completing intervention visits) were examined using logistic regression. Results High Five reduced TV across subgroups. Parents of Latino (v. white) children had lower odds of completing >=2 study visits (OR 0.39 [95%CI: 0.18, 0.84]). Parents of black (v. white) children had higher odds of choosing TV (OR: 2.23 [95% CI: 1.08, 4.59]), as did parents of obese (v. overweight) children and children watching >=2 hours/day (v. <2) at baseline. Greater perceived helpfulness was associated with greater TV reduction. Conclusion Clinic-based motivational interviewing reduces TV in children. Low cost education approaches (e.g., printed materials) may be well-received. Parents of children at higher obesity risk could be more motivated to reduce TV. PMID:24518002

  18. Male perpetration of teen dating violence: associations with neighborhood violence involvement, gender attitudes, and perceived peer and neighborhood norms.

    PubMed

    Reed, Elizabeth; Silverman, Jay G; Raj, Anita; Decker, Michele R; Miller, Elizabeth

    2011-04-01

    This study aims to examine the link between male perpetration of teen dating violence (TDV) and neighborhood violence, as well as associations with gender attitudes and perceived peer and neighborhood norms related to violence among a sample of urban adolescent boys. Participants of this cross-sectional study (N = 275) were between the ages of 14 and 20 years and recruited from urban community health centers. Crude and adjusted logistic and linear regression models were used to examine TDV perpetration in relation to (a) neighborhood violence involvement, (b) perceptions of peer violence, (c) perceptions of neighborhood violence, and (d) gender attitudes. Slightly more than one in four (28%) boys reported at least one form of TDV perpetration; among boys who have ever had sex, almost half (45%) reported at least one form of TDV perpetration. In logistic and linear regression models adjusted for demographics, boys who reported TDV perpetration were more likely to report involvement in neighborhood violence (odds ratio (OR) = 3.1; 95% confidence interval (CI) = 1.7-5.5), beliefs that their friends have perpetrated TDV (OR = 2.7; 95%CI = 1.4-5.1), perceptions of violent activity within their neighborhood (OR = 3.0; 95%CI = 1.4-6.3), and greater support of traditional gender norms (β = 3.2, p = 0.002). The findings suggest that efforts are needed to address boys' behaviors related to the perpetration of multiple forms of violence and require explicit efforts to reduce perceived norms of violence perpetration as well as problematic gender attitudes (e.g., increasing support for gender equity) across boys' life contexts.

  19. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    PubMed

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  20. Racial/Ethnic Minority Youth With Recent-Onset Type 1 Diabetes Have Poor Prognostic Factors.

    PubMed

    Redondo, Maria Jose; Libman, Ingrid; Cheng, Peiyao; Kollman, Craig; Tosur, Mustafa; Gal, Robin L; Bacha, Fida; Klingensmith, Georgeanna J; Clements, Mark

    2018-05-01

    To compare races/ethnicities for characteristics, at type 1 diabetes diagnosis and during the first 3 years postdiagnosis, known to influence long-term health outcomes. We analyzed 927 Pediatric Diabetes Consortium (PDC) participants <19 years old (631 non-Hispanic white [NHW], 216 Hispanic, and 80 African American [AA]) diagnosed with type 1 diabetes and followed for a median of 3.0 years (interquartile range 2.2-3.6). Demographic and clinical data were collected from medical records and patient/parent interviews. Partial remission period or "honeymoon" was defined as insulin dose-adjusted hemoglobin A 1c (IDAA1c) ≤9.0%. We used logistic, linear, and multinomial regression models, as well as repeated-measures logistic and linear regression models. Models were adjusted for known confounders. AA subjects, compared with NHW, at diagnosis, were in a higher age- and sex-adjusted BMI percentile (BMI%), had more advanced pubertal development, and had higher frequency of presentation in diabetic ketoacidosis, largely explained by socioeconomic factors. During the first 3 years, AA subjects were more likely to have hypertension and severe hypoglycemia events; had trajectories with higher hemoglobin A 1c , BMI%, insulin doses, and IDAA1c; and were less likely to enter the partial remission period. Hispanics, compared with NHWs, had higher BMI% at diagnosis and over the three subsequent years. During the 3 years postdiagnosis, Hispanics had higher prevalence of dyslipidemia and maintained trajectories of higher insulin doses and IDAA1c. Youth of minority race/ethnicity have increased markers of poor prognosis of type 1 diabetes at diagnosis and 3 years postdiagnosis, possibly contributing to higher risk of long-term diabetes complications compared with NHWs. © 2018 by the American Diabetes Association.

  1. Excess adiposity, inflammation, and iron-deficiency in female adolescents.

    PubMed

    Tussing-Humphreys, Lisa M; Liang, Huifang; Nemeth, Elizabeta; Freels, Sally; Braunschweig, Carol A

    2009-02-01

    Iron deficiency is more prevalent in overweight children and adolescents but the mechanisms that underlie this condition remain unclear. The purpose of this cross-sectional study was to assess the relationship between iron status and excess adiposity, inflammation, menarche, diet, physical activity, and poverty status in female adolescents included in the National Health and Nutrition Examination Survey 2003-2004 dataset. Descriptive and simple comparative statistics (t test, chi(2)) were used to assess differences between normal-weight (5th < or = body mass index [BMI] percentile <85th) and heavier-weight girls (< or = 85th percentile for BMI) for demographic, biochemical, dietary, and physical activity variables. In addition, logistic regression analyses predicting iron deficiency and linear regression predicting serum iron levels were performed. Heavier-weight girls had an increased prevalence of iron deficiency compared to those with normal weight. Dietary iron, age of and time since first menarche, poverty status, and physical activity were similar between the two groups and were not independent predictors of iron deficiency or log serum iron levels. Logistic modeling predicting iron deficiency revealed having a BMI > or = 85th percentile and for each 1 mg/dL increase in C-reactive protein the odds ratio for iron deficiency more than doubled. The best-fit linear model to predict serum iron levels included both serum transferrin receptor and C-reactive protein following log-transformation for normalization of these variables. Findings indicate that heavier-weight female adolescents are at greater risk for iron deficiency and that inflammation stemming from excess adipose tissue contributes to this phenomenon. Food and nutrition professionals should consider elevated BMI as an additional risk factor for iron deficiency in female adolescents.

  2. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    PubMed

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  3. 4D-Fingerprint Categorical QSAR Models for Skin Sensitization Based on Classification Local Lymph Node Assay Measures

    PubMed Central

    Li, Yi; Tseng, Yufeng J.; Pan, Dahua; Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Hopfinger, Anton J.

    2008-01-01

    Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the Local Lymph Node Assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, eg. Quantitative Structure-Activity Relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR), and partial least square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, χHL2, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, while that of PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0%-86.7%, while that of PLS-logistic regression models ranges from 73.3%-80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors and negatively partially charged atoms. PMID:17226934

  4. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E

    2009-01-20

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less

  5. Use of a tracing task to assess visuomotor performance for evidence of concussion and recuperation.

    PubMed

    Kelty-Stephen, Damian G; Qureshi Ahmad, Mona; Stirling, Leia

    2015-12-01

    The likelihood of suffering a concussion while playing a contact sport ranges from 15-45% per year of play. These rates are highly variable as athletes seldom report concussive symptoms, or do not recognize their symptoms. We performed a prospective cohort study (n = 206, aged 10-17) to examine visuomotor tracing to determine the sensitivity for detecting neuromotor components of concussion. Tracing variability measures were investigated for a mean shift with presentation of concussion-related symptoms and a linear return toward baseline over subsequent return visits. Furthermore, previous research relating brain injury to the dissociation of smooth movements into "submovements" led to the expectation that cumulative micropause duration, a measure of motion continuity, might detect likelihood of injury. Separate linear mixed effects regressions of tracing measures indicated that 4 of the 5 tracing measures captured both short-term effects of injury and longer-term effects of recovery with subsequent visits. Cumulative micropause duration has a positive relationship with likelihood of participants having had a concussion. The present results suggest that future research should evaluate how well the coefficients for the tracing parameter in the logistic regression help to detect concussion in novel cases. (c) 2015 APA, all rights reserved).

  6. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    EPA Science Inventory

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  7. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    PubMed

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  8. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  9. Acculturation and healthy lifestyle habits among Hispanics in United States-Mexico border communities.

    PubMed

    Ghaddar, Suad; Brown, Cynthia J; Pagán, José A; Díaz, Violeta

    2010-09-01

    To explore the relationship between acculturation and healthy lifestyle habits in the largely Hispanic populations living in underserved communities in the United States of America along the U.S.-Mexico border. A cross-sectional study was conducted from April 2006 to June 2008 using survey data from the Alliance for a Healthy Border, a program designed to reduce health disparities in the U.S.-Mexico border region by funding nutrition and physical activity education programs at 12 federally qualified community health centers in Arizona, California, New Mexico, and Texas. The survey included questions on acculturation, diet, exercise, and demographic factors and was completed by 2,381 Alliance program participants, of whom 95.3% were Hispanic and 45.4% were under the U.S. poverty level for 2007. Chi-square (χ2) and Student's t tests were used for bivariate comparisons between acculturation and dietary and physical activity measures. Linear regression and binary logistic regression were used to control for factors associated with nutrition and exercise. Based on univariate tests and confirmed by regression analysis controlling for sociodemographic and health variables, less acculturated survey respondents reported a significantly higher frequency of fruit and vegetable consumption and healthier dietary habits than those who were more acculturated. Adjusted binary logistic regression confirmed that individuals with low language acculturation were less likely to engage in physical activity than those with moderate to high acculturation (odds ratio 0.75, 95% confidence interval 0.59-0.95). Findings confirmed an association between acculturation and healthy lifestyle habits and supported the hypothesis that acculturation in border community populations tends to decrease the practice of some healthy dietary habits while increasing exposure to and awareness of the importance of other healthy behaviors.

  10. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials.

    PubMed

    Somma, Francesco; Cammarota, Giuseppe; Plotino, Gianluca; Grande, Nicola M; Pameijer, Cornelis H

    2008-04-01

    The aim of this study was to compare the effectiveness of the Mtwo R (Sweden & Martina, Padova, Italy), ProTaper retreatment files (Dentsply-Maillefer, Ballaigues, Switzerland), and a Hedström manual technique in the removal of three different filling materials (gutta-percha, Resilon [Resilon Research LLC, Madison, CT], and EndoRez [Ultradent Products Inc, South Jordan, UT]) during retreatment. Ninety single-rooted straight premolars were instrumented and randomly divided into 9 groups of 10 teeth each (n = 10) with regards to filling material and instrument used. For all roots, the following data were recorded: procedural errors, time of retreatment, apically extruded material, canal wall cleanliness through optical stereomicroscopy (OSM), and scanning electron microscopy (SEM). A linear regression analysis and three logistic regression analyses were performed to assess the level of significance set at p = 0.05. The results indicated that the overall regression models were statistically significant. The Mtwo R, ProTaper retreatment files, and Resilon filling material had a positive impact in reducing the time for retreatment. Both ProTaper retreatment files and Mtwo R showed a greater extrusion of debris. For both OSM and SEM logistic regression models, the root canal apical third had the greatest impact on the score values. EndoRez filling material resulted in cleaner root canal walls using OSM analysis, whereas Resilon filling material and both engine-driven NiTi rotary techniques resulted in less clean root canal walls according to SEM analysis. In conclusion, all instruments left remnants of filling material and debris on the root canal walls irrespective of the root filling material used. Both the engine-driven NiTi rotary systems proved to be safe and fast devices for the removal of endodontic filling material.

  11. Modification of the Mantel-Haenszel and Logistic Regression DIF Procedures to Incorporate the SIBTEST Regression Correction

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2009-01-01

    The Mantel-Haenszel (MH) and logistic regression (LR) differential item functioning (DIF) procedures have inflated Type I error rates when there are large mean group differences, short tests, and large sample sizes.When there are large group differences in mean score, groups matched on the observed number-correct score differ on true score,…

  12. Classification of vegetation types in military region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose

    2015-10-01

    In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.

  13. Cognitive Factors Related to Drug Abuse Among a Sample of Iranian Male Medical College Students

    PubMed Central

    Jalilian, Farzad; Ataee, Mari; Matin, Behzad Karami; Ahmadpanah, Mohammad; Jouybari, Touraj Ahmadi; Eslami, Ahmad Ali; Mahboubi, Mohammad; Alavijeh, Mehdi Mirzaei

    2015-01-01

    Backgrounds: Drug abuse is one of the most serious social problems in many countries. College students, particularly at their first year of education, are considered as one of the at risk groups for drug abuse. The present study aimed to determine cognitive factors related to drug abuse among a sample of Iranian male medical college students based on the social cognitive theory (SCT). Method: This cross-sectional study was carried out on 425 Iranian male medical college students who were randomly selected to participate voluntarily in the study. The participants filled out a self-administered questionnaire. Data were analyzed by the SPSS software (ver. 21.0) using bivariate correlations, logistic and linear regression at 95% significant level. Results: Attitude, outcome expectation, outcome expectancies, subjective norms, and self-control were cognitive factors that accounted for 49% of the variation in the outcome measure of the intention to abuse drugs. Logistic regression showed that attitude (OR=1.062), outcome expectancies (OR=1.115), and subjective norms (OR=1.269) were the most influential predictors for drug abuse. Conclusions: The findings suggest that designing and implementation of educational programs may be useful to increase negative attitude, outcome expectancies, and subjective norms towards drug abuse for college students in order to prevent drug abuse. PMID:26156919

  14. To Control False Positives in Gene-Gene Interaction Analysis: Two Novel Conditional Entropy-Based Approaches

    PubMed Central

    Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng

    2013-01-01

    Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984

  15. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters.

    PubMed

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D; Schaffner, Donald W; Danyluk, Michelle D

    2013-07-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R(2) < 0.1) and between physicochemical indicators and Salmonella levels (R(2) < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression.

  16. Predicting Salmonella Populations from Biological, Chemical, and Physical Indicators in Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Mootian, Gabriel; Goodridge, Lawrence D.; Schaffner, Donald W.

    2013-01-01

    Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R2 < 0.1) and between physicochemical indicators and Salmonella levels (R2 < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression. PMID:23624476

  17. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  18. Satellite rainfall retrieval by logistic regression

    NASA Technical Reports Server (NTRS)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  19. Practical Session: Logistic Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  20. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less

  1. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    NASA Astrophysics Data System (ADS)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-10-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  2. The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    PubMed

    Jiang, Dingfeng; Huang, Jian; Zhang, Ying

    2013-10-01

    We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.

