Sample records for linear regression relationship

  1. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  2. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  3. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics

    PubMed Central

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications. PMID:27806075

  4. Comparing Machine Learning Classifiers and Linear/Logistic Regression to Explore the Relationship between Hand Dimensions and Demographic Characteristics.

    PubMed

    Miguel-Hurtado, Oscar; Guest, Richard; Stevenage, Sarah V; Neil, Greg J; Black, Sue

    2016-01-01

    Understanding the relationship between physiological measurements from human subjects and their demographic data is important within both the biometric and forensic domains. In this paper we explore the relationship between measurements of the human hand and a range of demographic features. We assess the ability of linear regression and machine learning classifiers to predict demographics from hand features, thereby providing evidence on both the strength of relationship and the key features underpinning this relationship. Our results show that we are able to predict sex, height, weight and foot size accurately within various data-range bin sizes, with machine learning classification algorithms out-performing linear regression in most situations. In addition, we identify the features used to provide these relationships applicable across multiple applications.

  5. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  6. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  7. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  8. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  9. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  10. Reliability of the Load-Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the One-Repetition Maximum Load.

    PubMed

    Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador

    2017-12-18

    This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

  11. Examining the influence of link function misspecification in conventional regression models for developing crash modification factors.

    PubMed

    Wu, Lingtao; Lord, Dominique

    2017-05-01

    This study further examined the use of regression models for developing crash modification factors (CMFs), specifically focusing on the misspecification in the link function. The primary objectives were to validate the accuracy of CMFs derived from the commonly used regression models (i.e., generalized linear models or GLMs with additive linear link functions) when some of the variables have nonlinear relationships and quantify the amount of bias as a function of the nonlinearity. Using the concept of artificial realistic data, various linear and nonlinear crash modification functions (CM-Functions) were assumed for three variables. Crash counts were randomly generated based on these CM-Functions. CMFs were then derived from regression models for three different scenarios. The results were compared with the assumed true values. The main findings are summarized as follows: (1) when some variables have nonlinear relationships with crash risk, the CMFs for these variables derived from the commonly used GLMs are all biased, especially around areas away from the baseline conditions (e.g., boundary areas); (2) with the increase in nonlinearity (i.e., nonlinear relationship becomes stronger), the bias becomes more significant; (3) the quality of CMFs for other variables having linear relationships can be influenced when mixed with those having nonlinear relationships, but the accuracy may still be acceptable; and (4) the misuse of the link function for one or more variables can also lead to biased estimates for other parameters. This study raised the importance of the link function when using regression models for developing CMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae).

    PubMed

    Battaglia, P; Malara, D; Ammendolia, G; Romeo, T; Andaloro, F

    2015-09-01

    Length-mass relationships and linear regressions are given for otolith size (length and height) and standard length (LS ) of certain mesopelagic fishes (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae) living in the central Mediterranean Sea. The length-mass relationship showed isometric growth in six species, whereas linear regressions of LS and otolith size fit the data well for all species. These equations represent a useful tool for dietary studies on Mediterranean marine predators. © 2015 The Fisheries Society of the British Isles.

  13. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  14. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  15. Non-Linear Relationship between Economic Growth and CO2 Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models

    PubMed Central

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-01-01

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on per capita CO2 emissions. PMID:29236083

  16. Non-Linear Relationship between Economic Growth and CO₂ Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models.

    PubMed

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-12-13

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.

  17. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  18. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  19. Common pitfalls in statistical analysis: Linear regression analysis

    PubMed Central

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022

  20. Element enrichment factor calculation using grain-size distribution and functional data regression.

    PubMed

    Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R

    2015-01-01

    In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  2. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.

  3. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    PubMed

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P < .001) in eyes with glaucoma and for OCT average thickness (0.888 ± 0.072; P < .001) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with spectral-domain OCT than with scanning laser polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    NASA Astrophysics Data System (ADS)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  5. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  6. Modeling maximum daily temperature using a varying coefficient regression model

    Treesearch

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  7. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  8. [From clinical judgment to linear regression model.

    PubMed

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  9. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  10. Suppression Situations in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  11. A Model Comparison for Count Data with a Positively Skewed Distribution with an Application to the Number of University Mathematics Courses Completed

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2009-01-01

    The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…

  12. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  13. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  14. A gentle introduction to quantile regression for ecologists

    USGS Publications Warehouse

    Cade, B.S.; Noon, B.R.

    2003-01-01

    Quantile regression is a way to estimate the conditional quantiles of a response variable distribution in the linear model that provides a more complete view of possible causal relationships between variables in ecological processes. Typically, all the factors that affect ecological processes are not measured and included in the statistical models used to investigate relationships between variables associated with those processes. As a consequence, there may be a weak or no predictive relationship between the mean of the response variable (y) distribution and the measured predictive factors (X). Yet there may be stronger, useful predictive relationships with other parts of the response variable distribution. This primer relates quantile regression estimates to prediction intervals in parametric error distribution regression models (eg least squares), and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of the estimates for homogeneous and heterogeneous regression models.

  15. Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise

    ERIC Educational Resources Information Center

    Dias, Albino A.; Pinto, Paula A.; Fraga, Irene; Bezerra, Rui M. F.

    2014-01-01

    In enzyme kinetic studies, linear transformations of the Michaelis-Menten equation, such as the Lineweaver-Burk double-reciprocal transformation, present some constraints. The linear transformation distorts the experimental error and the relationship between "x" and "y" axes; consequently, linear regression of transformed data…

  16. Effect of Malmquist bias on correlation studies with IRAS data base

    NASA Technical Reports Server (NTRS)

    Verter, Frances

    1993-01-01

    The relationships between galaxy properties in the sample of Trinchieri et al. (1989) are reexamined with corrections for Malmquist bias. The linear correlations are tested and linear regressions are fit for log-log plots of L(FIR), L(H-alpha), and L(B) as well as ratios of these quantities. The linear correlations for Malmquist bias are corrected using the method of Verter (1988), in which each galaxy observation is weighted by the inverse of its sampling volume. The linear regressions are corrected for Malmquist bias by a new method invented here in which each galaxy observation is weighted by its sampling volume. The results of correlation and regressions among the sample are significantly changed in the anticipated sense that the corrected correlation confidences are lower and the corrected slopes of the linear regressions are lower. The elimination of Malmquist bias eliminates the nonlinear rise in luminosity that has caused some authors to hypothesize additional components of FIR emission.

  17. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  18. Learning accurate and interpretable models based on regularized random forests regression

    PubMed Central

    2014-01-01

    Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120

  19. Advanced Statistics for Exotic Animal Practitioners.

    PubMed

    Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G

    2017-09-01

    Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  1. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    PubMed

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P < 0.05) and fairly linear, although it remains unresolved whether a polynomial fit could provide even stronger relationships. The reliability of parameters obtained from the linear F-V regressions proved to be mainly high (ICC > 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  2. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  3. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  4. Relationships of Measurement Error and Prediction Error in Observed-Score Regression

    ERIC Educational Resources Information Center

    Moses, Tim

    2012-01-01

    The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…

  5. Using Linear Regression To Determine the Number of Factors To Retain in Factor Analysis and the Number of Issues To Retain in Delphi Studies and Other Surveys.

    ERIC Educational Resources Information Center

    Jurs, Stephen; And Others

    The scree test and its linear regression technique are reviewed, and results of its use in factor analysis and Delphi data sets are described. The scree test was originally a visual approach for making judgments about eigenvalues, which considered the relationships of the eigenvalues to one another as well as their actual values. The graph that is…

  6. A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries

    PubMed Central

    Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo

    2018-01-01

    Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.

  7. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  8. The Relationship between Teachers' and Principals' Perceptions of the Working Conditions in North Carolina Elementary Schools and Student Achievement

    ERIC Educational Resources Information Center

    Mizzelle, Sylvia Jean

    2012-01-01

    The purpose of this study was to examine the relationship between teachers' and principals' perceptions on the North Carolina Teacher Working Conditions Survey (TWC) and the influence this relationship had on student achievement. A quantitative research design using a Multiple Linear Regression investigated the relationship between teachers' and…

  9. Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India.

    PubMed

    Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K

    2013-01-01

    Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. CBRs were inversely related to literacy rates (slope parameter = -0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = -0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = -1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = -0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Female literacy is relatively highly important for both population stabilization and better infant health.

  10. Evaluating and Improving the SAMA (Segmentation Analysis and Market Assessment) Recruiting Model

    DTIC Science & Technology

    2015-06-01

    and rewarding me with your love every day. xx THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. THE UNITED STATES ARMY RECRUITING...the relationship between the calculated SAMA potential and the actual 2014 performance. The scatterplot in Figure 8 shows a strong linear... relationship between the SAMA calculated potential and the contracting achievement for 2014, with an R-squared value of 0.871. Simple Linear Regression of

  11. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less

  12. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  13. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  14. Scale of association: hierarchical linear models and the measurement of ecological systems

    Treesearch

    Sean M. McMahon; Jeffrey M. Diez

    2007-01-01

    A fundamental challenge to understanding patterns in ecological systems lies in employing methods that can analyse, test and draw inference from measured associations between variables across scales. Hierarchical linear models (HLM) use advanced estimation algorithms to measure regression relationships and variance-covariance parameters in hierarchically structured...

  15. Relationship between age and elite marathon race time in world single age records from 5 to 93 years

    PubMed Central

    2014-01-01

    Background The aims of the study were (i) to investigate the relationship between elite marathon race times and age in 1-year intervals by using the world single age records in marathon running from 5 to 93 years and (ii) to evaluate the sex difference in elite marathon running performance with advancing age. Methods World single age records in marathon running in 1-year intervals for women and men were analysed regarding changes across age for both men and women using linear and non-linear regression analyses for each age for women and men. Results The relationship between elite marathon race time and age was non-linear (i.e. polynomial regression 4th degree) for women and men. The curve was U-shaped where performance improved from 5 to ~20 years. From 5 years to ~15 years, boys and girls performed very similar. Between ~20 and ~35 years, performance was quite linear, but started to decrease at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference increased non-linearly (i.e. polynomial regression 7th degree) from 5 to ~20 years, remained unchanged at ~20 min from ~20 to ~50 years and increased thereafter. The sex difference was lowest (7.5%, 10.5 min) at the age of 49 years. Conclusion Elite marathon race times improved from 5 to ~20 years, remained linear between ~20 and ~35 years, and started to increase at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference in elite marathon race time increased non-linearly and was lowest at the age of ~49 years. PMID:25120915

  16. The Relationship between Counselors' Multicultural Counseling Competence and Poverty Beliefs

    ERIC Educational Resources Information Center

    Clark, Madeline; Moe, Jeff; Hays, Danica G.

    2017-01-01

    The authors explored the relationship between counselors' multicultural counseling competence (MCC), poverty beliefs, and select demographic factors. Results of hierarchical linear regressions indicate that MCC is predictive of counselor individualistic and structural poverty beliefs. Implications for counselor multicultural training and immersion…

  17. A new approach to correct the QT interval for changes in heart rate using a nonparametric regression model in beagle dogs.

    PubMed

    Watanabe, Hiroyuki; Miyazaki, Hiroyasu

    2006-01-01

    Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.

  18. The relationship between treatment access and spending in a managed behavioral health organization.

    PubMed

    Cuffel, B J; Regier, D

    2001-07-01

    This study replicated an earlier study that showed a linear relationship between level of treatment access and behavioral health spending. The study reported here examined whether this relationship varies by important characteristics of behavioral health plans. Access rates and total spending over a five- to seven-year period were computed for 30 behavioral health plans. Regression analysis was used to estimate the relationship between access and spending and to examine whether it varied with the characteristics of benefit plans. A linear relationship was found between level of treatment access and behavioral health spending. However, the relationship closely paralleled that found in the earlier study only for benefit plans with an employee assistance program linked to the managed behavioral health organization and for plans that do not allow the use of out-of-network providers. The results of this study replicate those of the earlier study in showing a linear relationship between access and spending, but they suggest that the magnitude of this relationship may vary according to key plan characteristics.

  19. Introduction to methodology of dose-response meta-analysis for binary outcome: With application on software.

    PubMed

    Zhang, Chao; Jia, Pengli; Yu, Liu; Xu, Chang

    2018-05-01

    Dose-response meta-analysis (DRMA) is widely applied to investigate the dose-specific relationship between independent and dependent variables. Such methods have been in use for over 30 years and are increasingly employed in healthcare and clinical decision-making. In this article, we give an overview of the methodology used in DRMA. We summarize the commonly used regression model and the pooled method in DRMA. We also use an example to illustrate how to employ a DRMA by these methods. Five regression models, linear regression, piecewise regression, natural polynomial regression, fractional polynomial regression, and restricted cubic spline regression, were illustrated in this article to fit the dose-response relationship. And two types of pooling approaches, that is, one-stage approach and two-stage approach are illustrated to pool the dose-response relationship across studies. The example showed similar results among these models. Several dose-response meta-analysis methods can be used for investigating the relationship between exposure level and the risk of an outcome. However the methodology of DRMA still needs to be improved. © 2018 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  20. Logarithmic Transformations in Regression: Do You Transform Back Correctly?

    ERIC Educational Resources Information Center

    Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.

    2009-01-01

    The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…

  1. Female Literacy Rate is a Better Predictor of Birth Rate and Infant Mortality Rate in India

    PubMed Central

    Saurabh, Suman; Sarkar, Sonali; Pandey, Dhruv K.

    2013-01-01

    Background: Educated women are known to take informed reproductive and healthcare decisions. These result in population stabilization and better infant care reflected by lower birth rates and infant mortality rates (IMRs), respectively. Materials and Methods: Our objective was to study the relationship of male and female literacy rates with crude birth rates (CBRs) and IMRs of the states and union territories (UTs) of India. The data were analyzed using linear regression. CBR and IMR were taken as the dependent variables; while the overall literacy rates, male, and female literacy rates were the independent variables. Results: CBRs were inversely related to literacy rates (slope parameter = −0.402, P < 0.001). On multiple linear regression with male and female literacy rates, a significant inverse relationship emerged between female literacy rate and CBR (slope = −0.363, P < 0.001), while male literacy rate was not significantly related to CBR (P = 0.674). IMR of the states were also inversely related to their literacy rates (slope = −1.254, P < 0.001). Multiple linear regression revealed a significant inverse relationship between IMR and female literacy (slope = −0.816, P = 0.031), whereas male literacy rate was not significantly related (P = 0.630). Conclusion: Female literacy is relatively highly important for both population stabilization and better infant health. PMID:26664840

  2. Causal relationship model between variables using linear regression to improve professional commitment of lecturer

    NASA Astrophysics Data System (ADS)

    Setyaningsih, S.

    2017-01-01

    The main element to build a leading university requires lecturer commitment in a professional manner. Commitment is measured through willpower, loyalty, pride, loyalty, and integrity as a professional lecturer. A total of 135 from 337 university lecturers were sampled to collect data. Data were analyzed using validity and reliability test and multiple linear regression. Many studies have found a link on the commitment of lecturers, but the basic cause of the causal relationship is generally neglected. These results indicate that the professional commitment of lecturers affected by variables empowerment, academic culture, and trust. The relationship model between variables is composed of three substructures. The first substructure consists of endogenous variables professional commitment and exogenous three variables, namely the academic culture, empowerment and trust, as well as residue variable ɛ y . The second substructure consists of one endogenous variable that is trust and two exogenous variables, namely empowerment and academic culture and the residue variable ɛ 3. The third substructure consists of one endogenous variable, namely the academic culture and exogenous variables, namely empowerment as well as residue variable ɛ 2. Multiple linear regression was used in the path model for each substructure. The results showed that the hypothesis has been proved and these findings provide empirical evidence that increasing the variables will have an impact on increasing the professional commitment of the lecturers.

  3. Simplified large African carnivore density estimators from track indices.

    PubMed

    Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J

    2016-01-01

    The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y  =  αx  + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P  > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P  < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.

  4. Growth and yield in Eucalyptus globulus

    Treesearch

    James A. Rinehart; Richard B. Standiford

    1983-01-01

    A study of the major Eucalyptus globulus stands throughout California conducted by Woodbridge Metcalf in 1924 provides a complete and accurate data set for generating variable site-density yield models. Two models were developed using linear regression techniques. Model I depicts a linear relationship between age and yield best used for stands between five and fifteen...

  5. Postmolar gestational trophoblastic neoplasia: beyond the traditional risk factors.

    PubMed

    Bakhtiyari, Mahmood; Mirzamoradi, Masoumeh; Kimyaiee, Parichehr; Aghaie, Abbas; Mansournia, Mohammd Ali; Ashrafi-Vand, Sepideh; Sarfjoo, Fatemeh Sadat

    2015-09-01

    To investigate the slope of linear regression of postevacuation serum hCG as an independent risk factor for postmolar gestational trophoblastic neoplasia (GTN). Multicenter retrospective cohort study. Academic referral health care centers. All subjects with confirmed hydatidiform mole and at least four measurements of β-hCG titer. None. Type and magnitude of the relationship between the slope of linear regression of β-hCG as a new risk factor and GTN using Bayesian logistic regression with penalized log-likelihood estimation. Among the high-risk and low-risk molar pregnancy cases, 11 (18.6%) and 19 cases (13.3%) had GTN, respectively. No significant relationship was found between the components of a high-risk pregnancy and GTN. The β-hCG return slope was higher in the spontaneous cure group. However, the initial level of this hormone in the first measurement was higher in the GTN group compared with in the spontaneous recovery group. The average time for diagnosing GTN in the high-risk molar pregnancy group was 2 weeks less than that of the low-risk molar pregnancy group. In addition to slope of linear regression of β-hCG (odds ratio [OR], 12.74, confidence interval [CI], 5.42-29.2), abortion history (OR, 2.53; 95% CI, 1.27-5.04) and large uterine height for gestational age (OR, 1.26; CI, 1.04-1.54) had the maximum effects on GTN outcome, respectively. The slope of linear regression of β-hCG was introduced as an independent risk factor, which could be used for clinical decision making based on records of β-hCG titer and subsequent prevention program. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  7. Relationship Between Ktrans and K1 with Simultaneous Versus Separate MR/PET in Rabbits with VX2 Tumors.

    PubMed

    Lee, Kyung Hee; Kang, Seung Kwan; Goo, Jin Mo; Lee, Jae Sung; Cheon, Gi Jeong; Seo, Seongho; Hwang, Eui Jin

    2017-03-01

    To compare the relationship between K trans from DCE-MRI and K 1 from dynamic 13 N-NH 3 -PET, with simultaneous and separate MR/PET in the VX-2 rabbit carcinoma model. MR/PET was performed simultaneously and separately, 14 and 15 days after VX-2 tumor implantation at the paravertebral muscle. The K trans and K 1 values were estimated using an in-house software program. The relationships between K trans and K 1 were analyzed using Pearson's correlation coefficients and linear/non-linear regression function. Assuming a linear relationship, K trans and K 1 exhibited a moderate positive correlations with both simultaneous (r=0.54-0.57) and separate (r=0.53-0.69) imaging. However, while the K trans and K 1 from separate imaging were linearly correlated, those from simultaneous imaging exhibited a non-linear relationship. The amount of change in K 1 associated with a unit increase in K trans varied depending on K trans values. The relationship between K trans and K 1 may be mis-interpreted with separate MR and PET acquisition. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Quantile regression models of animal habitat relationships

    USGS Publications Warehouse

    Cade, Brian S.

    2003-01-01

    Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative (interference interactions) or positive (facilitation interactions), either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Sampling (n = 20 - 300) simulations demonstrated that confidence intervals constructed by inverting rankscore tests provided valid coverage of these biased parameters. Quantile regression was used to estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana) in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of location coordinates.

  9. Exposure to Hazardous Neighborhood Environments in Late Childhood and Anxiety

    ERIC Educational Resources Information Center

    Furr-Holden, C. Debra M.; Milam, Adam J.; Young, Kevin C.; MacPherson, Laura; Lejuez, Carl W.

    2011-01-01

    This investigation examined the relationship between living in disordered neighborhoods during childhood and anxiety 1 year later. Objective measures of neighborhood environment and individual data from a study of mental health in suburban children were utilized. Linear regression models were used to assess relationships between neighborhood…

  10. Association of sleep disturbances with cognitive impairment and depression in maintenance memodialysis patients

    USDA-ARS?s Scientific Manuscript database

    There are few data on the relationship of sleep with measures of cognitive function and symptoms of depression in dialysis patients. We evaluated the relationship of sleep with cognitive function and symptoms of depression in 168 hemodialysis patients, using multivariable linear and logistic regress...

  11. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  12. What Do School Report Cards Really Tell Us? (An Analysis of the Relationships among Factors Commonly Reported in School District Report Cards).

    ERIC Educational Resources Information Center

    Bobbett, Gordon C.; And Others

    The relationships among factors reported on school district (SD) report cards were studied for 121 Tennessee SDs. The report cards provided data on student outcomes (achievement test scores) and SD characteristics. Relationships were studied through linear regression, Pearson product moment correlation, and Guttman's partial correlation. Six…

  13. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions.

    PubMed

    Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan

    2012-12-01

    A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  15. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  16. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Treesearch

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  17. TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration

    NASA Astrophysics Data System (ADS)

    Ahmadian, Radin

    2010-09-01

    This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

  18. Mothers' education and childhood mortality in Ghana.

    PubMed

    Buor, Daniel

    2003-06-01

    The significant extent to which maternal education affects child health has been advanced in several sociodemographic-medical literature, but not much has been done in analysing the spatial dimension of the problem; and also using graphic and linear regression models of representation. In Ghana, very little has been done to relate the two variables and offer pragmatic explanations. The need to correlate the two, using a regression model, which is rarely applied in previous studies, is a methodological necessity. The paper examines the impact of mothers' education on childhood mortality in Ghana using, primarily, Ghana Demographic and Health Survey data of 1998 and World Bank data of 2000. The survey has emphatically established that there is an inverse relationship between mothers' education and child survivorship. The use of basic health facilities that relate to childhood survival shows a direct relationship with mothers' education. Recommendations for policy initiatives to simultaneously emphasise the education of the girl-child, and to ensure adequate access to maternal and child health services, have been made. The need for an experimental project of integrating maternal education and child health services has also been recommended. A linear regression model that illustrates the relationship between maternal education and childhood survival has emerged.

  19. Serum uric acid in U.S. adolescents: distribution and relationship to demographic characteristics and cardiovascular risk factors.

    PubMed

    Shatat, Ibrahim F; Abdallah, Rany T; Sas, David J; Hailpern, Susan M

    2012-07-01

    Despite being associated with multiple disease processes and cardiovascular outcomes, uric acid (UA) reference ranges for adolescents are lacking. We sought to describe the distribution of UA and its relationship to demographic, clinical, socioeconomic, and dietary factors among U.S. adolescents. A nationally representative subsample of 1,912 adolescents aged 13-18 years in NHANES 2005-2008 representing 19,888,299 adolescents was used for this study. Percentiles of the distribution of UA were estimated using quantile regression. Linear regression models examined the association of UA and demographic, socioeconomic, and dietary factors. Mean UA level was 5.14 ± 1.45 mg/dl. Mean UA increased with increasing age and was higher in non-Hispanic white race, male sex, higher body mass index (BMI) Z-score, and with higher systolic blood pressure. In fully adjusted linear regression models, sex, age, race, and BMI were independent determinants of higher UA. This study defines serum UA reference ranges for adolescents. Also, it reveals some intriguing relationships between UA and demographic and clinical characteristics that warrant further studies to examine the pathophysiological role of UA in different disease processes.

  20. Mapping Regional Impervious Surface Distribution from Night Time Light: The Variability across Global Cities

    NASA Astrophysics Data System (ADS)

    Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.

    2017-12-01

    Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.

  1. Liquid electrolyte informatics using an exhaustive search with linear regression.

    PubMed

    Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato

    2018-06-14

    Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.

  2. Treatment Effects of a Relationship-Strengthening Intervention for Economically Disadvantaged New Parents

    ERIC Educational Resources Information Center

    Charles, Pajarita; Jones, Anne; Guo, Shenyang

    2014-01-01

    Objective: The purpose of the present study was to evaluate the treatment effects of a relationship skills and family strengthening intervention for n = 726 high-risk, disadvantaged new parents. Method: Hierarchical linear modeling and regression models were used to assess intervention treatment effects. These findings were subsequently verified…

  3. Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China

    PubMed Central

    Yao, Hong; Zhuang, Wei; Qian, Yu; Xia, Bisheng; Yang, Yang; Qian, Xin

    2016-01-01

    Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R2 = 0.86–0.93 for 72 data sets collected in the industrial river and R2 = 0.60–0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals’ concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density. PMID:27028017

  4. Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China.

    PubMed

    Yao, Hong; Zhuang, Wei; Qian, Yu; Xia, Bisheng; Yang, Yang; Qian, Xin

    2016-01-01

    Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R(2) = 0.86-0.93 for 72 data sets collected in the industrial river and R(2) = 0.60-0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals' concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density.

  5. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].

    PubMed

    Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen

    2013-01-01

    Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.

  6. Relationships between age and dental attrition in Australian aboriginals.

    PubMed

    Richards, L C; Miller, S L

    1991-02-01

    Tooth wear scores (ratios of exposed dentin to total crown area) were calculated from dental casts of Australian Aboriginal subjects of known age from three populations. Linear regression equations relating attrition scores to age were derived. The slope of the regression line reflects the rate of tooth wear, and the intercept is related to the timing of first exposure of dentin. Differences in morphology between anterior and posterior teeth are reflected in a linear relationship between attrition scores and age for anterior teeth but a logarithmic relationship for posterior teeth. Correlations between age and attrition range from less than 0.40 for third molars (where differences in the eruption and occlusion of the teeth resulted in different patterns of wear) to greater than 0.80 for the premolars and first molars. Because of the generally high correlations between age and attrition, it is possible to estimate age from the extent of tooth wear with confidence limits of the order of +/- 10 years.

  7. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  8. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  9. Logistic regression for circular data

    NASA Astrophysics Data System (ADS)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  10. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  11. The Relationship between TOC and pH with Exchangeable Heavy Metal Levels in Lithuanian Podzols

    NASA Astrophysics Data System (ADS)

    Khaledian, Yones; Pereira, Paulo; Brevik, Eric C.; Pundyte, Neringa; Paliulis, Dainius

    2017-04-01

    Heavy metals can have a negative impact on public and environmental health. The objective of this study was to investigate the relationship between total organic carbon (TOC) and pH with exchangeable heavy metals (Pb, Cd, Cu and Zn) in order to predict exchangeable heavy metal content in soils sampled near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and nonlinear regression methods were tested to find the statistical relationship between TOC and pH with heavy metals. The results of PCR [R2 = 0.68, RMSE = 0.07] and non-linear regression [R2 = 0.74, RMSE= 0.065] (pH with TOC and exchangeable parameters) were statistically significant. However, this was not observed in the relationships of pH and TOC separately with exchangeable heavy metals. The results indicated that pH had a higher correlation with exchangeable heavy metals (non-linear regression [R2 = 0.72, RMSE= 0.066]) than TOC with heavy metals [R2 = 0.30, RMSE= 0.004]. It can be concluded that even though there was a strong relationship between TOC and pH with exchangeable metals, the metal mobility (exchangeable metals) can be explained by pH better than TOC in this study. Finally, manipulating soil pH could likely be productive to assess and control heavy metals when financial and time limitations exist (Khaledian et al. 2016). Reference(s) Khaledian Y, Pereira P, Brevik E.C, Pundyte N, Paliulis D. 2016. The Influence of Organic Carbon and pH on Heavy Metals, Potassium, and Magnesium Levels in Lithuanian Podzols. Land Degradation and Development. DOI: 10.1002/ldr.2638

  12. Inferring gene regression networks with model trees

    PubMed Central

    2010-01-01

    Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database) is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear regressions to separate areas of the search space favoring to infer localized similarities over a more global similarity. Furthermore, experimental results show the good performance of REGNET. PMID:20950452

  13. The Relationship between Religious Coping and Self-Care Behaviors in Iranian Medical Students.

    PubMed

    Sharif Nia, Hamid; Pahlevan Sharif, Saeed; Goudarzian, Amir Hossein; Allen, Kelly A; Jamali, Saman; Heydari Gorji, Mohammad Ali

    2017-12-01

    In recent years, researchers have identified that coping strategies are an important contributor to an individual's life satisfaction and ability to manage stress. The positive relationship between religious copings, specifically, with physical and mental health has also been identified in some studies. Spirituality and religion have been discussed rigorously in research, but very few studies exist on religious coping. The aim of this study was to determine the relationship between religious coping methods (i.e., positive and negative religious coping) and self-care behaviors in Iranian medical students. This study used a cross-sectional design of 335 randomly selected students from Mazandaran University of Medical Sciences, Iran. A data collection tool comprised of the standard questionnaire of religious coping methods and questionnaire of self-care behaviors assessment was utilized. Data were analyzed using a two-sample t test assuming equal variances. Adjusted linear regression was used to evaluate the independent association of religious copings with self-care. Adjusted linear regression model indicated an independent significant association between positive (b = 4.616, 95% CI 4.234-4.999) and negative (b = -3.726, 95% CI -4.311 to -3.141) religious coping with self-care behaviors. Findings showed a linear relationship between religious coping and self-care behaviors. Further research with larger sample sizes in diverse populations is recommended.

  14. Relationship between Type of Trauma Exposure and Posttraumatic Stress Disorder among Urban Children and Adolescents

    ERIC Educational Resources Information Center

    Luthra, Rohini; Abramovitz, Robert; Greenberg, Rick; Schoor, Alan; Newcorn, Jeffrey; Schmeidler, James; Levine, Paul; Nomura, Yoko; Chemtob, Claude M.

    2009-01-01

    This study examines the association between trauma exposure and posttraumatic stress disorder (PTSD) among 157 help-seeking children (aged 8-17). Structured clinical interviews are carried out, and linear and logistic regression analyses are conducted to examine the relationship between PTSD and type of trauma exposure controlling for age, gender,…

  15. Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.

    PubMed

    Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T

    2016-12-01

    We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298

  17. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.

  18. 40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linear regression parameters (slope, intercept, and correlation coefficient) describing the relationship... correlation coefficient. (2) To pass the test for comparability, the slope, intercept, and correlation...

  19. Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area

    NASA Astrophysics Data System (ADS)

    Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang

    2013-01-01

    Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.

  20. [Relationship between the refractive index and specific gravity of the rat urine (author's transl)].

    PubMed

    Kitagawa, Y F; Takahashi, T; Hayashi, H

    1981-07-01

    The relationship between the refractive index and specific gravity of urine was studied with specimens from 165 Sprague-Dawley rats, by graphic analysis of the plot of the refractometrically determined index against the specific gravity which was measured with a pycnometer. 1. A linear regression was demonstrated between the refractive index and specific gravity. 2. The nomogram fitted the data of even those samples with high refractive index and specific gravity, irrespective of changes in food or water intake and protein or glucose contents in the urine. 3. The nomogram was in good agreement, in respect of linearity, with the regression line derived from the conversion table of TS meter by the American Optical Corporation and also with the nomogram of the Japanese Society of Clinical Pathology. It approximated more closely to the former than to the latter.

  1. Different responses of weather factors on hand, foot and mouth disease in three different climate areas of Gansu, China.

    PubMed

    Gou, Faxiang; Liu, Xinfeng; He, Jian; Liu, Dongpeng; Cheng, Yao; Liu, Haixia; Yang, Xiaoting; Wei, Kongfu; Zheng, Yunhe; Jiang, Xiaojuan; Meng, Lei; Hu, Wenbiao

    2018-01-08

    To determine the linear and non-linear interacting relationships between weather factors and hand, foot and mouth disease (HFMD) in children in Gansu, China, and gain further traction as an early warning signal based on weather variability for HFMD transmission. Weekly HFMD cases aged less than 15 and meteorological information from 2010 to 2014 in Jiuquan, Lanzhou and Tianshu, Gansu, China were collected. Generalized linear regression models (GLM) with Poisson link and classification and regression trees (CART) were employed to determine the combined and interactive relationship of weather factors and HFMD in both linear and non-linear ways. GLM suggested an increase in weekly HFMD of 5.9% [95% confidence interval (CI): 5.4%, 6.5%] in Tianshui, 2.8% [2.5%, 3.1%] in Lanzhou and 1.8% [1.4%, 2.2%] in Jiuquan in association with a 1 °C increase in average temperature, respectively. And 1% increase of relative humidity could increase weekly HFMD of 2.47% [2.23%, 2.71%] in Lanzhou and 1.11% [0.72%, 1.51%] in Tianshui. CART revealed that average temperature and relative humidity were the first two important determinants, and their threshold values for average temperature deceased from 20 °C of Jiuquan to 16 °C in Tianshui; and for relative humidity, threshold values increased from 38% of Jiuquan to 65% of Tianshui. Average temperature was the primary weather factor in three areas, more sensitive in southeast Tianshui, compared with northwest Jiuquan; Relative humidity's effect on HFMD showed a non-linear interacting relationship with average temperature.

  2. Forcing Regression through a Given Point Using Any Familiar Computational Routine.

    DTIC Science & Technology

    1983-03-01

    a linear model , Y =a + OX + e ( Model I) then adopt the principle of least squares; and use sample data to estimate the unknown parameters, a and 8...has an expected value of zero indicates that the "average" response is considered linear . If c varies widely, Model I, though conceptually correct, may...relationship is linear from the maximum observed x to x - a, then Model II should be used. To pro- ceed with the customary evaluation of Model I would be

  3. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  4. A High-Dimensional, Multivariate Copula Approach to Modeling Multivariate Agricultural Price Relationships and Tail Dependencies

    Treesearch

    Xuan Chi; Barry Goodwin

    2012-01-01

    Spatial and temporal relationships among agricultural prices have been an important topic of applied research for many years. Such research is used to investigate the performance of markets and to examine linkages up and down the marketing chain. This research has empirically evaluated price linkages by using correlation and regression models and, later, linear and...

  5. A reexamination of the relationship between electrofishing catch rate and age-0 walleye density in northern Wisconsin lakes

    Treesearch

    Michael J. Hansen; Steven P. Newman; Clayton J. Edwards

    2004-01-01

    We quantified the relationship between the population density (number/acre) of age-0 walleyes Sander vitreus (formerly Stizostedion vitreum) and electrofishing catch per effort (CPE; number/mi) in 19 Wisconsin lakes to update a 1982 analysis by Serns, who used linear regression through the origin to develop a model from a small...

  6. What Works after School? The Relationship between After-School Program Quality, Program Attendance, and Academic Outcomes

    ERIC Educational Resources Information Center

    Leos-Urbel, Jacob

    2015-01-01

    This article examines the relationship between after-school program quality, program attendance, and academic outcomes for a sample of low-income after-school program participants. Regression and hierarchical linear modeling analyses use a unique longitudinal data set including 29 after-school programs that served 5,108 students in Grades 4 to 8…

  7. The Relationship of Bole Diameters and Crown Widths of Seven Bottomland Hardwood Species

    Treesearch

    John K. Francis

    1988-01-01

    Diameters, heights, and eight crown radii per tree were measured on 75 individuals from each of seven bottomland hardwood species in Mississippi. It was determined that the seven species could not be described by a single regression equation. Crown class was tested to see whether it significantly influenced the slope or intercept of the linear relationship. Three of...

  8. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.

  10. Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients.

    PubMed

    Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad

    2015-06-01

    Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Uveal Melanoma Regression after Brachytherapy: Relationship with Chromosome 3 Monosomy Status.

    PubMed

    Salvi, Sachin M; Aziz, Hassan A; Dar, Suhail; Singh, Nakul; Hayden-Loreck, Brandy; Singh, Arun D

    2017-07-01

    The objective was to evaluate the relationship between the regression rate of ciliary body melanoma and choroidal melanoma after brachytherapy and chromosome 3 monosomy status. We conducted a prospective and consecutive case series of patients who underwent biopsy and brachytherapy for ciliary/choroidal melanoma. Tumor biopsy performed at the time of radiation plaque placement was analyzed with fluorescence in situ hybridization to determine the percentage of tumor cells with chromosome 3 monosomy. The regression rate was calculated as the percent change in tumor height at months 3, 6, and 12. The relationship between regression rate and tumor location, initial tumor height, and chromosome 3 monosomy (percentage) was assessed by univariate linear regression (R version 3.1.0). Of the 75 patients included in the study, 8 had ciliary body melanoma, and 67 were choroidal melanomas. The mean tumor height at the time of diagnosis was 5.2 mm (range: 1.90-13.00). The percentage composition of chromosome 3 monosomy ranged from 0-20% (n = 35) to 81-100% (n = 40). The regression of tumor height at months 3, 6, and 12 did not statistically correlate with tumor location (ciliary or choroidal), initial tumor height, or chromosome 3 monosomy (percentage). The regression rate of choroidal melanoma following brachytherapy did not correlate with chromosome 3 monosomy status.

  12. Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes

    EPA Science Inventory

    We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...

  13. Incorporating nonlinearity into mediation analyses.

    PubMed

    Knafl, George J; Knafl, Kathleen A; Grey, Margaret; Dixon, Jane; Deatrick, Janet A; Gallo, Agatha M

    2017-03-21

    Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear. Existing adaptive regression methods based on fractional polynomials are extended here to address nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with theories about directionality of such relationships. Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect of family functioning (X) on a child's adaptation (Y) to a chronic condition by the difficulty (M) for the family in managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented. Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into mediation relationships.

  14. Analysis of the labor productivity of enterprises via quantile regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2017-07-01

    In this study, we have analyzed the factors that affect the performance of Turkey's Top 500 Industrial Enterprises using quantile regression. The variable about labor productivity of enterprises is considered as dependent variable, the variableabout assets is considered as independent variable. The distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, linear regression could not catch important aspects of the relationships between the dependent variable and its predictors due to modeling only the conditional mean. Hence, the quantile regression, which allows modelingany quantilesof the dependent distribution, including the median,appears to be useful. It examines whether relationships between dependent and independent variables are different for low, medium, and high percentiles. As a result of analyzing data, the effect of total assets is relatively constant over the entire distribution, except the upper tail. It hasa moderately stronger effect in the upper tail.

  15. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality.

    PubMed

    Bae, Sanghyuk; Lim, Youn-Hee; Kashima, Saori; Yorifuji, Takashi; Honda, Yasushi; Kim, Ho; Hong, Yun-Chul

    2015-01-01

    Ambient ozone (O3) concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial. The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009. We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model. The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb. We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities.

  16. Assessing the Relationships among Delinquent Male Students' Disruptive and Violent Behavior and Staff's Proactive and Reactive Behavior in a Secure Residential Treatment Center

    ERIC Educational Resources Information Center

    Rozalski, Michael; Drasgow, Erik; Drasgow, Fritz; Yell, Mitchell

    2009-01-01

    The purpose of this study was to examine the relationships among students' disruptive and violent behavior and staff's use of proactive and reactive strategies in a secure residential treatment center serving delinquent adolescent males. One hundred hours of observational data were collected, and linear regression models were used to explore the…

  17. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data

    PubMed Central

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  18. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  19. Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino

    2018-07-01

    Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.

  20. A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.

    PubMed

    Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit

    2018-06-01

    In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.

  1. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  2. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    PubMed

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  3. Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?

    PubMed

    Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P

    2006-04-01

    The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.

  4. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  5. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  6. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  7. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  8. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  9. High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Hermann, Kristian J.; Hendry, M. Jim

    2017-11-01

    Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl-) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl- from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl- concentrations than a power-law relationship (Archie's Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl- concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl- = 1,978 ECa - 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl- as porosity data become available and the site-specific ECw-Cl- relationship is determined.

  10. Discrimination and Acculturative Stress among First-Generation Dominicans

    ERIC Educational Resources Information Center

    Dawson, Beverly Araujo; Panchanadeswaran, Subadra

    2010-01-01

    The present study examined the relationship between discriminatory experiences and acculturative stress levels among a sample of 283 Dominican immigrants. Findings from a linear regression analysis revealed that experiences of daily racial discrimination and major racist events were significant predictors of acculturative stress after controlling…

  11. Assessing risk factors for periodontitis using regression

    NASA Astrophysics Data System (ADS)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  12. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  13. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain.

    PubMed

    Król, Anita; Polak, Maciej; Szczygieł, Elżbieta; Wójcik, Paweł; Gleb, Klaudia

    2017-01-01

    The assessment of the lumbo-pelvic complex parameters is the basic procedure during the examination of the patients with low back pain syndrome (LBP). The aim of the study was to define the relationship between pelvic tilt and following factors: age, BMI, ability to activate deep abdominal muscles, iliopsoas and hamstrings muscles length, lumbar lordosis and thoracic kyphosis angle value, in adults with and without low back pain. The study covered a group of 60 female students aged 20-26. Average age was 22 years ± 1.83 (median = 22.5 years). In order to investigate the relationship between the anterior pelvic tilt and the analysed variables, simple linear regression and multiple linear regression were carried out. Individuals with and without pain differed significantly in terms of age, p < 0.001. There was a statistically significant relationship between the anterior pelvic tilt and the LBP (R2 = 0.07, p = 0.049) and the lumbar lordosis (R2 = 0.13, p = 0.02). The position of the pelvis depends on age, angle value of lumbar lordosis and BMI. Individuals with and without pain differed significantly in terms of the anterior pelvic tilt. The risk of LBP incidence increased with age in the study group.

  14. Relationship of breastfeeding self-efficacy with quality of life in Iranian breastfeeding mothers.

    PubMed

    Mirghafourvand, Mojgan; Kamalifard, Mahin; Ranjbar, Fatemeh; Gordani, Nasrin

    2017-07-20

    Due to the importance of breastfeeding, we decided to conduct a study to examine the relationship between breastfeeding self-efficacy and quality of life. This study was a cross-sectional study, which was carried out on 547 breastfeeding mothers that had 2-6 months old infants. The participants were selected randomly, and the sociodemographic characteristics questionnaire, Dennis' breastfeeding self-efficacy scale, and WHO's Quality of Life (WHOQOL) questionnaire were completed through interview. The multivariate linear regression model was used for data analysis. The means (standard deviations) of breastfeeding self-efficacy score and quality of life score were 134.5 (13.3) and 67.7 (13.7), respectively. Quality of life and all of its dimensions were directly and significantly related to breastfeeding self-efficacy. According to the results of multivariate linear regression analysis, there was a relationship between breastfeeding self-efficacy and the following variables: environmental dimension of quality of life, education, spouse's age, spouse's job, average duration of previous breastfeeding period and receiving breastfeeding training. Findings showed that there is direct and significant relationship between breastfeeding self-efficacy and quality of life. Moreover, it seems that the development of appropriate training programs is necessary for improving the quality of life of pregnant women, as it consequently enhances breastfeeding self-efficacy.

  15. Deriving Hounsfield units using grey levels in cone beam computed tomography

    PubMed Central

    Mah, P; Reeves, T E; McDavid, W D

    2010-01-01

    Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181

  16. Modelling daily water temperature from air temperature for the Missouri River.

    PubMed

    Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana

    2018-01-01

    The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.

  17. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  18. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?

    PubMed

    Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J; Ma, Keping

    2013-01-01

    Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.

  19. High-frequency toneburst-evoked ABR latency-intensity functions in sensorineural hearing-impaired humans.

    PubMed

    Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I; Phillips, D S

    1995-01-01

    The latency-intensity functions (LIFs) of ABRs elicited by high-frequency (8, 10, 12, and 14 kHz) toneburst stimuli were evaluated in 20 subjects with confirmed 'moderate' high-frequency sensorineural hearing loss. Wave V results from clicks and tonebursts revealed all intra- and intersession data to be reliable (p > 0.05). Linear regression curves were highly significant (p < or = 0.0001), indicating linear relationships for all stimuli analyzed. Comparisons between the linear regression curves from a previously reported normal-hearing subject group and this sensorineural hearing-impaired group showed no significant differences. This study demonstrated that tonebursts at 8, 10, and 12 kHz evoked ABRs which decreased in latency as a function of increasing intensity and that these LIFs were consistent and orderly (14 kHz was not determinable). These results will contribute information to facilitate the establishment of change criteria used to predict change in hearing during treatment with ototoxic medications.

  20. Influence of prolonged static stretching on motor unit firing properties.

    PubMed

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2016-05-01

    The purpose of this study was to examine the influence of a stretching intervention on motor control strategy of the biceps brachii muscle. Ten men performed twelve 100-s passive static stretches of the biceps brachii. Before and after the intervention, isometric strength was tested during maximal voluntary contractions (MVCs) of the elbow flexors. Subjects also performed trapezoid isometric contractions at 30% and 70% of MVC. Surface electromyographic signals from the submaximal contractions were decomposed into individual motor unit action potential trains. Linear regression analysis was used to examine the relationship between motor unit mean firing rate and recruitment threshold. The stretching intervention caused significant decreases in y-intercepts of the linear regression lines. In addition, linear slopes at both intensities remained unchanged. Despite reduced motor unit firing rates following the stretches, the motor control scheme remained unchanged. © 2016 Wiley Periodicals, Inc.

  1. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  3. Machine learning approaches to the social determinants of health in the health and retirement study.

    PubMed

    Seligman, Benjamin; Tuljapurkar, Shripad; Rehkopf, David

    2018-04-01

    Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how machine learning may add to our understanding of social determinants of health using data from the Health and Retirement Study. A linear regression of age and gender, and a parsimonious theory-based regression additionally incorporating income, wealth, and education, were used to predict systolic blood pressure, body mass index, waist circumference, and telomere length. Prediction, fit, and interpretability were compared across four machine learning methods: linear regression, penalized regressions, random forests, and neural networks. All models had poor out-of-sample prediction. Most machine learning models performed similarly to the simpler models. However, neural networks greatly outperformed the three other methods. Neural networks also had good fit to the data ( R 2 between 0.4-0.6, versus <0.3 for all others). Across machine learning models, nine variables were frequently selected or highly weighted as predictors: dental visits, current smoking, self-rated health, serial-seven subtractions, probability of receiving an inheritance, probability of leaving an inheritance of at least $10,000, number of children ever born, African-American race, and gender. Some of the machine learning methods do not improve prediction or fit beyond simpler models, however, neural networks performed well. The predictors identified across models suggest underlying social factors that are important predictors of biological indicators of chronic disease, and that the non-linear and interactive relationships between variables fundamental to the neural network approach may be important to consider.

  4. My older sibling was drunk - younger siblings' drunkenness in relation to parental monitoring and the parent-adolescent relationship.

    PubMed

    Gossrau-Breen, Diana; Kuntsche, Emmanuel; Gmel, Gerhard

    2010-10-01

    This study explored the links between having older siblings who get drunk, satisfaction with the parent-adolescent relationship, parental monitoring, and adolescents' risky drinking. Regression models were conducted based on a national representative sample of 3725 8th to 10th graders in Switzerland (mean age 15.0, SD = .93) who indicated having older siblings. Results showed that both parental factors and older siblings' drinking behaviour shape younger siblings' frequency of risky drinking. Parental monitoring showed a linear dose-response relationship, and siblings' influence had an additive effect. There was a non-linear interaction effect between parent-adolescent relationship and older sibling's drunkenness. The findings suggest that, apart from avoiding an increasingly unsatisfactory relationship with their children, parental monitoring appears to be important in preventing risky drinking by their younger children, even if the older sibling drinks in such a way. However, a satisfying relationship with parents does not seem to be sufficient to counterbalance older siblings' influence.

  5. An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries.

    PubMed

    Cabral, Ana Caroline; Stark, Jonathan S; Kolm, Hedda E; Martins, César C

    2018-04-01

    Sewage input and the relationship between chemical markers (linear alkylbenzenes and coprostanol) and fecal indicator bacteria (FIB, Escherichia coli and enterococci), were evaluated in order to establish thresholds values for chemical markers in suspended particulate matter (SPM) as indicators of sewage contamination in two subtropical estuaries in South Atlantic Brazil. Both chemical markers presented no linear relationship with FIB due to high spatial microbiological variability, however, microbiological water quality was related to coprostanol values when analyzed by logistic regression, indicating that linear models may not be the best representation of the relationship between both classes of indicators. Logistic regression was performed with all data and separately for two sampling seasons, using 800 and 100 MPN 100 mL -1 of E. coli and enterococci, respectively, as the microbiological limits of sewage contamination. Threshold values of coprostanol varied depending on the FIB and season, ranging between 1.00 and 2.23 μg g -1 SPM. The range of threshold values of coprostanol for SPM are relatively higher and more variable than those suggested in literature for sediments (0.10-0.50 μg g -1 ), probably due to higher concentration of coprostanol in SPM than in sediment. Temperature may affect the relationship between microbiological indicators and coprostanol, since the threshold value of coprostanol found here was similar to tropical areas, but lower than those found during winter in temperate areas, reinforcing the idea that threshold values should be calibrated for different climatic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  7. The Correlation Between Metacognition Level with Self-Efficacy of Biology Education College Students

    NASA Astrophysics Data System (ADS)

    Ridlo, S.; Lutfiya, F.

    2017-04-01

    Self-efficacy is a strong predictor of academic achievement. Self-efficacy refers to the ability of college students to achieve the desired results. The metacognition level can influence college student’s self-efficacy. This study aims to identify college student’s metacognition level and self-efficacy, as well as determine the relationship between self-efficacy and metacognition level for college students of Biology Education 2013, Semarang State University. The ex-post facto quantitative research was conducted on 99 students Academic Year 2015/2016. Saturation sampling technique determined samples. E-D scale collected data for self-efficacy identification. Data for assess the metacognition level collected by Metacognitive Awareness Inventory. Data were analysed quantitatively by Pearson correlation and linear regression. Most college students have the high level of metacognition and average self-efficacy. Pearson correlation coefficient result was 0.367. This result showed that metacognition level and self-efficacy has a weak relationship. Based on linear regression test, self-efficacy influenced by metacognition level up to 13.5%. The results of the study showed that positive and significant relationships exist between metacognition level and self-efficacy. Therefore, if the metacognition level is high, then self-efficacy will also be high (appropriate).

  8. Preliminary study of the association between the elimination parameters of phenytoin and phenobarbital.

    PubMed

    Methaneethorn, Janthima; Panomvana, Duangchit; Vachirayonstien, Thaveechai

    2017-09-26

    Therapeutic drug monitoring is essential for both phenytoin and phenobarbital therapy given their narrow therapeutic indexes. Nevertheless, the measurement of either phenytoin or phenobarbital concentrations might not be available in some rural hospitals. Information assisting individualized phenytoin and phenobarbital combination therapy is important. This study's objective was to determine the relationship between the maximum rate of metabolism of phenytoin (Vmax) and phenobarbital clearance (CLPB), which can serve as a guide to individualized drug therapy. Data on phenytoin and phenobarbital concentrations of 19 epileptic patients concurrently receiving both drugs were obtained from medical records. Phenytoin and phenobarbital pharmacokinetic parameters were studied at steady-state conditions. The relationship between the elimination parameters of both drugs was determined using simple linear regression. A high correlation coefficient between Vmax and CLPB was found [r=0.744; p<0.001 for Vmax (mg/kg/day) vs. CLPB (L/kg/day)]. Such a relatively strong linear relationship between the elimination parameters of both drugs indicates that Vmax might be predicted from CLPB and vice versa. Regression equations were established for estimating Vmax from CLPB, and vice versa in patients treated with combination of phenytoin and phenobarbital. These proposed equations can be of use in aiding individualized drug therapy.

  9. Testing the dose-response specification in epidemiology: public health and policy consequences for lead.

    PubMed

    Rothenberg, Stephen J; Rothenberg, Jesse C

    2005-09-01

    Statistical evaluation of the dose-response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose-response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear-linear dose response) and natural-log-transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose-response relationship. We found that a log-linear lead-IQ relationship was a significantly better fit than was a linear-linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead-IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 microg/dL to 2.0 microg/dL) was 2.2 times (319 billion dollars) that calculated using a linear-linear dose-response function (149 billion dollars). The Centers for Disease Control and Prevention action limit of 10 microg/dL for children fails to protect against most damage and economic cost attributable to lead exposure.

  10. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.

    PubMed

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M

    2012-01-01

    The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.

  12. Cooperation without culture? The null effect of generalized trust on intentional homicide: a cross-national panel analysis, 1995-2009.

    PubMed

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation.

  13. Partial Least Squares Regression Models for the Analysis of Kinase Signaling.

    PubMed

    Bourgeois, Danielle L; Kreeger, Pamela K

    2017-01-01

    Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.

  14. Relationship between Body Mass Index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: a cross sectional study.

    PubMed

    Ranasinghe, Chathuranga; Gamage, Prasanna; Katulanda, Prasad; Andraweera, Nalinda; Thilakarathne, Sithira; Tharanga, Praveen

    2013-09-03

    Body Mass Index (BMI) is used as a useful population-level measure of overweight and obesity. It is used as the same for both sexes and for all ages of adults. The relationship between BMI and body fat percentage (BF %) has been studied in various ethnic groups to estimate the capacity of BMI to predict adiposity. We aimed to study the BMI-BF% relationship, in a group of South Asian adults who have a different body composition compared to presently studied ethnic groups. We examined the influence of age, gender in this relationship and assessed its' linearity or curvilinearity. A cross sectional study was conducted, where adults of 18-83 years were grouped into young (18-39 years) middle aged (40-59 years) and elderly (>60 years). BF% was estimated from bioelectrical impedance analysis. Pearsons' correlation coefficient(r) was calculated to see the relationship between BMI-BF% in the different age groups. Multiple regression analysis was performed to determine the effect of age and gender in the relationship and polynomial regression was carried out to see its' linearity. The relationships between age-BMI, age-BF % were separately assessed. Out of 1114 participants, 49.1% were males. The study sample represented a wide range of BMI values (14.8-41.1 kg/m2,Mean 23.8 ± 4.2 kg/m2). A significant positive correlation was observed between BMI-BF%, in males (r =0.75, p < 0.01; SEE = 4.17) and in females (r = 0.82, p < 0.01; SEE = 3.54) of all ages. Effect of age and gender in the BMI-BF% relationship was significant (p < 0.001); with more effect from gender. Regression line found to be curvilinear in nature at higher BMI values where females (p < 0.000) having a better fit of the curve compared to males (p < 0.05). In both genders, with increase of age, BMI seemed to increase in curvilinear fashion, whereas BF% increased in a linear fashion. BMI strongly correlate with BF % estimated by bioelectrical impedance, in this sub population of South Asian adults. This relationship was curvilinear in nature and was significantly influenced by age and gender. Our findings support the importance of taking age and gender in to consideration when using BMI to predict body fat percentage/obesity, in a population.

  15. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method.

    PubMed

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2015-11-18

    Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available.

  16. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method

    PubMed Central

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2016-01-01

    Introduction: Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. Methods: This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. Results: From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). Conclusion: This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available. PMID:26925889

  17. Relationships between depression, anxiety, and pain in a group of university music students.

    PubMed

    Wristen, Brenda W; Fountain, Sarah E

    2013-09-01

    There is emerging interest in studying the incidence of music-related injuries and problems among students. The current study drew on a data set collected from 287 music majors and minors at a large US midwestern university school of music in order to determine if correlations existed between anxiety and/or depression and the reported presence of physical pain, and to understand the nature of any such relationships. Physical pain symptoms were scored on a scale of 0 (none) to 10 (excruciating) and summed across 21 body regions. Depression and anxiety symptoms were scored as none (0), mild (1), moderate (2), or severe (3), and each summed across either 13 symptoms for depression or 8 symptoms for anxiety. The potential linear relationship among these variables was evaluated using F-tests (as part of ANOVAs) and linear regression parameter estimation techniques. The explanatory value of these relationships was evaluated using R² values. Results indicate a clear positive linear relationship between both depression and pain, and anxiety and pain. However, the presence of depression and/or anxiety symptoms was insufficient to explain variability in pain scores of these participants.

  18. Body mass index and waist circumference predict health-related quality of life, but not satisfaction with life, in the elderly.

    PubMed

    Wang, Lucy; Crawford, John D; Reppermund, Simone; Trollor, Julian; Campbell, Lesley; Baune, Bernhard T; Sachdev, Perminder; Brodaty, Henry; Samaras, Katherine; Smith, Evelyn

    2018-06-07

    While obesity has been linked with lower quality of life in the general adult population, the prospective effects of present obesity on future quality of life amongst the elderly is unclear. This article investigates the cross-sectional and longitudinal relationships between obesity and aspects of quality of life in community-dwelling older Australians. A 2-year longitudinal sample of community dwellers aged 70-90 years at baseline, derived from the Sydney Memory and Ageing Study (MAS), was chosen for the study. Of the 1037 participants in the original MAS sample, a baseline (Wave 1) sample of 926 and a 2-year follow-up (Wave 2) sample of 751 subjects were retained for these analyses. Adiposity was measured using body mass index (BMI) and waist circumference (WC). Quality of life was measured using the Assessment of Quality of Life (6 dimensions) questionnaire (AQoL-6D) as well as the Satisfaction with Life Scale (SWLS). Linear regression and analysis of covariance (ANCOVA) were used to examine linear and non-linear relationships between BMI and WC and measures of health-related quality of life (HRQoL) and satisfaction with life, adjusting for age, sex, education, asthma, osteoporosis, depression, hearing and visual impairment, mild cognitive impairment, physical activity, and general health. Where a non-linear relationship was found, established BMI or WC categories were used in ANCOVA. Greater adiposity was associated with lower HRQoL but not life satisfaction. Regression modelling in cross-sectional analyses showed that higher BMI and greater WC were associated with lower scores for independent living, relationships, and pain (i.e. worse pain) on the AQoL-6D. In planned contrasts within a series of univariate analyses, obese participants scored lower in independent living and relationships, compared to normal weight and overweight participants. Longitudinal analyses found that higher baseline BMI and WC were associated with lower independent living scores at Wave 2. Obesity is associated with and predicts lower quality of life in elderly adults aged 70-90 years, and the areas most affected are independent living, social relationships, and the experience of pain.

  19. School Climate, Principal Support and Collaboration among Portuguese Teachers

    ERIC Educational Resources Information Center

    Castro Silva, José; Amante, Lúcia; Morgado, José

    2017-01-01

    This article analyses the relationship between school principal support and teacher collaboration among Portuguese teachers. Data were collected from a random sample of 234 teachers in middle and secondary schools. The use of a combined approach using linear and multiple regression tests concluded that the school principal support, through the…

  20. The Effects of Academic Optimism on Elementary Reading Achievement

    ERIC Educational Resources Information Center

    Bevel, Raymona K.; Mitchell, Roxanne M.

    2012-01-01

    Purpose: The purpose of this paper is to explore the relationship between academic optimism (AO) and elementary reading achievement (RA). Design/methodology/approach: Using correlation and hierarchical linear regression, the authors examined school-level effects of AO on fifth grade reading achievement in 29 elementary schools in Alabama.…

  1. D.b.h./crown diameter relationships in mixed Appalachian hardwood stands

    Treesearch

    Neil I. Lamson; Neil I. Lamson

    1987-01-01

    Linear regression formulae for predicting crown diameter as a function of stem diameter are presented for nine species found in 50- to 80-year-old mixed hardwood stands in north-central West Virginia. Generally, crown diameter was closely related to tolerance; more tolerant species had larger crowns.

  2. Distributed Monitoring of the R(sup 2) Statistic for Linear Regression

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.

    2011-01-01

    The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.

  3. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  4. Representational change and strategy use in children's number line estimation during the first years of primary school.

    PubMed

    White, Sonia L J; Szűcs, Dénes

    2012-01-04

    The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.

  5. Representational change and strategy use in children's number line estimation during the first years of primary school

    PubMed Central

    2012-01-01

    Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191

  6. Estimation of octanol/water partition coefficients using LSER parameters

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  7. [Trend in mortality from external causes in pregnant and postpartum women and its relationship to socioeconomic factors in Colombia, 1998-2010].

    PubMed

    Salazar, Edwin; Buitrago, Carolina; Molina, Federico; Alzate, Catalina Arango

    2015-05-01

    Determine the trend in mortality from external causes in pregnant and postpartum women and its relationship to socioeconomic factors. Descriptive study, based on the official registries of deaths reported by the National Statistics Agency, 1998-2010. The trend was analyzed using Poisson regressions. Bivariate correlations and multiple linear regression models were constructed to explore the relationship between mortality and socioeconomic factors: human development index, Gini index, gross domestic product, unsatisfied basic needs, unemployment rate, poverty, extreme poverty, quality of life index, illiteracy rate, and percentage of affiliation to the Social Security System. A total of 2 223 female deaths from external causes were recorded, of which 1 429 occurred during pregnancy and 794 in the postpartum period. The gross mortality rate dropped from 30.7 per 100 000 live births plus fetal deaths in 1998 to 16.7 in 2010. A downward curve with no significant inflection points was shown in the risk of dying from this cause. The multiple linear regression model showed a correlation between mortality and extreme poverty and the illiteracy rate, suggesting that these indicators could explain 89.4% of the change in mortality from external causes in pregnant and postpartum women each year in Colombia. Mortality from external causes in pregnant and postpartum women showed a significant downward trend that may be explained by important socioeconomic changes in the country, including a decrease in extreme poverty and in the illiteracy rate.

  8. Household Debt and Relation to Intimate Partner Violence and Husbands' Attitudes Toward Gender Norms: A Study Among Young Married Couples in Rural Maharashtra, India

    PubMed Central

    Donta, Balaiah; Dasgupta, Anindita; Ghule, Mohan; Battala, Madhusudana; Nair, Saritha; Silverman, Jay G.; Jadhav, Arun; Palaye, Prajakta; Saggurti, Niranjan; Raj, Anita

    2015-01-01

    Objective Evidence has linked economic hardship with increased intimate partner violence (IPV) perpetration among males. However, less is known about how economic debt or gender norms related to men's roles in relationships or the household, which often underlie IPV perpetration, intersect in or may explain these associations. We assessed the intersection of economic debt, attitudes toward gender norms, and IPV perpetration among married men in India. Methods Data were from the evaluation of a family planning intervention among young married couples (n=1,081) in rural Maharashtra, India. Crude and adjusted logistic regression models for dichotomous outcome variables and linear regression models for continuous outcomes were used to examine debt in relation to husbands' attitudes toward gender-based norms (i.e., beliefs supporting IPV and beliefs regarding male dominance in relationships and the household), as well as sexual and physical IPV perpetration. Results Twenty percent of husbands reported debt. In adjusted linear regression models, debt was associated with husbands' attitudes supportive of IPV (b=0.015, p=0.004) and norms supporting male dominance in relationships and the household (b=0.006, p=0.003). In logistic regression models adjusted for relevant demographics, debt was associated with perpetration of physical IPV (adjusted odds ratio [AOR] = 1.4, 95% confidence interval [CI] 1.1, 1.9) and sexual IPV (AOR=1.6, 95% CI 1.1, 2.1) from husbands. These findings related to debt and relation to IPV were slightly attenuated when further adjusted for men's attitudes toward gender norms. Conclusion Findings suggest the need for combined gender equity and economic promotion interventions to address high levels of debt and related IPV reported among married couples in rural India. PMID:26556938

  9. Household Debt and Relation to Intimate Partner Violence and Husbands' Attitudes Toward Gender Norms: A Study Among Young Married Couples in Rural Maharashtra, India.

    PubMed

    Reed, Elizabeth; Donta, Balaiah; Dasgupta, Anindita; Ghule, Mohan; Battala, Madhusudana; Nair, Saritha; Silverman, Jay G; Jadhav, Arun; Palaye, Prajakta; Saggurti, Niranjan; Raj, Anita

    2015-01-01

    Evidence has linked economic hardship with increased intimate partner violence (IPV) perpetration among males. However, less is known about how economic debt or gender norms related to men's roles in relationships or the household, which often underlie IPV perpetration, intersect in or may explain these associations. We assessed the intersection of economic debt, attitudes toward gender norms, and IPV perpetration among married men in India. Data were from the evaluation of a family planning intervention among young married couples (n=1,081) in rural Maharashtra, India. Crude and adjusted logistic regression models for dichotomous outcome variables and linear regression models for continuous outcomes were used to examine debt in relation to husbands' attitudes toward gender-based norms (i.e., beliefs supporting IPV and beliefs regarding male dominance in relationships and the household), as well as sexual and physical IPV perpetration. Twenty percent of husbands reported debt. In adjusted linear regression models, debt was associated with husbands' attitudes supportive of IPV (b=0.015, p=0.004) and norms supporting male dominance in relationships and the household (b=0.006, p=0.003). In logistic regression models adjusted for relevant demographics, debt was associated with perpetration of physical IPV (adjusted odds ratio [AOR] = 1.4, 95% confidence interval [CI] 1.1, 1.9) and sexual IPV (AOR=1.6, 95% CI 1.1, 2.1) from husbands. These findings related to debt and relation to IPV were slightly attenuated when further adjusted for men's attitudes toward gender norms. Findings suggest the need for combined gender equity and economic promotion interventions to address high levels of debt and related IPV reported among married couples in rural India.

  10. Relationship between body fat and BMI in a US Hispanic population-based cohort study: Results from HCHS/SOL

    PubMed Central

    Wong, William W.; Strizich, Garrett; Heo, Moonseong; Heymsfield, Steven B.; Himes, John H.; Rock, Cheryl L.; Gellman, Marc D.; Siega-Riz, Anna Maria; Sotres-Alvarez, Daniela; Davis, Sonia M.; Arredondo, Elva M.; Van Horn, Linda; Wylie-Rosett, Judith; Sanchez-Johnsen, Lisa; Kaplan, Robert; Mossavar-Rahmani, Yasmin

    2016-01-01

    Objective To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut-points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. Methods %BF by bioelectrical impedance analysis (BIA) was corrected against %BF by 18O dilution in 476 participants of the ancillary Hispanic Community Health/Latinos Studies. Corrected %BF were regressed against 1/BMI in the parent study (n=15,261), fitting models for each age group, by sex and Hispanic/Latino background; predicted %BF was then computed for each BMI cut-point. Results BIA underestimated %BF by 8.7 ± 0.3% in women and 4.6 ± 0.3% in men (P < 0.0001). The %BF-BMI relationshp was non-linear and linear for 1/BMI. Sex- and age-specific regression parameters between %BF and 1/BMI were consistent across Hispanic/Latino backgrounds (P > 0.05). The precision of the %BF-1/BMI association weakened with increasing age in men but not women. The proportion of participants classified as non-obese by BMI but obese by %BF was generally higher among women and older adults (16.4% in women vs. 12.0% in men aged 50-74 y). Conclusions %BF was linearly related to 1/BMI with consistent relationship across Hispanic/Lation backgrounds. BMI cut-points consistently underestimated the proportion of Hispanics/Latinos with excess adiposity. PMID:27184359

  11. [Quantitative relationship between gas chromatographic retention time and structural parameters of alkylphenols].

    PubMed

    Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao

    2007-03-01

    Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.

  12. Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies.

    PubMed

    Fang, Xin; Han, Hedong; Li, Mei; Liang, Chun; Fan, Zhongjie; Aaseth, Jan; He, Jia; Montgomery, Scott; Cao, Yang

    2016-11-19

    The epidemiological evidence for a dose-response relationship between magnesium intake and risk of type 2 diabetes mellitus (T2D) is sparse. The aim of the study was to summarize the evidence for the association of dietary magnesium intake with risk of T2D and evaluate the dose-response relationship. We conducted a systematic review and meta-analysis of prospective cohort studies that reported dietary magnesium intake and risk of incident T2D. We identified relevant studies by searching major scientific literature databases and grey literature resources from their inception to February 2016. We included cohort studies that provided risk ratios, i.e., relative risks (RRs), odds ratios (ORs) or hazard ratios (HRs), for T2D. Linear dose-response relationships were assessed using random-effects meta-regression. Potential nonlinear associations were evaluated using restricted cubic splines. A total of 25 studies met the eligibility criteria. These studies comprised 637,922 individuals including 26,828 with a T2D diagnosis. Compared with the lowest magnesium consumption group in the population, the risk of T2D was reduced by 17% across all the studies; 19% in women and 16% in men. A statistically significant linear dose-response relationship was found between incremental magnesium intake and T2D risk. After adjusting for age and body mass index, the risk of T2D incidence was reduced by 8%-13% for per 100 mg/day increment in dietary magnesium intake. There was no evidence to support a nonlinear dose-response relationship between dietary magnesium intake and T2D risk. The combined data supports a role for magnesium in reducing risk of T2D, with a statistically significant linear dose-response pattern within the reference dose range of dietary intake among Asian and US populations. The evidence from Europe and black people is limited and more prospective studies are needed for the two subgroups.