  3. Linear Logistic Test Modeling with R

    ERIC Educational Resources Information Center

    Baghaei, Purya; Kubinger, Klaus D.

    2015-01-01

    The present paper gives a general introduction to the linear logistic test model (Fischer, 1973), an extension of the Rasch model with linear constraints on item parameters, along with eRm (an R package to estimate different types of Rasch models; Mair, Hatzinger, & Mair, 2014) functions to estimate the model and interpret its parameters. The…

  4. Predictors of college-student food security and fruit and vegetable intake differ by housing type.

    PubMed

    Mirabitur, Erica; Peterson, Karen E; Rathz, Colleen; Matlen, Stacey; Kasper, Nicole

    2016-10-01

    We assessed whether college-student characteristics associate with food security and fruit and vegetable (FV) intake and whether these associations differ in students in housing with and without food provision. 514 randomly-sampled students from a large, Midwestern, public university in 2012 and 2013 METHODS: Ordered logistic regression tested how student characteristics associate with food security. Linear regression tested how student characteristics associate with FV intake. Analyses were stratified by housing type - that is, housing with food provision (dormitory, fraternity/sorority house, cooperative) vs. housing without food provision. Only among those living in housing without food provision, males (p = 0.04), students without car access (p = 0.005), and those with marginal (p = 0.001) or low (p = 0.001) food security demonstrated lower FV intake. Housing with food provision may buffer the effects of student characteristics on food.

  5. Epidemiological studies of neurological signs and symptoms and blood pressure in populations near the industrial methylmercury contamination at Minamata, Japan.

    PubMed

    Yorifuji, Takashi; Tsuda, Toshihide

    2016-07-03

    Severe methylmercury exposure occurred in Minamata, Japan. Only a limited number of epidemiological studies related to that exposure have been carried out. The evidence that methylmercury is cardiotoxic is very limited, and these studies provide only minimal support for that hypothesis. We therefore analyzed the data both from an investigation in Minamata and neighboring communities in 1971 and an investigation in 1974 in another area simultaneously. We included a total of 3,751 participants. We examined the association of residential area with neurological signs or blood pressure using logistic regression or multiple linear regression models, adjusting for sex and age. We found that the prevalence of neurological signs and symptoms was elevated in the Minamata area (high-exposure), followed by the Goshonoura area (medium-exposure). Moreover, blood pressure was elevated in residents of the Minamata area.

  6. The Impact of Work and Volunteer Hours on the Health of Undergraduate Students.

    PubMed

    Lederer, Alyssa M; Autry, Dana M; Day, Carol R T; Oswalt, Sara B

    2015-01-01

    To examine the impact of work and volunteer hours on 4 health issues among undergraduate college students. Full-time undergraduate students (N = 70,068) enrolled at 129 institutions who participated in the Spring 2011 American College Health Association-National College Health Assessment II survey. Multiple linear regression and binary logistic regression were used to examine work and volunteer hour impact on depression, feelings of being overwhelmed, sleep, and physical activity. The impact of work and volunteer hours was inconsistent among the health outcomes. Increased work hours tended to negatively affect sleep and increase feelings of being overwhelmed. Students who volunteered were more likely to meet physical activity guidelines, and those who volunteered 1 to 9 hours per week reported less depression. College health professionals should consider integrating discussion of students' employment and volunteering and their intersection with health outcomes into clinical visits, programming, and other services.

  7. Molecular markers of neuropsychological functioning and Alzheimer's disease.

    PubMed

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2015-03-01

    The current project sought to examine molecular markers of neuropsychological functioning among elders with and without Alzheimer's disease (AD) and determine the predictive ability of combined molecular markers and select neuropsychological tests in detecting disease presence. Data were analyzed from 300 participants (n = 150, AD and n = 150, controls) enrolled in the Texas Alzheimer's Research and Care Consortium. Linear regression models were created to examine the link between the top five molecular markers from our AD blood profile and neuropsychological test scores. Logistical regressions were used to predict AD presence using serum biomarkers in combination with select neuropsychological measures. Using the neuropsychological test with the least amount of variance overlap with the molecular markers, the combined neuropsychological test and molecular markers was highly accurate in detecting AD presence. This work provides the foundation for the generation of a point-of-care device that can be used to screen for AD.

  8. The effects of cognitive – linguistic variables and language experience on behavioural and kinematic performances in nonword learning

    PubMed Central

    Sasisekaran, Jayanthi; Weisberg, Sanford

    2013-01-01

    The aim of the present study was to investigate the effect of cognitive – linguistic variables and language experience on behavioral and kinematic measures of nonword learning in young adults. Group 1 consisted of thirteen participants who spoke American English as the first and only language. Group 2 consisted of seven participants with varying levels of proficiency in a second language. Logistic regression of the percent of correct productions revealed short-term memory to be a significant contributor. The bilingual group showed better performance compared to the monolinguals. Linear regression of the kinematic data revealed that the short – term memory variable contributed significantly to movement coordination. Differences were not observed between the bilingual and the monolingual speakers in kinematic performance. Nonword properties including syllable length and complexity influenced both behavioral and kinematic performance. The findings supported the observation that nonword repetition is multiply determined in adults. PMID:22476630

  9. Red-cockaded Woodpecker Picoides borealis Microhabitat Characteristics and Reproductive Success in a Loblolly-Shortleaf Pine Forest

    USGS Publications Warehouse

    Wood, Douglas R.; Burger, L. Wesley; Vilella, Francisco

    2014-01-01

    We investigated the relationship between red-cockaded woodpecker (Picoides borealis) reproductive success and microhabitat characteristics in a southeastern loblolly (Pinus taeda) and shortleaf (P. echinata) pine forest. From 1997 to 1999, we recorded reproductive success parameters of 41 red-cockaded woodpecker groups at the Bienville National Forest, Mississippi. Microhabitat characteristics were measured for each group during the nesting season. Logistic regression identified understory vegetation height and small nesting season home range size as predictors of red-cockaded woodpecker nest attempts. Linear regression models identified several variables as predictors of red-cockaded woodpecker reproductive success including group density, reduced hardwood component, small nesting season home range size, and shorter foraging distances. Red-cockaded woodpecker reproductive success was correlated with habitat and behavioral characteristics that emphasize high quality habitat. By providing high quality foraging habitat during the nesting season, red-cockaded woodpeckers can successfully reproduce within small home ranges.

  10. Estimation of sex and stature using anthropometry of the upper extremity in an Australian population.

    PubMed

    Howley, Donna; Howley, Peter; Oxenham, Marc F

    2018-06-01

    Stature and a further 8 anthropometric dimensions were recorded from the arms and hands of a sample of 96 staff and students from the Australian National University and The University of Newcastle, Australia. These dimensions were used to create simple and multiple logistic regression models for sex estimation and simple and multiple linear regression equations for stature estimation of a contemporary Australian population. Overall sex classification accuracies using the models created were comparable to similar studies. The stature estimation models achieved standard errors of estimates (SEE) which were comparable to and in many cases lower than those achieved in similar research. Generic, non sex-specific models achieved similar SEEs and R 2 values to the sex-specific models indicating stature may be accurately estimated when sex is unknown. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    PubMed

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  12. Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math.

    PubMed

    Raizada, Rajeev D S; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D; Ansari, Daniel; Kuhl, Patricia K

    2010-05-15

    A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain-behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain-behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain-behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. The increase in symptoms of anxiety and depressed mood among Icelandic adolescents: time trend between 2006 and 2016.

    PubMed

    Thorisdottir, Ingibjorg E; Asgeirsdottir, Bryndis B; Sigurvinsdottir, Rannveig; Allegrante, John P; Sigfusdottir, Inga D

    2017-10-01

    Both research and popular media reports suggest that adolescent mental health has been deteriorating across societies with advanced economies. This study sought to describe the trends in self-reported symptoms of depressed mood and anxiety among Icelandic adolescents. Data for this study come from repeated, cross-sectional, population-based school surveys of 43 482 Icelandic adolescents in 9th and 10th grade, with six waves of pooled data from 2006 to 2016. We used analysis of variance, linear regression and binomial logistic regression to examine trends in symptom scores of anxiety and depressed mood over time. Gender differences in trends of high symptoms were also tested for interactions. Linear regression analysis showed a significant linear increase over the course of the study period in mean symptoms of anxiety and depressed mood for girls only; however, symptoms of anxiety among boys decreased. The proportion of adolescents reporting high depressive symptoms increased by 1.6% for boys and 6.8% for girls; the proportion of those reporting high anxiety symptoms increased by 1.3% for boys and 8.6% for girls. Over the study period, the odds for reporting high depressive symptoms and high anxiety symptoms were significantly higher for both genders. Girls were more likely to report high symptoms of anxiety and depressed mood than boys. Self-reported symptoms of anxiety and depressed mood have increased over time among Icelandic adolescents. Our findings suggest that future research needs to look beyond mean changes and examine the trends among those adolescents who report high symptoms of emotional distress. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  14. Which Frail Older People Are Dehydrated? The UK DRIE Study.

    PubMed

    Hooper, Lee; Bunn, Diane K; Downing, Alice; Jimoh, Florence O; Groves, Joyce; Free, Carol; Cowap, Vicky; Potter, John F; Hunter, Paul R; Shepstone, Lee

    2016-10-01

    Water-loss dehydration in older people is associated with increased mortality and disability. We aimed to assess the prevalence of dehydration in older people living in UK long-term care and associated cognitive, functional, and health characteristics. The Dehydration Recognition In our Elders (DRIE) cohort study included people aged 65 or older living in long-term care without heart or renal failure. In a cross-sectional baseline analysis, we assessed serum osmolality, previously suggested dehydration risk factors, general health, markers of continence, cognitive and functional health, nutrition status, and medications. Univariate linear regression was used to assess relationships between participant characteristics and serum osmolality, then associated characteristics entered into stepwise backwards multivariate linear regression. DRIE included 188 residents (mean age 86 years, 66% women) of whom 20% were dehydrated (serum osmolality >300 mOsm/kg). Linear and logistic regression suggested that renal, cognitive, and diabetic status were consistently associated with serum osmolality and odds of dehydration, while potassium-sparing diuretics, sex, number of recent health contacts, and bladder incontinence were sometimes associated. Thirst was not associated with hydration status. DRIE found high prevalence of dehydration in older people living in UK long-term care, reinforcing the proposed association between cognitive and renal function and hydration. Dehydration is associated with increased mortality and disability in older people, but trials to assess effects of interventions to support healthy fluid intakes in older people living in residential care are needed to enable us to formally assess causal direction and any health benefits of increasing fluid intakes. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Linking brain-wide multivoxel activation patterns to behaviour: Examples from language and math

    PubMed Central

    Raizada, Rajeev D.S.; Tsao, Feng-Ming; Liu, Huei-Mei; Holloway, Ian D.; Ansari, Daniel; Kuhl, Patricia K.

    2010-01-01

    A key goal of cognitive neuroscience is to find simple and direct connections between brain and behaviour. However, fMRI analysis typically involves choices between many possible options, with each choice potentially biasing any brain–behaviour correlations that emerge. Standard methods of fMRI analysis assess each voxel individually, but then face the problem of selection bias when combining those voxels into a region-of-interest, or ROI. Multivariate pattern-based fMRI analysis methods use classifiers to analyse multiple voxels together, but can also introduce selection bias via data-reduction steps as feature selection of voxels, pre-selecting activated regions, or principal components analysis. We show here that strong brain–behaviour links can be revealed without any voxel selection or data reduction, using just plain linear regression as a classifier applied to the whole brain at once, i.e. treating each entire brain volume as a single multi-voxel pattern. The brain–behaviour correlations emerged despite the fact that the classifier was not provided with any information at all about subjects' behaviour, but instead was given only the neural data and its condition-labels. Surprisingly, more powerful classifiers such as a linear SVM and regularised logistic regression produce very similar results. We discuss some possible reasons why the very simple brain-wide linear regression model is able to find correlations with behaviour that are as strong as those obtained on the one hand from a specific ROI and on the other hand from more complex classifiers. In a manner which is unencumbered by arbitrary choices, our approach offers a method for investigating connections between brain and behaviour which is simple, rigorous and direct. PMID:20132896

  16. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  17. Migration Intentions and Illicit Substance Use among Youth in Central Mexico

    PubMed Central

    Marsiglia, Flavio Francisco; Kulis, Stephen; Hoffman, Steven; Calderón-Tena, Carlos Orestes; Becerra, David; Alvarez, Diana

    2011-01-01

    This study explored intentions to emigrate and substance use among youth (ages 14–24) from a central Mexico state with high emigration rates. Questionnaires were completed in 2007 by 702 students attending a probability sample of alternative secondary schools serving remote or poor communities. Linear and logistic regression analyses indicated that stronger intentions to emigrate predicted greater access to drugs, drug offers, and use of illicit drugs (marijuana, cocaine, inhalants), but not alcohol or cigarettes. Results are related to the healthy migrant theory and its applicability to youth with limited educational opportunities. The study’s limitations are noted. PMID:21955065

  18. Robust logistic regression to narrow down the winner's curse for rare and recessive susceptibility variants.

    PubMed

    Kesselmeier, Miriam; Lorenzo Bermejo, Justo

    2017-11-01

    Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    PubMed

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  20. Nonconvex Sparse Logistic Regression With Weakly Convex Regularization

    NASA Astrophysics Data System (ADS)

    Shen, Xinyue; Gu, Yuantao

    2018-06-01

    In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.

  1. A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.

    PubMed

    López Puga, Jorge; García García, Juan

    2012-11-01

    Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

  2. Epidemiologic programs for computers and calculators. A microcomputer program for multiple logistic regression by unconditional and conditional maximum likelihood methods.

    PubMed

    Campos-Filho, N; Franco, E L

    1989-02-01

    A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.

  3. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    PubMed

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  4. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  5. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  6. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models.

    PubMed

    Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan

    2010-03-01

    Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.

  7. Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.

    PubMed

    Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun

    2016-06-01

    The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P< 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10⁻³); while the next best signal was rs951613 (P = 7.46 × 10⁻³). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene-steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene-steroid interaction effect (OR=2.49, 95% CI=1.5-4.13 with P = 4.0 × 10⁻⁴ based on the classic logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use influencing cancer.

  8. Deletion Diagnostics for Alternating Logistic Regressions

    PubMed Central

    Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.

    2013-01-01

    Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960

  9. Logits and Tigers and Bears, Oh My! A Brief Look at the Simple Math of Logistic Regression and How It Can Improve Dissemination of Results

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    2012-01-01

    Logistic regression is slowly gaining acceptance in the social sciences, and fills an important niche in the researcher's toolkit: being able to predict important outcomes that are not continuous in nature. While OLS regression is a valuable tool, it cannot routinely be used to predict outcomes that are binary or categorical in nature. These…

  10. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea.