  13. Comparison of co-expression measures: mutual information, correlation, and model based indices.

    PubMed

    Song, Lin; Langfelder, Peter; Horvath, Steve

    2012-12-09

    Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.

  14. Zinc Levels in Left Ventricular Hypertrophy.

    PubMed

    Huang, Lei; Teng, Tianming; Bian, Bo; Yao, Wei; Yu, Xuefang; Wang, Zhuoqun; Xu, Zhelong; Sun, Yuemin

    2017-03-01

    Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.

  15. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    USGS Publications Warehouse

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P < 0.10) negative slopes estimated for the higher quantiles (>80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  16. The relationship between praying and life expectancy in cancerous patients.

    PubMed

    Hekmati Pour, N; Hojjati, H

    2015-01-01

    Introduction. Knowing that someone was entangled with cancer is a surprising experience for that person. Being aware of having cancer not only makes the person loose his hopes and ambitions, but also influences his body and mental. Meanwhile, religion can play the proper role of complementary treatment, increasing life expectancy in these patients. Objective. The study was conducted with the aim of determining the relationship between praying and life expectancy in cancerous patients. Method. This descriptive correlation study was performed on 96 malignant patients who were under chemotherapy in Golestan province in 1392. Paloma and Pendleton's Measure of Prayer Type questionnaires and Schneider questionnaire of life expectancy were used to collect this information. Analyses were performed by using SPSS 21.0. Data were analyzed by using the linear regression and the analytical significance was set at p < 0.05. Findings. The linear regression showed a significant relationship between life expectancy and praying (CI95:0.01-0.13), OR = 0.07, Beta = -0.24 P < 0.02) and in the light of previous experience it showed a significant relationship between praying and life expectancy. Conclusion. According to the obtained result of this study, cancerous patients can overcome their illness through praying, and they can also triumph cancer through self-confidence and control it, by getting more knowledge of their disease and become more hopeful about their future.

  17. [The Quality of the Family Physician-Patient Relationship. Patient-Related Predictors in a Sample Representative for the German Population].

    PubMed

    Dinkel, Andreas; Schneider, Antonius; Schmutzer, Gabriele; Brähler, Elmar; Henningsen, Peter; Häuser, Winfried

    2016-03-01

    Patient-centeredness and a strong working alliance are core elements of family medicine. Surveys in Germany showed that most people are satisfied with the quality of the family physician-patient relationship. However, factors that are responsible for the quality of the family physician-patient relationship remain unclear. This study aimed at identifying patient-related predictors of the quality of this relationship. Participants of a cross-sectional survey representative for the general German population were assessed using standardized questionnaires. The perceived quality of the family physician-patient relationship was measured with the German version of the Patient-Doctor Relationship Questionnaire (PDRQ-9). Associations of demographic and clinical variables (comorbidity, somatic symptom burden, psychological distress) with the quality of the family physician-patient relationship were assessed by applying hierarchical linear regression. 2278 participants (91,9%) reported having a family physician. The mean total score of the PDRQ-9 was high (M=4,12, SD=0,70). The final regression model showed that higher age, being female, and most notably less somatic and less depressive symptoms predicted a higher quality of the family physician-patient relationship. Comorbidity lost significance when somatic symptom burden was added to the regression model. The final model explained 11% of the variance, indicating a small effect. Experiencing somatic and depressive symptoms emerged as most relevant patient-related predictors of the quality of the family physician-patient relationship. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Identification of International Classification of Functioning, Disability and Health categories for patients with peripheral arterial disease.

    PubMed

    Vyskocil, Erich; Gruther, Wolfgang; Steiner, Irene; Schuhfried, Othmar

    2014-07-01

    Disease-specific categories of the International Classification of Functioning, Disability and Health have not yet been described for patients with chronic peripheral arterial obstructive disease (PAD). The authors examined the relationship between the categories of the Brief Core Sets for ischemic heart diseases with the Peripheral Artery Questionnaire and the ankle-brachial index to determine which International Classification of Functioning, Disability and Health categories are most relevant for patients with PAD. This is a retrospective cohort study including 77 patients with verified PAD. Statistical analyses of the relationship between International Classification of Functioning, Disability and Health categories as independent variables and the endpoints Peripheral Artery Questionnaire or ankle-brachial index were carried out by simple and stepwise linear regression models adjusting for age, sex, and leg (left vs. right). The stepwise linear regression model with the ankle-brachial index as dependent variable revealed a significant effect of the variables blood vessel functions and muscle endurance functions. Calculating a stepwise linear regression model with the Peripheral Artery Questionnaire as dependent variable, a significant effect of age, emotional functions, energy and drive functions, carrying out daily routine, as well as walking could be observed. This study identifies International Classification of Functioning, Disability and Health categories in the Brief Core Sets for ischemic heart diseases that show a significant effect on the ankle-brachial index and the Peripheral Artery Questionnaire score in patients with PAD. These categories provide fundamental information on functioning of patients with PAD and patient-centered outcomes for rehabilitation interventions.

  19. Cooperation without Culture? The Null Effect of Generalized Trust on Intentional Homicide: A Cross-National Panel Analysis, 1995–2009

    PubMed Central

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation. PMID:23527211

  20. A National Study of the Association between Food Environments and County-Level Health Outcomes

    ERIC Educational Resources Information Center

    Ahern, Melissa; Brown, Cheryl; Dukas, Stephen

    2011-01-01

    Purpose: This national, county-level study examines the relationship between food availability and access, and health outcomes (mortality, diabetes, and obesity rates) in both metro and non-metro areas. Methods: This is a secondary, cross-sectional analysis using Food Environment Atlas and CDC data. Linear regression models estimate relationships…

  1. Faculty Personality: A Factor of Student Retention

    ERIC Educational Resources Information Center

    Shaw, Cassandra S.; Wu, Xiaodong; Irwin, Kathleen C.; Patrizi, L. A. Chad

    2016-01-01

    The purpose of this study was to determine the relationship between student retention and faculty personality as it was hypothesized that faculty personality has an effect on student retention. The methodology adopted for this study was quantitative and in two parts 1) using linear regression models to examine the impact or causality of faculty…

  2. What Is the Relationship between Teacher Quality and Student Achievement? An Exploratory Study

    ERIC Educational Resources Information Center

    Stronge, James H.; Ward, Thomas J.; Tucker, Pamela D.; Hindman, Jennifer L.

    2007-01-01

    The major purpose of the study was to examine what constitutes effective teaching as defined by measured increases in student learning with a focus on the instructional behaviors and practices. Ordinary least squares (OLS) regression analyses and hierarchical linear modeling (HLM) were used to identify teacher effectiveness levels while…

  3. Exposure to Media Violence and Other Correlates of Aggressive Behavior in Preschool Children

    ERIC Educational Resources Information Center

    Daly, Laura A.; Perez, Linda M.

    2009-01-01

    This article examines the play behavior of 70 preschool children and its relationship to television violence and regulatory status. Linear regression analysis showed that violent program content and poor self-regulation were independently and significantly associated with overall and physical aggression. Advanced maternal age and child age and…

  4. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  5. RELATIONSHIPS OF QUANTITATIVE STRUCTURE-ACTIVITY TO COMPARATIVE TOXICITY OF SELECTED PHENOLS IN THE 'PIMEPHALES PROMELAS' AND 'TETRAHYMENA PYRIFORMIS' TEST SYSTEMS

    EPA Science Inventory

    The relative toxic response of 27 selected phenols in the 96-hr acute flowthrough Pimephales promelas (fathead minnow) and the 48- to 60-hr chronic static Tetrahymena pyriformis (ciliate protozoan) test systems was evaluated. Log Kow-dependent linear regression analyses revealed ...

  6. Student Motivation in Low-Stakes Assessment Contexts: An Exploratory Analysis in Engineering Mechanics

    ERIC Educational Resources Information Center

    Musekamp, Frank; Pearce, Jacob

    2016-01-01

    The goal of this paper is to examine the relationship of student motivation and achievement in low-stakes assessment contexts. Using Pearson product-moment correlations and hierarchical linear regression modelling to analyse data on 794 tertiary students who undertook a low-stakes engineering mechanics assessment (along with the questionnaire of…

  7. Variation in Environmentalism among University Students: Majoring in Outdoor Recreation, Parks, and Tourism Predicts Environmental Concerns and Behaviors

    ERIC Educational Resources Information Center

    Arnocky, Steven; Stroink, Mirella L.

    2011-01-01

    In a survey of Canadian university students (N = 205), the relationship between majoring in an outdoor recreation university program and environmental concern, cooperation, and behavior were examined. Stepwise linear regression indicated that enrollment in outdoor recreation was predictive of environmental behavior and ecological cooperation; and…

  8. Nonparametric regression applied to quantitative structure-activity relationships

    PubMed

    Constans; Hirst

    2000-03-01

    Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models--a computationally more expedient approach, better suited for low-density designs. Performances were benchmarked against the nonlinear method of smoothing splines. A linear reference point was provided by multilinear regression (MLR). Variable selection was explored using systematic combinations of different variables and combinations of principal components. For the data set examined, 47 inhibitors of dopamine beta-hydroxylase, the additive nonparametric regressors have greater predictive accuracy (as measured by the mean absolute error of the predictions or the Pearson correlation in cross-validation trails) than MLR. The use of principal components did not improve the performance of the nonparametric regressors over use of the original descriptors, since the original descriptors are not strongly correlated. It remains to be seen if the nonparametric regressors can be successfully coupled with better variable selection and dimensionality reduction in the context of high-dimensional QSARs.

  9. Mental ability and psychological work performance in Chinese workers.

    PubMed

    Zhong, Fei; Yano, Eiji; Lan, Yajia; Wang, Mianzhen; Wang, Zhiming; Wang, Xiaorong

    2006-10-01

    This study was to explore the relationship among mental ability, occupational stress, and psychological work performance in Chinese workers, and to identify relevant modifiers of mental ability and psychological work performance. Psychological Stress Intensity (PSI), psychological work performance, and mental ability (Mental Function Index, MFI) were determined among 485 Chinese workers (aged 33 to 62 yr, 65% of men) with varied work occupations. Occupational Stress Questionnaire (OSQ) and mental ability with 3 tests (including immediate memory, digit span, and cipher decoding) were used. The relationship between mental ability and psychological work performance was analyzed with multiple linear regression approach. PSI, MFI, or psychological work performance were significantly different among different work types and educational level groups (p<0.01). Multiple linear regression analysis showed that MFI was significantly related to gender, age, educational level, and work type. Higher MFI and lower PSI predicted a better psychological work performance, even after adjusted for gender, age, educational level, and work type. The study suggests that occupational stress and low mental ability are important predictors for poor psychological work performance, which is modified by both gender and educational level.

  10. Depression and coping in subthreshold eating disorders.

    PubMed

    Dennard, E Eliot; Richards, C Steven

    2013-08-01

    The eating disorder literature has sought to understand the role of comorbid psychiatric diagnoses and coping in relation to eating disorders. The present research extends these findings by studying the relationships among depression, coping, and the entire continuum of disordered eating behaviors, with an emphasis on subthreshold eating disorders. 109 undergraduate females completed questionnaires to assess disordered eating symptoms, depressive symptoms, and the use of active and avoidant coping mechanisms. Hypotheses were tested using bivariate linear regression and multivariate linear regression. Results indicated that depression was a significant predictor of disordered eating symptoms after controlling for relationships between depression and coping. Although avoidant coping was positively associated with disordered eating, it was not a significant predictor after controlling for depression and coping. Previous research has found associations between depression and diagnosable eating disorders, and this research extends those findings to the entire continuum of disordered eating. Future research should continue to investigate the predictors and correlates of the disordered eating continuum using more diverse samples. Testing for mediation and moderation among these variables may also be a fruitful area of investigation. Published by Elsevier Ltd.

  11. Microbial Transformation of Esters of Chlorinated Carboxylic Acids

    PubMed Central

    Paris, D. F.; Wolfe, N. L.; Steen, W. C.

    1984-01-01

    Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459

  12. Development of statistical linear regression model for metals from transportation land uses.

    PubMed

    Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kim, Lee-Hyung

    2009-01-01

    The transportation landuses possessing impervious surfaces such as highways, parking lots, roads, and bridges were recognized as the highly polluted non-point sources (NPSs) in the urban areas. Lots of pollutants from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off during a storm. In Korea, the identification and monitoring of NPSs still represent a great challenge. Since 2004, the Ministry of Environment (MOE) has been engaged in several researches and monitoring to develop stormwater management policies and treatment systems for future implementation. The data over 131 storm events during May 2004 to September 2008 at eleven sites were analyzed to identify correlation relationships between particulates and metals, and to develop simple linear regression (SLR) model to estimate event mean concentration (EMC). Results indicate that there was no significant relationship between metals and TSS EMC. However, the SLR estimation models although not providing useful results are valuable indicators of high uncertainties that NPS pollution possess. Therefore, long term monitoring employing proper methods and precise statistical analysis of the data should be undertaken to eliminate these uncertainties.

  13. Linear Regression between CIE-Lab Color Parameters and Organic Matter in Soils of Tea Plantations

    NASA Astrophysics Data System (ADS)

    Chen, Yonggen; Zhang, Min; Fan, Dongmei; Fan, Kai; Wang, Xiaochang

    2018-02-01

    To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0-10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) ( r = -0.84 and -0.80, respectively), a* value (correlation coefficient r = -0.51 and -0.46, respectively) and b* value ( r = -0.76 and -0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.

  14. Validation of alternative indicators of social support in perinatal outcomes research using quality of the partner relationship.

    PubMed

    Kruse, Julie A; Low, Lisa Kane; Seng, Julia S

    2013-07-01

    To test alternatives to the current research and clinical practice of assuming that married or partnered status is a proxy for positive social support. Having a partner is assumed to relate to better health status via the intermediary process of social support. However, women's health research indicates that having a partner is not always associated with positive social support. An exploratory post hoc analysis focused on posttraumatic stress and childbearing was conducted using a large perinatal database from 2005-2009. To operationalize partner relationship, four variables were analysed: partner ('yes' or 'no'), intimate partner violence ('yes' or 'no'), the combination of those two factors, and the woman's appraisal of the quality of her partner relationship via a single item. Construct validity of these four alternative variables was assessed in relation to appraisal of the partner's social support in labour and the postpartum using linear regression standardized betas and adjusted R-squares. Predictive validity was assessed using unadjusted and adjusted linear regression modelling. Four groups were compared. Married, abused women differed most from married, not abused women in relation to the social support, and depression outcomes used for validity checks. The variable representing the women's appraisals of their partner relationships accounts for the most variance in predicting depression scores. Our results support the validity of operationalizing the impact of the partner relationship on outcomes using a combination of partnered status and abuse status or using a subjective rating of quality of the partner relationship. © 2012 Blackwell Publishing Ltd.

  15. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form

    PubMed Central

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-01-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride (Rf value of 0.55±0.02) and pantoprazole sodium (Rf value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance–absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9988±0.0012 in the concentration range of 100–400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R2=0.9990±0.0008 in the concentration range of 200–1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method. PMID:29403710

  16. Stability indicating high performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in combined dosage form.

    PubMed

    Bageshwar, Deepak; Khanvilkar, Vineeta; Kadam, Vilasrao

    2011-11-01

    A specific, precise and stability indicating high-performance thin-layer chromatographic method for simultaneous estimation of pantoprazole sodium and itopride hydrochloride in pharmaceutical formulations was developed and validated. The method employed TLC aluminium plates precoated with silica gel 60F 254 as the stationary phase. The solvent system consisted of methanol:water:ammonium acetate; 4.0:1.0:0.5 (v/v/v). This system was found to give compact and dense spots for both itopride hydrochloride ( R f value of 0.55±0.02) and pantoprazole sodium ( R f value of 0.85±0.04). Densitometric analysis of both drugs was carried out in the reflectance-absorbance mode at 289 nm. The linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9988±0.0012 in the concentration range of 100-400 ng for pantoprazole sodium. Also, the linear regression analysis data for the calibration plots showed a good linear relationship with R 2 =0.9990±0.0008 in the concentration range of 200-1200 ng for itopride hydrochloride. The method was validated for specificity, precision, robustness and recovery. Statistical analysis proves that the method is repeatable and selective for the estimation of both the said drugs. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating method.

  17. Morphological Awareness and Children's Writing: Accuracy, Error, and Invention

    PubMed Central

    McCutchen, Deborah; Stull, Sara

    2014-01-01

    This study examined the relationship between children's morphological awareness and their ability to produce accurate morphological derivations in writing. Fifth-grade U.S. students (n = 175) completed two writing tasks that invited or required morphological manipulation of words. We examined both accuracy and error, specifically errors in spelling and errors of the sort we termed morphological inventions, which entailed inappropriate, novel pairings of stems and suffixes. Regressions were used to determine the relationship between morphological awareness, morphological accuracy, and spelling accuracy, as well as between morphological awareness and morphological inventions. Linear regressions revealed that morphological awareness uniquely predicted children's generation of accurate morphological derivations, regardless of whether or not accurate spelling was required. A logistic regression indicated that morphological awareness was also uniquely predictive of morphological invention, with higher morphological awareness increasing the probability of morphological invention. These findings suggest that morphological knowledge may not only assist children with spelling during writing, but may also assist with word production via generative experimentation with morphological rules during sentence generation. Implications are discussed for the development of children's morphological knowledge and relationships with writing. PMID:25663748

  18. Patterns of shading tolerance determined from experimental ...

    EPA Pesticide Factsheets

    An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly significant linear relationships of both percent biomass and percent shoot density reduction versus percent light reduction (versus controls), although unexplained variation in the data were high. Duration of exposure affected extent of response for both metrics, but was more clearly a factor in biomass response. Both biomass and shoot density showed linear responses to duration of light reduction for treatments 60%. Unexplained variation was again high, and greater for shoot density than biomass. With few exceptions, regressions of both biomass and shoot density on light reduction for individual species and for genera were statistically significant, but also tended to show high degrees of variability in data. Multivariate regressions that included both percent light reduction and duration of reduction as dependent variables increased the percentage of variation explained in almost every case. Analysis of response data by seagrass life history category (Colonizing, Opportunistic, Persistent) did not yield clearly separate response relationships in most cases. Biomass tended to show somewhat less variation in response to light reduction than shoot density, and of the two, may be the prefe

  19. [Spatial heterogeneity in body condition of small yellow croaker in Yellow Sea and East China Sea based on mixed-effects model and quantile regression analysis].

    PubMed

    Liu, Zun-Lei; Yuan, Xing-Wei; Yan, Li-Ping; Yang, Lin-Lin; Cheng, Jia-Hua

    2013-09-01

    By using the 2008-2010 investigation data about the body condition of small yellow croaker in the offshore waters of southern Yellow Sea (SYS), open waters of northern East China Sea (NECS), and offshore waters of middle East China Sea (MECS), this paper analyzed the spatial heterogeneity of body length-body mass of juvenile and adult small yellow croakers by the statistical approaches of mean regression model and quantile regression model. The results showed that the residual standard errors from the analysis of covariance (ANCOVA) and the linear mixed-effects model were similar, and those from the simple linear regression were the highest. For the juvenile small yellow croakers, their mean body mass in SYS and NECS estimated by the mixed-effects mean regression model was higher than the overall average mass across the three regions, while the mean body mass in MECS was below the overall average. For the adult small yellow croakers, their mean body mass in NECS was higher than the overall average, while the mean body mass in SYS and MECS was below the overall average. The results from quantile regression indicated the substantial differences in the allometric relationships of juvenile small yellow croakers between SYS, NECS, and MECS, with the estimated mean exponent of the allometric relationship in SYS being 2.85, and the interquartile range being from 2.63 to 2.96, which indicated the heterogeneity of body form. The results from ANCOVA showed that the allometric body length-body mass relationships were significantly different between the 25th and 75th percentile exponent values (F=6.38, df=1737, P<0.01) and the 25th percentile and median exponent values (F=2.35, df=1737, P=0.039). The relationship was marginally different between the median and 75th percentile exponent values (F=2.21, df=1737, P=0.051). The estimated body length-body mass exponent of adult small yellow croakers in SYS was 3.01 (10th and 95th percentiles = 2.77 and 3.1, respectively). The estimated body length-body mass relationships were significantly different from the lower and upper quantiles of the exponent (F=3.31, df=2793, P=0.01) and the median and upper quantiles (F=3.56, df=2793, P<0.01), while no significant difference was observed between the lower and median quantiles (F=0.98, df=2793, P=0.43).

  20. Association between surgeon volume and hospitalisation costs for patients with oral cancer: a nationwide population base study in Taiwan.

    PubMed

    Lee, C-C; Ho, H-C; Jack, Lee C-C; Su, Y-C; Lee, M-S; Hung, S-K; Chou, Pesus

    2010-02-01

    Oral cancer leads to a considerable use of and expenditure on health care. Wide resection of the tumour and reconstruction with a pedicle flap/free flap is widely used. This study was conducted to explore the relationship between hospitalisation costs and surgeon case volume when this operation was performed. A population-based study. This study uses data for the years 2005-2006 obtained from the National Health Insurance Research Database published in the Taiwanese National Health Research Institute. From this population-based data, the authors selected a total of 2663 oral cancer patients who underwent tumour resection and reconstruction. Case volume relationships were based on the following criteria; low-, medium-, high-, very high-volume surgeons were defined by or= 56 resections with reconstruction, respectively. Hierarchical linear regression analysis was subsequently performed to explore the relationship between surgeon case volume and the cost and length of hospitalisation. The mean hospitalisation cost among the 2663 patients was US$ 9528 (all costs are given in US dollars). After adjusting for physician, hospital, and patient characteristics in a hierarchical linear regression model, the cost per patient for low-volume surgeons was found to be US$ 741 (P = 0.012) higher than that for medium-volume surgeons, US$ 1546 (P < 0.001) higher than that for high-volume surgeons, and US$ 1820 (P < 0.001) higher than that for very-high-volume surgeons. After adjustment for physician, hospital, and patient characteristics, the hierarchical linear regression model revealed that the mean length of stay per patient for low-volume surgeons was the highest (P < 0.001). After adjustment for physician, hospital, and patient characteristics, low-volume surgeons performing wide excision with reconstructive surgery in oral cancer patients incurred significantly higher costs and longer hospital stays per patient than did other surgeons. Treatment strategies adopted by high- and very-high-volume surgeons should be analysed further and utilised more widely.

  1. Jobs and the resource curse in the sun: The effects of oil production on female labor force participation in California counties from 1980-2010

    NASA Astrophysics Data System (ADS)

    Zavala, Gabriel

    This study aims to evaluate the relationship between oil income and the female labor force participation rate in California for the years of 1980, 1990, 2000 and 2010 using panel linear regression models. This study also aims to visualize the spatial patterns of both variables in California through Hot Spot analysis at the county level for the same years. The regression found no sign of a relationship between oil income and female labor force participation rate but did find evidence of a positive relationship between two income control variables and the female labor force participation rate. The hot spot analysis also found that female labor force participation cold spots are not spatially correlated with oil production hot spots. These findings contribute new methodologies at a finer scale to the very nuanced discussion of the resource curse in the United States.

  2. Experimental Study on the Relationship between Hardness and Principal Strain in Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Wang, G. D.; Chan, L. C.

    2009-11-01

    In order to find a feasible method to evaluate the deformation of tubes during the Tube Hydroforming (THF) process, the hardness and the strain in two selected deformation areas of hydro formed copper tubes (C11000) were measured and tested, and an instinct relationship was found between the hardness and the principal strains of the tubes. The major strain of the surface of tubes had the strongest linear relationship with hardness. A regression formula was used to describe the relationship between hardness and the sensitive strain which is defined in the present work as a dependent variable of major strain and thickness strain.

  3. Runoff load estimation of particulate and dissolved nitrogen in Lake Inba watershed using continuous monitoring data on turbidity and electric conductivity.

    PubMed

    Kim, J; Nagano, Y; Furumai, H

    2012-01-01

    Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.

  4. Does Age Affect the Relationship Between Pain and Disability? A Descriptive Study in Individuals Suffering From Chronic Low Back Pain.

    PubMed

    Houde, Francis; Cabana, François; Léonard, Guillaume

    2016-01-01

    Previous studies have revealed a weak to moderate relationship between pain and disability in individuals suffering from low back pain (LBP). However, to our knowledge, no studies have evaluated if this relationship is different between young and older adults. The objective of this descriptive, cross-sectional study was to determine whether the relationship between LBP intensity and physical disability is different between young and older adults. Pain intensity (measured with a visual analog scale) and physical disability scores (measured with the Oswestry Disability Index) were collected from the medical files of 164 patients with LBP. Separate Pearson correlation coefficients were calculated between these 2 variables for young (mean age 40 ± 6 years, n = 82) and older (62 ± 9 years, n = 82) individuals and a Fisher r-to-z transformation was used to test for group differences in the strength of the relationship. Linear regression analyses were also performed to determine whether the slope of the association was different between the 2 groups. A significant and positive association was found between pain intensity and disability for both young and older individuals. However, the correlation was stronger in the young group (r = 0.66; P < .01) than in the older group (r = 0.44; P < .01) (Fisher Z = 2.03; P < .05). The linear regression model also revealed that the slope of the relationship was steeper in the young group (P < .05). Although both young and older individuals showed a significant association between pain intensity and disability, the relationship between these 2 variables was more tenuous in older individuals than in young patients. Future research is essential to identify the factors underlying this age-related difference.

  5. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    PubMed

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  6. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China

    PubMed Central

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management. PMID:29324901

  7. Predictive value of grade point average (GPA), Medical College Admission Test (MCAT), internal examinations (Block) and National Board of Medical Examiners (NBME) scores on Medical Council of Canada qualifying examination part I (MCCQE-1) scores.

    PubMed

    Roy, Banibrata; Ripstein, Ira; Perry, Kyle; Cohen, Barry

    2016-01-01

    To determine whether the pre-medical Grade Point Average (GPA), Medical College Admission Test (MCAT), Internal examinations (Block) and National Board of Medical Examiners (NBME) scores are correlated with and predict the Medical Council of Canada Qualifying Examination Part I (MCCQE-1) scores. Data from 392 admitted students in the graduating classes of 2010-2013 at University of Manitoba (UofM), College of Medicine was considered. Pearson's correlation to assess the strength of the relationship, multiple linear regression to estimate MCCQE-1 score and stepwise linear regression to investigate the amount of variance were employed. Complete data from 367 (94%) students were studied. The MCCQE-1 had a moderate-to-large positive correlation with NBME scores and Block scores but a low correlation with GPA and MCAT scores. The multiple linear regression model gives a good estimate of the MCCQE-1 (R2 =0.604). Stepwise regression analysis demonstrated that 59.2% of the variation in the MCCQE-1 was accounted for by the NBME, but only 1.9% by the Block exams, and negligible variation came from the GPA and the MCAT. Amongst all the examinations used at UofM, the NBME is most closely correlated with MCCQE-1.

  8. Objectively measured sedentary time and academic achievement in schoolchildren.

    PubMed

    Lopes, Luís; Santos, Rute; Mota, Jorge; Pereira, Beatriz; Lopes, Vítor

    2017-03-01

    This study aimed to evaluate the relationship between objectively measured total sedentary time and academic achievement (AA) in Portuguese children. The sample comprised of 213 children (51.6% girls) aged 9.46 ± 0.43 years, from the north of Portugal. Sedentary time was measured with accelerometry, and AA was assessed using the Portuguese Language and Mathematics National Exams results. Multilevel linear regression models were fitted to assess regression coefficients predicting AA. The results showed that objectively measured total sedentary time was not associated with AA, after adjusting for potential confounders.

  9. Area under the curve predictions of dalbavancin, a new lipoglycopeptide agent, using the end of intravenous infusion concentration data point by regression analyses such as linear, log-linear and power models.

    PubMed

    Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally

    2018-02-01

    1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE < 10.3%. The external data evaluation showed that the models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.

  10. Addressing the unemployment-mortality conundrum: non-linearity is the answer.

    PubMed

    Bonamore, Giorgio; Carmignani, Fabrizio; Colombo, Emilio

    2015-02-01

    The effect of unemployment on mortality is the object of a lively literature. However, this literature is characterized by sharply conflicting results. We revisit this issue and suggest that the relationship might be non-linear. We use data for 265 territorial units (regions) within 23 European countries over the period 2000-2012 to estimate a multivariate regression of mortality. The estimating equation allows for a quadratic relationship between unemployment and mortality. We control for various other determinants of mortality at regional and national level and we include region-specific and time-specific fixed effects. The model is also extended to account for the dynamic adjustment of mortality and possible lagged effects of unemployment. We find that the relationship between mortality and unemployment is U shaped. In the benchmark regression, when the unemployment rate is low, at 3%, an increase by one percentage point decreases average mortality by 0.7%. As unemployment increases, the effect decays: when the unemployment rate is 8% (sample average) a further increase by one percentage point decreases average mortality by 0.4%. The effect changes sign, turning from negative to positive, when unemployment is around 17%. When the unemployment rate is 25%, a further increase by one percentage point raises average mortality by 0.4%. Results hold for different causes of death and across different specifications of the estimating equation. We argue that the non-linearity arises because the level of unemployment affects the psychological and behavioural response of individuals to worsening economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. An Evaluation of Project iRead: A Program Created to Improve Sight Word Recognition

    ERIC Educational Resources Information Center

    Marshall, Theresa Meade

    2014-01-01

    This program evaluation was undertaken to examine the relationship between participation in Project iRead and student gains in word recognition, fluency, and comprehension as measured by the Phonological Awareness Literacy Screening (PALS) Test. Linear regressions compared the 2012-13 PALS results from 5,140 first and second grade students at…

  12. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  13. Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California

    Treesearch

    Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert

    1991-01-01

    Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....

  14. 77 FR 3147 - Approval and Promulgation of Air Quality Implementation Plans; Delaware, New Jersey, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... monitors with missing data. Maximum recorded values are substituted for the missing data. The resulting... which the incomplete site is missing data. The linear regression relationship is based on time periods... between the monitors is used to fill in missing data for the incomplete monitor, so that the normal data...

  15. The Role of Social Relationships in Predicting Loneliness: The National Social Life, Health, and Aging Project

    ERIC Educational Resources Information Center

    Shiovitz-Ezra, Sharon; Leitsch, Sara A.

    2010-01-01

    The authors explore associations between objective and subjective social network characteristics and loneliness in later life, using data from the National Social Life, Health, and Aging Project, a nationally representative sample of individuals ages 57 to 85 in the United States. Hierarchical linear regression was used to examine the associations…

  16. Food insecurity, CD4 counts, and incomplete viral suppression among HIV+ patients from Texas Children's Hospital: A pilot study

    USDA-ARS?s Scientific Manuscript database

    Our goal was to determine the relationship between food insecurity and CD4 counts and viral suppression among pediatric HIV-positive patients. Food insecurity was assessed by validated survey. CD4 counts and viral load were abstracted from patients’ charts. We used linear regression for the dependen...

  17. Financial Aid Tipping Points: An Analysis of Aid and Academic Achievement at a California Community College

    ERIC Educational Resources Information Center

    Coria, Elizabeth; Hoffman, John L.

    2016-01-01

    The purpose of this study was to explore relationships between financial aid awards and measures of student academic achievement. Financial aid and academic records for 11,956 students attending an urban California community college were examined and analyzed using simultaneous linear regression and two-way factorial ANOVAs. Findings revealed a…

  18. Eat, Drink, Man, Woman: Gender, Income Share and Household Expenditure in South Africa

    ERIC Educational Resources Information Center

    Gummerson, Elizabeth; Schneider, Daniel

    2013-01-01

    This study examines how gendered household bargaining occurs in non-nuclear family households. We employ two South African data sets and use linear regression and household fixed effects to investigate the relationship between women's income shares and household expenditures. In married couple households, when women garner larger shares of income,…

  19. Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils

    Treesearch

    Mark Kimsey; Brian Gardner; Alan Busacca

    2007-01-01

    Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...

  20. Examining the Variability of Mathematics Performance and Its Correlates Using Data from TIMSS '95 and TIMSS '99

    ERIC Educational Resources Information Center

    O'Dwyer, Laura M.

    2005-01-01

    International studies in education provide researchers with opportunities to examine how students with both similar and dissimilar formal education systems perform on a single test and provide rich information about the relationships among student outcomes and the factors that affect them. Using hierarchical linear regression techniques and TIMSS…

  1. Techniques of data analysis and presentation for planners of the metropolitan environment

    Treesearch

    Joelee Normand

    1977-01-01

    Relationships between the characteristics of the physical environment of a metropolitan area and the activities of its human inhabitants can be used to predict probable future dynamic trends, both demographic and environmental. Using simple linear regression, we were able to highlight several dynamic features of the metropolitan area of Tulsa, Oklahoma. Computer movies...

  2. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases.

    PubMed

    Chen, Weiyi; Niu, Xiaojun; An, Shaorong; Sheng, Hong; Tang, Zhenghua; Yang, Zhiquan; Gu, Xiaohong

    2017-12-01

    Phosphine (PH 3 ), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO 2 ) and methane (CH 4 ) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO 2 emission flux and PH 3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH 4 and PH 3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH 3 ] flux =0.007[CO 2 ] flux +0.063[CH 4 ] flux -4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO 2 ), and soil methane (SCH 4 ) in paddy soils. However, there was a significant positive correlation between MBP and SCO 2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO 2 and SCH 4 . Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Abnormal dynamics of language in schizophrenia.

    PubMed

    Stephane, Massoud; Kuskowski, Michael; Gundel, Jeanette

    2014-05-30

    Language could be conceptualized as a dynamic system that includes multiple interactive levels (sub-lexical, lexical, sentence, and discourse) and components (phonology, semantics, and syntax). In schizophrenia, abnormalities are observed at all language elements (levels and components) but the dynamic between these elements remains unclear. We hypothesize that the dynamics between language elements in schizophrenia is abnormal and explore how this dynamic is altered. We, first, investigated language elements with comparable procedures in patients and healthy controls. Second, using measures of reaction time, we performed multiple linear regression analyses to evaluate the inter-relationships among language elements and the effect of group on these relationships. Patients significantly differed from controls with respect to sub-lexical/lexical, lexical/sentence, and sentence/discourse regression coefficients. The intercepts of the regression slopes increased in the same order above (from lower to higher levels) in patients but not in controls. Regression coefficients between syntax and both sentence level and discourse level semantics did not differentiate patients from controls. This study indicates that the dynamics between language elements is abnormal in schizophrenia. In patients, top-down flow of linguistic information might be reduced, and the relationship between phonology and semantics but not between syntax and semantics appears to be altered. Published by Elsevier Ireland Ltd.