    PubMed

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-10-01

    The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD - negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. The results suggest that psychological and medical approaches should be combined in GERD assessment.

  11. Morphological Awareness and Children's Writing: Accuracy, Error, and Invention

    PubMed Central

    McCutchen, Deborah; Stull, Sara

    2014-01-01

    This study examined the relationship between children's morphological awareness and their ability to produce accurate morphological derivations in writing. Fifth-grade U.S. students (n = 175) completed two writing tasks that invited or required morphological manipulation of words. We examined both accuracy and error, specifically errors in spelling and errors of the sort we termed morphological inventions, which entailed inappropriate, novel pairings of stems and suffixes. Regressions were used to determine the relationship between morphological awareness, morphological accuracy, and spelling accuracy, as well as between morphological awareness and morphological inventions. Linear regressions revealed that morphological awareness uniquely predicted children's generation of accurate morphological derivations, regardless of whether or not accurate spelling was required. A logistic regression indicated that morphological awareness was also uniquely predictive of morphological invention, with higher morphological awareness increasing the probability of morphological invention. These findings suggest that morphological knowledge may not only assist children with spelling during writing, but may also assist with word production via generative experimentation with morphological rules during sentence generation. Implications are discussed for the development of children's morphological knowledge and relationships with writing. PMID:25663748

  12. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea

    PubMed Central

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-01-01

    Objectives The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Methods Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. Results GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD – negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. Conclusions The results suggest that psychological and medical approaches should be combined in GERD assessment. PMID:27691373

  13. Comparison of a Classical and Quantum Based Restricted Boltzmann Machine (RBM) for Application to Non-linear Multivariate Regression.

    NASA Astrophysics Data System (ADS)

    Dorband, J. E.; Tilak, N.; Radov, A.

    2016-12-01

    In this paper, a classical computer implementation of RBM is compared to a quantum annealing based RBM running on a D-Wave 2X (an adiabatic quantum computer). The codes for both are essentially identical. Only a flag is set to change the activation function from a classically computed logistic function to the D-Wave. To obtain greater understanding of the behavior of the D-Wave, a study of the stochastic properties of a virtual qubit (a 12 qubit chain) and a cell of qubits (an 8 qubit cell) was performed. We will present the results of comparing the D-Wave implementation with a theoretically errorless adiabatic quantum computer. The main purpose of this study is to develop a generic RBM regression tool in order to infer CO2 fluxes from the NASA satellite OCO-2 observed CO2 concentrations and predicted atmospheric states using regression models. The carbon fluxes will then be assimilated into a land surface model to predict the Net Ecosystem Exchange at globally distributed regional sites.

  14. Serum lipid level and lifestyles are associated with carotid femoral pulse wave velocity among adults: 4.4-year prospectively longitudinal follow-up of a clinical trial.

    PubMed

    Zhao, XiaoXiao; Wang, Hongyu; Bo, LiuJin; Zhao, Hongwei; Li, Lihong; Zhou, Yingyan

    2018-01-01

    Lifestyle modifications are recommended as the initial treatment for high blood pressure. The influence of dyslipidemia might be via moderate arterial stiffness, which results in hypertension and cardiovascular disease. We used data from a subgroup of the lifestyle, level of serum lipids/carotid femoral-pulse wave velocity (CF-PWV) Susceptibility BEST Study, a population-based study of community-dwelling adults aged 45-75 years. The serum lipid level and CF-PWV were measured at baseline, and lifestyle such as smoking status, sleeping habits, and the level of oil or salt intake was determined with the use of a validated questionnaire during follow-up. Arterial stiffness was determined as CF-PWV using an electrocardiogram after a mean follow-up of 4.4 years. Regression coefficients (95% CIs), adjusted for demographics, risk factors, cholesterol, and triglycerides (TGs), were calculated by linear regression. Logistic regression analysis was used to identify the association between the variables with CF-PWV independently. In the results, glucose and total cholesterol (TC) were associated with higher CF-PWV (p = 0.000) and lower-destiny lipoprotein was associated with lower CF-PWV (p = 0.001) after adjustments for age, sex, mean arterial pressure, and heart rate. There were significant associations observed for current salt intake in relation to CF-PWV (p-trend = 0.038) without adjustment. This association was retained after adjustments for covariates and had statistical significance (p-trend = 0.048) in model 3, which adjusted age, sex, baseline CF-PWV, mean arterial pressure, heart rate waist circumference, education, smoking status, physical activity, diabetes mellitus (DM), heart disease, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, TGs, antihypertensive medicine, nitrate medicine, and antiplatelet medicine. Linear regression showed statistically significant associations between LDL and CF-PWV in the fully adjusted models (model 1 p = 0.010, model 2 p = 0.020, model 3 p = 0.017). Logistic regression analysis showed that CF-PWV was independently associated with age (p = 0.000), TC (p = 0.000), TGs (p = 0.000), and homo-cysteine (p = 0.000), and their odds ratios were 0.781, 3.424, 0.075, and 1.046, respectively. Our results showed a positive association between LDL and arterial stiffness, and suggested that less smoking status, sleeping disorder, and salt intake were associated with less arterial stiffness.

  15. Intermediate and advanced topics in multilevel logistic regression analysis

    PubMed Central

    Merlo, Juan

    2017-01-01

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517

  16. Intermediate and advanced topics in multilevel logistic regression analysis.

    PubMed

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  17. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043

  18. Poor dental hygiene and periodontal health in nursing home residents with dementia: an observational study.

    PubMed

    Zenthöfer, Andreas; Baumgart, Dominik; Cabrera, Tomas; Rammelsberg, Peter; Schröder, Johannes; Corcodel, Nicoleta; Hassel, Alexander Jochen

    2017-04-01

    Poor oral health conditions are well documented in the institutionalized elderly, but the literature is lacking research on relationships between dementia and periodontal health in nursing home residents. The purpose of this cohort study, therefore, was to assess whether dementia is associated with poor oral health/denture hygiene and an increased risk of periodontal disease in the institutionalized elderly. A total of 219 participants were assessed using the Mini Mental State Examination (MMSE) to determine cognitive state. According to the MMSE outcome, participants scoring ≤20 were assigned to dementia group (D) and those scoring >20 to the non-dementia group (ND), respectively. For each of the groups D and ND, Gingival Bleeding Index (GBI) and Denture Hygiene Index (DHI) linear regression models were used with the confounders age, gender, dementia, number of comorbidities and number of permanent medications. To assess the risk factors for severe periodontitis as measured by the Community Index of Periodontal Treatment Needs, a logistic regression analysis was performed. Statistical analysis revealed no significant differences of GBI as well of DHI for demented and healthy subjects (p > 0.05). Severe periodontitis was detected in 66 % of participants with dementia. The logistic regression showed a 2.9 times increased risk among demented participants (p = 0.006). Oral hygiene, denture hygiene and periodontal health are poor in nursing home residents. The severity of oral problems, primarily periodontitis, seems to be enhanced in subjects suffering from dementia. Longitudinal observations are needed to clarify the cause-reaction relationship.

  19. Neighborhood food environment and body mass index among Japanese older adults: results from the Aichi Gerontological Evaluation Study (AGES)

    PubMed Central

    2011-01-01

    Background The majority of studies of the local food environment in relation to obesity risk have been conducted in the US, UK, and Australia. The evidence remains limited to western societies. The aim of this paper is to examine the association of local food environment to body mass index (BMI) in a study of older Japanese individuals. Methods The analysis was based on 12,595 respondents from cross-sectional data of the Aichi Gerontological Evaluation Study (AGES), conducted in 2006 and 2007. Using Geographic Information Systems (GIS), we mapped respondents' access to supermarkets, convenience stores, and fast food outlets, based on a street network (both the distance to the nearest stores and the number of stores within 500 m of the respondents' home). Multiple linear regression and logistic regression analyses were performed to examine the association between food environment and BMI. Results In contrast to previous reports, we found that better access to supermarkets was related to higher BMI. Better access to fast food outlets or convenience stores was also associated with higher BMI, but only among those living alone. The logistic regression analysis, using categorized BMI, showed that the access to supermarkets was only related to being overweight or obese, but not related to being underweight. Conclusions Our findings provide mixed support for the types of food environment measures previously used in western settings. Importantly, our results suggest the need to develop culture-specific approaches to characterizing neighborhood contexts when hypotheses are extrapolated across national borders. PMID:21777439

  20. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes

    PubMed Central

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-01-01

    INTRODUCTION: Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. AIM: The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. METHODS: This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. RESULTS: The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour. PMID:29731945

  1. Evaluating construct validity of the second version of the Copenhagen Psychosocial Questionnaire through analysis of differential item functioning and differential item effect.

    PubMed

    Bjorner, Jakob Bue; Pejtersen, Jan Hyld

    2010-02-01

    To evaluate the construct validity of the Copenhagen Psychosocial Questionnaire II (COPSOQ II) by means of tests for differential item functioning (DIF) and differential item effect (DIE). We used a Danish general population postal survey (n = 4,732 with 3,517 wage earners) with a one-year register based follow up for long-term sickness absence. DIF was evaluated against age, gender, education, social class, public/private sector employment, and job type using ordinal logistic regression. DIE was evaluated against job satisfaction and self-rated health (using ordinal logistic regression), against depressive symptoms, burnout, and stress (using multiple linear regression), and against long-term sick leave (using a proportional hazards model). We used a cross-validation approach to counter the risk of significant results due to multiple testing. Out of 1,052 tests, we found 599 significant instances of DIF/DIE, 69 of which showed both practical and statistical significance across two independent samples. Most DIF occurred for job type (in 20 cases), while we found little DIF for age, gender, education, social class and sector. DIE seemed to pertain to particular items, which showed DIE in the same direction for several outcome variables. The results allowed a preliminary identification of items that have a positive impact on construct validity and items that have negative impact on construct validity. These results can be used to develop better shortform measures and to improve the conceptual framework, items and scales of the COPSOQ II. We conclude that tests of DIF and DIE are useful for evaluating construct validity.

  2. The use of machine learning for the identification of peripheral artery disease and future mortality risk.

    PubMed

    Ross, Elsie Gyang; Shah, Nigam H; Dalman, Ronald L; Nead, Kevin T; Cooke, John P; Leeper, Nicholas J

    2016-11-01

    A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses. Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models. Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates. Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  3. Deadlines at work and sleep quality. Cross-sectional and longitudinal findings among Danish knowledge workers.

    PubMed

    Rugulies, Reiner; Martin, Marie H T; Garde, Anne Helene; Persson, Roger; Albertsen, Karen

    2012-03-01

    Exposure to deadlines at work is increasing in several countries and may affect health. We aimed to investigate cross-sectional and longitudinal associations between frequency of difficult deadlines at work and sleep quality. Study participants were knowledge workers, drawn from a representative sample of Danish employees who responded to a baseline questionnaire in 2006 (n = 363) and a follow-up questionnaire in 2007 (n = 302). Frequency of difficult deadlines was measured by self-report and categorized into low, intermediate, and high. Sleep quality was measured with a Total Sleep Quality Score and two indexes (Awakening Index and Disturbed Sleep Index) derived from the Karolinska Sleep Questionnaire. Analyses on the association between frequency of deadlines and sleep quality scores were conducted with multiple linear regression models, adjusted for potential confounders. In addition, we used multiple logistic regression models to analyze whether frequency of deadlines at baseline predicted caseness of sleep problems at follow-up among participants free of sleep problems at baseline. Frequent deadlines were cross-sectionally and longitudinally associated with poorer sleep quality on all three sleep quality measures. Associations in the longitudinal analyses were greatly attenuated when we adjusted for baseline sleep quality. The logistic regression analyses showed that frequent deadlines at baseline were associated with elevated odds ratios for caseness of sleep problems at follow-up, however, confidence intervals were wide in these analyses. Frequent deadlines at work were associated with poorer sleep quality among Danish knowledge workers. We recommend investigating the relation between deadlines and health endpoints in large-scale epidemiologic studies. Copyright © 2011 Wiley Periodicals, Inc.

  4. Predicting Social Trust with Binary Logistic Regression

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph; Hufstedler, Shirley

    2015-01-01

    This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…

  5. Effect of folic acid on appetite in children: ordinal logistic and fuzzy logistic regressions.

    PubMed

    Namdari, Mahshid; Abadi, Alireza; Taheri, S Mahmoud; Rezaei, Mansour; Kalantari, Naser; Omidvar, Nasrin

    2014-03-01

    Reduced appetite and low food intake are often a concern in preschool children, since it can lead to malnutrition, a leading cause of impaired growth and mortality in childhood. It is occasionally considered that folic acid has a positive effect on appetite enhancement and consequently growth in children. The aim of this study was to assess the effect of folic acid on the appetite of preschool children 3 to 6 y old. The study sample included 127 children ages 3 to 6 who were randomly selected from 20 preschools in the city of Tehran in 2011. Since appetite was measured by linguistic terms, a fuzzy logistic regression was applied for modeling. The obtained results were compared with a statistical ordinal logistic model. After controlling for the potential confounders, in a statistical ordinal logistic model, serum folate showed a significantly positive effect on appetite. A small but positive effect of folate was detected by fuzzy logistic regression. Based on fuzzy regression, the risk for poor appetite in preschool children was related to the employment status of their mothers. In this study, a positive association was detected between the levels of serum folate and improved appetite. For further investigation, a randomized controlled, double-blind clinical trial could be helpful to address causality. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Paternal mental health and socioemotional and behavioral development in their children.

    PubMed

    Kvalevaag, Anne Lise; Ramchandani, Paul G; Hove, Oddbjørn; Assmus, Jörg; Eberhard-Gran, Malin; Biringer, Eva

    2013-02-01

    To examine the association between symptoms of psychological distress in expectant fathers and socioemotional and behavioral outcomes in their children at age 36 months. The current study is based on data from the Norwegian Mother and Child Cohort Study on 31 663 children. Information about fathers' mental health was obtained by self-report (Hopkins Symptom Checklist) in week 17 or 18 of gestation. Information about mothers' pre- and postnatal mental health and children's socioemotional and behavioral development at 36 months of age was obtained from parent-report questionnaires. Linear multiple regression and logistic regression models were performed while controlling for demographics, lifestyle variables, and mothers' mental health. Three percent of the fathers had high levels of psychological distress. Using linear regression models, we found a small positive association between fathers' psychological distress and children's behavioral difficulties, B = 0.19 (95% confidence interval [CI] = 0.15-0.23); emotional difficulties, B = 0.22 (95% CI = 0.18-0.26); and social functioning, B = 0.12 (95% CI = 0.07-0.16). The associations did not change when adjusted for relevant confounders. Children whose fathers had high levels of psychological distress had higher levels of emotional and behavioral problems. This study suggests that some risk of future child emotional, behavioral, and social problems can be identified during pregnancy. The findings are of importance for clinicians and policy makers in their planning of health care in the perinatal period because this represents a significant opportunity for preventive intervention.

  7. Key performance indicators in intensive care medicine. A retrospective matched cohort study.

    PubMed

    Kastrup, M; von Dossow, V; Seeling, M; Ahlborn, R; Tamarkin, A; Conroy, P; Boemke, W; Wernecke, K-D; Spies, Claudia

    2009-01-01

    Expert panel consensus was used to develop evidence-based process indicators that were independent risk factors for the main clinical outcome parameters of length of stay in the intensive care unit (ICU) and mortality. In a retrospective, matched data analysis of patients from five ICUs at a tertiary university hospital, agreed process indicators (sedation monitoring, pain monitoring, mean arterial pressure [MAP] >or= 60 mmHg, tidal volume [TV] or= 80 and or= 60 mmHg and BG >or= 80 mg/dl were relevant for survival. Linear regression of the 634 patients showed that analgesia monitoring, PIP or= 60 mmHg, BG >or= 80 mg/dl and

  8. Racial/ethnic and educational differences in the estimated odds of recent nitrite use among adult household residents in the United States: an illustration of matching and conditional logistic regression.

    PubMed

    Delva, J; Spencer, M S; Lin, J K

    2000-01-01

    This article compares estimates of the relative odds of nitrite use obtained from weighted unconditional logistic regression with estimates obtained from conditional logistic regression after post-stratification and matching of cases with controls by neighborhood of residence. We illustrate these methods by comparing the odds associated with nitrite use among adults of four racial/ethnic groups, with and without a high school education. We used aggregated data from the 1994-B through 1996 National Household Survey on Drug Abuse (NHSDA). Difference between the methods and implications for analysis and inference are discussed.

  9. Regression trees for predicting mortality in patients with cardiovascular disease: What improvement is achieved by using ensemble-based methods?

    PubMed Central

    Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V

    2012-01-01

    In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999

  10. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  11. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  12. An approach to checking case-crossover analyses based on equivalence with time-series methods.

    PubMed

    Lu, Yun; Symons, James Morel; Geyh, Alison S; Zeger, Scott L

    2008-03-01

    The case-crossover design has been increasingly applied to epidemiologic investigations of acute adverse health effects associated with ambient air pollution. The correspondence of the design to that of matched case-control studies makes it inferentially appealing for epidemiologic studies. Case-crossover analyses generally use conditional logistic regression modeling. This technique is equivalent to time-series log-linear regression models when there is a common exposure across individuals, as in air pollution studies. Previous methods for obtaining unbiased estimates for case-crossover analyses have assumed that time-varying risk factors are constant within reference windows. In this paper, we rely on the connection between case-crossover and time-series methods to illustrate model-checking procedures from log-linear model diagnostics for time-stratified case-crossover analyses. Additionally, we compare the relative performance of the time-stratified case-crossover approach to time-series methods under 3 simulated scenarios representing different temporal patterns of daily mortality associated with air pollution in Chicago, Illinois, during 1995 and 1996. Whenever a model-be it time-series or case-crossover-fails to account appropriately for fluctuations in time that confound the exposure, the effect estimate will be biased. It is therefore important to perform model-checking in time-stratified case-crossover analyses rather than assume the estimator is unbiased.

  13. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  14. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    ERIC Educational Resources Information Center

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  15. Iterative Purification and Effect Size Use with Logistic Regression for Differential Item Functioning Detection

    ERIC Educational Resources Information Center

    French, Brian F.; Maller, Susan J.

    2007-01-01

    Two unresolved implementation issues with logistic regression (LR) for differential item functioning (DIF) detection include ability purification and effect size use. Purification is suggested to control inaccuracies in DIF detection as a result of DIF items in the ability estimate. Additionally, effect size use may be beneficial in controlling…

  16. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

    ERIC Educational Resources Information Center

    Paek, Insu

    2012-01-01

    Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

  17. "Let Me Count the Ways:" Fostering Reasons for Living among Low-Income, Suicidal, African American Women

    ERIC Educational Resources Information Center

    West, Lindsey M.; Davis, Telsie A.; Thompson, Martie P.; Kaslow, Nadine J.

    2011-01-01

    Protective factors for fostering reasons for living were examined among low-income, suicidal, African American women. Bivariate logistic regressions revealed that higher levels of optimism, spiritual well-being, and family social support predicted reasons for living. Multivariate logistic regressions indicated that spiritual well-being showed…

  18. Comparison of Two Approaches for Handling Missing Covariates in Logistic Regression

    ERIC Educational Resources Information Center

    Peng, Chao-Ying Joanne; Zhu, Jin

    2008-01-01

    For the past 25 years, methodological advances have been made in missing data treatment. Most published work has focused on missing data in dependent variables under various conditions. The present study seeks to fill the void by comparing two approaches for handling missing data in categorical covariates in logistic regression: the…

  19. Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures

    ERIC Educational Resources Information Center

    Atar, Burcu; Kamata, Akihito

    2011-01-01

    The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…

  20. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph

    2011-01-01

    A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

  1. Modeling Polytomous Item Responses Using Simultaneously Estimated Multinomial Logistic Regression Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.

    2010-01-01

    Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…

  2. Propensity Score Estimation with Data Mining Techniques: Alternatives to Logistic Regression

    ERIC Educational Resources Information Center

    Keller, Bryan S. B.; Kim, Jee-Seon; Steiner, Peter M.

    2013-01-01

    Propensity score analysis (PSA) is a methodological technique which may correct for selection bias in a quasi-experiment by modeling the selection process using observed covariates. Because logistic regression is well understood by researchers in a variety of fields and easy to implement in a number of popular software packages, it has…

  3. Two-factor logistic regression in pediatric liver transplantation

    NASA Astrophysics Data System (ADS)

    Uzunova, Yordanka; Prodanova, Krasimira; Spasov, Lyubomir

    2017-12-01

    Using a two-factor logistic regression analysis an estimate is derived for the probability of absence of infections in the early postoperative period after pediatric liver transplantation. The influence of both the bilirubin level and the international normalized ratio of prothrombin time of blood coagulation at the 5th postoperative day is studied.

  4. Predictors of Placement Stability at the State Level: The Use of Logistic Regression to Inform Practice

    ERIC Educational Resources Information Center

    Courtney, Jon R.; Prophet, Retta

    2011-01-01

    Placement instability is often associated with a number of negative outcomes for children. To gain state level contextual knowledge of factors associated with placement stability/instability, logistic regression was applied to selected variables from the New Mexico Adoption and Foster Care Administrative Reporting System dataset. Predictors…

  5. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  6. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  7. Matched samples logistic regression in case-control studies with missing values: when to break the matches.

    PubMed

    Hansson, Lisbeth; Khamis, Harry J

    2008-12-01

    Simulated data sets are used to evaluate conditional and unconditional maximum likelihood estimation in an individual case-control design with continuous covariates when there are different rates of excluded cases and different levels of other design parameters. The effectiveness of the estimation procedures is measured by method bias, variance of the estimators, root mean square error (RMSE) for logistic regression and the percentage of explained variation. Conditional estimation leads to higher RMSE than unconditional estimation in the presence of missing observations, especially for 1:1 matching. The RMSE is higher for the smaller stratum size, especially for the 1:1 matching. The percentage of explained variation appears to be insensitive to missing data, but is generally higher for the conditional estimation than for the unconditional estimation. It is particularly good for the 1:2 matching design. For minimizing RMSE, a high matching ratio is recommended; in this case, conditional and unconditional logistic regression models yield comparable levels of effectiveness. For maximizing the percentage of explained variation, the 1:2 matching design with the conditional logistic regression model is recommended.

  8. Label-noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study.

    PubMed

    Lee, Seokho; Shin, Hyejin; Lee, Sang Han

    2016-12-01

    Alzheimer's disease (AD) is usually diagnosed by clinicians through cognitive and functional performance test with a potential risk of misdiagnosis. Since the progression of AD is known to cause structural changes in the corpus callosum (CC), the CC thickness can be used as a functional covariate in AD classification problem for a diagnosis. However, misclassified class labels negatively impact the classification performance. Motivated by AD-CC association studies, we propose a logistic regression for functional data classification that is robust to misdiagnosis or label noise. Specifically, our logistic regression model is constructed by adopting individual intercepts to functional logistic regression model. This approach enables to indicate which observations are possibly mislabeled and also lead to a robust and efficient classifier. An effective algorithm using MM algorithm provides simple closed-form update formulas. We test our method using synthetic datasets to demonstrate its superiority over an existing method, and apply it to differentiating patients with AD from healthy normals based on CC from MRI. © 2016, The International Biometric Society.

  9. Regression approaches in the test-negative study design for assessment of influenza vaccine effectiveness.

    PubMed

    Bond, H S; Sullivan, S G; Cowling, B J

    2016-06-01

    Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.

  10. Serum total bilirubin levels are negatively correlated with metabolic syndrome in aged Chinese women: a community-based study.

    PubMed

    Zhong, P; Sun, D M; Wu, D H; Li, T M; Liu, X Y; Liu, H Y

    2017-01-26

    We evaluated serum total bilirubin levels as a predictor for metabolic syndrome (MetS) and investigated the relationship between serum total bilirubin levels and MetS prevalence. This cross-sectional study included 1728 participants over 65 years of age from Eastern China. Anthropometric data, lifestyle information, and previous medical history were collected. We then measured serum levels of fasting blood-glucose, total cholesterol, triglycerides, and total bilirubin, as well as alanine aminotransferase activity. The prevalence of MetS and each of its individual component were calculated per quartile of total bilirubin level. Logistic regression was used to assess the correlation between serum total bilirubin levels and MetS. Total bilirubin level in the women who did not have MetS was significantly higher than in those who had MetS (P<0.001). Serum total bilirubin quartiles were linearly and negatively correlated with MetS prevalence and hypertriglyceridemia (HTG) in females (P<0.005). Logistic regression showed that serum total bilirubin was an independent predictor of MetS for females (OR: 0.910, 95%CI: 0.863-0.960; P=0.001). The present study suggests that physiological levels of serum total bilirubin might be an independent risk factor for aged Chinese women, and the prevalence of MetS and HTG are negatively correlated to serum total bilirubin levels.

  11. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  12. Maternal exposures and risk of spontaneous abortion before and after a community oriented health education campaign.

    PubMed

    Agnesi, Roberto; Valentini, Flavio; Fedeli, Ugo; Rylander, Ragnar; Meneghetti, Maurizia; Fadda, Emanuela; Buja, Alessandra; Mastrangelo, Giuseppe

    2011-06-01

    In a district of Veneto (North-east Italy) where numerous females of childbearing age were occupationally exposed to organic solvents in nearly 400 shoe factories, a case-control study found significant associations between maternal exposures (from occupation and risky behavior) and spontaneous abortion (SAB). Thereafter, a health education campaign was undertaken to increase awareness of risk factors for pregnancy in the population. To evaluate the effects of this campaign maternal exposures and SAB risks were compared before and after the campaign. Hospital records were collected from a local hospital for SAB cases and age- residence-matched controls with normal deliveries. Information on solvent exposure, coffee and alcohol consumption, smoking and the use of medication was collected using a questionnaire. Before and after differences were tested through a modified Chi-square test and linear and logistic regressions for survey data. Odds ratios (ORs) with 95% confidence interval (CI) were estimated using logistic regression models. The consumption of coffee (P = 0.003) and alcohol (P < 0.001) was lower after than before the campaign, controlling for age at pregnancy and level of education. There were no differences in reported solvent exposure or smoking (smokers were few). The previously detected increased risks of SAB in relation to solvent exposure and coffee consumption were no longer present. The results suggest that health education campaigns might reduce harmful maternal exposures and the risk of SAB.

  13. Phobic Anxiety and Plasma Levels of Global Oxidative Stress in Women.

    PubMed

    Hagan, Kaitlin A; Wu, Tianying; Rimm, Eric B; Eliassen, A Heather; Okereke, Olivia I

    2015-01-01

    Psychological distress has been hypothesized to be associated with adverse biologic states such as higher oxidative stress and inflammation. Yet, little is known about associations between a common form of distress - phobic anxiety - and global oxidative stress. Thus, we related phobic anxiety to plasma fluorescent oxidation products (FlOPs), a global oxidative stress marker. We conducted a cross-sectional analysis among 1,325 women (aged 43-70 years) from the Nurses' Health Study. Phobic anxiety was measured using the Crown-Crisp Index (CCI). Adjusted least-squares mean log-transformed FlOPs were calculated across phobic categories. Logistic regression models were used to calculate odds ratios (OR) comparing the highest CCI category (≥6 points) vs. lower scores, across FlOPs quartiles. No association was found between phobic anxiety categories and mean FlOP levels in multivariable adjusted linear models. Similarly, in multivariable logistic regression models there were no associations between FlOPs quartiles and likelihood of being in the highest phobic category. Comparing women in the highest vs. lowest FlOPs quartiles: FlOP_360: OR=0.68 (95% CI: 0.40-1.15); FlOP_320: OR=0.99 (95% CI: 0.61-1.61); FlOP_400: OR=0.92 (95% CI: 0.52, 1.63). No cross-sectional association was found between phobic anxiety and a plasma measure of global oxidative stress in this sample of middle-aged and older women.

  14. Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure–flow relation: The CARNet study

    PubMed Central

    Meel-van den Abeelen, Aisha S.S.; Simpson, David M.; Wang, Lotte J.Y.; Slump, Cornelis H.; Zhang, Rong; Tarumi, Takashi; Rickards, Caroline A.; Payne, Stephen; Mitsis, Georgios D.; Kostoglou, Kyriaki; Marmarelis, Vasilis; Shin, Dae; Tzeng, Yu-Chieh; Ainslie, Philip N.; Gommer, Erik; Müller, Martin; Dorado, Alexander C.; Smielewski, Peter; Yelicich, Bernardo; Puppo, Corina; Liu, Xiuyun; Czosnyka, Marek; Wang, Cheng-Yen; Novak, Vera; Panerai, Ronney B.; Claassen, Jurgen A.H.R.