  4. Association of comorbid mental health symptoms and physical health conditions with employee productivity.

    PubMed

    Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela

    2009-10-01

    This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.

  5. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  6. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  7. Testing the Dose–Response Specification in Epidemiology: Public Health and Policy Consequences for Lead

    PubMed Central

    Rothenberg, Stephen J.; Rothenberg, Jesse C.

    2005-01-01

    Statistical evaluation of the dose–response function in lead epidemiology is rarely attempted. Economic evaluation of health benefits of lead reduction usually assumes a linear dose–response function, regardless of the outcome measure used. We reanalyzed a previously published study, an international pooled data set combining data from seven prospective lead studies examining contemporaneous blood lead effect on IQ (intelligence quotient) of 7-year-old children (n = 1,333). We constructed alternative linear multiple regression models with linear blood lead terms (linear–linear dose response) and natural-log–transformed blood lead terms (log-linear dose response). We tested the two lead specifications for nonlinearity in the models, compared the two lead specifications for significantly better fit to the data, and examined the effects of possible residual confounding on the functional form of the dose–response relationship. We found that a log-linear lead–IQ relationship was a significantly better fit than was a linear–linear relationship for IQ (p = 0.009), with little evidence of residual confounding of included model variables. We substituted the log-linear lead–IQ effect in a previously published health benefits model and found that the economic savings due to U.S. population lead decrease between 1976 and 1999 (from 17.1 μg/dL to 2.0 μg/dL) was 2.2 times ($319 billion) that calculated using a linear–linear dose–response function ($149 billion). The Centers for Disease Control and Prevention action limit of 10 μg/dL for children fails to protect against most damage and economic cost attributable to lead exposure. PMID:16140626

  8. Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach.

    PubMed

    Ding, Chuan; Chen, Peng; Jiao, Junfeng

    2018-03-01

    Although a growing body of literature focuses on the relationship between the built environment and pedestrian crashes, limited evidence is provided about the relative importance of many built environment attributes by accounting for their mutual interaction effects and their non-linear effects on automobile-involved pedestrian crashes. This study adopts the approach of Multiple Additive Poisson Regression Trees (MAPRT) to fill such gaps using pedestrian collision data collected from Seattle, Washington. Traffic analysis zones are chosen as the analytical unit. The effects of various factors on pedestrian crash frequency investigated include characteristics the of road network, street elements, land use patterns, and traffic demand. Density and the degree of mixed land use have major effects on pedestrian crash frequency, accounting for approximately 66% of the effects in total. More importantly, some factors show clear non-linear relationships with pedestrian crash frequency, challenging the linearity assumption commonly used in existing studies which employ statistical models. With various accurately identified non-linear relationships between the built environment and pedestrian crashes, this study suggests local agencies to adopt geo-spatial differentiated policies to establish a safe walking environment. These findings, especially the effective ranges of the built environment, provide evidence to support for transport and land use planning, policy recommendations, and road safety programs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Impact of sociodemographic variables on executive functions.

    PubMed

    Campanholo, Kenia Repiso; Boa, Izadora Nogueira Fonte; Hodroj, Flávia Cristina da Silva Araujo; Guerra, Glaucia Rosana Benute; Miotto, Eliane Correa; de Lucia, Mara Cristina Souza

    2017-01-01

    Executive functions (EFs) regulate human behavior and allow individuals to interact and act in the world. EFs are sensitive to sociodemographic variables such as age, which promotes their decline, and to others that can exert a neuroprotective effect. To assess the predictive role of education, occupation and family income on decline in executive functions among a sample with a wide age range. A total of 925 participants aged 18-89 years with 1-28 years' education were submitted to assessment of executive functions using the Card Sorting Test (CST), Phonemic Verbal Fluency (FAS) Task and Semantic Verbal Fluency (SVF) Task. Data on income, occupation and educational level were collected for the sample. The data were analyzed using Linear Regression, as well as Pearson's and Spearman's Correlation. Age showed a significant negative correlation (p<0.001) with performance on the CST, FAS and SVF, whereas education, income and occupation were positively associated (p<0.001) with the tasks applied. After application of the multivariate linear regression model, a significant positive relationship with the FAS was maintained only for education (p<0.001) and income (p<0.001). The negative relationship of age (p<0.001) and positive relationship of both education (p<0.001) and income (p<0.001and p=0.003) were evident on the CST and SVF. Educational level and income positively influenced participants' results on executive function tests, attenuating expected decline for age. However, no relationship was found between occupation and the cognitive variables investigated.

  10. Impact of sociodemographic variables on executive functions

    PubMed Central

    Campanholo, Kenia Repiso; Boa, Izadora Nogueira Fonte; Hodroj, Flávia Cristina da Silva Araujo; Guerra, Glaucia Rosana Benute; Miotto, Eliane Correa; de Lucia, Mara Cristina Souza

    2017-01-01

    Executive functions (EFs) regulate human behavior and allow individuals to interact and act in the world. EFs are sensitive to sociodemographic variables such as age, which promotes their decline, and to others that can exert a neuroprotective effect. Objective To assess the predictive role of education, occupation and family income on decline in executive functions among a sample with a wide age range. Methods A total of 925 participants aged 18-89 years with 1-28 years' education were submitted to assessment of executive functions using the Card Sorting Test (CST), Phonemic Verbal Fluency (FAS) Task and Semantic Verbal Fluency (SVF) Task. Data on income, occupation and educational level were collected for the sample. The data were analyzed using Linear Regression, as well as Pearson's and Spearman's Correlation. Results Age showed a significant negative correlation (p<0.001) with performance on the CST, FAS and SVF, whereas education, income and occupation were positively associated (p<0.001) with the tasks applied. After application of the multivariate linear regression model, a significant positive relationship with the FAS was maintained only for education (p<0.001) and income (p<0.001). The negative relationship of age (p<0.001) and positive relationship of both education (p<0.001) and income (p<0.001and p=0.003) were evident on the CST and SVF. Conclusion Educational level and income positively influenced participants' results on executive function tests, attenuating expected decline for age. However, no relationship was found between occupation and the cognitive variables investigated. PMID:29213495

  11. Relationship between body fat and BMI in a US hispanic population-based cohort study: Results from HCHS/SOL.

    PubMed

    Wong, William W; Strizich, Garrett; Heo, Moonseong; Heymsfield, Steven B; Himes, John H; Rock, Cheryl L; Gellman, Marc D; Siega-Riz, Anna Maria; Sotres-Alvarez, Daniela; Davis, Sonia M; Arredondo, Elva M; Van Horn, Linda; Wylie-Rosett, Judith; Sanchez-Johnsen, Lisa; Kaplan, Robert C; Mossavar-Rahmani, Yasmin

    2016-07-01

    To evaluate the percentage of body fat (%BF)-BMI relationship, identify %BF levels corresponding to adult BMI cut points, and examine %BF-BMI agreement in a diverse Hispanic/Latino population. %BF by bioelectrical impedance analysis was corrected against %BF by (18) O dilution in 434 participants of the ancillary Hispanic Community Health Study/Study of Latinos. Corrected %BF was regressed against 1/BMI in the parent study (n = 15,261), fitting models for each age group, by sex, and Hispanic/Latino background; predicted %BF was then computed for each BMI cut point. Bioelectrical impedance analysis underestimated %BF by 8.7 ± 0.3% in women and 4.6 ± 0.3% in men (P < 0.0001). The %BF-BMI relationship was nonlinear and linear for 1/BMI. Sex- and age-specific regression parameters between %BF and 1/BMI were consistent across Hispanic/Latino backgrounds (P > 0.05). The precision of the %BF-1/BMI association weakened with increasing age in men but not women. The proportion of participants classified as nonobese by BMI but as having obesity by %BF was generally higher among women and older adults (16.4% in women vs. 12.0% in men aged 50-74 years). %BF was linearly related to 1/BMI with consistent relationship across Hispanic/Latino backgrounds. BMI cut points consistently underestimated the proportion of Hispanics/Latinos with excess adiposity. © 2016 The Obesity Society.

  12. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  13. Cognitive flexibility correlates with gambling severity in young adults.

    PubMed

    Leppink, Eric W; Redden, Sarah A; Chamberlain, Samuel R; Grant, Jon E

    2016-10-01

    Although gambling disorder (GD) is often characterized as a problem of impulsivity, compulsivity has recently been proposed as a potentially important feature of addictive disorders. The present analysis assessed the neurocognitive and clinical relationship between compulsivity on gambling behavior. A sample of 552 non-treatment seeking gamblers age 18-29 was recruited from the community for a study on gambling in young adults. Gambling severity levels included both casual and disordered gamblers. All participants completed the Intra/Extra-Dimensional Set Shift (IED) task, from which the total adjusted errors were correlated with gambling severity measures, and linear regression modeling was used to assess three error measures from the task. The present analysis found significant positive correlations between problems with cognitive flexibility and gambling severity (reflected by the number of DSM-5 criteria, gambling frequency, amount of money lost in the past year, and gambling urge/behavior severity). IED errors also showed a positive correlation with self-reported compulsive behavior scores. A significant correlation was also found between IED errors and non-planning impulsivity from the BIS. Linear regression models based on total IED errors, extra-dimensional (ED) shift errors, or pre-ED shift errors indicated that these factors accounted for a significant portion of the variance noted in several variables. These findings suggest that cognitive flexibility may be an important consideration in the assessment of gamblers. Results from correlational and linear regression analyses support this possibility, but the exact contributions of both impulsivity and cognitive flexibility remain entangled. Future studies will ideally be able to assess the longitudinal relationships between gambling, compulsivity, and impulsivity, helping to clarify the relative contributions of both impulsive and compulsive features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  15. [Relationship between high-sensitivity C-reactive protein and obesity/metabolic syndrome in children].

    PubMed

    Chen, Fangfang; Wang, Wenpeng; Teng, Yue; Hou, Dongqing; Zhao, Xiaoyuan; Yang, Ping; Yan, Yinkun; Mi, Jie

    2014-06-01

    To explore the relationship between high-sensitivity C-reactive protein (hsCRP) and obesity/metabolic syndrome (MetS) related factors in children. 403 children aged 10-14 and born in Beijing were involved in this study. Height, weight, waist circumference, fat mass percentage (Fat%), blood pressure (BP), hsCRP, triglyceride (TG), total cholesterol (TC), fasting plasma glucose (FPG), high and low density lipoprotein cholesterol (HDL-C, LDL-C) were observed among these children. hsCRP was transformed with base 10 logarithm (lgCRP). MetS was defined according to the International Diabetes Federation 2007 definition. Associations between MetS related components and hsCRP were tested using partial correlation analysis, analysis of covariance and linear regression models. 1) lgCRP was positively correlated with BMI, waist circumference, Fat%,BP, FPG, LDL-C and TC while negatively correlated with HDL-C. With BMI under control, the relationships disappeared, but LDL-C (r = 0.102). 2) The distributions of lgCRP showed obvious differences in all the metabolic indices, in most groups, respectively. With BMI under control, close relationships between lgCRP and high blood pressure/high TG disappeared and the relationship with MetS weakened. 3) Through linear regression models, factors as waist circumference, BMI, Fat% were the strongest factors related to hsCRP, followed by systolic BP, HDL-C, diastolic BP, TG and LDL-C. With BMI under control, the relationships disappeared, but LDL-C(β = 0.045). hsCRP was correlated with child obesity, lipid metabolism and MetS. Waist circumference was the strongest factors related with hsCRP. Obesity was the strongest and the independent influencing factor of hsCRP.

  16. Temporal trend of green space coverage in China and its relationship with urbanization over the last two decades.

    PubMed

    Zhao, Juanjuan; Chen, Shengbin; Jiang, Bo; Ren, Yin; Wang, Hua; Vause, Jonathan; Yu, Haidong

    2013-01-01

    Irrespective of which side is taken in the densification-sprawl debate, insights into the relationship between urban green space coverage and urbanization have been recognized as essential for guiding sustainable urban development. However, knowledge of the relationships between socio-economic variables of urbanization and long-term green space change is still limited. In this paper, using simple regression, hierarchical partitioning and multi-regression, the temporal trend in green space coverage and its relationship with urbanization were investigated using data from 286 cities between 1989 and 2009, covering all provinces in mainland China with the exception of Tibet. We found that: [1] average green space coverage of cities investigated increased steadily from 17.0% in 1989 to 37.3% in 2009; [2] cities with higher recent green space coverage also had relatively higher green space coverage historically; [3] cities in the same region exhibited similar long-term trends in green space coverage; [4] eight of the nine variables characterizing urbanization showed a significant positive linear relationship with green space coverage, with 'per capita GDP' having the highest independent contribution (24.2%); [5] among the climatic and geographic factors investigated, only mean elevation showed a significant effect; and [6] using the seven largest contributing individual factors, a linear model to predict variance in green space coverage was constructed. Here, we demonstrated that green space coverage in built-up areas tended to reflect the effects of urbanization rather than those of climatic or geographic factors. Quantification of the urbanization effects and the characteristics of green space development in China may provide a valuable reference for research into the processes of urban sprawl and its relationship with green space change. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  18. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  19. Do age and gender contribute to workers' burnout symptoms?

    PubMed

    Marchand, A; Blanc, M-E; Beauregard, N

    2018-06-15

    Despite mounting evidence on the association between work stress and burnout, there is limited knowledge about the extent to which workers' age and gender are associated with burnout. To evaluate the relationship between age, gender and their interaction with burnout in a sample of Canadian workers. Data were collected in 2009-12 from a sample of 2073 Canadian workers from 63 workplaces in the province of Quebec. Data were analysed with multilevel regression models to test for linear and non-linear relationships between age and burnout. Analyses adjusted for marital status, parental status, educational level and number of working hours were conducted on the total sample and stratified by gender. Data were collected from a sample of 2073 Canadian workers (response rate 73%). Age followed a non-linear relationship with emotional exhaustion and total burnout, while it was linearly related to cynicism and reduced professional efficacy. Burnout level reduced with increasing age in men, but the association was bimodal in women, with women aged between 20-35 and over 55 years showing the highest burnout level. These results suggest that burnout symptoms varied greatly according to different life stages of working men and women. Younger men, and women aged between 20-35 and 55 years and over are particularly susceptible and should be targeted for programmes to reduce risk of burnout.

  20. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  1. Correlation between lung to thorax transverse area ratio and observed/expected lung area to head circumference ratio in fetuses with left-sided diaphragmatic hernia.

    PubMed

    Hidaka, Nobuhiro; Murata, Masaharu; Sasahara, Jun; Ishii, Keisuke; Mitsuda, Nobuaki

    2015-05-01

    Observed/expected lung area to head circumference ratio (o/e LHR) and lung to thorax transverse area ratio (LTR) are the sonographic indicators of postnatal outcome in fetuses with congenital diaphragmatic hernia (CDH), and they are not influenced by gestational age. We aimed to evaluate the relationship between these two parameters in the same subjects with fetal left-sided CDH. Fetuses with left-sided CDH managed between 2005 and 2012 were included. Data of LTR and o/e LHR values measured on the same day prior to 33 weeks' gestation in target fetuses were retrospectively collected. The correlation between the two parameters was estimated using the Spearman's rank-correlation coefficient, and linear regression analysis was used to assess the relationship between them. Data on 61 measurements from 36 CDH fetuses were analyzed to obtain a Spearman's rank-correlation coefficient of 0.74 with the following linear equation: LTR = 0.002 × (o/e LHR) + 0.005. The determination coefficient of this linear equation was sufficiently high at 0.712, and the prediction accuracy obtained with this regression formula was considered satisfactory. A good linear correlation between the LTR and the o/e LHR was obtained, suggesting that we can translate the predictive parameters for each other. This information is expected to be useful to improve our understanding of different investigations focusing on LTR or o/e LHR as a predictor of postnatal outcome in CDH. © 2014 Japanese Teratology Society.

  2. Disturbances of automatic gait control mechanisms in higher level gait disorder.

    PubMed

    Danoudis, Mary; Ganesvaran, Ganga; Iansek, Robert

    2016-07-01

    The underlying mechanisms responsible for the gait changes in frontal gait disorder (FGD), a form of higher level gait disorders, are poorly understood. We investigated the relationship between stride length and cadence (SLCrel) in people with FGD (n=15) in comparison to healthy older adults (n=21) to improve our understanding of the changes to gait in FGD. Gait data was captured using an electronic walkway system as participants walked at five self-selected speed conditions: preferred, very slow, slow, fast and very fast. Linear regression was used to determine the strength of the relationship (R(2)), slope and intercept. In the FGD group 9 participants had a strong SLCrel (linear group) (R(2)>0.8) and 6 a weak relationship (R(2)<0.8) (nonlinear group). The linear FGD group did not differ to healthy control for slope (p>0.05) but did have a lower intercept (p<0.001). The linear FGD group modulated gait speed by adjusting stride length and cadence similar to controls whereas the nonlinear FGD participants adjusted stride length but not cadence similar to controls. The non-linear FGD group had greater disturbance to their gait, poorer postural control and greater fear of falling compared to the linear FGD group. Investigation of the SLCrel resulted in new insights into the underlying mechanisms responsible for the gait changes found in FGD. The findings suggest stride length regulation was disrupted in milder FGD but as the disorder worsened, cadence control also became disordered resulting in a break down in the relationship between stride length and cadence. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.

    PubMed

    Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L

    2011-10-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.

  4. Prevalence of health literacy and its correlates among patients with type II diabetes in Kuwait: A population based study.

    PubMed

    Hussein, Shaimaa H; Almajran, Abdullah; Albatineh, Ahmed N

    2018-05-03

    The purpose of this study is to estimate the prevalence of health literacy among patients with type II diabetes and investigate its association with several covariates. No studies were conducted in the Arabian Gulf region characterizing such factors for this population. A cross sectional study was implemented in which 359 type II diabetes patients were recruited from diabetes centers across Kuwait. Health literacy was measured by STOFHLA. Multivariate linear regression was applied to investigate the relationship between health literacy and several covariates. About 44.5% had inadequate, 19.5% marginal, and 35.5% adequate health literacy. Patients with inadequate health literacy were more likely to be older, females, widowed, low education, with income less than 500 KD/month. Multivariate linear regression indicated residence, nationality, education level, and age were significantly associated with health literacy. Adding marital status and gender, hierarchical linear regression revealed that 43.4% of the variability was accounted for. Inadequate health literacy is high in Kuwait. Interventions should be implemented to improve health literacy. This will reduce the prevalence of diabetes-related complications, produce better diabetes outcomes, and improve patients' quality-of-life. Health literacy should be an integral part to health promotion and chronic diseases' management programs in Kuwait. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle.

    PubMed

    Ruuska, Salla; Hämäläinen, Wilhelmiina; Kajava, Sari; Mughal, Mikaela; Matilainen, Pekka; Mononen, Jaakko

    2018-03-01

    The aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and calculate performance measures. In addition, hourly durations of each behaviour were calculated and the accuracy of measurements was evaluated with linear regression and error indices. All three validation methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but the linear regression method often disagreed with them. Our study supports the use of confusion matrix analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent evaluation of validity, and it offers extra information on the type and sources of errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Regional flow duration curves: Geostatistical techniques versus multivariate regression

    USGS Publications Warehouse

    Pugliese, Alessio; Farmer, William H.; Castellarin, Attilio; Archfield, Stacey A.; Vogel, Richard M.

    2016-01-01

    A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by sparse or missing streamflow observations. We present a detailed comparison of two methods which are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies on a metric for expressing the similarity between catchments computed as the negative deviation of the FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. using a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differences between the reproduction of FDC's occurred mostly for low flows with exceedance probability (i.e. duration) above 0.98.

  7. The association between prolonged sleep onset latency and heart rate dynamics among young sleep-onset insomniacs and good sleepers.

    PubMed

    Tsai, Hsin-Jung; Kuo, Terry B J; Lin, Yu-Cheng; Yang, Cheryl C H

    2015-12-30

    A blunting of heart rate (HR) reduction during sleep has been reported to be associated with increased all-cause mortality. An increased incident of cardiovascular events has been observed in patients with insomnia but the relationship between nighttime HR and insomnia remains unclear. Here we investigated the HR patterns during the sleep onset period and its association with the length of sleep onset latency (SOL). Nineteen sleep-onset insomniacs (SOI) and 14 good sleepers had their sleep analyzed. Linear regression and nonlinear Hilbert-Huang transform (HHT) of the HR slope were performed in order to analyze HR dynamics during the sleep onset period. A significant depression in HR fluctuation was identified among the SOI group during the sleep onset period when linear regression and HHT analysis were applied. The magnitude of the HR reduction was associated with both polysomnography-defined and subjective SOL; moreover, we found that the linear regression and HHT slopes of the HR showed great sensitivity with respect to sleep quality. Our findings indicate that HR dynamics during the sleep onset period are sensitive to sleep initiation difficulty and respond to the SOL, which indicates that the presence of autonomic dysfunction would seem to affect the progress of falling asleep. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. Estimating linear effects in ANOVA designs: the easy way.

    PubMed

    Pinhas, Michal; Tzelgov, Joseph; Ganor-Stern, Dana

    2012-09-01

    Research in cognitive science has documented numerous phenomena that are approximated by linear relationships. In the domain of numerical cognition, the use of linear regression for estimating linear effects (e.g., distance and SNARC effects) became common following Fias, Brysbaert, Geypens, and d'Ydewalle's (1996) study on the SNARC effect. While their work has become the model for analyzing linear effects in the field, it requires statistical analysis of individual participants and does not provide measures of the proportions of variability accounted for (cf. Lorch & Myers, 1990). In the present methodological note, using both the distance and SNARC effects as examples, we demonstrate how linear effects can be estimated in a simple way within the framework of repeated measures analysis of variance. This method allows for estimating effect sizes in terms of both slope and proportions of variability accounted for. Finally, we show that our method can easily be extended to estimate linear interaction effects, not just linear effects calculated as main effects.

  9. Biomass Stoves and Lens Opacity and Cataract in Nepalese Women

    PubMed Central

    Pokhrel, Amod K.; Bates, Michael N.; Shrestha, Sachet P.; Bailey, Ian L.; DiMartino, Robert B.; Smith, Kirk R.; Joshi, N. D.

    2014-01-01

    Purpose Cataract is the most prevalent cause of blindness in Nepal. Several epidemiologic studies have associated cataracts with use of biomass cookstoves. These studies, however, have had limitations, including potential control selection bias and limited adjustment for possible confounding. This study, in Pokhara city, in an area of Nepal where biomass cookstoves are widely used without direct venting of the smoke to the outdoors, focuses on pre-clinical measures of opacity, while avoiding selection bias and taking into account comprehensive data on potential confounding factors Methods Using a cross-sectional study design, severity of lenticular damage, judged on the LOCS III scales, was investigated in females (n=143), aged 20-65 years, without previously diagnosed cataract. Linear and logistic regression analyses were used to examine the relationships with stove type and length of use. Clinically significant cataract, used in the logistic regression models, was defined as a LOCS III score > 2. Results Using gas cookstoves as the reference group, logistic regression analysis for nuclear cataract showed the evidence of relationships with stove type: for biomass stoves, the odds ratio (OR) was 2.58 (95% confidence interval [CI]: 1.22-5.46) and, for kerosene stoves, the OR was 5.18 (95% CI: 0.88-30.38). Similar results were found for nuclear color (LOCS III score > 2), but no association was found with cortical cataracts. Supporting a relationship between biomass stoves and nuclear cataract was a trend with years of exposure to biomass cookstoves (p=0.01). Linear regression analyses did not show clear evidence of an association between lenticular damage and stove types. Biomass fuel used for heating was not associated with any form of opacity. Conclusions This study provides support for associations of biomass and kerosene cookstoves with nuclear opacity and change in nuclear color. The novel associations with kerosene cookstove use deserve further investigation. PMID:23400024

  10. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  11. Making Curriculum Decisions in K-8 Science: The Relationship between Teacher Dispositions and Curriculum Content

    ERIC Educational Resources Information Center

    Eidietis, L.; Jewkes, A. M.

    2011-01-01

    This study examined teachers' dispositions toward and choices to teach ocean science using a survey design. A sample of 89 in-service K-8 teachers in the United States reported their (1) feelings of preparedness to teach about ocean literacy and (2) attitudes toward ocean science on three measures. Results of multiple linear regression showed that…

  12. Mediating Effects of Social Support on Quality of Life for Parents of Adults with Autism

    ERIC Educational Resources Information Center

    Marsack, Christina N.; Samuel, Preethy S.

    2017-01-01

    The aim of this study was to examine the mediating effect of formal and informal social support on the relationship of caregiver burden and quality of life (QOL), using a sample of 320 parents (aged 50 or older) of adult children with autism spectrum disorder (ASD). Multiple linear regression and mediation analyses indicated that caregiver burden…

  13. 78 FR 44070 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Determinations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... missing data. The linear regression relationship is based on time periods in which both monitors were... fill in missing data for the incomplete monitor, so that the normal data completeness requirement of 75 percent of data in each quarter of the three years is met. After the missing data for the site is filled...

  14. An Examination of Pennsylvania's Classroom Diagnostic Testing as a Predictive Model of Pennsylvania System of School Assessment Performance

    ERIC Educational Resources Information Center

    Matsanka, Christopher

    2017-01-01

    The purpose of this non-experimental quantitative study was to investigate the relationship between Pennsylvania's Classroom Diagnostic Tools (CDT) interim assessments and the state-mandated Pennsylvania System of School Assessment (PSSA) and to create linear regression equations that could be used as models to predict student performance on the…

  15. Use of Case History Data for the Development of Equations in Predicting High Risk, Reading Disabled Students.

    ERIC Educational Resources Information Center

    Stratton, Beverly D.; And Others

    Demographic data on 92 subjects identified as having reading problems were used to develop equations useful in identifying high risk, reading disabled students. Multiple linear regression analysis of the data indicated that reading disability (1) had a significant positive relationship with birth order and number of siblings; (2) had a positive…

  16. Prevalence of Poor Sleep Quality and its Relationship with Body Mass Index among Teenagers: Evidence from Taiwan

    ERIC Educational Resources Information Center

    Chen, Duan-Rung; Truong, Khoa D.; Tsai, Meng-Ju

    2013-01-01

    Background: The linkage between sleep quality and weight status among teenagers has gained more attention in the recent literature and health policy but no consensus has been reached. Methods: Using both a propensity score method and multivariate linear regression for a cross-sectional sample of 2,113 teenagers, we analyzed their body mass index…

  17. Implications of Interactions among Society, Education and Technology: A Comparison of Multiple Linear Regression and Multilevel Modeling in Mathematics Achievement Analyses

    ERIC Educational Resources Information Center

    Deering, Pamela Rose

    2014-01-01

    This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…

  18. Solutions for Determining the Significance Region Using the Johnson-Neyman Type Procedure in Generalized Linear (Mixed) Models

    ERIC Educational Resources Information Center

    Lazar, Ann A.; Zerbe, Gary O.

    2011-01-01

    Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…

  19. Personal Best Time, Percent Body Fat, and Training Are Differently Associated with Race Time for Male and Female Ironman Triathletes

    ERIC Educational Resources Information Center

    Knechtle, Beat; Wirth, Andrea; Baumann, Barbara; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We studied male and female nonprofessional Ironman triathletes to determine whether percent body fat, training, and/or previous race experience were associated with race performance. We used simple linear regression analysis, with total race time as the dependent variable, to investigate the relationship among athletes' percent body fat, average…

  20. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  1. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  2. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  3. Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies

    PubMed Central

    Fang, Xin; Han, Hedong; Li, Mei; Liang, Chun; Fan, Zhongjie; Aaseth, Jan; He, Jia; Montgomery, Scott; Cao, Yang

    2016-01-01

    The epidemiological evidence for a dose-response relationship between magnesium intake and risk of type 2 diabetes mellitus (T2D) is sparse. The aim of the study was to summarize the evidence for the association of dietary magnesium intake with risk of T2D and evaluate the dose-response relationship. We conducted a systematic review and meta-analysis of prospective cohort studies that reported dietary magnesium intake and risk of incident T2D. We identified relevant studies by searching major scientific literature databases and grey literature resources from their inception to February 2016. We included cohort studies that provided risk ratios, i.e., relative risks (RRs), odds ratios (ORs) or hazard ratios (HRs), for T2D. Linear dose-response relationships were assessed using random-effects meta-regression. Potential nonlinear associations were evaluated using restricted cubic splines. A total of 25 studies met the eligibility criteria. These studies comprised 637,922 individuals including 26,828 with a T2D diagnosis. Compared with the lowest magnesium consumption group in the population, the risk of T2D was reduced by 17% across all the studies; 19% in women and 16% in men. A statistically significant linear dose-response relationship was found between incremental magnesium intake and T2D risk. After adjusting for age and body mass index, the risk of T2D incidence was reduced by 8%–13% for per 100 mg/day increment in dietary magnesium intake. There was no evidence to support a nonlinear dose-response relationship between dietary magnesium intake and T2D risk. The combined data supports a role for magnesium in reducing risk of T2D, with a statistically significant linear dose-response pattern within the reference dose range of dietary intake among Asian and US populations. The evidence from Europe and black people is limited and more prospective studies are needed for the two subgroups. PMID:27869762

  4. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  5. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  6. Quantitative structure–activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods

    PubMed Central

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858

  7. Modeling Effects of Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of Pythium Damping-Off and Root Disease in Subterranean Clover

    PubMed Central

    You, Ming P.; Rensing, Kelly; Renton, Michael; Barbetti, Martin J.

    2017-01-01

    Subterranean clover (Trifolium subterraneum) is a critical pasture legume in Mediterranean regions of southern Australia and elsewhere, including Mediterranean-type climatic regions in Africa, Asia, Australia, Europe, North America, and South America. Pythium damping-off and root disease caused by Pythium irregulare is a significant threat to subterranean clover in Australia and a study was conducted to define how environmental factors (viz. temperature, soil type, moisture and nutrition) as well as variety, influence the extent of damping-off and root disease as well as subterranean clover productivity under challenge by this pathogen. Relationships were statistically modeled using linear and generalized linear models and boosted regression trees. Modeling found complex relationships between explanatory variables and the extent of Pythium damping-off and root rot. Linear modeling identified high-level (4 or 5-way) significant interactions for each dependent variable (dry shoot and root weight, emergence, tap and lateral root disease index). Furthermore, all explanatory variables (temperature, soil, moisture, nutrition, variety) were found significant as part of some interaction within these models. A significant five-way interaction between all explanatory variables was found for both dry shoot and root dry weights, and a four way interaction between temperature, soil, moisture, and nutrition was found for both tap and lateral root disease index. A second approach to modeling using boosted regression trees provided support for and helped clarify the complex nature of the relationships found in linear models. All explanatory variables showed at least 5% relative influence on each of the five dependent variables. All models indicated differences due to soil type, with the sand-based soil having either higher weights, greater emergence, or lower disease indices; while lowest weights and less emergence, as well as higher disease indices, were found for loam soil and low temperature. There was more severe tap and lateral root rot disease in higher moisture situations. PMID:29184544

  8. Spacecraft platform cost estimating relationships

    NASA Technical Reports Server (NTRS)

    Gruhl, W. M.

    1972-01-01

    The three main cost areas of unmanned satellite development are discussed. The areas are identified as: (1) the spacecraft platform (SCP), (2) the payload or experiments, and (3) the postlaunch ground equipment and operations. The SCP normally accounts for over half of the total project cost and accurate estimates of SCP costs are required early in project planning as a basis for determining total project budget requirements. The development of single formula SCP cost estimating relationships (CER) from readily available data by statistical linear regression analysis is described. The advantages of single formula CER are presented.

  9. Does the utilization of dental services associate with masticatory performance in a Japanese urban population?: the Suita study

    PubMed Central

    Kikui, Miki; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro

    2015-01-01

    Abstract There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t‐test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t‐test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population. PMID:29744141

  10. Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students

    PubMed Central

    Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed

    2013-01-01

    Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004

  11. Does the utilization of dental services associate with masticatory performance in a Japanese urban population?: the Suita study.

    PubMed

    Kikui, Miki; Ono, Takahiro; Kida, Momoyo; Kosaka, Takayuki; Yamamoto, Masaaki; Yoshimuta, Yoko; Yasui, Sakae; Nokubi, Takashi; Maeda, Yoshinobu; Kokubo, Yoshihiro; Watanabe, Makoto; Miyamoto, Yoshihiro

    2015-12-01

    There are numerous reports on the relationship between regular utilization of dental care services and oral health, but most are based on questionnaires and subjective evaluation. Few have objectively evaluated masticatory performance and its relationship to utilization of dental care services. The purpose of this study was to identify the effect of regular utilization of dental services on masticatory performance. The subjects consisted of 1804 general residents of Suita City, Osaka Prefecture (760 men and 1044 women, mean age 66.5 ± 7.9 years). Regular utilization of dental services and oral hygiene habits (frequency of toothbrushing and use of interdental aids) was surveyed, and periodontal status, occlusal support, and masticatory performance were measured. Masticatory performance was evaluated by a chewing test using gummy jelly. The correlation between age, sex, regular dental utilization, oral hygiene habits, periodontal status or occlusal support, and masticatory performance was analyzed using Spearman's correlation test and t -test. In addition, multiple linear regression analysis was carried out to investigate the relationship of regular dental utilization with masticatory performance after controlling for other factors. Masticatory performance was significantly correlated to age when using Spearman's correlation test, and to regular dental utilization, periodontal status, or occlusal support with t -test. Multiple linear regression analysis showed that regular utilization of dental services was significantly related to masticatory performance even after adjusting for age, sex, oral hygiene habits, periodontal status, and occlusal support (standardized partial regression coefficient β  = 0.055). These findings suggested that the regular utilization of dental care services is an important factor influencing masticatory performance in a Japanese urban population.