    2014-01-01

    Transfer function analysis (TFA) is a frequently used method to assess dynamic cerebral autoregulation (CA) using spontaneous oscillations in blood pressure (BP) and cerebral blood flow velocity (CBFV). However, controversies and variations exist in how research groups utilise TFA, causing high variability in interpretation. The objective of this study was to evaluate between-centre variability in TFA outcome metrics. 15 centres analysed the same 70 BP and CBFV datasets from healthy subjects (n = 50 rest; n = 20 during hypercapnia); 10 additional datasets were computer-generated. Each centre used their in-house TFA methods; however, certain parameters were specified to reduce a priori between-centre variability. Hypercapnia was used to assess discriminatory performance and synthetic data to evaluate effects of parameter settings. Results were analysed using the Mann–Whitney test and logistic regression. A large non-homogeneous variation was found in TFA outcome metrics between the centres. Logistic regression demonstrated that 11 centres were able to distinguish between normal and impaired CA with an AUC > 0.85. Further analysis identified TFA settings that are associated with large variation in outcome measures. These results indicate the need for standardisation of TFA settings in order to reduce between-centre variability and to allow accurate comparison between studies. Suggestions on optimal signal processing methods are proposed. PMID:24725709

  15. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network

    PubMed Central

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins. PMID:27418910

  16. A novel hybrid method of beta-turn identification in protein using binary logistic regression and neural network.

    PubMed

    Asghari, Mehdi Poursheikhali; Hayatshahi, Sayyed Hamed Sadat; Abdolmaleki, Parviz

    2012-01-01

    From both the structural and functional points of view, β-turns play important biological roles in proteins. In the present study, a novel two-stage hybrid procedure has been developed to identify β-turns in proteins. Binary logistic regression was initially used for the first time to select significant sequence parameters in identification of β-turns due to a re-substitution test procedure. Sequence parameters were consisted of 80 amino acid positional occurrences and 20 amino acid percentages in sequence. Among these parameters, the most significant ones which were selected by binary logistic regression model, were percentages of Gly, Ser and the occurrence of Asn in position i+2, respectively, in sequence. These significant parameters have the highest effect on the constitution of a β-turn sequence. A neural network model was then constructed and fed by the parameters selected by binary logistic regression to build a hybrid predictor. The networks have been trained and tested on a non-homologous dataset of 565 protein chains. With applying a nine fold cross-validation test on the dataset, the network reached an overall accuracy (Qtotal) of 74, which is comparable with results of the other β-turn prediction methods. In conclusion, this study proves that the parameter selection ability of binary logistic regression together with the prediction capability of neural networks lead to the development of more precise models for identifying β-turns in proteins.

  17. Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar.

    PubMed

    Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald

    2006-11-01

    We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.

  18. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    PubMed

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.

  19. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

    PubMed

    Agga, Getahun E; Scott, H Morgan

    2015-10-01

    Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.

  20. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.

    PubMed

    Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q

    2017-03-01

    Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.

  1. Logistic regression analysis of factors associated with avascular necrosis of the femoral head following femoral neck fractures in middle-aged and elderly patients.

    PubMed

    Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua

    2013-03-01

    Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.

  2. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  3. Road Traffic and Railway Noise Exposures and Adiposity in Adults: A Cross-Sectional Analysis of the Danish Diet, Cancer, and Health Cohort.

    PubMed

    Christensen, Jeppe Schultz; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Nordsborg, Rikke B; Ketzel, Matthias; Sørensen, Thorkild Ia; Sørensen, Mette

    2016-03-01

    Traffic noise has been associated with cardiovascular and metabolic disorders. Potential modes of action are through stress and sleep disturbance, which may lead to endocrine dysregulation and overweight. We aimed to investigate the relationship between residential traffic and railway noise and adiposity. In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993-1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated. Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors. Linear regression models adjusted for age, sex, and socioeconomic factors showed that 5-year mean road traffic noise exposure preceding enrollment was associated with a 0.35-cm wider waist circumference (95% CI: 0.21, 0.50) and a 0.18-point higher BMI (95% CI: 0.12, 0.23) per 10 dB. Small, significant increases were also found for BFMI and LBMI. All associations followed linear exposure-response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1.19) and a 0.19-point higher BMI (95% CI: 0.0072, 0.37) compared with unexposed participants (0-20 dB). The present study finds positive associations between residential exposure to road traffic and railway noise and adiposity.

  4. Same Game, Different Rules? Gender Differences in Political Participation.

    PubMed

    Coffé, Hilde; Bolzendahl, Catherine

    2010-03-01

    We investigate gender gaps in political participation with 2004 ISSP data for 18 advanced Western democracies (N: 20,359) using linear and logistic regression models. Controlling for socio-economic characteristics and political attitudes reveals that women are more likely than men to have voted and engaged in 'private' activism, while men are more likely to have engaged in direct contact, collective types of actions and be (more active) members of political parties. Our analysis indicates that demographic and attitudinal characteristics influence participation differently among men and among women, as well as across types of participation. These results highlight the need to move toward a view of women engaging in differing types of participation and based on different characteristics.

  5. Constructing a consumption model of fine dining from the perspective of behavioral economics

    PubMed Central

    Tsai, Sang-Bing

    2018-01-01

    Numerous factors affect how people choose a fine dining restaurant, including food quality, service quality, food safety, and hedonic value. A conceptual framework for evaluating restaurant selection behavior has not yet been developed. This study surveyed 150 individuals with fine dining experience and proposed the use of mental accounting and axiomatic design to construct a consumer economic behavior model. Linear and logistic regressions were employed to determine model correlations and the probability of each factor affecting behavior. The most crucial factor was food quality, followed by service and dining motivation, particularly regarding family dining. Safe ingredients, high cooking standards, and menu innovation all increased the likelihood of consumers choosing fine dining restaurants. PMID:29641554

  6. Constructing a consumption model of fine dining from the perspective of behavioral economics.

    PubMed

    Hsu, Sheng-Hsun; Hsiao, Cheng-Fu; Tsai, Sang-Bing

    2018-01-01

    Numerous factors affect how people choose a fine dining restaurant, including food quality, service quality, food safety, and hedonic value. A conceptual framework for evaluating restaurant selection behavior has not yet been developed. This study surveyed 150 individuals with fine dining experience and proposed the use of mental accounting and axiomatic design to construct a consumer economic behavior model. Linear and logistic regressions were employed to determine model correlations and the probability of each factor affecting behavior. The most crucial factor was food quality, followed by service and dining motivation, particularly regarding family dining. Safe ingredients, high cooking standards, and menu innovation all increased the likelihood of consumers choosing fine dining restaurants.

  7. MEDICAL vs. MEDICAL AND SURGICAL TREATMENT FOR BRUCELLA ENDOCARDITIS: A REVIEW OF THE LITERATURE

    PubMed Central

    Keshtkar-Jahromi, Maryam; Razavi, Seyed-Mostafa; Gholamin, Sharareh; Keshtkar-Jahromi, Marzieh; Hossain, Mian; Sajadi, Mohammad

    2012-01-01

    This review was undertaken to determine the role of surgery in the treatment of brucella endocarditis. All English and French articles reporting brucella endocarditis (1966–2011) in Pubmed, Google and Scopus were reviewed. 308 cases were identified and Linear and Logistic regression was performed. Surgery improved outcomes by decreasing mortality from 32.7% in the medical treatment only group to 6.7% in the combined surgical and medical treatment group (p<.001). This association was still significant while controlling for other contributing factors. In the absence of a controlled trial, we recommend the utmost vigilance and consideration of surgical management in treating such patients. PMID:23102495

  8. Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains

    PubMed Central

    Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung

    2016-01-01

    In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase. PMID:27983654

  9. Long-Term Effect of Exposure to a Friend's Adolescent Childbirth on Fertility, Education, and Earnings.

    PubMed

    Kapinos, Kandice A; Yakusheva, Olga

    2016-09-01

    To examine the long-term effect of a female adolescent's exposure to a peer's childbirth on fertility, schooling, and earnings. Estimating causal peer effects in fertility is challenging because the exposure variable (peer pregnancy and childbirth) is nonrandomly assigned. Miscarriages in early pregnancy occur spontaneously in a significant proportion of pregnancies and, therefore, create a natural experiment within which the causal effect of childbirth can be examined. This exploratory study compared adjusted fertility, educational, and labor market outcomes of female adolescents whose adolescent pregnant friend gave birth to female adolescents whose pregnant friend miscarried. Longitudinal data from the National Longitudinal Study of Adolescent Health were analyzed using logistic, ordinal logistic, linear, and log-linear regressions. Females whose adolescent pregnant friends gave birth (instead of miscarried) had decreased adolescent sexual activity, pregnancy, and teen childbearing and increased educational attainment, but there were no significant long-term effects on total fertility or differences in labor market outcomes, relative to females whose pregnant adolescent friend miscarried. Adolescent females appear to learn vicariously from teen childbearing experiences of their friends, resulting in delayed childbearing and higher educational attainment. Interventions that expose adolescents to the reality of teen motherhood may be an effective way of reducing the rates of teen childbearing and improving schooling. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  10. Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains.

    PubMed

    Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung

    2016-12-14

    In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase.

  11. Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.

    PubMed

    Zhang, Jianguang; Jiang, Jianmin

    2018-02-01

    While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.

  12. Applying the Principles of Specific Objectivity and of Generalizability to the Measurement of Change.

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.

    1987-01-01

    A natural parameterization and formalization of the problem of measuring change in dichotomous data is developed. Mathematically-exact definitions of specific objectivity are presented, and the basic structures of the linear logistic test model and the linear logistic model with relaxed assumptions are clarified. (SLD)

  13. Detecting DIF in Polytomous Items Using MACS, IRT and Ordinal Logistic Regression

    ERIC Educational Resources Information Center

    Elosua, Paula; Wells, Craig

    2013-01-01

    The purpose of the present study was to compare the Type I error rate and power of two model-based procedures, the mean and covariance structure model (MACS) and the item response theory (IRT), and an observed-score based procedure, ordinal logistic regression, for detecting differential item functioning (DIF) in polytomous items. A simulation…

  14. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    ERIC Educational Resources Information Center

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  15. Effects of Social Class and School Conditions on Educational Enrollment and Achievement of Boys and Girls in Rural Viet Nam

    ERIC Educational Resources Information Center

    Nguyen, Phuong L.

    2006-01-01

    This study examines the effects of parental SES, school quality, and community factors on children's enrollment and achievement in rural areas in Viet Nam, using logistic regression and ordered logistic regression. Multivariate analysis reveals significant differences in educational enrollment and outcomes by level of household expenditures and…

  16. School Exits in the Milwaukee Parental Choice Program: Evidence of a Marketplace?

    ERIC Educational Resources Information Center

    Ford, Michael

    2011-01-01

    This article examines whether the large number of school exits from the Milwaukee school voucher program is evidence of a marketplace. Two logistic regression and multinomial logistic regression models tested the relation between the inability to draw large numbers of voucher students and the ability for a private school to remain viable. Data on…

  17. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  18. An empirical study of statistical properties of variance partition coefficients for multi-level logistic regression models

    USGS Publications Warehouse

    Li, Ji; Gray, B.R.; Bates, D.M.

    2008-01-01

    Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.

  19. Model building strategy for logistic regression: purposeful selection.

    PubMed

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  20. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  1. The Dropout Learning Algorithm

    PubMed Central

    Baldi, Pierre; Sadowski, Peter

    2014-01-01

    Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879

  2. Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: Insights into spatial variability using high-resolution satellite data

    PubMed Central

    Alexeeff, Stacey E.; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A.

    2016-01-01

    Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1km x 1km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R2 yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with greater than 0.9 out-of-sample R2 yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the standard errors. Land use regression models performed better in chronic effects simulations. These results can help researchers when interpreting health effect estimates in these types of studies. PMID:24896768

  3. Assessing landslide susceptibility by statistical data analysis and GIS: the case of Daunia (Apulian Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ceppi, C.; Mancini, F.; Ritrovato, G.

    2009-04-01

    This study aim at the landslide susceptibility mapping within an area of the Daunia (Apulian Apennines, Italy) by a multivariate statistical method and data manipulation in a Geographical Information System (GIS) environment. Among the variety of existing statistical data analysis techniques, the logistic regression was chosen to produce a susceptibility map all over an area where small settlements are historically threatened by landslide phenomena. By logistic regression a best fitting between the presence or absence of landslide (dependent variable) and the set of independent variables is performed on the basis of a maximum likelihood criterion, bringing to the estimation of regression coefficients. The reliability of such analysis is therefore due to the ability to quantify the proneness to landslide occurrences by the probability level produced by the analysis. The inventory of dependent and independent variables were managed in a GIS, where geometric properties and attributes have been translated into raster cells in order to proceed with the logistic regression by means of SPSS (Statistical Package for the Social Sciences) package. A landslide inventory was used to produce the bivariate dependent variable whereas the independent set of variable concerned with slope, aspect, elevation, curvature, drained area, lithology and land use after their reductions to dummy variables. The effect of independent parameters on landslide occurrence was assessed by the corresponding coefficient in the logistic regression function, highlighting a major role played by the land use variable in determining occurrence and distribution of phenomena. Once the outcomes of the logistic regression are determined, data are re-introduced in the GIS to produce a map reporting the proneness to landslide as predicted level of probability. As validation of results and regression model a cell-by-cell comparison between the susceptibility map and the initial inventory of landslide events was performed and an agreement at 75% level achieved.

  4. Climate change, weather and road deaths.

    PubMed

    Robertson, Leon

    2018-06-01

    In 2015, a 7% increase in road deaths per population in the USA reversed the 35-year downward trend. Here I test the hypothesis that weather influenced the change in trend. I used linear regression to estimate the effect of temperature and precipitation on miles driven per capita in urbanizedurbanised areas of the USA during 2010. I matched date and county of death with temperature on that date and number of people exposed to that temperature to calculate the risk per persons exposed to specific temperatures. I employed logistic regression analysis of temperature, precipitation and other risk factors prevalent in 2014 to project expected deaths in 2015 among the 100 most populous counties in the USA. Comparison of actual and projected deaths provided an estimate of deaths expected without the temperature increase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Investigation of pajama properties on skin under mild cold conditions: the interaction between skin and clothing.

    PubMed

    Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J

    2011-07-01

    Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.

  6. Internet sexuality research with rural men who have sex with men: can we recruit and retain them?

    PubMed

    Bowen, Anne

    2005-11-01

    This study examines the utility of internet banner ads for recruiting rural MSM and identifies correlates of internet HIV risk survey initiation and completion. Banner ads were shown on a popular internet dating site for one month and resulted in 1,045 rural MSM, from 49 States, Canada, Australia/New Zealand, and 5 from other countries initiating the questionnaire. Logistic regression indicated that progression beyond screening questions was negatively related to "expecting pay, but not being paid" and positively related to "using chat rooms to find friends" and identifying as gay. Linear regression indicated that the absolute number of responses by consenting participants was positively correlated with reimbursement, number of sexual partners, motivated by money, and having been HIV tested. Overall, this sample represents one of the largest rural MSM samples; survey completion was high and strengthened by reimbursement and possibly by awareness of HIV risk. Generalizability was limited by low participation of minority and non-gay identified MSM.

  7. Shared Decision-Making among Caregivers and Health Care Providers of Youth with Type 1 Diabetes

    PubMed Central

    Valenzuela, Jessica M.; Smith, Laura B.; Stafford, Jeanette M.; Andrews, S.; D’Agostino, Ralph B.; Lawrence, Jean M.; Yi-Frazier, Joyce P.; Seid, Michael; Dolan, Lawrence M.

    2014-01-01

    The present study aimed to examine perceptions of shared decision-making (SDM) in caregivers of youth with type 1 diabetes (T1D). Interview, survey data, and HbA1c assays were gathered from caregivers of 439 youth with T1D aged 3–18 years. Caregiver-report indicated high perceived SDM during medical visits. Multivariable linear regression indicated that greater SDM is associated with lower HbA1c, older child age, and having a pediatric endocrinologist provider. Multiple logistic regression found that caregivers who did not perceive having made any healthcare decisions in the past year were more likely to identify a non-pediatric endocrinologist provider and to report less optimal diabetes self-care. Findings suggest that youth whose caregivers report greater SDM may show benefits in terms of self-care and glycemic control. Future research should examine the role of youth in SDM and how best to identify youth and families with low SDM in order to improve care. PMID:24952739

  8. Ataque de nervios: relationship to anxiety sensitivity and dissociation predisposition.

    PubMed

    Hinton, Devon E; Chong, Roberto; Pollack, Mark H; Barlow, David H; McNally, Richard J

    2008-01-01

    We investigated the relative importance of "fear of arousal symptoms" (i.e., anxiety sensitivity) and "dissociation tendency" in generating ataque de nervios. Puerto Rican patients attending an outpatient psychiatric clinic were assessed for ataque de nervios frequency in the previous month, and they completed the Anxiety Sensitivity Index (ASI) and the Dissociation Experiences Scale (DES). ASI scores were especially high in the ataque-positive group (M=41.6, SD=12.8) as compared with the ataque-negative group (M=27.2, SD=11.7), t(2, 68)=4.6, P<.001. Among the whole sample (N=70), in a logistic regression analysis, the ASI significantly predicted (odds ratio=2.6) the presence of ataque de nervios, but the DES did not. In a linear regression analysis, ataque severity was significantly predicted by both the ASI (beta=.46) and the DES (beta=.29). The theoretical and clinical implications of the strong relationship of the ASI to ataque severity are discussed.

  9. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    PubMed

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  10. Overhead longwave infrared hyperspectral material identification using radiometric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelinski, M. E.

    Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimalmore » atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.« less

  11. Unequal views of inequality: Cross-national support for redistribution 1985-2011.

    PubMed

    VanHeuvelen, Tom

    2017-05-01

    This research examines public views on government responsibility to reduce income inequality, support for redistribution. While individual-level correlates of support for redistribution are relatively well understood, many questions remain at the country-level. Therefore, I examine how country-level characteristics affect aggregate support for redistribution. I test explanations of aggregate support using a unique dataset combining 18 waves of the International Social Survey Programme and European Social Survey. Results from mixed-effects logistic regression and fixed-effects linear regression models show two primary and contrasting effects. States that reduce inequality through bundles of tax and transfer policies are rewarded with more supportive publics. In contrast, economic development has a seemingly equivalent and dampening effect on public support. Importantly, the effect of economic development grows at higher levels of development, potentially overwhelming the amplifying effect of state redistribution. My results therefore suggest a fundamental challenge to proponents of egalitarian politics. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Perinatal Medical Variables Predict Executive Function within a Sample of Preschoolers Born Very Low Birth Weight

    PubMed Central

    Duvall, Susanne W.; Erickson, Sarah J.; MacLean, Peggy; Lowe, Jean R.

    2014-01-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed three executive function tasks (Dimensional Change Card Sort-Separated (inhibition, working memory and cognitive flexibility), Bear Dragon (inhibition and working memory) and Gift Delay Open (inhibition)). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids and number of surgeries), and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we may be able to identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  13. Factors affecting the use of postincisional analgesics in dogs and cats by Canadian veterinarians in 2001

    PubMed Central

    Hewson, Caroline J.; Dohoo, Ian R.

    2006-01-01

    Abstract Factors affecting the postincisional use of analgesics for ovariohysterectomy (OVH) in dogs and cats were assessed by using data collected from 280 Canadian veterinarians, as part of a national, randomized mail survey (response rate 57.8%). Predictors of analgesic usage identified by logistic regression included the presence of at least 1 animal health technician (AHT) per 2 veterinarians (OR = 2.3, P = 0.004), and the veterinarians’ perception of the pain caused by surgery without analgesia (OR = 1.5, P < 0.001). Linear regression identified the following predictors of veterinarians’ perception of pain: the presence of more than 1 AHT per 2 veterinarians (coefficient = 0.42, P = 0.048) and the number of years since graduation (coefficient = −0.073, P < 0.001). Some of these risk factors are similar to those identified in 1994. The results suggest that continuing education may help to increase analgesic usage. Other important contributors may be client education and a valid method of pain assessment. PMID:16734371

  14. Intimate partner violence and anxiety disorders in pregnancy: the importance of vocational training of the nursing staff in facing them1

    PubMed Central

    Fonseca-Machado, Mariana de Oliveira; Monteiro, Juliana Cristina dos Santos; Haas, Vanderlei José; Abrão, Ana Cristina Freitas de Vilhena; Gomes-Sponholz, Flávia

    2015-01-01

    Objective: to identify the relationship between posttraumatic stress disorder, trait and state anxiety, and intimate partner violence during pregnancy. Method: observational, cross-sectional study developed with 358 pregnant women. The Posttraumatic Stress Disorder Checklist - Civilian Version was used, as well as the State-Trait Anxiety Inventory and an adapted version of the instrument used in the World Health Organization Multi-country Study on Women's Health and Domestic Violence. Results: after adjusting to the multiple logistic regression model, intimate partner violence, occurred during pregnancy, was associated with the indication of posttraumatic stress disorder. The adjusted multiple linear regression models showed that the victims of violence, in the current pregnancy, had higher symptom scores of trait and state anxiety than non-victims. Conclusion: recognizing the intimate partner violence as a clinically relevant and identifiable risk factor for the occurrence of anxiety disorders during pregnancy can be a first step in the prevention thereof. PMID:26487135

  15. Determination of riverbank erosion probability using Locally Weighted Logistic Regression

    NASA Astrophysics Data System (ADS)

    Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos

    2015-04-01

    Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested. The most straightforward measure for goodness of fit is the G statistic. It is a simple and effective way to study and evaluate the Logistic Regression model efficiency and the reliability of each independent variable. The developed statistical model is applied to the Koiliaris River Basin on the island of Crete, Greece. Two datasets of river bank slope, river cross-section width and indications of erosion were available for the analysis (12 and 8 locations). Two different types of spatial dependence functions, exponential and tricubic, were examined to determine the local spatial dependence of the independent variables at the measurement locations. The results show a significant improvement when the tricubic function is applied as the erosion probability is accurately predicted at all eight validation locations. Results for the model deviance show that cross-section width is more important than bank slope in the estimation of erosion probability along the Koiliaris riverbanks. The proposed statistical model is a useful tool that quantifies the erosion probability along the riverbanks and can be used to assist managing erosion and flooding events. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  16. Clinical management provided by board-certificated physiatrists in early rehabilitation is a significant determinant of functional improvement in acute stroke patients: a retrospective analysis of Japan rehabilitation database.

    PubMed

    Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro

    2015-05-01

    Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Head injury does not alter disease progression or neuropathologic outcomes in ALS.

    PubMed

    Fournier, Christina N; Gearing, Marla; Upadhyayula, Saila R; Klein, Mitch; Glass, Jonathan D

    2015-04-28

    To study the effects of head injury on disease progression and on neuropathologic outcomes in amyotrophic lateral sclerosis (ALS). Patients with ALS were surveyed to obtain head injury history, and medical records were reviewed. Linear regression was performed to determine if head injury was a predictor for mean monthly decline of Amyotrophic Lateral Sclerosis Functional Rating Scale-revised (ALSFRS-R), while controlling for confounders. Head injury history was obtained from family members of ALS autopsy cases. The frequency of tau proteinopathy, brain TDP-43 inclusions, and pathologic findings of Alzheimer disease (AD) were examined in ALS cases with head injury compared to cases without. Logistic regression was performed with each neuropathologic diagnosis as an outcome measure and head injury as a predictor variable. No difference was seen in rate of decline of the ALSFRS-R between patients with head injury (n = 24) and without (n = 76), with mean monthly decline of -0.9 for both groups (p = 0.18). Of 47 ALS autopsy cases (n = 9 with head injury, n = 38 without), no significant differences were seen in the frequency of tau proteinopathy (11% with head injury; 24% without), TDP-43 in the brain (44% with head injury; 45% without), or AD pathology (33% with head injury; 26% without). Independent logistic regression models showed head injury was not a predictor of tau pathology (p = 0.42) or TDP-43 in the brain (p = 0.99). Head injury was not associated with faster disease progression in ALS and did not result in a specific neuropathologic phenotype. The tau pathology described with chronic traumatic encephalopathy was found in ALS autopsy cases both with and without head injury. © 2015 American Academy of Neurology.

  18. Frequency of early vascular aging and associated risk factors among an adult population in Latin America: the OPTIMO study.

    PubMed

    Botto, Fernando; Obregon, Sebastian; Rubinstein, Fernando; Scuteri, Angelo; Nilsson, Peter M; Kotliar, Carol

    2018-03-01

    The main objective was to estimate the frequency of early vascular aging (EVA) in a sample of subjects from Latin America, with emphasis in young adults. We included 1416 subjects from 12 countries in Latin America who provided information about lifestyle, cardiovascular risk factors (CVRF), and anthropometrics. We measured pulse wave velocity (PWV) as a marker of arterial stiffness, and blood pressure (BP) using an oscillometric device (Mobil-O-Graph). To determine the frequency of EVA, we used multiple linear regression to estimate each subject's PWV expected for his/her age and systolic BP, and compared with observed values to obtain standardized residuals (z-scores). We defined EVA when z-score was ≥1.96. Finally, a multivariable logistic regression analysis was performed to determine baseline characteristics associated with EVA. Mean age was 49.9 ± 15.5 years, male gender was 50.3%. Mean PWV was 7.52 m/s (SD 1.97), mean systolic BP was 125.3 mmHg (SD 16.7) and mean diastolic BP was 78.9 mmHg (SD 12.2). The frequency of EVA was 5.7% in the total population, 9.8% in adults of 40 years or less and 18.7% in those 30 years or less. In these young adults, multiple logistic regression analyses demonstrated that dyslipidemia and hypertension showed an independent association with EVA, and smoking a borderline association (p  =  0.07). In conclusion, the frequency of EVA in a sample from Latin America was around 6%, with higher rates in young adults. These results would support the search of CVRF and EVA during early adulthood.

  19. Depressive Symptoms in College Women: Examining the Cumulative Effect of Childhood and Adulthood Domestic Violence.

    PubMed

    Al-Modallal, Hanan

    2016-10-01

    The purpose of this study was to examine the cumulative effect of childhood and adulthood violence on depressive symptoms in a sample of Jordanian college women. Snowball sampling technique was used to recruit the participants. The participants were heterosexual college-aged women between the ages of 18 and 25. The participants were asked about their experiences of childhood violence (including physical violence, sexual violence, psychological violence, and witnessing parental violence), partner violence (including physical partner violence and sexual partner violence), experiences of depressive symptoms, and about other demographic and familial factors as possible predictors for their complaints of depressive symptoms. Multiple linear regression analysis was implemented to identify demographic- and violence-related predictors of their complainants of depressive symptoms. Logistic regression analysis was further performed to identify possible type(s) of violence associated with the increased risk of depressive symptoms. The prevalence of depressive symptoms in this sample was 47.4%. For the violence experience, witnessing parental violence was the most common during childhood, experienced by 40 (41.2%) women, and physical partner violence was the most common in adulthood, experienced by 35 (36.1%) women. Results of logistic regression analysis indicated that experiencing two types of violence (regardless of the time of occurrence) was significant in predicting depressive symptoms (odds ratio [OR] = 3.45, p < .05). Among college women's demographic characteristics, marital status (single vs. engaged), mothers' level of education, income, and smoking were significant in predicting depressive symptoms. Assessment of physical violence and depressive symptoms including the cumulative impact of longer periods of violence on depressive symptoms is recommended to be explored in future studies. © The Author(s) 2015.

  20. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.-M.; Graduate Institute of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan; Chiou, H.-Y.

    2006-10-01

    Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA{sup V}) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA{sup V} (MMA%) was calculated bymore » dividing with total arsenic species in urine, including arsenite, arsenate, MMA{sup V}, and dimethylarsinic acid (DMA{sup V}). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% ({>=}16.5%) and high homocysteine levels ({>=}12.7 {mu}mol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 {mu}mol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine.« less

  1. Comparing methods of analysing datasets with small clusters: case studies using four paediatric datasets.

    PubMed

    Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil

    2009-07-01

    Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.