  12. Are the average gait speeds during the 10meter and 6minute walk tests redundant in Parkinson disease?

    PubMed

    Duncan, Ryan P; Combs-Miller, Stephanie A; McNeely, Marie E; Leddy, Abigail L; Cavanaugh, James T; Dibble, Leland E; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Earhart, Gammon M

    2017-02-01

    We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Are the Average Gait Speeds During the 10 Meter and 6 Minute Walk Tests Redundant in Parkinson Disease?

    PubMed Central

    Duncan, Ryan P.; Combs-Miller, Stephanie A.; McNeely, Marie E.; Leddy, Abigail L.; Cavanaugh, James T.; Dibble, Leland E.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Earhart, Gammon M.

    2016-01-01

    We investigated the relationships between average gait speed collected with the 10 Meter Walk Test (Comfortable and Fast) and 6 Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10 Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r > 0.70, p < 0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10 Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II–IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10 Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. PMID:27915221

  14. Use of magnetic resonance imaging to predict the body composition of pigs in vivo.

    PubMed

    Kremer, P V; Förster, M; Scholz, A M

    2013-06-01

    The objective of the study was to evaluate whether magnetic resonance imaging (MRI) offers the opportunity to reliably analyze body composition of pigs in vivo. Therefore, the relation between areas of loin eye muscle and its back fat based on MRI images were used to predict body composition values measured by dual energy X-ray absorptiometry (DXA). During the study, a total of 77 pigs were studied by MRI and DXA, with a BW ranging between 42 and 102 kg. The pigs originated from different extensive or conventional breeds or crossbreds such as Cerdo Iberico, Duroc, German Landrace, German Large White, Hampshire and Pietrain. A Siemens Magnetom Open was used for MRI in the thorax region between 13th and 14th vertebrae in order to measure the loin eye area (MRI-LA) and the above back fat area (MRI-FA) of both body sides, whereas a whole body scan was performed by DXA with a GE Lunar DPX-IQ in order to measure the amount and percentage of fat tissue (DXA-FM; DXA-%FM) and lean tissue mass (DXA-LM; DXA-%LM). A linear single regression analysis was performed to quantify the linear relationships between MRI- and DXA-derived traits. In addition, a stepwise regression procedure was carried out to calculate (multiple) regression equations between MRI and DXA variables (including BW). Single regression analyses showed high relationships between DXA-%FM and MRI-FA (R 2 = 0.89, √MSE = 2.39%), DXA-FM and MRI-FA (R 2 = 0.82, √MSE = 2757 g) and DXA-LM and MRI-LA (R 2 = 0.82, √MSE = 4018 g). Only DXA-%LM and MRI-LA did not show any relationship (R 2 = 0). As a result of the multiple regression analysis, DXA-LM and DXA-FM were both highly related to MRI-LA, MRI-FA and BW (R 2 = 0.96; √MSE = 1784 g, and R 2 = 0.95, √MSE = 1496 g). Therefore, it can be concluded that the use of MRI-derived images provides exact information about important 'carcass-traits' in pigs and may be used to reliably predict the body composition in vivo.

  15. Effect of pencil grasp on the speed and legibility of handwriting in children.

    PubMed

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2012-01-01

    Pencil grasps other than the dynamic tripod may be functional for handwriting. This study examined the impact of grasp on handwriting speed and legibility. We videotaped 120 typically developing fourth-grade students while they performed a writing task. We categorized the grasps they used and evaluated their writing for speed and legibility using a handwriting assessment. Using linear regression analysis, we examined the relationship between grasp and handwriting. We documented six categories of pencil grasp: four mature grasp patterns, one immature grasp pattern, and one alternating grasp pattern. Multiple linear regression results revealed no significant effect for mature grasp on either legibility or speed. Pencil grasp patterns did not influence handwriting speed or legibility in this sample of typically developing children. This finding adds to the mounting body of evidence that alternative grasps may be acceptable for fast and legible handwriting. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  16. Review and statistical analysis of the use of ultrasonic velocity for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1991-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.

  17. Caffeine and Insomnia in People Living With HIV From the Miami Adult Studies on HIV (MASH) Cohort.

    PubMed

    Ramamoorthy, Venkataraghavan; Campa, Adriana; Rubens, Muni; Martinez, Sabrina S; Fleetwood, Christina; Stewart, Tiffanie; Liuzzi, Juan P; George, Florence; Khan, Hafiz; Li, Yinghui; Baum, Marianna K

    We explored the relationship between caffeine consumption, insomnia, and HIV disease progression (CD4+ T cell counts and HIV viral loads). Caffeine intake and insomnia levels were measured using the Modified Caffeine Consumption Questionnaire and the Pittsburgh Insomnia Rating Scale (PIRS) in 130 clinically stable participants who were living with HIV, taking antiretroviral therapy, and recruited from the Miami Adult Studies on HIV cohort. Linear regressions showed that caffeine consumption was significantly and adversely associated with distress score, quality-of-life score, and global PIRS score. Linear regression analyses also showed that global PIRS score was significantly associated with lower CD4+ T cell counts and higher HIV viral loads. Caffeine could have precipitated insomnia in susceptible people living with HIV, which could be detrimental to their disease progression states. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  18. Compulsive buying: Earlier illicit drug use, impulse buying, depression, and adult ADHD symptoms.

    PubMed

    Brook, Judith S; Zhang, Chenshu; Brook, David W; Leukefeld, Carl G

    2015-08-30

    This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant's earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Compulsive Buying: Earlier Illicit Drug Use, Impulse Buying, Depression, and Adult ADHD Symptoms

    PubMed Central

    Brook, Judith S.; Zhang, Chenshu; Brook, David W.; Leukefeld, Carl G.

    2015-01-01

    This longitudinal study examined the association between psychosocial antecedents, including illicit drug use, and adult compulsive buying (CB) across a 29-year time period from mean age 14 to mean age 43. Participants originally came from a community-based random sample of residents in two upstate New York counties. Multivariate linear regression analysis was used to study the relationship between the participant’s earlier psychosocial antecedents and adult CB in the fifth decade of life. The results of the multivariate linear regression analyses showed that gender (female), earlier adult impulse buying (IB), depressive mood, illicit drug use, and concurrent ADHD symptoms were all significantly associated with adult CB at mean age 43. It is important that clinicians treating CB in adults should consider the role of drug use, symptoms of ADHD, IB, depression, and family factors in CB. PMID:26165963

  20. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1990-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  1. Theory of mind and executive function: working-memory capacity and inhibitory control as predictors of false-belief task performance.

    PubMed

    Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn

    2006-06-01

    This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.

  2. Simultaneous multiple non-crossing quantile regression estimation using kernel constraints

    PubMed Central

    Liu, Yufeng; Wu, Yichao

    2011-01-01

    Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842

  3. Dose-response relationship between dietary magnesium intake and cardiovascular mortality: A systematic review and dose-based meta-regression analysis of prospective studies.

    PubMed

    Fang, Xin; Liang, Chun; Li, Mei; Montgomery, Scott; Fall, Katja; Aaseth, Jan; Cao, Yang

    2016-12-01

    Although epidemiology studies have reported the relationship, including a dose-response relationship, between dietary magnesium intake and risk of cardiovascular disease (CVD), the risk for CVD mortality is inconclusive and the evidence for a dose-response relationship has not been summarized. We conducted a systematic review and meta-analysis of prospective studies to summarize the evidence regarding the association of dietary magnesium intake with risk of CVD mortality and describe their dose-response relationship. We identified relevant studies by searching major scientific literature databases and grey literature resources from their inception to August 2015, and reviewed references lists of retrieved articles. We included population-based studies that reported mortality risks, i.e. relative risks (RRs), odds ratios (ORs) or hazard ratios (HRs) of CVD mortality or cause-specific CVD death. Linear dose-response relationships were assessed using random-effects meta-regression. Potential nonlinear associations were evaluated using restricted cubic splines. Out of 3002 articles, 9 articles from 8 independent studies met the eligibility criteria. These studies comprised 449,748 individuals and 10,313 CVD deaths. Compared with the lowest dietary magnesium consumption group in the population, the risk of CVD mortality was reduced by 16% in women and 8% in men. No significant linear dose-response relationship was found between increment in dietary magnesium intake and CVD mortality across all the studies. After adjusting for age and BMI, the risk of CVD mortality was reduced by 24-25% per 100mg/d increment in dietary magnesium intake in women of all the participants and in all the US participants. Although the combined data confirm the role of dietary magnesium intake in reducing CVD mortality, the dose-response relationship was only found among women and in US population. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Is atmospheric pollution exposure during pregnancy associated with individual and contextual characteristics? A nationwide study in France.

    PubMed

    Ouidir, Marion; Lepeule, Johanna; Siroux, Valérie; Malherbe, Laure; Meleux, Frederik; Rivière, Emmanuel; Launay, Ludivine; Zaros, Cécile; Cheminat, Marie; Charles, Marie-Aline; Slama, Rémy

    2017-10-01

    Exposure to atmospheric pollutants is a danger for the health of pregnant mother and children. Our objective was to identify individual (socioeconomic and behavioural) and contextual factors associated with atmospheric pollution pregnancy exposure at the nationwide level. Among 14 921 women from the French nationwide ELFE (French Longitudinal Study of Children) mother-child cohort recruited in 2011, outdoor exposure levels of PM 2.5 , PM 10 (particulate matter <2.5 µm and <10 µm in diameter) and NO 2 (nitrogen dioxide) were estimated at the pregnancy home address from a dispersion model with 1 km resolution. We used classification and regression trees (CART) and linear regression to characterise the association of atmospheric pollutants with individual (maternal age, body mass index, parity, education level, relationship status, smoking status) and contextual (European Deprivation Index, urbanisation level) factors. Patterns of associations were globally similar across pollutants. For the CART approach, the highest tertile of exposure included mainly women not in a relationship living in urban and socially deprived areas, with lower education level. Linear regression models identified different determinants of atmospheric pollutants exposure according to the residential urbanisation level. In urban areas, atmospheric pollutants exposure increased with social deprivation, while in rural areas a U-shaped relationship was observed. We highlighted social inequalities in atmospheric pollutants exposure according to contextual characteristics such as urbanisation level and social deprivation and also according to individual characteristics such as education, being in a relationship and smoking status. In French urban areas, pregnant women from the most deprived neighbourhoods were those most exposed to health-threatening atmospheric pollutants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Aspirin as a potential modality for the chemoprevention of breast cancer: A dose-response meta-analysis of cohort studies from 857,831 participants

    PubMed Central

    Lu, Liming; Shi, Leiyu; Zeng, Jingchun; Wen, Zehuai

    2017-01-01

    Background Previous meta-analyses on the relationship between aspirin use and breast cancer risk have drawn inconsistent results. In addition, the threshold effect of different doses, frequencies and durations of aspirin use in preventing breast cancer have yet to be established. Results The search yielded 13 prospective cohort studies (N=857,831 participants) that reported an average of 7.6 cases/1,000 person-years of breast cancer during a follow-up period of from 4.4 to 14 years. With a random effects model, a borderline significant inverse association was observed between overall aspirin use and breast cancer risk, with a summarized RR = 0.94 (P = 0.051, 95% CI 0.87-1.01). The linear regression model was a better fit for the dose-response relationship, which displayed a potential relationship between the frequency of aspirin use and breast cancer risk (RR = 0.97, 0.95 and 0.90 for 5, 10 and 20 times/week aspirin use, respectively). It was also a better fit for the duration of aspirin use and breast cancer risk (RR = 0.86, 0.73 and 0.54 for 5, 10 and 20 years of aspirin use). Methods We searched MEDLINE, EMBASE and CENTRAL databases through early October 2016 for relevant prospective cohort studies of aspirin use and breast cancer risk. Meta-analysis of relative risks (RR) estimates associated with aspirin intake were presented by fixed or random effects models. The dose-response meta-analysis was performed by linear trend regression and restricted cubic spline regression. Conclusion Our study confirmed a dose-response relationship between aspirin use and breast cancer risk. For clinical prevention, long term (>5 years) consistent use (2-7 times/week) of aspirin appears to be more effective in achieving a protective effect against breast cancer. PMID:28418881

  6. Aspirin as a potential modality for the chemoprevention of breast cancer: A dose-response meta-analysis of cohort studies from 857,831 participants.

    PubMed

    Lu, Liming; Shi, Leiyu; Zeng, Jingchun; Wen, Zehuai

    2017-06-20

    Previous meta-analyses on the relationship between aspirin use and breast cancer risk have drawn inconsistent results. In addition, the threshold effect of different doses, frequencies and durations of aspirin use in preventing breast cancer have yet to be established. The search yielded 13 prospective cohort studies (N=857,831 participants) that reported an average of 7.6 cases/1,000 person-years of breast cancer during a follow-up period of from 4.4 to 14 years. With a random effects model, a borderline significant inverse association was observed between overall aspirin use and breast cancer risk, with a summarized RR = 0.94 (P = 0.051, 95% CI 0.87-1.01). The linear regression model was a better fit for the dose-response relationship, which displayed a potential relationship between the frequency of aspirin use and breast cancer risk (RR = 0.97, 0.95 and 0.90 for 5, 10 and 20 times/week aspirin use, respectively). It was also a better fit for the duration of aspirin use and breast cancer risk (RR = 0.86, 0.73 and 0.54 for 5, 10 and 20 years of aspirin use). We searched MEDLINE, EMBASE and CENTRAL databases through early October 2016 for relevant prospective cohort studies of aspirin use and breast cancer risk. Meta-analysis of relative risks (RR) estimates associated with aspirin intake were presented by fixed or random effects models. The dose-response meta-analysis was performed by linear trend regression and restricted cubic spline regression. Our study confirmed a dose-response relationship between aspirin use and breast cancer risk. For clinical prevention, long term (>5 years) consistent use (2-7 times/week) of aspirin appears to be more effective in achieving a protective effect against breast cancer.

  7. The relationship between apical root resorption and orthodontic tooth movement in growing subjects.

    PubMed

    Xu, Tianmin; Baumrind, S

    2002-07-01

    To investigate the relationship between apical root resorption and orthodontic tooth movement in growing subjects. 58 growing subjects were collected randomly into the study sample and another 40 non-treated cases were used as control. The apical resoption of the upper central incisors was measured on periapical film and the incisor displacement was measured on lateral cephalogram. Using multiple linear regression analysis to examine the relationship between root resoption and the displacement of the upper incisor apex in each of four direction (retraction, advancement, intrusion and extrusion). The statistically significant negative association were found between resorption and both intrusion (P < 0.001) and extrusion (P < 0.05), but no significant association was found between resorption and both retraction and advancement. The regression analysis implied an average of 2.29 mm resorption in the absence of apical displacement. The likelihood that the magnitude of displacement of the incisor root is positively associated with root resoption in the population of treated growing subjects is very small.

  8. Relationship of negative self-schemas and attachment styles with appearance schemas.

    PubMed

    Ledoux, Tracey; Winterowd, Carrie; Richardson, Tamara; Clark, Julie Dorton

    2010-06-01

    The purpose was to test, among women, the relationship between negative self-schemas and styles of attachment with men and women and two types of appearance investment (Self-evaluative and Motivational Salience). Predominantly Caucasian undergraduate women (N=194) completed a modified version of the Relationship Questionnaire, the Young Schema Questionnaire-Short Form, and the Appearance Schemas Inventory-Revised. Linear multiple regression analyses were conducted with Motivational Salience and Self-evaluative Salience of appearance serving as dependent variables and relevant demographic variables, negative self-schemas, and styles of attachment to men serving as independent variables. Styles of attachment to women were not entered into these regression models because Pearson correlations indicated they were not related to either dependent variable. Self-evaluative Salience of appearance was related to impaired autonomy and performance negative self-schema and the preoccupation style of attachment with men, while Motivational Salience of appearance was related only to the preoccupation style of attachment with men. 2010 Elsevier Ltd. All rights reserved.

  9. Differential relationships between set-shifting abilities and dimensions of insight in schizophrenia.

    PubMed

    Diez-Martin, J; Moreno-Ortega, M; Bagney, A; Rodriguez-Jimenez, R; Padilla-Torres, D; Sanchez-Morla, E M; Santos, J L; Palomo, T; Jimenez-Arriero, M A

    2014-01-01

    To assess insight in a large sample of patients with schizophrenia and to study its relationship with set shifting as an executive function. The insight of a sample of 161 clinically stable, community-dwelling patients with schizophrenia was evaluated by means of the Scale to Assess Unawareness of Mental Disorder (SUMD). Set shifting was measured using the Trail-Making Test time required to complete part B minus the time required to complete part A (TMT B-A). Linear regression analyses were performed to investigate the relationships of TMT B-A with different dimensions of general insight. Regression analyses revealed a significant association between TMT B-A and two of the SUMD general components: 'awareness of mental disorder' and 'awareness of the efficacy of treatment'. The 'awareness of social consequences' component was not significantly associated with set shifting. Our results show a significant relation between set shifting and insight, but not in the same manner for the different components of the SUMD general score. Copyright © 2013 S. Karger AG, Basel.

  10. The relationship between mortality caused by cardiovascular diseases and two climatic factors in densely populated areas in Norway and Ireland.

    PubMed

    Eng, H; Mercer, J B

    2000-10-01

    Seasonal variations in mortality due to cardiovascular disease have been demonstrated in many countries, with the highest levels occurring during the coldest months of the year. It has been suggested that this can be explained by cold climate. In this study, we examined the relationship between mortality and two different climatic factors in two densely populated areas (Dublin, Ireland and Oslo/Akershus, Norway). Meteorological data (mean daily air temperatures and wind speed) and registered daily mortality data for three groups of cardiovascular disease for the period 1985-1994 were obtained for the two respective areas. The daily mortality ratio for both men and women of 60 years and older was calculated from the mortality data. The wind chill temperature equivalent was calculated from the Siple and Passels formula. The seasonal variations in mortality were greater in Dublin than in Oslo/Akershus, with mortality being highest in winter. This pattern was similar to that previously shown for the two respective countries as a whole. There was a negative correlation between mortality and both air temperature and wind chill temperature equivalent for all three groups of diseases. The slopes of the linear regression lines describing the relationship between mortality and air temperature were a lot steeper for the Irish data than for the Norwegian data. However, the difference between the steepness of the linear regression lines for the relationship between mortality and wind chill temperature equivalent was considerably less between the two areas. This can be explained by the fact that Dublin is a much windier area than Oslo/Akershus. The results of this study demonstrate that the inclusion of two climatic factors rather than just one changes the impression of the relationship between climate and cardiovascular disease mortality.

  11. Obesity and the labor market: A fresh look at the weight penalty.

    PubMed

    Caliendo, Marco; Gehrsitz, Markus

    2016-12-01

    This paper applies semiparametric regression models to shed light on the relationship between body weight and labor market outcomes in Germany. We find conclusive evidence that these relationships are poorly described by linear or quadratic OLS specifications. Women's wages and employment probabilities do not follow a linear relationship and are highest at a body weight far below the clinical threshold of obesity. This indicates that looks, rather than health, is the driving force behind the adverse labor market outcomes to which overweight women are subject. Further support is lent to this notion by the fact that wage penalties for overweight and obese women are only observable in white-collar occupations. On the other hand, bigger appears to be better in the case of men, for whom employment prospects increase with weight, albeit with diminishing returns. However, underweight men in blue-collar jobs earn lower wages because they lack the muscular strength required in such occupations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  13. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    PubMed

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  14. Does higher education protect against obesity? Evidence using Mendelian randomization.

    PubMed

    Böckerman, Petri; Viinikainen, Jutta; Pulkki-Råback, Laura; Hakulinen, Christian; Pitkänen, Niina; Lehtimäki, Terho; Pehkonen, Jaakko; Raitakari, Olli T

    2017-08-01

    The aim of this explorative study was to examine the effect of education on obesity using Mendelian randomization. Participants (N=2011) were from the on-going nationally representative Young Finns Study (YFS) that began in 1980 when six cohorts (aged 30, 33, 36, 39, 42 and 45 in 2007) were recruited. The average value of BMI (kg/m 2 ) measurements in 2007 and 2011 and genetic information were linked to comprehensive register-based information on the years of education in 2007. We first used a linear regression (Ordinary Least Squares, OLS) to estimate the relationship between education and BMI. To identify a causal relationship, we exploited Mendelian randomization and used a genetic score as an instrument for education. The genetic score was based on 74 genetic variants that genome-wide association studies (GWASs) have found to be associated with the years of education. Because the genotypes are randomly assigned at conception, the instrument causes exogenous variation in the years of education and thus enables identification of causal effects. The years of education in 2007 were associated with lower BMI in 2007/2011 (regression coefficient (b)=-0.22; 95% Confidence Intervals [CI]=-0.29, -0.14) according to the linear regression results. The results based on Mendelian randomization suggests that there may be a negative causal effect of education on BMI (b=-0.84; 95% CI=-1.77, 0.09). The findings indicate that education could be a protective factor against obesity in advanced countries. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Individualized optimal release angles in discus throwing.

    PubMed

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Sleep quality and its relationship with quality of life among high-risk pregnant women (gestational diabetes and hypertension).

    PubMed

    Saadati, Fatemeh; Sehhatiei Shafaei, Fahimeh; Mirghafourvand, Mozhgan

    2018-01-01

    Sleep is one of the most basic human requirements. This research aims at determining the status of sleep quality and its relationship with quality of life among high-risk pregnant women in Tabriz, Iran, in 2015. This research was a sectional study done on 364 qualified women in 28-36 weeks of pregnancy suffering from mild preeclampsia and gestational diabetes. The sampling was done as convenience. Personal-social-midwifery questionnaire, Pittsburg sleep quality, and quality of life in pregnancy (QOL-ORAV) were used for gathering data. Multivariate linear regression model was used for determining the relationship between sleep quality and its subsets with quality of life and controlling confounders. In the current study, the prevalence of sleep disturbance was 96.4%. Mean (SD) of the total score of sleep quality was 10.1 (4.1) and the total score of quality of life was 61.7 (17.3). According to Pearson's correlation test, there was statistically significant relationship between quality of life and sleep quality and all its subsets except sleep duration and use of sleep medication (p < 0.001). Meanwhile, according to the multivariate linear regression model, sleep latency, day time dysfunction, health status, and home air-conditioning were related with quality of life. The findings of current research show that sleep quality is low among high-risk pregnant women and quality of life is medium. So, it is necessary that required training is given by health cares for improving sleep quality and quality of life to mothers.

  17. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  18. The relationship between environmental amenities and changing human settlement patterns between 1980 and 2000 in the Midwestern USA

    Treesearch

    Eric J. Gustafson; Volker C. Radeloff; Robert Potts

    2005-01-01

    Natural resource amenities may be an attractor as people decide where they will live and invest in property. In the American Midwest these amenities range from lakes to forests to pastoral landscapes, depending on the ecological province. We used simple linear regression models to test the hypotheses that physiographic, land cover (composition and spatial pattern),...

  19. Making a Way to Success: Self-Authorship and Academic Achievement of First-Year African American Students at Historically Black Colleges

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2014-01-01

    The purpose of the study was to estimate the relationship between academic achievement in college, as defined by first-year grade point average (GPA), and self-authorship among African American first-year students at an HBCU (N = 140), using hierarchical linear regression techniques. A single research question guided this investigation: What is…

  20. Children's Compliance with American Academy of Pediatrics' Well-Child Care Visit Guidelines and the Early Detection of Autism

    ERIC Educational Resources Information Center

    Daniels, Amy M.; Mandell, David S.

    2013-01-01

    This study estimated compliance with American Academy of Pediatrics (AAP) guidelines for well-child care and the association between compliance and age at diagnosis in a national sample of Medicaid-enrolled children with autism (N = 1,475). Mixed effects linear regression was used to assess the relationship between compliance and age at diagnosis.…

  1. An investigation to improve the Menhaden fishery prediction and detection model through the application of ERTS-A data

    NASA Technical Reports Server (NTRS)

    Maughan, P. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Linear regression of secchi disc visibility against number of sets yielded significant results in a number of instances. The variability seen in the slope of the regression lines is due to the nonuniformity of sample size. The longer the period sampled, the larger the total number of attempts. Further, there is no reason to expect either the influence of transparency or of other variables to remain constant throughout the season. However, the fact that the data for the entire season, variable as it is, was significant at the 5% level, suggests its potential utility for predictive modeling. Thus, this regression equation will be considered representative and will be utilized for the first numerical model. Secchi disc visibility was also regressed against number of sets for the three day period September 27-September 29, 1972 to determine if surface truth data supported the intense relationship between ERTS-1 identified turbidity and fishing effort previously discussed. A very negative correlation was found. These relationship lend additional credence to the hypothesis that ERTS imagery, when utilized as a source of visibility (turbidity) data, may be useful as a predictive tool.

  2. The Effect of Depressive Symptoms on the Association between Gluten-Free Diet Adherence and Symptoms in Celiac Disease: Analysis of a Patient Powered Research Network

    PubMed Central

    Geller, Marilyn G.; Zylberberg, Haley M.; Green, Peter H. R.; Lebwohl, Benjamin

    2018-01-01

    Background: The prevalence of depression in celiac disease (CD) is high, and patients are often burdened socially and financially by a gluten-free diet. However, the relationship between depression, somatic symptoms and dietary adherence in CD is complex and poorly understood. We used a patient powered research network (iCureCeliac®) to explore the effect that depression has on patients’ symptomatic response to a gluten-free diet (GFD). Methods: We identified patients with biopsy-diagnosed celiac disease who answered questions pertaining to symptoms (Celiac Symptom Index (CSI)), GFD adherence (Celiac Dietary Adherence Test (CDAT)), and a 5-point, scaled question regarding depressive symptoms relating to patients’ celiac disease. We then measured the correlation between symptoms and adherence (CSI vs. CDAT) in patients with depression versus those without depression. We also tested for interaction of depression with regard to the association with symptoms using a multiple linear regression model. Results: Among 519 patients, 86% were female and the mean age was 40.9 years. 46% of patients indicated that they felt “somewhat,” “quite a bit,” or “very much” depressed because of their disorder. There was a moderate correlation between worsened celiac symptoms and poorer GFD adherence (r = 0.6, p < 0.0001). In those with a positive depression screen, there was a moderate correlation between worsening symptoms and worsening dietary adherence (r = 0.5, p < 0.0001) whereas in those without depression, the correlation was stronger (r = 0.64, p < 0.0001). We performed a linear regression analysis, which suggests that the relationship between CSI and CDAT is modified by depression. Conclusions: In patients with depressive symptoms related to their disorder, correlation between adherence and symptoms was weaker than those without depressive symptoms. This finding was confirmed with a linear regression analysis, showing that depressive symptoms may modify the effect of a GFD on celiac symptoms. Depressive symptoms may therefore mask the relationship between inadvertent gluten exposure and symptoms. Additional longitudinal and prospective studies are needed to further explore this potentially important finding. PMID:29701659

  3. The Effect of Depressive Symptoms on the Association between Gluten-Free Diet Adherence and Symptoms in Celiac Disease: Analysis of a Patient Powered Research Network.

    PubMed

    Joelson, Andrew M; Geller, Marilyn G; Zylberberg, Haley M; Green, Peter H R; Lebwohl, Benjamin

    2018-04-26

    The prevalence of depression in celiac disease (CD) is high, and patients are often burdened socially and financially by a gluten-free diet. However, the relationship between depression, somatic symptoms and dietary adherence in CD is complex and poorly understood. We used a patient powered research network (iCureCeliac ® ) to explore the effect that depression has on patients' symptomatic response to a gluten-free diet (GFD). We identified patients with biopsy-diagnosed celiac disease who answered questions pertaining to symptoms (Celiac Symptom Index (CSI)), GFD adherence (Celiac Dietary Adherence Test (CDAT)), and a 5-point, scaled question regarding depressive symptoms relating to patients' celiac disease. We then measured the correlation between symptoms and adherence (CSI vs. CDAT) in patients with depression versus those without depression. We also tested for interaction of depression with regard to the association with symptoms using a multiple linear regression model. Among 519 patients, 86% were female and the mean age was 40.9 years. 46% of patients indicated that they felt "somewhat," "quite a bit," or "very much" depressed because of their disorder. There was a moderate correlation between worsened celiac symptoms and poorer GFD adherence ( r = 0.6, p < 0.0001). In those with a positive depression screen, there was a moderate correlation between worsening symptoms and worsening dietary adherence ( r = 0.5, p < 0.0001) whereas in those without depression, the correlation was stronger ( r = 0.64, p < 0.0001). We performed a linear regression analysis, which suggests that the relationship between CSI and CDAT is modified by depression. In patients with depressive symptoms related to their disorder, correlation between adherence and symptoms was weaker than those without depressive symptoms. This finding was confirmed with a linear regression analysis, showing that depressive symptoms may modify the effect of a GFD on celiac symptoms. Depressive symptoms may therefore mask the relationship between inadvertent gluten exposure and symptoms. Additional longitudinal and prospective studies are needed to further explore this potentially important finding.

  4. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  5. Relationships between use of television during meals and children's food consumption patterns.

    PubMed

    Coon, K A; Goldberg, J; Rogers, B L; Tucker, K L

    2001-01-01

    We examined relationships between the presence of television during meals and children's food consumption patterns to test whether children's overall food consumption patterns, including foods not normally advertised, vary systematically with the extent to which television is part of normal mealtime routines. Ninety-one parent-child pairs from suburbs adjacent to Washington, DC, recruited via advertisements and word of mouth, participated. Children were in the fourth, fifth, or sixth grades. Socioeconomic data and information on television use were collected during survey interviews. Three nonconsecutive 24-hour dietary recalls, conducted with each child, were used to construct nutrient and food intake outcome variables. Independent sample t tests were used to compare mean food and nutrient intakes of children from families in which the television was usually on during 2 or more meals (n = 41) to those of children from families in which the television was either never on or only on during one meal (n = 50). Multiple linear regression models, controlling for socioeconomic factors and other covariates, were used to test strength of associations between television and children's consumption of food groups and nutrients. Children from families with high television use derived, on average, 6% more of their total daily energy intake from meats; 5% more from pizza, salty snacks, and soda; and nearly 5% less of their energy intake from fruits, vegetables, and juices than did children from families with low television use. Associations between television and children's consumption of food groups remained statistically significant in multiple linear regression models that controlled for socioeconomic factors and other covariates. Children from high television families derived less of their total energy from carbohydrate and consumed twice as much caffeine as children from low television families. There continued to be a significant association between television and children's consumption of caffeine when these relationships were tested in multiple linear regression models. The dietary patterns of children from families in which television viewing is a normal part of meal routines may include fewer fruits and vegetables and more pizzas, snack foods, and sodas than the dietary patterns of children from families in which television viewing and eating are separate activities.

  6. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    PubMed

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  7. Beak measurements of octopus ( Octopus variabilis) in Jiaozhou Bay and their use in size and biomass estimation

    NASA Astrophysics Data System (ADS)

    Xue, Ying; Ren, Yiping; Meng, Wenrong; Li, Long; Mao, Xia; Han, Dongyan; Ma, Qiuyun

    2013-09-01

    Cephalopods play key roles in global marine ecosystems as both predators and preys. Regressive estimation of original size and weight of cephalopod from beak measurements is a powerful tool of interrogating the feeding ecology of predators at higher trophic levels. In this study, regressive relationships among beak measurements and body length and weight were determined for an octopus species ( Octopus variabilis), an important endemic cephalopod species in the northwest Pacific Ocean. A total of 193 individuals (63 males and 130 females) were collected at a monthly interval from Jiaozhou Bay, China. Regressive relationships among 6 beak measurements (upper hood length, UHL; upper crest length, UCL; lower hood length, LHL; lower crest length, LCL; and upper and lower beak weights) and mantle length (ML), total length (TL) and body weight (W) were determined. Results showed that the relationships between beak size and TL and beak size and ML were linearly regressive, while those between beak size and W fitted a power function model. LHL and UCL were the most useful measurements for estimating the size and biomass of O. variabilis. The relationships among beak measurements and body length (either ML or TL) were not significantly different between two sexes; while those among several beak measurements (UHL, LHL and LBW) and body weight (W) were sexually different. Since male individuals of this species have a slightly greater body weight distribution than female individuals, the body weight was not an appropriate measurement for estimating size and biomass, especially when the sex of individuals in the stomachs of predators was unknown. These relationships provided essential information for future use in size and biomass estimation of O. variabilis, as well as the estimation of predator/prey size ratios in the diet of top predators.

  8. More green space is related to less antidepressant prescription rates in the Netherlands: A Bayesian geoadditive quantile regression approach.

    PubMed

    Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P

    2018-06-20

    Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  10. Old and New Ideas for Data Screening and Assumption Testing for Exploratory and Confirmatory Factor Analysis

    PubMed Central

    Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip

    2011-01-01

    We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561

  11. Road Traffic and Railway Noise Exposures and Adiposity in Adults: A Cross-Sectional Analysis of the Danish Diet, Cancer, and Health Cohort.

    PubMed

    Christensen, Jeppe Schultz; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Nordsborg, Rikke B; Ketzel, Matthias; Sørensen, Thorkild Ia; Sørensen, Mette

    2016-03-01

    Traffic noise has been associated with cardiovascular and metabolic disorders. Potential modes of action are through stress and sleep disturbance, which may lead to endocrine dysregulation and overweight. We aimed to investigate the relationship between residential traffic and railway noise and adiposity. In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993-1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated. Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors. Linear regression models adjusted for age, sex, and socioeconomic factors showed that 5-year mean road traffic noise exposure preceding enrollment was associated with a 0.35-cm wider waist circumference (95% CI: 0.21, 0.50) and a 0.18-point higher BMI (95% CI: 0.12, 0.23) per 10 dB. Small, significant increases were also found for BFMI and LBMI. All associations followed linear exposure-response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1.19) and a 0.19-point higher BMI (95% CI: 0.0072, 0.37) compared with unexposed participants (0-20 dB). The present study finds positive associations between residential exposure to road traffic and railway noise and adiposity.

  12. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China.

    PubMed

    Cui, Yang; Wang, Silong; Yan, Shaokui

    2016-01-01

    Phi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests. Canonical correlation analysis (CCorA) showed that ecological patterns of fauna-habitat relationships and inter-fauna taxa relationships expressed, respectively, by phi coefficients and predicted abundances calculated from partial redundancy analysis (RDA), were extremely similar, and a highly significant relationship between the two datasets was observed (Pillai's trace statistic = 1.998, P = 0.007). In addition, highly positive correlations between phi coefficients and predicted abundances for Acari, Collembola, Nematode and Hemiptera were observed using linear regression analysis. Quantitative relationships between habitat preferences and soil chemical variables were also obtained by linear regression, which were analogous to the results displayed in a partial RDA biplot. Our results suggest that phi coefficient could be applicable on a local scale in evaluating habitat preferences of soil fauna at coarse taxonomic levels, and that the phi coefficient-induced information, such as ecological preferences and the associated quantitative relationships with habitat factors, will be largely complementary to the results of ordination methods. The application of phi coefficient in soil ecology may extend our knowledge about habitat preferences and distribution-abundance relationships, which will benefit the understanding of biodistributions and variations in community compositions in the soil. Similar studies in other places and scales apart from our local site will be need for further evaluation of phi coefficient.

  13. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China

    PubMed Central

    Cui, Yang; Wang, Silong; Yan, Shaokui

    2016-01-01

    Phi coefficient directly depends on the frequencies of occurrence of organisms and has been widely used in vegetation ecology to analyse the associations of organisms with site groups, providing a characterization of ecological preference, but its application in soil ecology remains rare. Based on a single field experiment, this study assessed the applicability of phi coefficient in indicating the habitat preferences of soil fauna, through comparing phi coefficient-induced results with those of ordination methods in charactering soil fauna-habitat(factors) relationships. Eight different habitats of soil fauna were implemented by reciprocal transfer of defaunated soil cores between two types of subtropical forests. Canonical correlation analysis (CCorA) showed that ecological patterns of fauna-habitat relationships and inter-fauna taxa relationships expressed, respectively, by phi coefficients and predicted abundances calculated from partial redundancy analysis (RDA), were extremely similar, and a highly significant relationship between the two datasets was observed (Pillai's trace statistic = 1.998, P = 0.007). In addition, highly positive correlations between phi coefficients and predicted abundances for Acari, Collembola, Nematode and Hemiptera were observed using linear regression analysis. Quantitative relationships between habitat preferences and soil chemical variables were also obtained by linear regression, which were analogous to the results displayed in a partial RDA biplot. Our results suggest that phi coefficient could be applicable on a local scale in evaluating habitat preferences of soil fauna at coarse taxonomic levels, and that the phi coefficient-induced information, such as ecological preferences and the associated quantitative relationships with habitat factors, will be largely complementary to the results of ordination methods. The application of phi coefficient in soil ecology may extend our knowledge about habitat preferences and distribution-abundance relationships, which will benefit the understanding of biodistributions and variations in community compositions in the soil. Similar studies in other places and scales apart from our local site will be need for further evaluation of phi coefficient. PMID:26930593

  14. Geographical variation of cerebrovascular disease in New York State: the correlation with income

    PubMed Central

    Han, Daikwon; Carrow, Shannon S; Rogerson, Peter A; Munschauer, Frederick E

    2005-01-01

    Background Income is known to be associated with cerebrovascular disease; however, little is known about the more detailed relationship between cerebrovascular disease and income. We examined the hypothesis that the geographical distribution of cerebrovascular disease in New York State may be predicted by a nonlinear model using income as a surrogate socioeconomic risk factor. Results We used spatial clustering methods to identify areas with high and low prevalence of cerebrovascular disease at the ZIP code level after smoothing rates and correcting for edge effects; geographic locations of high and low clusters of cerebrovascular disease in New York State were identified with and without income adjustment. To examine effects of income, we calculated the excess number of cases using a non-linear regression with cerebrovascular disease rates taken as the dependent variable and income and income squared taken as independent variables. The resulting regression equation was: excess rate = 32.075 - 1.22*10-4(income) + 8.068*10-10(income2), and both income and income squared variables were significant at the 0.01 level. When income was included as a covariate in the non-linear regression, the number and size of clusters of high cerebrovascular disease prevalence decreased. Some 87 ZIP codes exceeded the critical value of the local statistic yielding a relative risk of 1.2. The majority of low cerebrovascular disease prevalence geographic clusters disappeared when the non-linear income effect was included. For linear regression, the excess rate of cerebrovascular disease falls with income; each $10,000 increase in median income of each ZIP code resulted in an average reduction of 3.83 observed cases. The significant nonlinear effect indicates a lessening of this income effect with increasing income. Conclusion Income is a non-linear predictor of excess cerebrovascular disease rates, with both low and high observed cerebrovascular disease rate areas associated with higher income. Income alone explains a significant amount of the geographical variance in cerebrovascular disease across New York State since both high and low clusters of cerebrovascular disease dissipate or disappear with income adjustment. Geographical modeling, including non-linear effects of income, may allow for better identification of other non-traditional risk factors. PMID:16242043

  15. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  16. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis.

    PubMed

    Gianola, Daniel; Fariello, Maria I; Naya, Hugo; Schön, Chris-Carolin

    2016-10-13

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals ( G: ) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G,: provided variance components are unaffected by exclusion of such marker(s) from G: The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G: does matter. Removal of eigenvectors from G: can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. Copyright © 2016 Gianola et al.

  17. Linear regression crash prediction models : issues and proposed solutions.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  18. Convert a low-cost sensor to a colorimeter using an improved regression method

    NASA Astrophysics Data System (ADS)

    Wu, Yifeng

    2008-01-01

    Closed loop color calibration is a process to maintain consistent color reproduction for color printers. To perform closed loop color calibration, a pre-designed color target should be printed, and automatically measured by a color measuring instrument. A low cost sensor has been embedded to the printer to perform the color measurement. A series of sensor calibration and color conversion methods have been developed. The purpose is to get accurate colorimetric measurement from the data measured by the low cost sensor. In order to get high accuracy colorimetric measurement, we need carefully calibrate the sensor, and minimize all possible errors during the color conversion. After comparing several classical color conversion methods, a regression based color conversion method has been selected. The regression is a powerful method to estimate the color conversion functions. But the main difficulty to use this method is to find an appropriate function to describe the relationship between the input and the output data. In this paper, we propose to use 1D pre-linearization tables to improve the linearity between the input sensor measuring data and the output colorimetric data. Using this method, we can increase the accuracy of the regression method, so as to improve the accuracy of the color conversion.

  19. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  20. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study.

    PubMed

    Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier

    2018-02-01

    Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities.

    PubMed

    Trepczynski, Adam; Kutzner, Ines; Bergmann, Georg; Taylor, William R; Heller, Markus O

    2014-05-01

    The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed ) in a sample of subjects across a spectrum of activities. The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting. The effects of the factors "subject" and "activity" on the relationships between Fmed and EAM were quantified using mixed-effects regression analyses in terms of the root mean square error (RMSE) and the slope of the regression. Across subjects and activities a good correlation between peak EAM and Fmed values was observed, with an overall R(2) value of 0.88. However, the slope of the linear regressions varied between subjects by up to a factor of 2. At peak EAM and Fmed , the RMSE of the regression across all subjects was 35% body weight (%BW), while the maximum error was 127 %BW. The relationship between EAM and Fmed is generally good but varies considerably across subjects and activities. These findings emphasize the limitation of relying solely on the EAM to infer medial joint loading when excessive directed cocontraction of muscles exists and call for further investigations into the soft tissue-related mechanisms that modulate the internal forces at the knee. Copyright © 2014 by the American College of Rheumatology.

  2. A Simple and Specific Stability- Indicating RP-HPLC Method for Routine Assay of Adefovir Dipivoxil in Bulk and Tablet Dosage Form.

    PubMed

    Darsazan, Bahar; Shafaati, Alireza; Mortazavi, Seyed Alireza; Zarghi, Afshin

    2017-01-01

    A simple and reliable stability-indicating RP-HPLC method was developed and validated for analysis of adefovir dipivoxil (ADV).The chromatographic separation was performed on a C 18 column using a mixture of acetonitrile-citrate buffer (10 mM at pH 5.2) 36:64 (%v/v) as mobile phase, at a flow rate of 1.5 mL/min. Detection was carried out at 260 nm and a sharp peak was obtained for ADV at a retention time of 5.8 ± 0.01 min. No interferences were observed from its stress degradation products. The method was validated according to the international guidelines. Linear regression analysis of data for the calibration plot showed a linear relationship between peak area and concentration over the range of 0.5-16 μg/mL; the regression coefficient was 0.9999and the linear regression equation was y = 24844x-2941.3. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.35 μg/mL, respectively. The results proved the method was fast (analysis time less than 7 min), precise, reproducible, and accurate for analysis of ADV over a wide range of concentration. The proposed specific method was used for routine quantification of ADV in pharmaceutical bulk and a tablet dosage form.

  3. Advancing paternal age at birth is associated with poorer social functioning earlier and later in life of schizophrenia patients in a founder population.

    PubMed

    Liebenberg, Rudolf; van Heerden, Brigitte; Ehlers, René; Du Plessis, Anna M E; Roos, J Louw

    2016-09-30

    Consistent associations have been found between advanced paternal age and an increased risk of psychiatric disorders, such as schizophrenia, in their offspring. This increase appears to be linear as paternal age increases. The present study investigates the relationship between early deviant behaviour in the first 10 years of life of patients as well as longer term functional outcome and paternal age in sporadic Afrikaner founder population cases of schizophrenia. This might improve our understanding of Paternal Age-Related Schizophrenia (PARS). Follow-up psychiatric diagnoses were confirmed by the Diagnostic Interview for Genetic Studies (DIGS). An early deviant childhood behaviour semi-structured questionnaire and the Specific Level of Functioning Assessment (SLOF) were completed. From the logistic regression models fitted, a significant negative relationship was found between paternal age at birth and social dysfunction as early deviant behaviour. Additionally, regression analysis revealed a significant negative relationship between paternal age at birth and the SLOF for interpersonal relationships later in life. Early social dysfunction may represent a phenotypic trait for PARS. Further research is required to understand the relationship between early social dysfunction and deficits in interpersonal relationships later in life. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling

    NASA Astrophysics Data System (ADS)

    Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi

    2018-03-01

    We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.

  5. Using Carl Rogers' person-centered model to explain interpersonal relationships at a school of nursing.

    PubMed

    Bryan, Venise D; Lindo, Jascinth; Anderson-Johnson, Pauline; Weaver, Steve

    2015-01-01

    Faculty members are viewed as nurturers within the academic setting and may be able to influence students' behaviors through the formation of positive interpersonal relationships. Faculty members' attributes that best facilitated positive interpersonal relationships according to Carl Rogers' Person-Centered Model was studied. Students (n = 192) enrolled in a 3-year undergraduate nursing program in urban Jamaica were randomly selected to participate in this descriptive cross-sectional study. A 38-item questionnaire on interpersonal relationships with nursing faculty and students' perceptions of their teachers was utilized to collect data. Factor analysis was used to create factors of realness, prizing, and empathetic understanding. Multiple linear regression analysis on the interaction of the 3 factors and interpersonal relationship scores was performed while controlling for nursing students' study year and age. One hundred sixty-five students (mean age: 23.18 ± 4.51years; 99% female) responded. The regression model explained over 46% of the variance. Realness (β = 0.50, P < .001) was the only significant predictor of the interpersonal relationship scores assigned by the nursing students. Of the total number of respondents, 99 students (60%) reported satisfaction with the interpersonal relationships shared with faculty. Nursing students' perception of faculty members' realness appeared to be the most significant attribute in fostering positive interpersonal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Social relationships and longitudinal changes in body mass index and waist circumference: the coronary artery risk development in young adults study.

    PubMed

    Kershaw, Kiarri N; Hankinson, Arlene L; Liu, Kiang; Reis, Jared P; Lewis, Cora E; Loria, Catherine M; Carnethon, Mercedes R

    2014-03-01

    Few studies have examined longitudinal associations between close social relationships and weight change. Using data from 3,074 participants in the Coronary Artery Risk Development in Young Adults Study who were examined in 2000, 2005, and 2010 (at ages 33-45 years in 2000), we estimated separate logistic regression random-effects models to assess whether patterns of exposure to supportive and negative relationships were associated with 10% or greater increases in body mass index (BMI) (weight (kg)/height (m)(2)) and waist circumference. Linear regression random-effects modeling was used to examine associations of social relationships with mean changes in BMI and waist circumference. Participants with persistently high supportive relationships were significantly less likely to increase their BMI values and waist circumference by 10% or greater compared with those with persistently low supportive relationships after adjustment for sociodemographic characteristics, baseline BMI/waist circumference, depressive symptoms, and health behaviors. Persistently high negative relationships were associated with higher likelihood of 10% or greater increases in waist circumference (odds ratio = 1.62, 95% confidence interval: 1.15, 2.29) and marginally higher BMI increases (odds ratio = 1.50, 95% confidence interval: 1.00, 2.24) compared with participants with persistently low negative relationships. Increasingly negative relationships were associated with increases in waist circumference only. These findings suggest that supportive relationships may minimize weight gain, and that adverse relationships may contribute to weight gain, particularly via central fat accumulation.

  7. Social Relationships and Longitudinal Changes in Body Mass Index and Waist Circumference: The Coronary Artery Risk Development in Young Adults Study

    PubMed Central

    Kershaw, Kiarri N.; Hankinson, Arlene L.; Liu, Kiang; Reis, Jared P.; Lewis, Cora E.; Loria, Catherine M.; Carnethon, Mercedes R.

    2014-01-01

    Few studies have examined longitudinal associations between close social relationships and weight change. Using data from 3,074 participants in the Coronary Artery Risk Development in Young Adults Study who were examined in 2000, 2005, and 2010 (at ages 33–45 years in 2000), we estimated separate logistic regression random-effects models to assess whether patterns of exposure to supportive and negative relationships were associated with 10% or greater increases in body mass index (BMI) (weight (kg)/height (m)2) and waist circumference. Linear regression random-effects modeling was used to examine associations of social relationships with mean changes in BMI and waist circumference. Participants with persistently high supportive relationships were significantly less likely to increase their BMI values and waist circumference by 10% or greater compared with those with persistently low supportive relationships after adjustment for sociodemographic characteristics, baseline BMI/waist circumference, depressive symptoms, and health behaviors. Persistently high negative relationships were associated with higher likelihood of 10% or greater increases in waist circumference (odds ratio = 1.62, 95% confidence interval: 1.15, 2.29) and marginally higher BMI increases (odds ratio = 1.50, 95% confidence interval: 1.00, 2.24) compared with participants with persistently low negative relationships. Increasingly negative relationships were associated with increases in waist circumference only. These findings suggest that supportive relationships may minimize weight gain, and that adverse relationships may contribute to weight gain, particularly via central fat accumulation. PMID:24389018

  8. Low-Dose N,N-Dimethylformamide Exposure and Liver Injuries in a Cohort of Chinese Leather Industry Workers.

    PubMed

    Qi, Cong; Gu, Yiyang; Sun, Qing; Gu, Hongliang; Xu, Bo; Gu, Qing; Xiao, Jing; Lian, Yulong

    2017-05-01

    We assessed the risk of liver injuries following low doses of N,N-dimethylformamide (DMF) below threshold limit values (20 mg/m) among leather industry workers and comparison groups. A cohort of 429 workers from a leather factory and 466 non-exposed subjects in China were followed for 4 years. Poisson regression and piece-wise linear regression were used to examine the relationship between DMF and liver injury. Workers exposed to a cumulative dose of DMF were significantly more likely than non-exposed workers to develop liver injury. A nonlinear relationship between DMF and liver injury was observed, and a threshold of the cumulative DMF dose for liver injury was 7.30 (mg/m) year. The findings indicate the importance of taking action to reduce DMF occupational exposure limits for promoting worker health.

  9. Sibling dilution hypothesis: a regression surface analysis.

    PubMed

    Marjoribanks, K

    2001-08-01

    This study examined relationships between sibship size (the number of children in a family), birth order, and measures of academic performance, academic self-concept, and educational aspirations at different levels of family educational resources. As part of a national longitudinal study of Australian secondary school students data were collected from 2,530 boys and 2,450 girls in Years 9 and 10. Regression surfaces were constructed from models that included terms to account for linear, interaction, and curvilinear associations among the variables. Analysis suggests the general propositions (a) family educational resources have significant associations with children's school-related outcomes at different levels of sibling variables, the relationships for girls being curvilinear, and (b) sibling variables continue to have small significant associations with affective and cognitive outcomes, after taking into account variations in family educational resources. That is, the investigation provides only partial support for the sibling dilution hypothesis.

  10. The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…

  11. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  12. [International financial cooperation in the fight against AIDS in Latin America and the Caribbean].

    PubMed

    Leyva-Flores, René; Castillo, José Gabriel; Serván-Mori, Edson; Ballesteros, Maria Luisa Gontes; Rodríguez, Juan Francisco Molina

    2014-07-01

    This study analyzed the financial contribution by the Global Fund to Fight HIV/AIDS, Tuberculosis, and Malaria and its relationship to eligibility criteria for funding in Latin America and the Caribbean in 2002-2010. Descriptive analysis (linear regression) was conducted for the Global Fund financial contributions according to eligibility criteria (income level, burden of disease, governmental co-investment). Financial contributions totaled US$ 705 million. Lower-income countries received higher shares; there was no relationship between Global Fund contributions and burden of disease. The Global Fund's international financing complements governmental expenditure, with equity policies for financial allocation.

  13. Efectos Especiales de Anclaje (Estudio sobre Regresiones de Juicios Condicionales). Parte 1: Distincion entre Efectos Aditivos y Efectos Multiplicativos en el Fenomeno de Anclaje (Special Effects of Anchoring (Study on Regression of Conditional Judgements) Part 1: Distinction Between Additive Effects and Multiplicative Effects in the Phenomenon of Anchoring). Publication No. 17.

    ERIC Educational Resources Information Center

    Lopez Alonso, A. O.

    A linear relationship was found between judgements given by 160 subjects to 7 objects presented as single stimuli (alpha judgements) and judgements given to the same objects presented with a condition (gamma judgements). This relationship holds for alpha judgements and the gamma judgements that belong to a family of constant stimulus and varying…

  14. Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.

  15. Cumulative childhood risk and adult functioning in abused and neglected children grown up

    PubMed Central

    HORAN, JACQUELINE M.; WIDOM, CATHY SPATZ

    2017-01-01

    This paper examines the relationship between childhood exposure to cumulative risk and three indicators of psychosocial adjustment in adulthood (educational attainment, mental health, and criminal behavior) and tests three different models (linear, quadratic, and interaction). Data were collected over several time points from individuals who were part of a prospective cohort design study that matched children with documented cases of abuse and/or neglect with children without such histories and followed them into adulthood. Hierarchical multiple regressions compared linear and quadratic models and then examined potential moderating effects of child abuse/neglect and gender. Exposure to a greater number of childhood risk factors was significantly related to fewer years of education, more anxiety and depression symptomatology, and more criminal arrests in adulthood. The relationship between cumulative risk and years of education demonstrated a curvilinear pattern, whereas the relationship between cumulative risk and both mental health and criminal arrests was linear. Child abuse/neglect did not moderate these relationships, although there were direct effects for both child abuse/neglect and gender on criminal arrests, with more arrests for abused/neglected individuals than controls and more for males than females. Gender interacted with cumulative risk to impact educational attainment and criminal behavior, suggesting that interventions may be more effective if tailored differently for males and females. Interventions may need to be multifaceted and designed to address these different domains of functioning. PMID:25196178

  16. Cumulative childhood risk and adult functioning in abused and neglected children grown up.

    PubMed

    Horan, Jacqueline M; Widom, Cathy Spatz

    2015-08-01

    This paper examines the relationship between childhood exposure to cumulative risk and three indicators of psychosocial adjustment in adulthood (educational attainment, mental health, and criminal behavior) and tests three different models (linear, quadratic, and interaction). Data were collected over several time points from individuals who were part of a prospective cohort design study that matched children with documented cases of abuse and/or neglect with children without such histories and followed them into adulthood. Hierarchical multiple regressions compared linear and quadratic models and then examined potential moderating effects of child abuse/neglect and gender. Exposure to a greater number of childhood risk factors was significantly related to fewer years of education, more anxiety and depression symptomatology, and more criminal arrests in adulthood. The relationship between cumulative risk and years of education demonstrated a curvilinear pattern, whereas the relationship between cumulative risk and both mental health and criminal arrests was linear. Child abuse/neglect did not moderate these relationships, although there were direct effects for both child abuse/neglect and gender on criminal arrests, with more arrests for abused/neglected individuals than controls and more for males than females. Gender interacted with cumulative risk to impact educational attainment and criminal behavior, suggesting that interventions may be more effective if tailored differently for males and females. Interventions may need to be multifaceted and designed to address these different domains of functioning.

  17. Functional mixture regression.

    PubMed

    Yao, Fang; Fu, Yuejiao; Lee, Thomas C M

    2011-04-01

    In functional linear models (FLMs), the relationship between the scalar response and the functional predictor process is often assumed to be identical for all subjects. Motivated by both practical and methodological considerations, we relax this assumption and propose a new class of functional regression models that allow the regression structure to vary for different groups of subjects. By projecting the predictor process onto its eigenspace, the new functional regression model is simplified to a framework that is similar to classical mixture regression models. This leads to the proposed approach named as functional mixture regression (FMR). The estimation of FMR can be readily carried out using existing software implemented for functional principal component analysis and mixture regression. The practical necessity and performance of FMR are illustrated through applications to a longevity analysis of female medflies and a human growth study. Theoretical investigations concerning the consistent estimation and prediction properties of FMR along with simulation experiments illustrating its empirical properties are presented in the supplementary material available at Biostatistics online. Corresponding results demonstrate that the proposed approach could potentially achieve substantial gains over traditional FLMs.

  18. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    PubMed

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of Competitive-Anxiety on Heart Rate Variability in Swimmers.

    PubMed

    Fortes, Leonardo S; da Costa, Bruna D V; Paes, Pedro P; do Nascimento Júnior, José R A; Fiorese, Lenamar; Ferreira, Maria E C

    2017-12-01

    The aim of this study was to analyze the relationship between competitive anxiety and heart rate variability (HRV) in swimming athletes. A total of 66 volunteers (41 male and 27 female) who swam the 400-m freestyle in the Brazilian Swimming Championships participated. Thirty minutes before the 400-m freestyle event, the athletes answered the Competitive Anxiety Inventory (CSAI-2R) questionnaire, then underwent anthropometric (body weight, height, and skinfold thickness) and HRV measurements. Then, at a second meeting, held 3 h after the 400-m freestyle event, the athletes returned to the evaluation room for HRV measurement (Polar ® RS800cx, Kempele, Finland). Multiple linear regression was used to evaluate the relationship between competitive anxiety and HRV. The multiple linear regression was performed in three blocks (block 1: cognitive anxiety, block 2: somatic anxiety, and block 3: self-confidence), adopting the forward model. The results indicated a significant association between cognitive anxiety (p = 0.001) and HRV. An increased magnitude of the association was observed when somatic anxiety was inserted in the model (p = 0.001). In contrast, self-confidence showed, which was inserted in block 3, no relationship with HRV (p = 0.27). It was concluded that cognitive and somatic anxieties were associated with the HRV of swimmers. Athletes with a high magnitude of cognitive and/or somatic anxiety demonstrated more significant autonomic nervous system disturbance. Practically, psychological interventions are needed to improve anxiety states that are specific to perform well, and to improve HRV.

  20. Relationship between Spiritual Health and Quality of Life in Patients with Cancer.

    PubMed

    Mohebbifar, Rafat; Pakpour, Amir H; Nahvijou, Azin; Sadeghi, Atefeh

    2015-01-01

    As the essence of health in humans, spiritual health is a fundamental concept for discussing chronic diseases such as cancer and a major approach for improving quality of life in patients is through creating meaningfulness and purpose. The present descriptive analytical study was conducted to assess the relationship between spiritual health and quality of life in 210 patients with cancer admitted to the Cancer Institute of Iran, selected through convenience sampling in 2014. Data were collected using Spiritual Health Questionnaire and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ). Patients' performance was assessed through the Karnofsky Performance Status Indicator and their cognitive status through the Mini-Mental State Examination (MMSE). Data were analyzed in SPSS-16 using descriptive statistics and stepwise linear regression. The results obtained reported the mean and standard deviation of the patients' spiritual health scoreas 78.4±16.1and the mean and standard deviation of their quality of life score as 58.1±18.7. The stepwise linear regression analysis confirmed a positive and significant relationship between spiritual health and quality of life in patients with cancer (β=0.688 and r=0.00). The results of the study show that spiritual health should be more emphasized and reinforced as a factor involved in improving quality of life in patients with cancer. Designing care therapies and spiritual interventions is a priority in the treatment of these patients.

  1. Modelling the breeding of Aedes Albopictus species in an urban area in Pulau Pinang using polynomial regression

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.

  2. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws

    USGS Publications Warehouse

    Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.

    2011-01-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.

  3. Meteorological Modes of Variability for Fine Particulate Matter (PM2.5) Air Quality in the United States: Implications for PM2.5 Sensitivity to Climate Change

    EPA Science Inventory

    We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004-2008 PM2.5 observations fro...

  4. The Impact of Operations Tempo (OPTEMPO) on Intentions to Depart the Military. Does the Increase of OPTEMPO Cause Action

    DTIC Science & Technology

    2008-03-01

    was introduced, Vroom (1964) performed a partial review of the turnover literature. His modest review of the literature found a consistent...for the moderators job satisfaction and organizational commitment while controlling for rank and gender. Linear regressions were used to determine...if the relationship between OPTEMPO and turnover intentions were significant. When accounting for job satisfaction and organizational commitment the

  5. The Relationship of Diameter at Breast Height and Crown Diameter for Four Species Groups in Hardin County, Tennessee

    Treesearch

    Lawrence R. Gering; Dennis M. May

    1995-01-01

    A set of simple linear regression models for predicting diameter at breast height (dbh) from crown diamter and a set of similar models for predicting crown diamter from dbh were developed for four species groups in Harding County, TN. Data were obtained from 557 trees measured during hte 1989 USDA Southern Forest Experiment Station survey of the forest of Tennessee,...

  6. High Maternal Blood Mercury Level Is Associated with Low Verbal IQ in Children.

    PubMed

    Jeong, Kyoung Sook; Park, Hyewon; Ha, Eunhee; Shin, Jiyoung; Hong, Yun Chul; Ha, Mina; Park, Hyesook; Kim, Bung Nyun; Lee, Boeun; Lee, Soo Jeong; Lee, Kyung Yeon; Kim, Ja Hyeong; Kim, Yangho

    2017-07-01

    The objective of the present study was to investigate the relationship of IQ in children with maternal blood mercury concentration during late pregnancy. The present study is a component of the Mothers and Children's Environmental Health (MOCEH) study, a multi-center birth cohort project in Korea that began in 2006. The study cohort consisted of 553 children whose mothers underwent testing for blood mercury during late pregnancy. The children were given the Korean language version of the Wechsler Preschool and Primary Scale of Intelligence, revised edition (WPPSI-R) at 60 months of age. Multivariate linear regression analysis, with adjustment for covariates, was used to assess the relationship between verbal, performance, and total IQ in children and blood mercury concentration of mothers during late pregnancy. The results of multivariate linear regression analysis indicated that a doubling of blood mercury was associated with the decrease in verbal and total IQ by 2.482 (95% confidence interval [CI], 0.749-4.214) and 2.402 (95% CI, 0.526-4.279), respectively, after adjustment. This inverse association remained after further adjustment for blood lead concentration. Fish intake is an effect modifier of child IQ. In conclusion, high maternal blood mercury level is associated with low verbal IQ in children. © 2017 The Korean Academy of Medical Sciences.

  7. Relationship between Gender Roles and Sexual Assertiveness in Married Women.

    PubMed

    Azmoude, Elham; Firoozi, Mahbobe; Sadeghi Sahebzad, Elahe; Asgharipour, Neghar

    2016-10-01

    Evidence indicates that sexual assertiveness is one of the important factors affecting sexual satisfaction. According to some studies, traditional gender norms conflict with women's capability in expressing sexual desires. This study examined the relationship between gender roles and sexual assertiveness in married women in Mashhad, Iran. This cross-sectional study was conducted on 120 women who referred to Mashhad health centers through convenient sampling in 2014-15. Data were collected using Bem Sex Role Inventory (BSRI) and Hulbert index of sexual assertiveness. Data were analyzed using SPSS 16 by Pearson and Spearman's correlation tests and linear Regression Analysis. The mean scores of sexual assertiveness was 54.93±13.20. According to the findings, there was non-significant correlation between Femininity and masculinity score with sexual assertiveness (P=0.069 and P=0.080 respectively). Linear regression analysis indicated that among the predictor variables, only Sexual function satisfaction was identified as the sexual assertiveness summary predictor variables (P=0.001). Based on the results, sexual assertiveness in married women does not comply with gender role, but it is related to Sexual function satisfaction. So, counseling psychologists need to consider this variable when designing intervention programs for modifying sexual assertiveness and find other variables that affect sexual assertiveness.

  8. Statistical structure of intrinsic climate variability under global warming

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuhua; Bye, John; Fraedrich, Klaus

    2017-04-01

    Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.

  9. Motor Nerve Conduction Velocity In Postmenopausal Women with Peripheral Neuropathy.

    PubMed

    Singh, Akanksha; Asif, Naiyer; Singh, Paras Nath; Hossain, Mohd Mobarak

    2016-12-01

    The post-menopausal phase is characterized by a decline in the serum oestrogen and progesterone levels. This phase is also associated with higher incidence of peripheral neuropathy. To explore the relationship between the peripheral motor nerve status and serum oestrogen and progesterone levels through assessment of Motor Nerve Conduction Velocity (MNCV) in post-menopausal women with peripheral neuropathy. This cross-sectional study was conducted at Jawaharlal Nehru Medical College during 2011-2013. The study included 30 post-menopausal women with peripheral neuropathy (age: 51.4±7.9) and 30 post-menopausal women without peripheral neuropathy (control) (age: 52.5±4.9). They were compared for MNCV in median, ulnar and common peroneal nerves and serum levels of oestrogen and progesterone estimated through enzyme immunoassays. To study the relationship between hormone levels and MNCV, a stepwise linear regression analysis was done. The post-menopausal women with peripheral neuropathy had significantly lower MNCV and serum oestrogen and progesterone levels as compared to control subjects. Stepwise linear regression analysis showed oestrogen with main effect on MNCV. The findings of the present study suggest that while the post-menopausal age group is at a greater risk of peripheral neuropathy, it is the decline in the serum estrogen levels which is critical in the development of peripheral neuropathy.

  10. The predicting roles of reasons for living and social support on depression, anxiety and stress among young people in Malaysia.

    PubMed

    Amit, N; Ibrahim, N; Aga Mohd Jaladin, R; Che Din, N

    2017-10-01

    This research examined the predicting roles of reasons for living and social support on depression, anxiety and stress in Malaysia. This research was carried out on a sample of 263 participants (age range 12-24 years old), from Klang Valley, Selangor. The survey package comprises demographic information, a measure of reasons for living, social support, depression, anxiety and stress. To analyse the data, correlation analysis and a series of linear multiple regression analysis were carried out. Findings showed that there were low negative relationships between all subdomains and the total score of reasons for living and depression. There were also low negative relationships between domain-specific of social support (family and friends) and total social support and depression. In terms of the family alliance, self-acceptance and total score of reasons for living, they were negatively associated with anxiety, whereas family social support was negatively associated with stress. The linear regression analysis showed that only future optimism and family social support found to be the significant predictors for depression. Family alliance and total reasons for living were significant in predicting anxiety, whereas family social support was significant in predicting stress. These findings have the potential to promote awareness related to depression, anxiety, and stress among youth in Malaysia.

  11. Spatial and temporal analysis center of pressure displacement during adolescence: Clinical implications of developmental changes.