  2. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy

    PubMed Central

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-01-01

    Objective Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter ‘integrity’. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Methods Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. Results The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient −0.16, p=0.004) and presence of intellectual disability (coefficient −4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Conclusions Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. PMID:25886782

  3. Health and Nutrition Literacy and Adherence to Treatment in Children, Adolescents, and Young Adults With Chronic Kidney Disease and Hypertension, North Carolina, 2015

    PubMed Central

    Ferris, Maria; Rak, Eniko

    2016-01-01

    Introduction Adherence to treatment and dietary restrictions is important for health outcomes of patients with chronic/end-stage kidney disease and hypertension. The relationship of adherence with nutritional and health literacy in children, adolescents, and young adults is not well understood. The current study examined the relationship of health literacy, nutrition knowledge, nutrition knowledge–behavior concordance, and medication adherence in a sample of children and young people with chronic/end-stage kidney disease and hypertension. Methods We enrolled 74 patients (aged 7–29 y) with a diagnosis of chronic/end-stage kidney disease and hypertension from the University of North Carolina Kidney Center. Participants completed instruments of nutrition literacy (Disease-Specific Nutrition Knowledge Test), health literacy (Newest Vital Sign), nutrition behavior (Nutrition Knowledge–Behavior Concordance Scale), and medication adherence (Morisky Medication Adherence Scale). Linear and binary logistic regressions were used to test the associations. Results In univariate comparisons, nutrition knowledge was significantly higher in people with adequate health literacy. Medication adherence was related to nutrition knowledge and nutrition knowledge–behavior concordance. Multivariate regression models demonstrated that knowledge of disease-specific nutrition restrictions did not significantly predict nutrition knowledge–behavior concordance scores. In logistic regression, knowledge of nutrition restrictions did not significantly predict medication adherence. Lastly, health literacy and nutrition knowledge–behavior concordance were significant predictors of medication adherence. Conclusion Nutrition knowledge and health literacy skills are positively associated. Nutrition knowledge, health literacy, and nutrition knowledge–behavior concordance are positively related to medication adherence. Future research should focus on additional factors that may predict disease-specific nutrition behavior (adherence to dietary restrictions) in children and young people with chronic conditions. PMID:27490366

  4. Influence of Education on Disease Activity and Damage in Systemic Lupus Erythematosus: Data From the 1000 Canadian Faces of Lupus.

    PubMed

    George, Angela; Wong-Pak, Andrew; Peschken, Christine A; Silverman, Earl; Pineau, Christian; Smith, C Douglas; Arbillaga, Hector; Zummer, Michel; Bernatsky, Sasha; Hudson, Marie; Hitchon, Carol; Fortin, Paul R; Nevskaya, Tatiana; Pope, Janet E

    2017-01-01

    To determine whether socioeconomic status assessed by education is associated with disease activity and the risk of organ damage in systemic lupus erythematosus (SLE). Data from the 1000 Canadian Faces of Lupus, a multicenter database of adult SLE patients, was used to compare education as either low (did not complete high school) or high (completed high school or further) for disease activity and damage. Education was also studied as a continuous variable. The relationships between education and SLE outcomes (any organ damage defined as a Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index [SDI] score ≥1, serious organ damage [SDI score ≥3], and end-stage renal disease) were evaluated using logistic regression analyses adjusted for age, sex, race/ethnicity, and disease duration. A total of 562 SLE patients met inclusion criteria (mean age 47 years, 91% female, and mean disease duration of 10 years); 81% had high education. The low education group was twice as likely to be work disabled (30%; P < 0.0001); they had higher disease activity and reduced renal function. Linear regression analysis revealed that low education was significantly associated with higher disease activity at enrollment into the 1000 Canadian Faces of Lupus database, after adjustment for age (at entry and at diagnosis), race/ethnicity, and sex (B 1.255 + 0.507 [SE], β = 0.115, P = 0.014). In our adjusted logistic regression models we were unable to demonstrate significant associations between education and SLE damage. Results did not change when varying the education variable. In this cohort, low education was associated cross-sectionally with higher disease activity and work disability, but not damage. © 2016, American College of Rheumatology.

  5. Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but Not in Operant Learning.

    PubMed

    Shteingart, Hanan; Loewenstein, Yonatan

    2016-01-01

    There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.

  6. The impact of sleep disorders on driving safety-findings from the Second Strategic Highway Research Program naturalistic driving study.

    PubMed

    Liu, Shu-Yuan; Perez, Miguel A; Lau, Nathan

    2018-04-01

    This study investigated the association between driving safety and seven sleep disorders amongst 3541 participants of the Second Strategic Highway Research Program (SHRP 2) naturalistic driving study. SHRP 2 collected naturalistic driving data from participants between 16 and 98 years old by instrumenting participants' vehicles. The analyses used logistic regression to determine the likelihood of crash or near-crash involvement, Poisson log-linear regression to assess crash or near-crash rate, and ordinal logistic regression to assess driver maneuver appropriateness and crash or near-crash severity. These analyses did not account for any medical treatments for the sleep disorders. Females with restless legs syndrome/Willis-Ekbom disease (RLS/WED), drivers with insomnia or narcolepsy, are associated with significantly higher risk of crash or near-crash. Drivers with shift work sleep disorder (SWSD) are associated with significantly increased crash or near-crash rate. Females with RLS/WED or sleep apnea and drivers with SWSD are associated with less safe driver maneuver and drivers with periodic limb movement disorder are associated with more severe events. The four analyses provide no evidence of safety decrements associated with migraine. This study is the first examination on the association between seven sleep disorders and different measures of driving risk using large-scale naturalistic driving study data. The results corroborate much of the existing simulator and epidemiological research related to sleep-disorder patients and their driving safety, but add ecological validity to those findings. These results contribute to the empirical basis for medical professionals, policy makers, and employers in making decisions to aid individuals with sleep disorders in balancing safety and personal mobility.

  7. Chordee and Penile Shortening Rather Than Voiding Function Are Associated With Patient Dissatisfaction After Urethroplasty.

    PubMed

    Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F

    2017-05-01

    To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Factors determining the smooth flow and the non-operative time in a one-induction room to one-operating room setting

    PubMed Central

    Mulier, Jan P; De Boeck, Liesje; Meulders, Michel; Beliën, Jeroen; Colpaert, Jan; Sels, Annabel

    2015-01-01

    Rationale, aims and objectives What factors determine the use of an anaesthesia preparation room and shorten non-operative time? Methods A logistic regression is applied to 18 751 surgery records from AZ Sint-Jan Brugge AV, Belgium, where each operating room has its own anaesthesia preparation room. Surgeries, in which the patient's induction has already started when the preceding patient's surgery has ended, belong to a first group where the preparation room is used as an induction room. Surgeries not fulfilling this property belong to a second group. A logistic regression model tries to predict the probability that a surgery will be classified into a specific group. Non-operative time is calculated as the time between end of the previous surgery and incision of the next surgery. A log-linear regression of this non-operative time is performed. Results It was found that switches in surgeons, being a non-elective surgery as well as the previous surgery being non-elective, increase the probability of being classified into the second group. Only a few surgery types, anaesthesiologists and operating rooms can be found exclusively in one of the two groups. Analysis of variance demonstrates that the first group has significantly lower non-operative times. Switches in surgeons, anaesthesiologists and longer scheduled durations of the previous surgery increases the non-operative time. A switch in both surgeon and anaesthesiologist strengthens this negative effect. Only a few operating rooms and surgery types influence the non-operative time. Conclusion The use of the anaesthesia preparation room shortens the non-operative time and is determined by several human and structural factors. PMID:25496600

  9. Increased left ventricular mass index is present in patients with type 2 diabetes without ischemic heart disease.

    PubMed

    Seferovic, Jelena P; Tesic, Milorad; Seferovic, Petar M; Lalic, Katarina; Jotic, Aleksandra; Biering-Sørensen, Tor; Giga, Vojislav; Stankovic, Sanja; Milic, Natasa; Lukic, Ljiljana; Milicic, Tanja; Macesic, Marija; Gajovic, Jelena Stanarcic; Lalic, Nebojsa M

    2018-01-17

    Left ventricular mass index (LVMI) increase has been described in hypertension (HTN), but less is known about its association with type 2 diabetes (T2DM). As these conditions frequently co-exist, we investigated the association of T2DM, HTN and both with echocardiographic parameters, and hypothesized that patients with both had highest LVMI, followed by patients with only T2DM or HTN. Study population included 101 T2DM patients, 62 patients with HTN and no T2DM, and 76 patients with T2DM and HTN, excluded for ischemic heart disease. Demographic and clinical data, biochemical measurements, stress echocardiography, transthoracic 2D Doppler and tissue Doppler echocardiography were performed. Multivariable logistic regression was used to determine the independent association with T2DM. Linear regression models and Pearson's correlation were used to assess the correlations between LVMI and other parameters. Patients with only T2DM had significantly greater LVMI (84.9 ± 20.3 g/m 2 ) compared to patients with T2DM and HTN (77.9 ± 16 g/m 2 ) and only HTN (69.8 ± 12.4 g/m 2 ). In multivariate logistic regression analysis, T2DM was associated with LVMI (OR 1.033, 95%CI 1.003-1.065, p = 0.029). A positive correlation of LVMI was found with fasting glucose (p < 0.001) and HbA1c (p = 0.0003). Increased LVMI could be a potential, pre-symptomatic marker of myocardial structural change in T2DM.

  10. Does high optimism protect against the inter-generational transmission of high BMI? The Cardiovascular Risk in Young Finns Study.

    PubMed

    Serlachius, Anna; Pulkki-Råback, Laura; Juonala, Markus; Sabin, Matthew; Lehtimäki, Terho; Raitakari, Olli; Elovainio, Marko

    2017-09-01

    The transmission of overweight from one generation to the next is well established, however little is known about what psychosocial factors may protect against this familial risk. The aim of this study was to examine whether optimism plays a role in the intergenerational transmission of obesity. Our sample included 1043 participants from the prospective Cardiovascular Risk in Young FINNS Study. Optimism was measured in early adulthood (2001) when the cohort was aged 24-39years. BMI was measured in 2001 (baseline) and 2012 when they were aged 35-50years. Parental BMI was measured in 1980. Hierarchical linear regression and logistic regression were used to examine the association between optimism and future BMI/obesity, and whether an interaction existed between optimism and parental BMI when predicting BMI/obesity 11years later. High optimism in young adulthood demonstrated a negative relationship with high BMI in mid-adulthood, but only in women (β=-0.127, p=0.001). The optimism×maternal BMI interaction term was a significant predictor of future BMI in women (β=-0.588, p=0.036). The logistic regression results confirmed that high optimism predicted reduced obesity in women (OR=0.68, 95% CI, 0.55-0.86), however the optimism × maternal obesity interaction term was not a significant predictor (OR=0.50, 95% CI, 0.10-2.48). Our findings supported our hypothesis that high optimism mitigated the intergenerational transmission of high BMI, but only in women. These findings also provided evidence that positive psychosocial factors such as optimism are associated with long-term protective effects on BMI in women. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  12. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  13. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  14. Folate intake and depressive symptoms in Japanese workers considering SES and job stress factors: J-HOPE study.

    PubMed

    Miyaki, Koichi; Song, Yixuan; Htun, Nay Chi; Tsutsumi, Akizumi; Hashimoto, Hideki; Kawakami, Norito; Takahashi, Masaya; Shimazu, Akihito; Inoue, Akiomi; Kurioka, Sumiko; Shimbo, Takuro

    2012-04-20

    Recently socioeconomic status (SES) and job stress index received more attention to affect mental health. Folate intake has been implicated to have negative association with depression. However, few studies were published for the evidence association together with the consideration of SES and job stress factors. The current study is a part of the Japanese study of Health, Occupation and Psychosocial factors related Equity (J-HOPE study) that focused on the association of social stratification and health and our objective was to clarify the association between folate intake and depressive symptoms in Japanese general workers. Subjects were 2266 workers in a Japanese nationwide company. SES and job stress factors were assessed by self-administered questionnaire. Folate intake was estimated by a validated, brief, self-administered diet history questionnaire. Depressive symptoms were measured by Kessler's K6 questionnaire. "Individuals with depressive symptoms" was defined as K6≥9 (in K6 score of 0-24 scoring system). Multiple logistic regression and linear regression model were used to evaluate the association between folate and depressive symptoms. Several SES factors (proportion of management positions, years of continuous employment, and annual household income) and folate intake were found to be significantly lower in the subjects with depressive symptom (SES factors: p < 0.001; folate intake: P = 0.001). There was an inverse, independent linear association between K6 score and folate intake after adjusting for age, sex, job stress scores (job strains, worksite supports), and SES factors (p = 0.010). The impact of folate intake on the prevalence of depressive symptom by a multiple logistic model was (ORs[95% CI]: 0.813 [0.664-0.994]; P =0.044). Our cross-sectional study suggested an inverse, independent relation of energy-adjusted folate intake with depression score and prevalence of depressive symptoms in Japanese workers, together with the consideration of SES and job stress factors.

  15. Logistic and linear regression model documentation for statistical relations between continuous real-time and discrete water-quality constituents in the Kansas River, Kansas, July 2012 through June 2015

    USGS Publications Warehouse

    Foster, Guy M.; Graham, Jennifer L.

    2016-04-06

    The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes.

  16. In rheumatoid arthritis, country of residence has an important influence on fatigue: results from the multinational COMORA study.

    PubMed

    Hifinger, Monika; Putrik, Polina; Ramiro, Sofia; Keszei, András P; Hmamouchi, Ihsane; Dougados, Maxime; Gossec, Laure; Boonen, Annelies

    2016-04-01

    To investigate the relationship between country of residence and fatigue in RA, and to explore which country characteristics are related to fatigue. Data from the multinational COMORA study were analysed. Contribution of country of residence to level of fatigue [0-10 on visual analogue scale (VAS)] and presence of severe fatigue (VAS ⩾ 5) was explored in multivariable linear or logistic regression models including first socio-demographics and objective disease outcomes (M1), and then also subjective outcomes (M2). Next, country of residence was replaced by country characteristics: gross domestic product (GDP), human development index (HDI), latitude (as indicator of climate), language and income inequality index (gini-index). Model fit (R(2)) for linear models was compared. A total of 3920 patients from 17 countries were included, mean age 56 years (s.d. 13), 82% females. Mean fatigue across countries ranged from 1.86 (s.d. 2.46) to 4.99 (s.d. 2.64) and proportion of severe fatigue from 14% (Venezuela) to 65% (Egypt). Objective disease outcomes did not explain much of the variation in fatigue ([Formula: see text] = 0.12), while subjective outcomes had a strong negative impact and partly explained the variation in fatigue ([Formula: see text]= 0.27). Country of residence had a significant additional effect (increasing model fit to [Formula: see text] = 0.20 and [Formula: see text] = 0.36, respectively). Remarkably, higher GDP and better HDI were associated with higher fatigue, and explained a large part of the country effect. Logistic regression confirmed the limited contribution of objective outcomes and the relevant contribution of country of residence. Country of residence has an important influence on fatigue. Paradoxically, patients from wealthier countries had higher fatigue. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Large-for-gestational-age (LGA) neonate predicts a 2.5-fold increased odds of neonatal hypoglycaemia in women with type 1 diabetes.