    PubMed

    Quatman-Yates, Catherine; Bonnette, Scott; Gupta, Resmi; Hugentobler, Jason A; Wade, Shari L; Glauser, Tracy A; Ittenbach, Richard F; Paterno, Mark V; Riley, Michael A

    2018-04-01

    This study aimed to provide insight into the development of postural control abilities in youth. A total of 276 typically developing adolescents (155 males, 121 females) with a mean age of 13.23 years (range of 7.11-18.80) were recruited for participation. Subjects performed two-minute quiet standing trials in bipedal stance on a force plate. Center of pressure (COP) trajectories were quantified using Sample Entropy (SampEn) in the anterior-posterior direction (SampEn-AP), SampEn in the medial-lateral direction (SampEn-ML), and Path Length (PL) measures. Three separate linear regression analyses were conducted to predict the relationship between age and each of the response variables after adjusting for individuals' physical characteristics. Linear regression models showed an inverse relationship between age and entropy measures after adjusting for body mass index. Results indicated that chronological age was predictive of entropy and path length patterns. Specifically, older adolescents exhibited center of pressure displacement (smaller path length) and less complex, more regular center of pressure displacement patterns (lower SampEn-AP and SampEn-ML values) compared to the younger children. These findings support prior studies suggesting that developmental changes in postural control abilities may continue throughout adolescence and into adulthood. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model

    PubMed Central

    Zhao, Rui; Catalano, Paul; DeGruttola, Victor G.; Michor, Franziska

    2017-01-01

    The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many methods have been proposed to investigate longitudinal trends to better characterize patients and to understand disease progression. However, most approaches assume a homogeneous patient population and a uniform response trajectory over time and across patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which takes into account both population heterogeneity and nonlinear relationships between biomarkers and time. Simulation results show that our method was able to classify subjects according to their patterns of treatment response with greater than 80% accuracy in the three scenarios tested. We then applied our model to a large randomized controlled phase III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear, even among patients assigned to the same treatment cohort. In addition, between cohorts, there are distinct differences in terms of the regression parameters and the distributions among categories in the mixture. Those results imply that longitudinal data from clinical trials may harbor unobserved subgroups and nonlinear relationships; accounting for both may be important for analyzing longitudinal data. PMID:28723910

  13. Predicting Retention Times of Naturally Occurring Phenolic Compounds in Reversed-Phase Liquid Chromatography: A Quantitative Structure-Retention Relationship (QSRR) Approach

    PubMed Central

    Akbar, Jamshed; Iqbal, Shahid; Batool, Fozia; Karim, Abdul; Chan, Kim Wei

    2012-01-01

    Quantitative structure-retention relationships (QSRRs) have successfully been developed for naturally occurring phenolic compounds in a reversed-phase liquid chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The data set of 39 molecules was divided into training and external validation sets. For feature selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised forward selection followed by step-wise multiple linear regression (UFS-SMLR) and artificial neural networks (ANN). Stable and robust models with significant predictive abilities in terms of validation statistics were obtained with negation of any chance correlation. ANN models were found better than remaining two approaches. HNar, IDM, Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der Waals volume, electronegativity, mass and polarizability, at atomic level, were found to have significant effects on the retention times. The possible implications of these descriptors in RPLC have been discussed. All the models are proven to be quite able to predict the retention times of phenolic compounds and have shown remarkable validation, robustness, stability and predictive performance. PMID:23203132

  14. Relationship between Gender Roles and Sexual Assertiveness in Married Women

    PubMed Central

    Azmoude, Elham; Firoozi, Mahbobe; Sadeghi Sahebzad, Elahe; Asgharipour, Neghar

    2016-01-01

    ABSTRACT Background: Evidence indicates that sexual assertiveness is one of the important factors affecting sexual satisfaction. According to some studies, traditional gender norms conflict with women’s capability in expressing sexual desires. This study examined the relationship between gender roles and sexual assertiveness in married women in Mashhad, Iran. Methods: This cross-sectional study was conducted on 120 women who referred to Mashhad health centers through convenient sampling in 2014-15. Data were collected using Bem Sex Role Inventory (BSRI) and Hulbert index of sexual assertiveness. Data were analyzed using SPSS 16 by Pearson and Spearman’s correlation tests and linear Regression Analysis. Results: The mean scores of sexual assertiveness was 54.93±13.20. According to the findings, there was non-significant correlation between Femininity and masculinity score with sexual assertiveness (P=0.069 and P=0.080 respectively). Linear regression analysis indicated that among the predictor variables, only Sexual function satisfaction was identified as the sexual assertiveness summary predictor variables (P=0.001). Conclusion: Based on the results, sexual assertiveness in married women does not comply with gender role, but it is related to Sexual function satisfaction. So, counseling psychologists need to consider this variable when designing intervention programs for modifying sexual assertiveness and find other variables that affect sexual assertiveness. PMID:27713899

  15. Loneliness and depression among the elderly in an agricultural settlement: mediating effects of social support.

    PubMed

    Wan Mohd Azam, Wan Mohd Yunus; Din, Normah Che; Ahmad, Mahadir; Ghazali, Shazli Ezzat; Ibrahim, Norhayati; Said, Zaini; Ghazali, Ahmad Rohi; Shahar, Suzana; Razali, Rosdinom; Maniam, T

    2013-04-01

    Loneliness has long been known to have strong association with depression. The relationship between loneliness and depression, however, has been associated with other risk factors including social support. The aim of this paper is to describe the role of social support in the association between loneliness and depression. This cross-sectional study examined the mediating effects of social support among 161 community-based elderly in agricultural settlement of a rural area in Sungai Tengi, Malaysia. Subjects were investigated with De Jong Gierveld Loneliness Scale, Geriatric Depression Scale and Medical Outcome Survey Social Support Survey. Data were analyzed using Pearson correlation, linear and hierarchical regression. Results indicated that social support partially mediated the relationship between loneliness and depression. This suggests that social support affects the linear association between loneliness and depression in the elderly. Copyright © 2013 Wiley Publishing Asia Pty Ltd.

  16. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  17. Enhancement of partial robust M-regression (PRM) performance using Bisquare weight function

    NASA Astrophysics Data System (ADS)

    Mohamad, Mazni; Ramli, Norazan Mohamed; Ghani@Mamat, Nor Azura Md; Ahmad, Sanizah

    2014-09-01

    Partial Least Squares (PLS) regression is a popular regression technique for handling multicollinearity in low and high dimensional data which fits a linear relationship between sets of explanatory and response variables. Several robust PLS methods are proposed to accommodate the classical PLS algorithms which are easily affected with the presence of outliers. The recent one was called partial robust M-regression (PRM). Unfortunately, the use of monotonous weighting function in the PRM algorithm fails to assign appropriate and proper weights to large outliers according to their severity. Thus, in this paper, a modified partial robust M-regression is introduced to enhance the performance of the original PRM. A re-descending weight function, known as Bisquare weight function is recommended to replace the fair function in the PRM. A simulation study is done to assess the performance of the modified PRM and its efficiency is also tested in both contaminated and uncontaminated simulated data under various percentages of outliers, sample sizes and number of predictors.

  18. Evaluation of pharyngeal space and its correlation with mandible and hyoid bone in patients with different skeletal classes and facial types.

    PubMed

    Nejaim, Yuri; Aps, Johan K M; Groppo, Francisco Carlos; Haiter Neto, Francisco

    2018-06-01

    The purpose of this article was to evaluate the pharyngeal space volume, and the size and shape of the mandible and the hyoid bone, as well as their relationships, in patients with different facial types and skeletal classes. Furthermore, we estimated the volume of the pharyngeal space with a formula using only linear measurements. A total of 161 i-CAT Next Generation (Imaging Sciences International, Hatfield, Pa) cone-beam computed tomography images (80 men, 81 women; ages, 21-58 years; mean age, 27 years) were retrospectively studied. Skeletal class and facial type were determined for each patient from multiplanar reconstructions using the NemoCeph software (Nemotec, Madrid, Spain). Linear and angular measurements were performed using 3D imaging software (version 3.4.3; Carestream Health, Rochester, NY), and volumetric analysis of the pharyngeal space was carried out with ITK-SNAP (version 2.4.0; Cognitica, Philadelphia, Pa) segmentation software. For the statistics, analysis of variance and the Tukey test with a significance level of 0.05, Pearson correlation, and linear regression were used. The pharyngeal space volume, when correlated with mandible and hyoid bone linear and angular measurements, showed significant correlations with skeletal class or facial type. The linear regression performed to estimate the volume of the pharyngeal space showed an R of 0.92 and an adjusted R 2 of 0.8362. There were significant correlations between pharyngeal space volume, and the mandible and hyoid bone measurements, suggesting that the stomatognathic system should be evaluated in an integral and nonindividualized way. Furthermore, it was possible to develop a linear regression model, resulting in a useful formula for estimating the volume of the pharyngeal space. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. CORRELATION PURSUIT: FORWARD STEPWISE VARIABLE SELECTION FOR INDEX MODELS

    PubMed Central

    Zhong, Wenxuan; Zhang, Tingting; Zhu, Yu; Liu, Jun S.

    2012-01-01

    In this article, a stepwise procedure, correlation pursuit (COP), is developed for variable selection under the sufficient dimension reduction framework, in which the response variable Y is influenced by the predictors X1, X2, …, Xp through an unknown function of a few linear combinations of them. Unlike linear stepwise regression, COP does not impose a special form of relationship (such as linear) between the response variable and the predictor variables. The COP procedure selects variables that attain the maximum correlation between the transformed response and the linear combination of the variables. Various asymptotic properties of the COP procedure are established, and in particular, its variable selection performance under diverging number of predictors and sample size has been investigated. The excellent empirical performance of the COP procedure in comparison with existing methods are demonstrated by both extensive simulation studies and a real example in functional genomics. PMID:23243388

  20. Local structure-based image decomposition for feature extraction with applications to face recognition.

    PubMed

    Qian, Jianjun; Yang, Jian; Xu, Yong

    2013-09-01

    This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.

  1. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-06-01

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Caribou distribution during the post-calving period in relation to infrastructure in the Prudhoe Bay oil field, Alaska

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Durner, George M.; Noel, Lynn E.; McDonald, Trent L.; Ballard, Warren B.

    1998-01-01

    There is concern that caribou (Rangifer tarandus) may avoid roads and facilities (i.e., infrastructure) in the Prudhoe Bay oil field (PBOF) in northern Alaska, and that this avoidance can have negative effects on the animals. We quantified the relationship between caribou distribution and PBOF infrastructure during the post-calving period (mid-June to mid-August) with aerial surveys from 1990 to 1995. We conducted four to eight surveys per year with complete coverage of the PBOF. We identified active oil field infrastructure and used a geographic information system (GIS) to construct ten 1 km wide concentric intervals surrounding the infrastructure. We tested whether caribou distribution is related to distance from infrastructure with a chi-squared habitat utilization-availability analysis and log-linear regression. We considered bulls, calves, and total caribou of all sex/age classes separately. The habitat utilization-availability analysis indicated there was no consistent trend of attraction to or avoidance of infrastructure. Caribou frequently were more abundant than expected in the intervals close to infrastructure, and this trend was more pronounced for bulls and for total caribou of all sex/age classes than for calves. Log-linear regression (with Poisson error structure) of numbers of caribou and distance from infrastructure were also done, with and without combining data into the 1 km distance intervals. The analysis without intervals revealed no relationship between caribou distribution and distance from oil field infrastructure, or between caribou distribution and Julian date, year, or distance from the Beaufort Sea coast. The log-linear regression with caribou combined into distance intervals showed the density of bulls and total caribou of all sex/age classes declined with distance from infrastructure. Our results indicate that during the post-calving period: 1) caribou distribution is largely unrelated to distance from infrastructure; 2) caribou regularly use habitats in the PBOF; 3) caribou often occur close to infrastructure; and 4) caribou do not appear to avoid oil field infrastructure.

  3. Explaining Match Outcome During The Men’s Basketball Tournament at The Olympic Games

    PubMed Central

    Leicht, Anthony S.; Gómez, Miguel A.; Woods, Carl T.

    2017-01-01

    In preparation for the Olympics, there is a limited opportunity for coaches and athletes to interact regularly with team performance indicators providing important guidance to coaches for enhanced match success at the elite level. This study examined the relationship between match outcome and team performance indicators during men’s basketball tournaments at the Olympic Games. Twelve team performance indicators were collated from all men’s teams and matches during the basketball tournament of the 2004-2016 Olympic Games (n = 156). Linear and non-linear analyses examined the relationship between match outcome and team performance indicator characteristics; namely, binary logistic regression and a conditional interference (CI) classification tree. The most parsimonious logistic regression model retained ‘assists’, ‘defensive rebounds’, ‘field-goal percentage’, ‘fouls’, ‘fouls against’, ‘steals’ and ‘turnovers’ (delta AIC <0.01; Akaike weight = 0.28) with a classification accuracy of 85.5%. Conversely, four performance indicators were retained with the CI classification tree with an average classification accuracy of 81.4%. However, it was the combination of ‘field-goal percentage’ and ‘defensive rebounds’ that provided the greatest probability of winning (93.2%). Match outcome during the men’s basketball tournaments at the Olympic Games was identified by a unique combination of performance indicators. Despite the average model accuracy being marginally higher for the logistic regression analysis, the CI classification tree offered a greater practical utility for coaches through its resolution of non-linear phenomena to guide team success. Key points A unique combination of team performance indicators explained 93.2% of winning observations in men’s basketball at the Olympics. Monitoring of these team performance indicators may provide coaches with the capability to devise multiple game plans or strategies to enhance their likelihood of winning. Incorporation of machine learning techniques with team performance indicators may provide a valuable and strategic approach to explain patterns within multivariate datasets in sport science. PMID:29238245

  4. Travel distance as factor in follow-up visit compliance in postlaparoscopic adjustable gastric banding population.

    PubMed

    DeNino, Walter F; Osler, Turner; Evans, Ellen G; Forgione, Patrick M

    2010-01-01

    Despite the 2008 "American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic and Bariatric Surgery Medical Guidelines for Clinical Practice for the Perioperative Nutritional, Metabolic, and Nonsurgical Support of the Bariatric Surgery Patient," consensus does not exist for postoperative care in laparoscopic adjustable gastric banding (LAGB) patients (grade D evidence). It has been suggested that regular follow-up is related to better outcomes, specifically greater weight loss. The aim of the present study was to investigate the effects of travel distance to the clinic on the adherence to follow-up visits and weight loss in a cohort of LAGB patients in the setting of a rural, university-affiliated teaching hospital in the United States. A retrospective chart review was performed of all consecutive LAGB patients for a 1-year period. Linear regression analysis was used to identify the relationships between appointment compliance and the distance traveled and between the amount of weight loss and the distance traveled. Linear regression analysis was performed to investigate the effect of the travel distance to the clinic on the percentage of follow-up visits postoperatively. This effect was not significant (P = .4). Linear regression analysis was also performed to elucidate the effect of the travel distance to the clinic on the amount of weight loss. This effect was significant (P = .04). The travel distance to the clinic did not seem to be a significant predictor of compliance in a cohort of LAGB patients with ≤ 1 year of follow-up in a rural setting. However, a weak relationship was found between the travel distance to the clinic and weight loss, with patients who traveled further seeming to lose slightly more weight. Copyright © 2010 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  5. A cephalometric analysis of Class II dentate subjects to establish a formula to determine the occlusal plane in Class II edentate subjects: A neo adjunct.

    PubMed

    Sinha, Nikita; Reddy, K Mahendranadh; Gupta, Nidhi; Shastry, Y M

    2017-01-01

    Occlusal plane (OP) differs considerably in participants with skeletal Class I and Class II participants. In this study, cephalometrics has been used to help in the determination of orientation of the OP utilizing the nonresorbable bony anatomic landmarks in skeletal Class II participants and an attempt has been made to predict and examine the OP in individuals with skeletal class II jaw relationship. One hundred dentulous participants with skeletal Class II malocclusion who came to the hospital for correcting their jaw relationship participated in the study. Their right lateral cephalogram was taken using standardized procedures, and all the tracings were manually done by a single trained examiner. The cephalograms which were taken for the diagnostic purpose were utilized for the study, and the patient was not exposed to any unnecessary radiation. The numerical values obtained from the cephalograms were subjected to statistical analysis. Pearson's correlation of <0.001 was considered significant, and a linear regression analysis was performed to determine a formula which would help in the determination of orientation of the OP in Class II edentulous participants. Pearson's correlation coefficient and linear regression analysis were performed, and a high correlation was found between A2 and (A2 + B2)/(B2 + C2) with " r " value of 0.5. A medium correlation was found between D2 and (D2 + E2)/(E2 + F2) with " r " value of 0.42. The formula obtained for posterior reference frame through linear regression equation was y = 0.018* × +0.459 and the formula obtained for anterior reference frame was y1 = 0.011* × 1 + 0.497. It was hypothesized that by substituting these formulae in the cephalogram obtained from the Class II edentate individual, the OP can be obtained and verified. It was concluded that cephalometrics can be useful in examining the orientation of OP in skeletal Class II participants.

  6. Investigation of the UK37' vs. SST relationship for Atlantic Ocean suspended particulate alkenones: An alternative regression model and discussion of possible sampling bias

    NASA Astrophysics Data System (ADS)

    Gould, Jessica; Kienast, Markus; Dowd, Michael

    2017-05-01

    Alkenone unsaturation, expressed as the UK37' index, is closely related to growth temperature of prymnesiophytes, thus providing a reliable proxy to infer past sea surface temperatures (SSTs). Here we address two lingering uncertainties related to this SST proxy. First, calibration models developed for core-top sediments and those developed for surface suspended particulates organic material (SPOM) show systematic offsets, raising concerns regarding the transfer of the primary signal into the sedimentary record. Second, questions remain regarding changes in slope of the UK37' vs. growth temperature relationship at the temperature extremes. Based on (re)analysis of 31 new and 394 previously published SPOM UK37' data from the Atlantic Ocean, a new regression model to relate UK37' to SST is introduced; the Richards curve (Richards, 1959). This non-linear regression model provides a robust calibration of the UK37' vs. SST relationship for Atlantic SPOM samples and uniquely accounts for both the fact that the UK37' index is a proportion, and so must lie between 0 and 1, as well as for the observed reduction in slope at the warm and cold ends of the temperature range. As with prior fits of SPOM UK37' vs. SST, the Richards model is offset from traditional regression models of sedimentary UK37' vs. SST. We posit that (some of) this offset can be attributed to the seasonally and depth biased sampling of SPOM material.

  7. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    NASA Astrophysics Data System (ADS)

    Chiong, W. L.; Omar, A. F.

    2017-07-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  8. Factors associated with parasite dominance in fishes from Brazil.

    PubMed

    Amarante, Cristina Fernandes do; Tassinari, Wagner de Souza; Luque, Jose Luis; Pereira, Maria Julia Salim

    2016-06-14

    The present study used regression models to evaluate the existence of factors that may influence the numerical parasite dominance with an epidemiological approximation. A database including 3,746 fish specimens and their respective parasites were used to evaluate the relationship between parasite dominance and biotic characteristics inherent to the studied hosts and the parasite taxa. Multivariate, classical, and mixed effects linear regression models were fitted. The calculations were performed using R software (95% CI). In the fitting of the classical multiple linear regression model, freshwater and planktivorous fish species and body length, as well as the species of the taxa Trematoda, Monogenea, and Hirudinea, were associated with parasite dominance. However, the fitting of the mixed effects model showed that the body length of the host and the species of the taxa Nematoda, Trematoda, Monogenea, Hirudinea, and Crustacea were significantly associated with parasite dominance. Studies that consider specific biological aspects of the hosts and parasites should expand the knowledge regarding factors that influence the numerical dominance of fish in Brazil. The use of a mixed model shows, once again, the importance of the appropriate use of a model correlated with the characteristics of the data to obtain consistent results.

  9. Open Relationships, Nonconsensual Nonmonogamy, and Monogamy Among U.S. Adults: Findings from the 2012 National Survey of Sexual Health and Behavior.

    PubMed

    Levine, Ethan Czuy; Herbenick, Debby; Martinez, Omar; Fu, Tsung-Chieh; Dodge, Brian

    2018-07-01

    People in open and other consensually nonmonogamous partnerships have been historically underserved by researchers and providers. Many studies group such partnerships together with nonconsensual nonmonogamy (NCNM) under the banner of "concurrent sexual partnerships." Discrimination from service providers poses a substantial barrier to care. Responding to such concerns, this investigation explored sociodemographic correlates with open relationships and associations between relationship structure and sexual risk, HIV/STI testing, and relationship satisfaction in a nationally representative probability sample. Data were drawn from the 2012 National Survey of Sexual Health and Behavior (n = 2270). We used multinomial logistic regression to identify correlates with relationship structure, and linear and logistic regression to investigate associations between relationship structure and testing, condom use, and relationship satisfaction. Eighty-nine percent of participants reported monogamy, 4% reported open relationships, and 8% reported NCNM. Males, gay/lesbian individuals, bisexual individuals, and those who identified as "Other, Non-Hispanic" were more likely to report open relationships. Bisexual individuals and Black, Non-Hispanic participants were more likely to report NCNM; older participants were less likely to do so. Participants in open relationships reported more frequent condom use for anal intercourse and lower relationship satisfaction than monogamous participants. NCNM participants reported more HIV testing and lower satisfaction. Identities, experiences, and behaviors within open and other consensually nonmonogamous populations should be regarded as unique and diverse, rather than conflated with those common to other relationship structures. There is a need for greater awareness of diverse relationship structures among researchers and providers, and incorporation of related content into educational programming.

  10. The relationship between attendance at birth and maternal mortality rates: an exploration of United Nations' data sets including the ratios of physicians and nurses to population, GNP per capita and female literacy.

    PubMed

    Robinson, J J; Wharrad, H

    2001-05-01

    The relationship between attendance at birth and maternal mortality rates: an exploration of United Nations' data sets including the ratios of physicians and nurses to population, GNP per capita and female literacy. This is the third and final paper drawing on data taken from United Nations (UN) data sets. The first paper examined the global distribution of health professionals (as measured by ratios of physicians and nurses to population), and its relationship to gross national product per capita (GNP) (Wharrad & Robinson 1999). The second paper explored the relationships between the global distribution of physicians and nurses, GNP, female literacy and the health outcome indicators of infant and under five mortality rates (IMR and u5MR) (Robinson & Wharrad 2000). In the present paper, the global distribution of health professionals is explored in relation to maternal mortality rates (MMRs). The proportion of births attended by medical and nonmedical staff defined as "attendance at birth by trained personnel" (physicians, nurses, midwives or primary health care workers trained in midwifery skills), is included as an additional independent variable in the regression analyses, together with the ratio of physicians and nurses to population, female literacy and GNP. To extend our earlier analyses by considering the relationships between the global distribution of health professionals (ratios of physicians and nurses to population, and the proportion of births attended by trained health personnel), GNP, female literacy and MMR.

  11. The relationship between the target effective site concentration of rocuronium and the degree of recovery from neuromuscular blockade in elderly patients

    PubMed Central

    Fan, Xiaochong; Ma, Minyu; Li, Zhisong; Gong, Shengkai; Zhang, Wei; Wen, Yuanyuan

    2015-01-01

    Objective: To study the relationship between the target effective site concentration (Ce) of rocuronium and the degree of recovery from neuromuscular blockade in elderly patients. Methods: 50 elderly patients (ASA grade II) scheduled for selective surgical procedure under general anaesthesia were randomly divided into two groups, A and B, with 25 cases in each group. The Ce of rocuronium for intubation was 3 μg·ml-1 in both groups, and the Ce during operation were 0.8 and 1.0 μg·ml-1 in group A and B, respectively. When target controlled infusion of rocuronium was stopped, without the administration of reversal agents for neuromuscular blockade, the relationship between Ce and the first twitch height (T1) was studied by regression analysis. Results: There was a significant linear relationship between Ce and T1, and there was no statistical difference in regression coefficient and interception between group A and B (P>0.05). Conclusion: The degree of recovery from neuromuscular blockade could be judged by the target effective site concentration of rocuronium at the time of reversal from neuromuscular blockade in the elderly patients. PMID:26629159

  12. A comparison of regression methods for model selection in individual-based landscape genetic analysis.

    PubMed

    Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A

    2018-01-01

    Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model.

    PubMed

    Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan

    2017-02-20

    The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.

  14. Maximum likelihood estimation of correction for dilution bias in simple linear regression using replicates from subjects with extreme first measurements.

    PubMed

    Berglund, Lars; Garmo, Hans; Lindbäck, Johan; Svärdsudd, Kurt; Zethelius, Björn

    2008-09-30

    The least-squares estimator of the slope in a simple linear regression model is biased towards zero when the predictor is measured with random error. A corrected slope may be estimated by adding data from a reliability study, which comprises a subset of subjects from the main study. The precision of this corrected slope depends on the design of the reliability study and estimator choice. Previous work has assumed that the reliability study constitutes a random sample from the main study. A more efficient design is to use subjects with extreme values on their first measurement. Previously, we published a variance formula for the corrected slope, when the correction factor is the slope in the regression of the second measurement on the first. In this paper we show that both designs improve by maximum likelihood estimation (MLE). The precision gain is explained by the inclusion of data from all subjects for estimation of the predictor's variance and by the use of the second measurement for estimation of the covariance between response and predictor. The gain of MLE enhances with stronger true relationship between response and predictor and with lower precision in the predictor measurements. We present a real data example on the relationship between fasting insulin, a surrogate marker, and true insulin sensitivity measured by a gold-standard euglycaemic insulin clamp, and simulations, where the behavior of profile-likelihood-based confidence intervals is examined. MLE was shown to be a robust estimator for non-normal distributions and efficient for small sample situations. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  16. Structured penalties for functional linear models-partially empirical eigenvectors for regression.

    PubMed

    Randolph, Timothy W; Harezlak, Jaroslaw; Feng, Ziding

    2012-01-01

    One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.

  17. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.

    PubMed

    Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E

    2017-07-01

    Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.

  18. The relationship between emotional labor status and workplace violence among toll collectors.

    PubMed

    Joo, Yosub; Rhie, Jeongbae

    2017-01-01

    This study aimed to identify the emotional labor and workplace violence status among toll collectors by assessing and comparing the same with that in workers in other service occupation. It also aimed to analyze the relationship between emotional labor and workplace violence. This study examined emotional labor and workplace violence status in 264 female toll collectors from August 20 to September 4, 2015. The emotional labor was assessed using the Korean Emotional Labor Scale (K-ELS), and a questionnaire was used to examine the presence or absence, and type and frequency of workplace violence experienced by the subjects. A linear regression analysis was also performed to analyze the relationship between workplace violence and emotional labor. The scores on "emotional demanding and regulation ( p  < 0.001)," "overload and conflict in customer service ( p  = 0.005)," "emotional disharmony and hurt ( p  < 0.001)," and "organizational surveillance and monitoring ( p  < 0.001)" among the sub-categories of emotional labor were significantly high and indicated "at-risk" levels of emotional labor in those who experienced workplace violence, whereas they were "normal" of emotional labor in those who did not. Even after being adjusted in the linear regression analysis, the emotional labor scores for the above 4 sub-categories were still significantly high in those who experienced workplace violence. On comparing the present scores with 13 other service occupations, it was found that toll collectors had the highest level in "emotional disharmony and hurt," "organizational surveillance and monitoring," and "organizational supportive and protective system". This study found that the toll collectors engaged in a high level of emotional labor. Additionally, there was a significant relationship between emotional labor and the experience of workplace violence among the toll collectors.

  19. Distinct severity stages of obstructive sleep apnoea are correlated with unique dyslipidaemia: large-scale observational study

    PubMed Central

    Guan, Jian; Yi, Hongliang; Zou, Jianyin; Meng, Lili; Tang, Xulan; Zhu, Huaming; Yu, Dongzhen; Zhou, Huiqun; Su, Kaiming; Yang, Mingpo; Chen, Haoyan; Shi, Yongyong; Wang, Yue; Wang, Jian; Yin, Shankai

    2016-01-01

    Background Dyslipidaemia is an intermediary exacerbation factor for various diseases but the impact of obstructive sleep apnoea (OSA) on dyslipidaemia remains unclear. Methods A total of 3582 subjects with suspected OSA consecutively admitted to our hospital sleep centre were screened and 2983 (2422 with OSA) were included in the Shanghai Sleep Health Study. OSA severity was quantified using the apnoea–hypopnea index (AHI), the oxygen desaturation index and the arousal index. Biochemical indicators and anthropometric data were also collected. The relationship between OSA severity and the risk of dyslipidaemia was evaluated via ordinal logistic regression, restricted cubic spline (RCS) analysis and multivariate linear regressions. Results The RCS mapped a nonlinear dose–effect relationship between the risk of dyslipidaemia and OSA severity, and yielded knots of the AHI (9.4, 28.2, 54.4 and 80.2). After integrating the clinical definition and RCS-selected knots, all subjects were regrouped into four AHI severity stages. Following segmented multivariate linear modelling of each stage, distinguishable sets of OSA risk factors were quantified: low-density lipoprotein cholesterol (LDL-C), apolipoprotein E and high-density lipoprotein cholesterol (HDL-C); body mass index and/or waist to hip ratio; and HDL-C, LDL-C and triglycerides were specifically associated with stage I, stages II and III, and stages II–IV with different OSA indices. Conclusions Our study revealed the multistage and non-monotonic relationships between OSA and dyslipidaemia and quantified the relationships between OSA severity indexes and distinct risk factors for specific OSA severity stages. Our study suggests that a new interpretive and predictive strategy for dynamic assessment of the risk progression over the clinical course of OSA should be adopted. PMID:26883674

  20. Digital Image Restoration Under a Regression Model - The Unconstrained, Linear Equality and Inequality Constrained Approaches

    DTIC Science & Technology

    1974-01-01

    REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans

  1. Influence of age on the correlations of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate.

    PubMed

    de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson

    2014-10-01

    To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.

  2. Correlates and Predictors of Psychological Distress Among Older Asian Immigrants in California.

    PubMed

    Chang, Miya; Moon, Ailee

    2016-01-01

    Psychological distress occurs frequently in older minority immigrants because many have limited social resources and undergo a difficult process related to immigration and acculturation. Despite a rapid increase in the number of Asian immigrants, relatively little research has focused on subgroup mental health comparisons. This study examines the prevalence of psychological distress, and relationship with socio-demographic factors, and health care utilization among older Asian immigrants. Weighted data from Asian immigrants 65 and older from 5 countries (n = 1,028) who participated in the California Health Interview Survey (CHIS) were analyzed descriptively and in multiple linear regressions. The prevalence of psychological distress varied significantly across the 5 ethnic groups, from Filipinos (4.83%) to Chinese (1.64%). General health status, cognitive and physical impairment, and health care utilization are all associated (p < .05) with psychological distress in multiple linear regressions. These findings are similar to those from previous studies. The findings reinforce the need to develop more culturally effective mental health services and outreach programs.

  3. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines

    NASA Astrophysics Data System (ADS)

    Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.

    1994-08-01

    Neural networks and inductive logic programming (ILP) have been compared to linear regression for modelling the QSAR of the inhibition of E. coli dihydrofolate reductase (DHFR) by 2,4-diamino-5-(substitured benzyl)pyrimidines, and, in the subsequent paper [Hirst, J.D., King, R.D. and Sternberg, M.J.E., J. Comput.-Aided Mol. Design, 8 (1994) 421], the inhibition of rodent DHFR by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazines. Cross-validation trials provide a statistically rigorous assessment of the predictive capabilities of the methods, with training and testing data selected randomly and all the methods developed using identical training data. For the ILP analysis, molecules are represented by attributes other than Hansch parameters. Neural networks and ILP perform better than linear regression using the attribute representation, but the difference is not statistically significant. The major benefit from the ILP analysis is the formulation of understandable rules relating the activity of the inhibitors to their chemical structure.

  4. Non-Linear Association between Cerebral Amyloid Deposition and White Matter Microstructure in Cognitively Healthy Older Adults.

    PubMed

    Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas

    2015-01-01

    Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.

  5. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  6. Impact of high-performance work systems on individual- and branch-level performance: test of a multilevel model of intermediate linkages.

    PubMed

    Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E

    2012-03-01

    We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.

  7. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  8. Relationship between FEV1 and Cardiovascular Risk Factors in General Population without Airflow Limitation.

    PubMed

    Lee, Jeong Hyeon; Kang, Yun-Seong; Jeong, Yun-Jeong; Yoon, Young-Soon; Kwack, Won Gun; Oh, Jin Young

    2016-01-01

    Purpose. We aimed to determine the value of lung function measurement for predicting cardiovascular (CV) disease by evaluating the association between FEV1 (%) and CV risk factors in general population. Materials and Methods. This was a cross-sectional, retrospective study of subjects above 18 years of age who underwent health examinations. The relationship between FEV1 (%) and presence of carotid plaque and thickened carotid IMT (≥0.8 mm) was analyzed by multiple logistic regression, and the relationship between FEV1 (%) and PWV (%), and serum uric acid was analyzed by multiple linear regression. Various factors were adjusted by using Model 1 and Model 2. Results. 1,003 subjects were enrolled in this study and 96.7% ( n = 970) of the subjects were men. In both models, the odds ratio of the presence of carotid plaque and thickened carotid IMT had no consistent trend and statistical significance. In the analysis of the PWV (%) and uric acid, there was no significant relationship with FEV1 (%) in both models. Conclusion. FEV1 had no significant relationship with CV risk factors. The result suggests that FEV1 may have no association with CV risk factors or may be insensitive to detecting the association in general population without airflow limitation.

  9. A regularization corrected score method for nonlinear regression models with covariate error.

    PubMed

    Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna

    2013-03-01

    Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.

  10. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  11. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.

  12. Biophysical characterization of a swimmer with a unilateral arm amputation: a case study.

    PubMed

    Figueiredo, Pedro; Willig, Renata; Alves, Francisco; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2014-11-01

    To examine the effect of swimming speed (v) on the biomechanical and physiological responses of a trained front-crawl swimmer with a unilateral arm amputation. A 13-y-old girl with a unilateral arm amputation (level of the elbow) was tested for stroke length (SL, horizontal displacement cover with each stroke cycle), stroke frequency (SF, inverse of the time to complete each stroke cycle), adapted index of coordination (IdCadapt, lag time between propulsive phases), intracycle velocity variation (IVV, coefficient of variation of the instantaneous velocity-time data), active drag (D, hydrodynamic resistance), and energy cost (C, ratio of metabolic power to speed) during trials of increasing v. Swimmer data showed a positive relationship between v and SF (R² = 1, P < .001), IVV (R² = .98, P = .002), D (R² = .98, P < .001), and C (R² = .95, P = .001) and a negative relationship with the SL (R² = .99, P = .001). No relation was found between v and IdCadapt (R² = .35, P = .22). A quadratic regression best fitted the relationship between v and general kinematical parameters (SL and SF); a cubic relationship fit the IVV best. The relationship between v and D was best expressed by a power regression, and the linear regression fit the C and IdCadapt best. The subject's adaptation to increased v was different from able-bodied swimmers, mainly on interarm coordination, maintaining the lag time between propulsive phases, which influence the magnitude of the other parameters. These results might be useful to develop specific training and enhance swimming performance in swimmers with amputations.

  13. A Note on the Relationship between Temperature and Water Vapor in Quasi-Equilibrium and Climate States

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2005-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor faster than temperature, while cold/dry regions favor an increase in temperature quicker than water vapor.

  14. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  15. Satellite remote sensing of fine particulate air pollutants over Indian mega cities

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.; Mahesh, B.; Niranjan, K.

    2017-11-01

    In the backdrop of the need for high spatio-temporal resolution data on PM2.5 mass concentrations for health and epidemiological studies over India, empirical relations between Aerosol Optical Depth (AOD) and PM2.5 mass concentrations are established over five Indian mega cities. These relations are sought to predict the surface PM2.5 mass concentrations from high resolution columnar AOD datasets. Current study utilizes multi-city public domain PM2.5 data (from US Consulate and Embassy's air monitoring program) and MODIS AOD, spanning for almost four years. PM2.5 is found to be positively correlated with AOD. Station-wise linear regression analysis has shown spatially varying regression coefficients. Similar analysis has been repeated by eliminating data from the elevated aerosol prone seasons, which has improved the correlation coefficient. The impact of the day to day variability in the local meteorological conditions on the AOD-PM2.5 relationship has been explored by performing a multiple regression analysis. A cross-validation approach for the multiple regression analysis considering three years of data as training dataset and one-year data as validation dataset yielded an R value of ∼0.63. The study was concluded by discussing the factors which can improve the relationship.