    PubMed

    Yamamoto, Jennifer M; Kallas-Koeman, Melissa M; Butalia, Sonia; Lodha, Abhay K; Donovan, Lois E

    2017-01-01

    The objective of the study is to assess the impact of maternal glycaemic control and large-for-gestational-age (LGA) infant size on the risk of developing neonatal hypoglycaemia in offspring of women with type 1 diabetes and to determine possible predictors of neonatal hypoglycaemia and LGA. This retrospective cohort study evaluated pregnancies in 161 women with type 1 diabetes mellitus at a large urban centre between 2006 and 2010. Mean trimester A 1c values were categorized into five groups. Multiple logistic regression analyses were used to examine predictors of neonatal hypoglycaemia and large-for-gestational-age (LGA). Hypoglycaemia occurred in 36.6% of neonates. There was not a linear association between trimester specific A 1c and LGA. After adjusting for maternal age, body mass index (BMI), smoking and premature delivery, neonatal hypoglycaemia was not linearly associated with A 1c in the first, second or third trimesters. LGA was the only significant predictor for neonatal hypoglycaemia (OR, 95% CI 2.51 [1.10, 5.70]) in logistic regression analysis that adjusted for glycaemic control, maternal age, smoking, prematurity and BMI. An elevated third trimester A 1c increased the odds of LGA (1.81 [1.03, 3.18]) after adjustment for smoking, parity and maternal BMI. Large-for-gestational-age imparts a 2.5-fold increased odds of hypoglycaemia in neonates of women with type 1 diabetes and may be a better predictor of neonatal hypoglycaemia than maternal glycaemic control. Our data suggest that LGA neonates of women with type 1 diabetes should prompt increased surveillance for neonatal hypoglycaemia and that the presence of optimum maternal glycaemic control should not reduce this surveillance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Blood lead level association with lower body weight in NHANES 1999–2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scinicariello, Franco, E-mail: fes6@cdc.gov; Buser, Melanie C.; Mevissen, Meike

    Background: Lead exposure is associated with low birth-weight. The objective of this study is to determine whether lead exposure is associated with lower body weight in children, adolescents and adults. Methods: We analyzed data from NHANES 1999–2006 for participants aged ≥ 3 using multiple logistic and multivariate linear regression. Using age- and sex-standardized BMI Z-scores, overweight and obese children (ages 3–19) were classified by BMI ≥ 85th and ≥ 95th percentiles, respectively. The adult population (age ≥ 20) was classified as overweight and obese with BMI measures of 25–29.9 and ≥ 30, respectively. Blood lead level (BLL) was categorized bymore » weighted quartiles. Results: Multivariate linear regressions revealed a lower BMI Z-score in children and adolescents when the highest lead quartile was compared to the lowest lead quartile (β (SE) = − 0.33 (0.07), p < 0.001), and a decreased BMI in adults (β (SE) = − 2.58 (0.25), p < 0.001). Multiple logistic analyses in children and adolescents found a negative association between BLL and the percentage of obese and overweight with BLL in the highest quartile compared to the lowest quartile (OR = 0.42, 95% CI: 0.30–0.59; and OR = 0.67, 95% CI: 0.52–0.88, respectively). Adults in the highest lead quartile were less likely to be obese (OR = 0.42, 95% CI: 0.35–0.50) compared to those in the lowest lead quartile. Further analyses with blood lead as restricted cubic splines, confirmed the dose-relationship between blood lead and body weight outcomes. Conclusions: BLLs are associated with lower body mass index and obesity in children, adolescents and adults. - Highlights: • NHANES analysis of BLL and body weight outcomes • Increased BLL associated with decreased body weight in children and adolescent • Increased BLL associated with decreased body weight in adults.« less

  19. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed Central

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-01-01

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. PMID:28952708

  20. Associations between self-reported and objectively measured physical activity, sedentary behavior and overweight/obesity in NHANES 2003-2006.

    PubMed

    Wanner, M; Richard, A; Martin, B; Faeh, D; Rohrmann, S

    2017-01-01

    To investigate associations between self-reported and objectively measured physical activity, sedentary behavior and overweight/obesity based on percent body fat measured with Dual Energy X-Ray Absorptiometry (DXA), waist circumference (WC), waist-to-height ratio and body mass index, focusing on different intensities and domains of physical activity. Data from NHANES 2003-2006 were analyzed using linear and ordered logistic regression analyses. A total of 4794 individuals aged 18-69 years with valid physical activity and DXA data were included. Objectively measured physical activity and sedentary behavior were assessed using accelerometers, self-reported physical activity using the NHANES physical activity questionnaire. Weight, height, WC and DXA measures were assessed in the mobile examination centers. We observed statistically significant associations between objectively measured moderate and vigorous physical activity and all definitions of overweight/obesity. For total physical activity, the odds of being in the higher percent body fat category were 0.56 (95% confidence interval (CI) 0.41, 0.77) for the medium and 0.30 (95% CI 0.22, 0.40) for the highest physical activity tertile compared with the lowest. For light activities, lifestyle activities and sedentary behavior, associations were only observed in the linear models with percent total body fat but not in the ordered logistic regression models. Regarding self-reported physical activity, consistent significant associations with overweight/obesity were only observed for vigorous and for transport activity. Regarding moderate and vigorous physical activity, more active individuals were less affected by overweight/obesity than less active individuals, emphasizing the public health effect of physical activity in the prevention of overweight/obesity. The fact that associations were more consistent for objectively measured than for self-reported physical activity may be due to bias related to self-reporting. Associations between lower intensity activities and overweight/obesity were weak or inexistent.

  1. A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway Is Associated With Major Depressive Disorder.

    PubMed

    Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2017-02-15

    Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-09-27

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. Creative Commons Attribution License

  3. Locally Dependent Linear Logistic Test Model with Person Covariates

    ERIC Educational Resources Information Center

    Ip, Edward H.; Smits, Dirk J. M.; De Boeck, Paul

    2009-01-01

    The article proposes a family of item-response models that allow the separate and independent specification of three orthogonal components: item attribute, person covariate, and local item dependence. Special interest lies in extending the linear logistic test model, which is commonly used to measure item attributes, to tests with embedded item…

  4. The Performance of the Linear Logistic Test Model When the Q-Matrix Is Misspecified: A Simulation Study

    ERIC Educational Resources Information Center

    MacDonald, George T.

    2014-01-01

    A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…

  5. A Comparison of Logistic Regression, Neural Networks, and Classification Trees Predicting Success of Actuarial Students

    ERIC Educational Resources Information Center

    Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard

    2010-01-01

    The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…

  6. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  7. Odds Ratio, Delta, ETS Classification, and Standardization Measures of DIF Magnitude for Binary Logistic Regression

    ERIC Educational Resources Information Center

    Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J.

    2007-01-01

    Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…

  8. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    ERIC Educational Resources Information Center

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  9. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    ERIC Educational Resources Information Center

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  10. Estimation of Logistic Regression Models in Small Samples. A Simulation Study Using a Weakly Informative Default Prior Distribution

    ERIC Educational Resources Information Center

    Gordovil-Merino, Amalia; Guardia-Olmos, Joan; Pero-Cebollero, Maribel

    2012-01-01

    In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e., unrelated and related values), the type of variable…

  11. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA

    USGS Publications Warehouse

    Ohlmacher, G.C.; Davis, J.C.

    2003-01-01

    Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.

  12. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  13. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Linear regression crash prediction models : issues and proposed solutions.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  15. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  16. The Association Between Internet Use and Ambulatory Care-Seeking Behaviors in Taiwan: A Cross-Sectional Study

    PubMed Central

    Chen, Tsung-Fu; Liang, Jyh-Chong; Lin, Tzu-Bin; Tsai, Chin-Chung

    2016-01-01

    Background Compared with the traditional ways of gaining health-related information from newspapers, magazines, radio, and television, the Internet is inexpensive, accessible, and conveys diverse opinions. Several studies on how increasing Internet use affected outpatient clinic visits were inconclusive. Objective The objective of this study was to examine the role of Internet use on ambulatory care-seeking behaviors as indicated by the number of outpatient clinic visits after adjusting for confounding variables. Methods We conducted this study using a sample randomly selected from the general population in Taiwan. To handle the missing data, we built a multivariate logistic regression model for propensity score matching using age and sex as the independent variables. The questionnaires with no missing data were then included in a multivariate linear regression model for examining the association between Internet use and outpatient clinic visits. Results We included a sample of 293 participants who answered the questionnaire with no missing data in the multivariate linear regression model. We found that Internet use was significantly associated with more outpatient clinic visits (P=.04). The participants with chronic diseases tended to make more outpatient clinic visits (P<.01). Conclusions The inconsistent quality of health-related information obtained from the Internet may be associated with patients’ increasing need for interpreting and discussing the information with health care professionals, thus resulting in an increasing number of outpatient clinic visits. In addition, the media literacy of Web-based health-related information seekers may also affect their ambulatory care-seeking behaviors, such as outpatient clinic visits. PMID:27927606

  17. Bone mineral density across a range of physical activity volumes: NHANES 2007-2010.

    PubMed

    Whitfield, Geoffrey P; Kohrt, Wendy M; Pettee Gabriel, Kelley K; Rahbar, Mohammad H; Kohl, Harold W

    2015-02-01

    The association between aerobic physical activity volume and bone mineral density (BMD) is not completely understood. The purpose of this study was to clarify the association between BMD and aerobic activity across a broad range of activity volumes, particularly volumes between those recommended in the 2008 Physical Activity Guidelines for Americans and those of trained endurance athletes. Data from the 2007-2010 National Health and Nutrition Examination Survey were used to quantify the association between reported physical activity and BMD at the lumbar spine and proximal femur across the entire range of activity volumes reported by US adults. Participants were categorized into multiples of the minimum guideline-recommended volume based on reported moderate- and vigorous-intensity leisure activity. Lumbar and proximal femur BMD were assessed with dual-energy x-ray absorptiometry. Among women, multivariable-adjusted linear regression analyses revealed no significant differences in lumbar BMD across activity categories, whereas proximal femur BMD was significantly higher among those who exceeded the guidelines by 2-4 times than those who reported no activity. Among men, multivariable-adjusted BMD at both sites neared its highest values among those who exceeded the guidelines by at least 4 times and was not progressively higher with additional activity. Logistic regression estimating the odds of low BMD generally echoed the linear regression results. The association between physical activity volume and BMD is complex. Among women, exceeding guidelines by 2-4 times may be important for maximizing BMD at the proximal femur, whereas among men, exceeding guidelines by ≥4 times may be beneficial for lumbar and proximal femur BMD.

  18. Genetic Variants in the Hedgehog Interacting Protein Gene Are Associated with the FEV1/FVC Ratio in Southern Han Chinese Subjects with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Zhang, Zili; Wang, Jian; Zheng, Zeguang; Chen, Xindong; Zeng, Xiansheng; Zhang, Yi; Li, Defu; Shu, Jiaze; Yang, Kai; Lai, Ning; Dong, Lian

    2017-01-01

    Background Convincing evidences have demonstrated the associations between HHIP and FAM13a polymorphisms and COPD in non-Asian populations. Here genetic variants in HHIP and FAM13a were investigated in Southern Han Chinese COPD. Methods A case-control study was conducted, including 989 cases and 999 controls. The associations between SNPs genotypes and COPD were performed by a logistic regression model; for SNPs and COPD-related phenotypes such as lung function, COPD severity, pack-year of smoking, and smoking status, a linear regression model was employed. Effects of risk alleles, genotypes, and haplotypes of the 3 significant SNPs in the HHIP gene on FEV1/FVC were also assessed in a linear regression model in COPD. Results The mean FEV1/FVC% value was 46.8 in combined COPD population. None of the 8 selected SNPs apparently related to COPD susceptibility. However, three SNPs (rs12509311, rs13118928, and rs182859) in HHIP were associated significantly with the FEV1/FVC% (Pmax = 4.1 × 10−4) in COPD adjusting for gender, age, and smoking pack-years. Moreover, statistical significance between risk alleles and the FEV1/FVC% (P = 2.3 × 10−4), risk genotypes, and the FEV1/FVC% (P = 3.5 × 10−4) was also observed in COPD. Conclusions Genetic variants in HHIP were related with FEV1/FVC in COPD. Significant relationships between risk alleles and risk genotypes and FEV1/FVC in COPD were also identified. PMID:28929109

  19. [Relationship between highly sensitive cardiac troponin T and sepsis and outcome in critically ill patients].

    PubMed

    Wang, T T; Jiang, L

    2017-10-01

    Objective: To investigate the prognostic value of highly sensitive cardiac Troponin T (hs-cTn T) for sepsis in critically ill patients. Methods: Patients estimated to stay in the ICU of Fuxing Hospital for more than 24h were enrolled at from March 2014 to December 2014. Serum hs-cTn T was tested within two hours. Univariate and multivariate linear regression analyses were used to determine the association of variables with the hs-cTn T. Multivariable logistic regression analysis was used to evaluate the risk factors of 28-day mortality. Results: A total of 125 patients were finally enrolled including 68 patients with sepsis and 57 without. The levels of hs-cTn T in sepsis and non-sepsis groups were significantly different[52.0(32.5, 87.5) ng/L vs 14.0(6.5, 29.0) ng/L respectively, P <0.001]. In sepsis group, hs-cTn T among common sepsis, severe sepsis and septic shock were similar. Hs-cTn T was significantly higher in non-survivors than survivors [27(13, 52)ng/L vs 44.5(28.8, 83.5)ng/L, P <0.001]. Age, sepsis, serum creatinine were independent risk factors affecting hs-cTn T by multivariate linear regression analyses. But hs-cTn T was not a risk factor for death. Conclusion: Patients with sepsis had higher serum hs-cTn T than those without sepsis. but it was not found to be associated with the severity of sepsis.

  20. Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research.

    PubMed

    Johnston, K M; Gustafson, P; Levy, A R; Grootendorst, P

    2008-04-30

    A major, often unstated, concern of researchers carrying out epidemiological studies of medical therapy is the potential impact on validity if estimates of treatment are biased due to unmeasured confounders. One technique for obtaining consistent estimates of treatment effects in the presence of unmeasured confounders is instrumental variables analysis (IVA). This technique has been well developed in the econometrics literature and is being increasingly used in epidemiological studies. However, the approach to IVA that is most commonly used in such studies is based on linear models, while many epidemiological applications make use of non-linear models, specifically generalized linear models (GLMs) such as logistic or Poisson regression. Here we present a simple method for applying IVA within the class of GLMs using the generalized method of moments approach. We explore some of the theoretical properties of the method and illustrate its use within both a simulation example and an epidemiological study where unmeasured confounding is suspected to be present. We estimate the effects of beta-blocker therapy on one-year all-cause mortality after an incident hospitalization for heart failure, in the absence of data describing disease severity, which is believed to be a confounder. 2008 John Wiley & Sons, Ltd

Top