  16. Faecal nitrogen excretion as an approach to estimate forage intake of wethers.

    PubMed

    Kozloski, G V; Oliveira, L; Poli, C H E C; Azevedo, E B; David, D B; Ribeiro Filho, H M N; Collet, S G

    2014-08-01

    Data from twenty-two digestibility trials were compiled to examine the relationship between faecal N concentration and organic matter (OM) digestibility (OMD), and between faecal N excretion and OM intake (OMI) by wethers fed tropical or temperate forages alone or with supplements. Data set was grouped by diet type as follows: only tropical grass (n = 204), only temperate grass (n = 160), tropical grass plus supplement (n = 216), temperate grass plus supplement (n = 48), tropical grass plus tropical legume (n = 60) and temperate grass with ruminal infusion of tannins (n = 16). Positive correlation between OMD and either total faecal N concentration (Nfc, % of OM) or metabolic faecal N concentration (Nmetfc, % of OM) was significant for most diet types. Exceptions were the diet that included a tropical legume, where both relationships were negative, and the diet that included tannin extract, where the correlation between OMD and Nfc was not significant. Pearson correlation and linear regressions between OM intake (OMI, g/day) and faecal N excretion (Nf, g/day) were significant for all diet types. When OMI was estimated from the OM faecal excretion and Nfc-based OMD values, the linear comparison between observed and estimated OMI values showed intercept different from 0 and slope different from 1. When OMI was estimated using the Nf-based linear regressions, the linear comparison between observed and estimated OMI values showed neither intercept different from 0 nor slope different from 1. Both linear comparisons showed similar R(2) values (i.e. 0.78 vs. 0.79). In conclusion, linear equations are suitable for directly estimating OM intake by wethers, fed only forage or forage plus supplements, from the amount of N excreted in faeces. The use of this approach in experiments with grazing wethers has the advantage of accounting for individual variations in diet selection and digestion processes and precludes the use of techniques to estimate forage digestibility. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  17. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  18. A restricted cubic spline approach to assess the association between high fat fish intake and red blood cell EPA + DHA content.

    PubMed

    Sirot, V; Dumas, C; Desquilbet, L; Mariotti, F; Legrand, P; Catheline, D; Leblanc, J-C; Margaritis, I

    2012-04-01

    Fish, especially fatty fish, are the main contributor to eicosapentaenoic (EPA) and docosahexaenoic (DHA) intake. EPA and DHA concentrations in red blood cells (RBC) has been proposed as a cardiovascular risk factor, with <4% and >8% associated with the lowest and greatest protection, respectively. The relationship between high fat fish (HFF) intake and RBC EPA + DHA content has been little investigated on a wide range of fish intake, and may be non-linear. We aimed to study the shape of this relationship among high seafood consumers. Seafood consumption records and blood were collected from 384 French heavy seafood consumers and EPA and DHA were measured in RBC. A multivariate linear regression was performed using restricted cubic splines to consider potential non-linear associations. Thirty-six percent of subjects had an RBC EPA + DHA content lower than 4% and only 5% exceeded 8%. HFF consumption was significantly associated with RBC EPA + DHA content (P [overall association] = 0.021) adjusted for sex, tobacco status, study area, socioeconomic status, age, alcohol, other seafood, meat, and meat product intakes. This relationship was non-linear: for intakes higher than 200 g/wk, EPA + DHA content tended to stagnate. Tobacco status and fish contaminants were negatively associated with RBC EPA + DHA content. Because of the saturation for high intakes, and accounting for the concern with exposure to trace element contaminants, intake not exceeding 200 g should be considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Drawing the line between constituent structure and coherence relations in visual narratives

    PubMed Central

    Cohn, Neil; Bender, Patrick

    2016-01-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that hierarchic “grammatical” structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a “segmentation task” where participants drew lines between images in order to divide them into sub-episodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants’ divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. PMID:27709982

  20. Drawing the line between constituent structure and coherence relations in visual narratives.

    PubMed

    Cohn, Neil; Bender, Patrick

    2017-02-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a "segmentation task" where participants drew lines between images in order to divide them into subepisodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants' divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Avoidant Coping Mediates the Relationship Between Self-Efficacy for HIV Disclosure and Depression Symptoms Among Men Who Have Sex with Men Newly Diagnosed with HIV.

    PubMed

    Cherenack, Emily M; Sikkema, Kathleen J; Watt, Melissa H; Hansen, Nathan B; Wilson, Patrick A

    2018-01-25

    HIV diagnosis presents a critical opportunity to reduce secondary transmission, improve engagement in care, and enhance overall well-being. To develop relevant interventions, research is needed on the psychosocial experiences of newly diagnosed individuals. This study examined avoidant coping, self-efficacy for HIV disclosure decisions, and depression among 92 newly diagnosed men who have sex with men who reported recent sexual risk behavior. It was hypothesized that avoidant coping would mediate the relationship between self-efficacy and depression. Cross-sectional surveys were collected from participants 3 months after HIV diagnosis. To test for mediation, multiple linear regressions were conducted while controlling for HIV disclosure to sexual partners. Self-efficacy for HIV disclosure decisions showed a negative linear relationship to depression symptoms, and 99% of this relationship was mediated by avoidant coping. The index of mediation of self-efficacy on depression indicated a small-to-medium effect. Higher self-efficacy was related to less avoidant coping, and less avoidant coping was related to decreased depression symptoms, all else held constant. These findings highlight the role of avoidant coping in explaining the relationship between self-efficacy for HIV disclosure decisions and depression.

  2. Age and mortality after injury: is the association linear?

    PubMed

    Friese, R S; Wynne, J; Joseph, B; Hashmi, A; Diven, C; Pandit, V; O'Keeffe, T; Zangbar, B; Kulvatunyou, N; Rhee, P

    2014-10-01

    Multiple studies have demonstrated a linear association between advancing age and mortality after injury. An inflection point, or an age at which outcomes begin to differ, has not been previously described. We hypothesized that the relationship between age and mortality after injury is non-linear and an inflection point exists. We performed a retrospective cohort analysis at our urban level I center from 2007 through 2009. All patients aged 65 years and older with the admission diagnosis of injury were included. Non-parametric logistic regression was used to identify the functional form between mortality and age. Multivariate logistic regression was utilized to explore the association between age and mortality. Age 65 years was used as the reference. Significance was defined as p < 0.05. A total of 1,107 patients were included in the analysis. One-third required intensive care unit (ICU) admission and 48 % had traumatic brain injury. 229 patients (20.6 %) were 84 years of age or older. The overall mortality was 7.2 %. Our model indicates that mortality is a quadratic function of age. After controlling for confounders, age is associated with mortality with a regression coefficient of 1.08 for the linear term (p = 0.02) and a regression coefficient of -0.006 for the quadratic term (p = 0.03). The model identified 84.4 years of age as the inflection point at which mortality rates begin to decline. The risk of death after injury varies linearly with age until 84 years. After 84 years of age, the mortality rates decline. These findings may reflect the varying severity of comorbidities and differences in baseline functional status in elderly trauma patients. Specifically, a proportion of our injured patient population less than 84 years old may be more frail, contributing to increased mortality after trauma, whereas a larger proportion of our injured patients over 84 years old, by virtue of reaching this advanced age, may, in fact, be less frail, contributing to less risk of death.

  3. Challenge from the simple: some caveats in linearization of the Boyle-van't Hoff and Arrhenius plots.

    PubMed

    Katkov, Igor I

    2008-10-01

    Some aspects of proper linearization of the Boyle-van't Hoff (BVH) relationship for calculation of the osmotically inactive volume v(b), and Arrhenius plot (AP) for the activation energy E(a) are discussed. It is shown that the commonly used determination of the slope and the intercept (v(b)), which are presumed to be independent from each other, is invalid if the initial intracellular molality m(0) is known. Instead, the linear regression with only one independent parameter (v(b)) or the Least Square Method (LSM) with v(b) as the only fitting LSM parameter must be applied. The slope can then be calculated from the BVH relationship as the function of v(b). In case of unknown m(0) (for example, if cells are preloaded with trehalose, or electroporation caused ion leakage, etc.), it is considered as the second independent statistical parameter to be found. In this (and only) scenario, all three methods give the same results for v(b) and m(0). AP can be linearized only for water hydraulic conductivity (L(p)) and solute mobility (omega(s)) while water and solute permeabilities P(w) identical withL(p)RT and P(s) identical withomega(s)RT cannot be linearized because they have pre-exponential factor (RT) that depends on the temperature T.

  4. Higher direct bilirubin levels during mid-pregnancy are associated with lower risk of gestational diabetes mellitus.

    PubMed

    Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong

    2017-01-01

    Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.

  5. Modeling the soil water retention curves of soil-gravel mixtures with regression method on the Loess Plateau of China.

    PubMed

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.

  6. Modeling the Soil Water Retention Curves of Soil-Gravel Mixtures with Regression Method on the Loess Plateau of China

    PubMed Central

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present. PMID:23555040

  7. Bisphenol-A exposures and behavioural aberrations: median and linear spline and meta-regression analyses of 12 toxicity studies in rodents.

    PubMed

    Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello

    2014-11-05

    Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (P<0.001 vs. females). Overall, our study showed that developmental exposures to low-doses of bisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  9. Predicting Reactive Intermediate Quantum Yields from Dissolved Organic Matter Photolysis Using Optical Properties and Antioxidant Capacity.

    PubMed

    Mckay, Garrett; Huang, Wenxi; Romera-Castillo, Cristina; Crouch, Jenna E; Rosario-Ortiz, Fernando L; Jaffé, Rudolf

    2017-05-16

    The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter ( 3 DOM*), singlet oxygen ( 1 O 2 ), and the hydroxyl radical ( • OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, R RI ) and intrinsic (to predict RI quantum yields, Φ RI ) parameters. Multiple linear regression models consistently led to better predictions of R RI and Φ RI for our data set but poor prediction of Φ RI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and Φ RI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that • OH formation is, in general, decoupled from 3 DOM* and 1 O 2 formation, providing supporting evidence that 3 DOM* is not a • OH precursor. Finally, Φ RI for 1 O 2 and 3 DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3 DOM*.

  10. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis.

    PubMed

    Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren

    2014-01-01

    To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.

  11. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  12. Volume fractions of DCE-MRI parameter as early predictor of histologic response in soft tissue sarcoma: A feasibility study.

    PubMed

    Xia, Wei; Yan, Zhuangzhi; Gao, Xin

    2017-10-01

    To find early predictors of histologic response in soft tissue sarcoma through volume transfer constant (K trans ) analysis based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). 11 Patients with soft tissue sarcoma of the lower extremity that underwent preoperative chemoradiotherapy followed by limb salvage surgery were included in this retrospective study. For each patient, DCE-MRI data sets were collected before and two weeks after therapy initiation, and histologic tumor cell necrosis rate (TCNR) was reported at surgery. The DCE-MRI volumes were aligned by registration. Then, the aligned volumes were used to obtain the K trans variation map. Accordingly, three sub-volumes (with increased, decreased or unchanged K trans ) were defined and identified, and fractions of the sub-volumes, denoted as F + , F - and F 0 , respectively, were calculated. The predictive ability of volume fractions was determined by using area under a receiver operating characteristic curve (AUC). Linear regression analysis was performed to investigate the relationship between TCNR and volume fractions. In addition, the K trans values of the sub-volumes were compared. The AUC for F - (0.896) and F 0 (0.833) were larger than that for change of tumor longest diameter ΔD (0.625) and the change of mean K trans ΔK trans ¯ (0.792). Moreover, the regression results indicated that TCNR was directly proportional to F 0 (R 2 =0.75, P=0.0003), while it was inversely proportional to F - (R 2 =0.77, P=0.0002). However, TCNR had relatively weak linear relationship with ΔK trans ¯ (R 2 =0.64, P=0.0018). Additionally, TCNR did not have linear relationship with DD (R 2 =0.16, P=0.1246). The volume fraction F - and F 0 have potential as early predictors of soft tissue sarcoma histologic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  14. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  15. Orthogonal Regression: A Teaching Perspective

    ERIC Educational Resources Information Center

    Carr, James R.

    2012-01-01

    A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…

  16. Physical activity measurement in older adults: relationships with mental health.

    PubMed

    Parker, Sarah J; Strath, Scott J; Swartz, Ann M

    2008-10-01

    This study examined the relationship between physical activity (PA) and mental health among older adults as measured by objective and subjective PA-assessment instruments. Pedometers (PED), accelerometers (ACC), and the Physical Activity Scale for the Elderly (PASE) were administered to measure 1 week of PA among 84 adults age 55-87 (mean = 71) years. General mental health was measured using the Positive and Negative Affect Scale (PANAS) and the Satisfaction With Life Scale (SWL). Linear regressions revealed that PA estimated by PED significantly predicted 18.1%, 8.3%, and 12.3% of variance in SWL and positive and negative affect, respectively, whereas PA estimated by the PASE did not predict any mental health variables. Results from ACC data were mixed. Hotelling-William tests between correlation coefficients revealed that the relationship between PED and SWL was significantly stronger than the relationship between PASE and SWL. Relationships between PA and mental health might depend on the PA measure used.

  17. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  18. Model test on the relationship feed energy and protein ratio to the production and quality of milk protein

    NASA Astrophysics Data System (ADS)

    Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.

    2018-01-01

    The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.

  19. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass.

    PubMed

    Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei

    2017-04-24

    This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p < 0.05). Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area ( p < 0.05). The contribution of the LMI (4.0%-12.8%) was greater than that of the FMI (2.0%-5.7%). The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile ( p < 0.05), but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  20. Sexual assault and other types of violence in intimate partner relationships.

    PubMed

    Alsaker, Kjersti; Morken, Tone; Baste, Valborg; Campos-Serna, Javier; Moen, Bente E

    2012-03-01

    To investigate whether sexual assaults are more likely to co-occur with some types of abuse rather than others in violent intimate relationships. Cross-sectional study. A self-administered questionnaire was sent to all Norwegian women's shelters. Women seeking refuge at Norwegian women's shelters in 2002 and 2003. Sexual assault and experiences of intimate partner violence were measured using the Severity of Violence against Women Scale (SVAWS) and psychological violence was measured using the Psychological Maltreatment of Women Inventory (PMWI). Student's t-test analyses were performed between the mean values of the different acts of reported violence, and linear regression analyses were used to examine the association between sexual violence and the other forms of violence reported. Sexual violence correlated significantly with the other eight categories in SVAWS, and with violence directed at the pregnant woman's abdomen and psychological violence in PMWI. When we adjusted all categories for each other by linear regression analysis, sexual intimate partner violence was significantly associated with hair pulling, arm twisting, spanking or biting, dominance and isolation abuse and violence directed at the pregnant woman's abdomen. Sexual assaults are more likely to co-occur with some types of physical and psychological violence than with others. This knowledge may be important for improving our understanding of sexual violence in intimate partner relationships and in the efforts to detect intimate partner violence. Bruises, loss of hair and bite marks may suggest that sexual acts were committed against the victim's will. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Relationship between masticatory performance using a gummy jelly and masticatory movement.

    PubMed

    Uesugi, Hanako; Shiga, Hiroshi

    2017-10-01

    The purpose of this study was to clarify the relationship between masticatory performance using a gummy jelly and masticatory movement. Thirty healthy males were asked to chew a gummy jelly on their habitual chewing side for 20s, and the parameters of masticatory performance and masticatory movement were calculated as follows. For evaluating the masticatory performance, the amount of glucose extraction during chewing of a gummy jelly was measured. For evaluating the masticatory movement, the movement of the mandibular incisal point was recorded using the MKG K6-I, and ten parameters of the movement path (opening distance and masticatory width), movement rhythm (opening time, closing time, occluding time, and cycle time), stability of movement (stability of path and stability of rhythm), and movement velocity (opening maximum velocity and closing maximum velocity) were calculated from 10 cycles of chewing beginning with the fifth cycle. The relationship between the amount of glucose extraction and parameters representing masticatory movement was investigated and then stepwise multiple linear regression analysis was performed. The amount of glucose extraction was associated with 7 parameters representing the masticatory movement. Stepwise multiple linear regression analysis showed that the opening distance, closing time, stability of rhythm, and closing maximum velocity were the most important factors affecting the glucose extraction. From these results it was suggested that there was a close relation between masticatory performance and masticatory movement, and that the masticatory performance could be increased by rhythmic, rapid and stable mastication with a large opening distance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Lead-induced anemia: Dose-response relationships and evidence for a threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Landrigan, P.J.; Baker, E.L. Jr.

    1990-02-01

    We conducted a cross-sectional epidemiologic study to assess the association between blood lead level and hematocrit in 579 one to five year-old children living near a primary lead smelter in 1974. Blood lead levels ranged from 0.53 to 7.91 mumol/L (11 to 164 micrograms/dl). To predict hematocrit as a function of blood lead level and age, we derived non-linear regression models and fit percentile curves. We used logistic regression to predict the probability of hematocrit values less than 35 per cent. We found a strong non-linear, dose-response relationship between blood lead level and hematocrit. This relationship was influenced by age,more » but (in this age group) not by sex; the effect was strongest in youngest children. In one year-olds, the age group most severely affected, the risk of an hematocrit value below 35 percent was 2 percent above background at blood lead levels between 0.97 and 1.88 mumol/L (20 and 39 micrograms/dl), 18 percent above background at lead levels of 1.93 to 2.85 mumol/L (40 to 59 micrograms/dl), and 40 percent above background at lead levels of 2.9 mumol/L (60 micrograms/dl) and greater; background was defined as a blood lead level below 1.88 mumol/L (20 micrograms/dl). This effect appeared independent of iron deficiency. These findings suggest that blood lead levels close to the currently recommended limit value of 1.21 mumol/L (25 micrograms/dl) are associated with dose-related depression of hematocrit in young children.« less

  3. Are men's misogynistic attitudes associated with poor mental health and substance use behaviors? An exploratory study of men in Tijuana, Mexico.

    PubMed

    Fleming, Paul J; Patterson, Thomas L; Chavarin, Claudia V; Semple, Shirley J; Magis-Rodriguez, Carlos; Pitpitan, Eileen V

    2018-04-01

    Men's misogynistic attitudes (i.e., dislike or contempt for women) have been shown to be associated with men's perpetration of physical/sexual violence against women and poor health outcomes for women. However, these attitudes have rarely been examined for their influence on men's own health. This paper examines the socio-demographic, substance use, and mental health correlates of misogynistic attitudes among a binational sample of men (n=400) in Tijuana, Mexico with high-risk substance use and sexual behaviors. We used a 6-item scale to measure misogynistic attitudes ( α = .72), which was developed specifically for this context. We used descriptive statistics to describe our sample population and the extent to which they hold misogynistic attitudes. Then, using misogynistic attitudes as our dependent variable, we conducted bivariate linear regression and multivariable linear regression to examine the relationship between these attitudes and socio-demographic characteristics, substance use behaviors (i.e., use of alcohol, marijuana, heroin, methamphetamines, cocaine), and mental health (i.e., depression, self-esteem). In the multivariable model, we found significant relationships between misogynistic attitudes and education level ( t = -4.34, p < 0.01), heroin use in the past 4 months ( t = 2.50, p = 0.01), and depressive symptoms ( t = 3.37, p < 0.01). These findings suggest that misogynistic attitudes are linked to poor health outcomes for men and future research needs to further explore the temporality of these relationships and identify strategies for reducing men's misogynistic attitudes with the ultimate aim of improving the health and well-being of both women and men.

  4. Morse Code, Scrabble, and the Alphabet

    ERIC Educational Resources Information Center

    Richardson, Mary; Gabrosek, John; Reischman, Diann; Curtiss, Phyliss

    2004-01-01

    In this paper we describe an interactive activity that illustrates simple linear regression. Students collect data and analyze it using simple linear regression techniques taught in an introductory applied statistics course. The activity is extended to illustrate checks for regression assumptions and regression diagnostics taught in an…

  5. Acculturation dimensions and 12-month mood and anxiety disorders across US Latino subgroups in the National Epidemiologic Survey of Alcohol and Related Conditions.

    PubMed

    Fernández, R Lewis; Morcillo, C; Wang, S; Duarte, C S; Aggarwal, N K; Sánchez-Lacay, J A; Blanco, C

    2016-07-01

    Individual-level measures of acculturation (e.g. age of immigration) have a complex relationship with psychiatric disorders. Fine-grained analyses that tap various acculturation dimensions and population subgroups are needed to generate hypotheses regarding the mechanisms of action for the association between acculturation and mental health. Study participants were US Latinos (N = 6359) from Wave 2 of the 2004-2005 National Epidemiologic Survey of Alcohol and Related Conditions (N = 34 653). We used linear χ2 tests and logistic regression models to analyze the association between five acculturation dimensions and presence of 12-month DSM-IV mood/anxiety disorders across Latino subgroups (Mexican, Puerto Rican, Cuban, 'Other Latinos'). Acculturation dimensions associated linearly with past-year presence of mood/anxiety disorders among Mexicans were: (1) younger age of immigration (linear χ2 1 = 11.04, p < 0.001), (2) longer time in the United States (linear χ2 1 = 10.52, p < 0.01), (3) greater English-language orientation (linear χ2 1 = 14.57, p < 0.001), (4) lower Latino composition of social network (linear χ2 1 = 15.03, p < 0.001), and (5) lower Latino ethnic identification (linear χ2 1 = 7.29, p < 0.01). However, the associations were less consistent among Cubans and Other Latinos, and no associations with acculturation were found among Puerto Ricans. The relationship between different acculturation dimensions and 12-month mood/anxiety disorder varies across ethnic subgroups characterized by cultural and historical differences. The association between acculturation measures and disorder may depend on the extent to which they index protective or pathogenic adaptation pathways (e.g. loss of family support) across population subgroups preceding and/or following immigration. Future research should incorporate direct measures of maladaptive pathways and their relationship to various acculturation dimensions.

  6. Acculturation dimensions and 12-month mood and anxiety disorders across US Latino subgroups in the National Epidemiologic Survey of Alcohol and Related Conditions

    PubMed Central

    Wang, S.; Duarte, C. S.; Aggarwal, N. K.; Sánchez-Lacay, J. A.; Blanco, C.

    2016-01-01

    Background Individual-level measures of acculturation (e.g. age of immigration) have a complex relationship with psychiatric disorders. Fine-grained analyses that tap various acculturation dimensions and population subgroups are needed to generate hypotheses regarding the mechanisms of action for the association between acculturation and mental health. Method Study participants were US Latinos (N = 6359) from Wave 2 of the 2004–2005 National Epidemiologic Survey of Alcohol and Related Conditions (N = 34 653). We used linear χ2 tests and logistic regression models to analyze the association between five acculturation dimensions and presence of 12-month DSM-IV mood/anxiety disorders across Latino subgroups (Mexican, Puerto Rican, Cuban, ‘Other Latinos’). Results Acculturation dimensions associated linearly with past-year presence of mood/anxiety disorders among Mexicans were: (1) younger age of immigration (linear χ12=11.04, p < 0.001), (2) longer time in the United States (linear χ12=10.52, p < 0.01), (3) greater English-language orientation (linear χ12=14.57, p < 0.001), (4) lower Latino composition of social network (linear χ12=15.03, p < 0.001), and (5) lower Latino ethnic identification (linear χ12=7.29, p < 0.01). However, the associations were less consistent among Cubans and Other Latinos, and no associations with acculturation were found among Puerto Ricans. Conclusions The relationship between different acculturation dimensions and 12-month mood/anxiety disorder varies across ethnic subgroups characterized by cultural and historical differences. The association between acculturation measures and disorder may depend on the extent to which they index protective or pathogenic adaptation pathways (e.g. loss of family support) across population subgroups preceding and/or following immigration. Future research should incorporate direct measures of maladaptive pathways and their relationship to various acculturation dimensions. PMID:27087570

  7. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.

    PubMed

    Chen, Baojiang; Qin, Jing

    2014-05-10

    In statistical analysis, a regression model is needed if one is interested in finding the relationship between a response variable and covariates. When the response depends on the covariate, then it may also depend on the function of this covariate. If one has no knowledge of this functional form but expect for monotonic increasing or decreasing, then the isotonic regression model is preferable. Estimation of parameters for isotonic regression models is based on the pool-adjacent-violators algorithm (PAVA), where the monotonicity constraints are built in. With missing data, people often employ the augmented estimating method to improve estimation efficiency by incorporating auxiliary information through a working regression model. However, under the framework of the isotonic regression model, the PAVA does not work as the monotonicity constraints are violated. In this paper, we develop an empirical likelihood-based method for isotonic regression model to incorporate the auxiliary information. Because the monotonicity constraints still hold, the PAVA can be used for parameter estimation. Simulation studies demonstrate that the proposed method can yield more efficient estimates, and in some situations, the efficiency improvement is substantial. We apply this method to a dementia study. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

    NASA Astrophysics Data System (ADS)

    Kang, Pilsang; Koo, Changhoi; Roh, Hokyu

    2017-11-01

    Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.

  9. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The relationship between problem gambling and mental and physical health correlates among a nationally representative sample of Canadian women.

    PubMed

    Afifi, Tracie O; Cox, Brian J; Martens, Patricia J; Sareen, Jitender; Enns, Murray W

    2010-01-01

    Gambling has become an increasingly common activity among women since the widespread growth of the gambling industry. Currently, our knowledge of the relationship between problem gambling among women and mental and physical correlates is limited. Therefore, important relationships between problem gambling and health and functioning, mental disorders, physical health conditions, and help-seeking behaviours among women were examined using a nationally representative Canadian sample. Data were from the nationally representative Canadian Community Health Survey Cycle 1.2 (CCHS 1.2; n = 10,056 women aged 15 years and older; data collected in 2002). The statistical analysis included binary logistic regression, multinomial logistic regression, and linear regression models. Past 12-month problem gambling was associated with a significantly higher probability of current lower general health, suicidal ideation and attempts, decreased psychological well-being, increased distress, depression, mania, panic attacks, social phobia, agoraphobia, alcohol dependence, any mental disorder, comorbidity of mental disorders, chronic bronchitis, fibromyalgia, migraine headaches, help-seeking from a professional, attending a self-help group, and calling a telephone help line (odds ratios ranged from 1.5 to 8.2). Problem gambling was associated with a broad range of negative health correlates among women. Problem gambling is an important public health concern. These findings can be used to inform healthy public policies on gambling.

  11. Age-job satisfaction relationship for Japanese public school teachers: a comparison of teachers' labor union members and professional and technical employee members of private company labor unions.

    PubMed

    Takahara, Ryuji

    2014-01-01

    This study investigated the characteristics of the age-job satisfaction relationship for public school teachers. Past studies examining this relationship have found both linear and non-linear relationships. However, such studies have yet to examine these relationships by comparing job satisfaction of teachers with that of company employees in the same cultural context. In order to investigate the characteristics of Japanese teachers' working environment, we examined how different the age-job satisfaction relationships were between teachers and company employees. We conducted hierarchical polynomial regression analyses with four job satisfaction variables to compare the age-job satisfaction relationships of Japanese public elementary, junior and high school teachers with Japanese professional and technical workers who belonged to their respective labor unions. 1) Among teachers, the effects of age on overall job satisfaction and satisfaction with pay were significantly negative, and the effects of age on satisfaction with human relationships and working hours were not significant. 2) Among company employees, these four kinds of satisfactions had U shaped relationships with age. 3) Compared to company employees, teachers showed higher intrinsic satisfaction and lower extrinsic satisfaction. The age-job satisfaction relationship for teachers decreases with age. This result may be explained by the excessive workload of Japanese teachers, a characteristic of their working environment. Elderly teachers' burnout may be related to this characteristic. It may be necessary for elderly teachers to be supported in order to enhance their job satisfaction, especially extrinsic satisfaction.

  12. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  13. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  14. Interpretation of commonly used statistical regression models.

    PubMed

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  15. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis.

    PubMed

    Palekar, Rohun U; Jallouk, Andrew P; Goette, Matthew J; Chen, Junjie; Myerson, Jacob W; Allen, John S; Akk, Antonina; Yang, Lihua; Tu, Yizheng; Miller, Mark J; Pham, Christine T N; Wickline, Samuel A; Pan, Hua

    2015-07-01

    Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200-300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [(19)F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy. © FASEB.

  16. Does Parental Control Work With Smartphone Addiction?: A Cross-Sectional Study of Children in South Korea.

    PubMed

    Lee, Eun Jee; Ogbolu, Yolanda

    The purposes of this study were to (a) examine the relationship between personal characteristics (age, gender), psychological factors (depression), and physical factors (sleep time) on smartphone addiction in children and (b) determine whether parental control is associated with a lower incidence of smartphone addiction. Data were collected from children aged 10-12 years (N = 208) by a self-report questionnaire in two elementary schools and were analyzed using t test, one-way analysis of variance, correlation, and multiple linear regression. Most of the participants (73.3%) owned a smartphone, and the percentage of risky smartphone users was 12%. The multiple linear regression model explained 25.4% (adjusted R = .239) of the variance in the smartphone addiction score (SAS). Three variables were significantly associated with the SAS (age, depression, and parental control), and three variables were excluded (gender, geographic region, and parental control software). Teens, aged 10-12 years, with higher depression scores had higher SASs. The more parental control perceived by the student, the higher the SAS. There was no significant relationship between parental control software and smartphone addiction. This is one of the first studies to examine smartphone addiction in teens. Control-oriented managing by parents of children's smartphone use is not very effective and may exacerbate smartphone addiction. Future research should identify additional strategies, beyond parental control software, that have the potential to prevent, reduce, and eliminate smartphone addiction.

  17. Determining ecoregional numeric nutrient criteria by stressor-response models in Yungui ecoregion lakes, China.

    PubMed

    Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Tong, Zhonghua; He, Zhuoshi; Su, Jing; Wu, Fengchang

    2014-01-01

    The importance of developing numeric nutrient criteria has been recognized to protect the designated uses of water bodies from nutrient enrichment that is associated with broadly occurring levels of nitrogen/phosphorus pollution. The identification and estimation of stressor-response models in aquatic ecosystems has been shown to be useful in the determination of nutrient criteria. In this study, three methods based on stressor-response relationships were applied to determine nutrient criteria for Yungui ecoregion lakes with respect to total phosphorus (TP), total nitrogen (TN), and planktonic chlorophyll a (Chl a). Simple linear regression (SLR) models were established to provide an estimate of the relationship between a response variable and a stressor. Multiple linear regressions were used to simultaneously estimate the effect of TP and TN on Chl a. A morphoedaphic index (MEI) was applied to derive nutrient criteria using data from Yungui ecoregion lakes, which were considered as areas with less anthropogenic influences. Nutrient criteria, as determined by these three methods, showed broad agreement for all parameters. The ranges of numeric nutrient criteria for Yungui ecoregion lakes were determined as follows: TP 0.008-0.010 mg/L and TN 0.140-0.178 mg/L. The stressor-response analysis described will be of benefit to support countries in their numeric criteria development programs and to further the goal of reducing nitrogen/phosphorus pollution in China.

  18. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis.

    PubMed

    Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He

    2011-12-01

    The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Factors associated to clinical learning in nursing students in primary health care: an analytical cross-sectional study

    PubMed Central

    Serrano-Gallardo, Pilar; Martínez-Marcos, Mercedes; Espejo-Matorrales, Flora; Arakawa, Tiemi; Magnabosco, Gabriela Tavares; Pinto, Ione Carvalho

    2016-01-01

    ABSTRACT Objective: to identify the students' perception about the quality of clinical placements and asses the influence of the different tutoring processes in clinical learning. Methods: analytical cross-sectional study on second and third year nursing students (n=122) about clinical learning in primary health care. The Clinical Placement Evaluation Tool and a synthetic index of attitudes and skills were computed to give scores to the clinical learning (scale 0-10). Univariate, bivariate and multivariate (multiple linear regression) analyses were performed. Results: the response rate was 91.8%. The most commonly identified tutoring process was "preceptor-professor" (45.2%). The clinical placement was assessed as "optimal" by 55.1%, relationship with team-preceptor was considered good by 80.4% of the cases and the average grade for clinical learning was 7.89. The multiple linear regression model with more explanatory capacity included the variables "Academic year" (beta coefficient = 1.042 for third-year students), "Primary Health Care Area (PHC)" (beta coefficient = 0.308 for Area B) and "Clinical placement perception" (beta coefficient = - 0.204 for a suboptimal perception). Conclusions: timeframe within the academic program, location and clinical placement perception were associated with students' clinical learning. Students' perceptions of setting quality were positive and a good team-preceptor relationship is a matter of relevance. PMID:27627124

  20. Using the social cognitive theory to understand physical activity among dialysis patients.

    PubMed

    Patterson, Megan S; Umstattd Meyer, M Renée; Beaujean, A Alexander; Bowden, Rodney G

    2014-08-01

    The purpose of this study was to use the social cognitive theory (SCT) constructs self-efficacy, outcome expectations, and self-regulation to better understand associations of physical activity (PA) behaviors among dialysis patients after controlling for demographic and health-related factors. This study was cross-sectional in design. Participants (N = 115; mean age = 61.51 years, SD = 14.01) completed self-report questionnaires during a regularly scheduled dialysis treatment session. Bivariate and hierarchical linear regression analyses were conducted to examine relationships among SCT constructs and PA. Significant relationships between PA and self-efficacy (r = .336), self-regulation (r = .280), and outcome expectations (r = .265) were detected among people on dialysis in bivariate analyses. Hierarchical linear regression revealed significant increases in variance explained for the addition of self-efficacy, self-regulation, and covariates (p < .01). Younger age, self-efficacy, and self-regulation were associated (p < .10) with greater participation in physical activity in the final model (R² = .272). Conclusion/Implication: This research supports the use of SCT in understanding PA among people undergoing dialysis treatment. The findings of this study can help health educators and health care practitioners better understand PA and how to promote it among this population. Future research should further investigate which activities dialysis patients participate in across the life span of their disease. Future PA programs should focus on increasing a patient's self-efficacy and self-regulation.

  1. A generalized multivariate regression model for modelling ocean wave heights

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  2. Variables associated with health-related quality of life in a Brazilian sample of patients from a tertiary outpatient clinic for depression and anxiety disorders.

    PubMed

    Schwab, Bianca; Daniel, Heloisa Silveira; Lutkemeyer, Carine; Neves, João Arthur Lange Lins; Zilli, Louise Nassif; Guarnieri, Ricardo; Diaz, Alexandre Paim; Michels, Ana Maria Maykot Prates

    2015-01-01

    Health-related quality of life (HRQOL) assessment tools have been broadly used in the medical context. These tools are used to measure the subjective impact of the disease on patients. The objective of this study was to evaluate the variables associated with HRQOL in a Brazilian sample of patients followed up in a tertiary outpatient clinic for depression and anxiety disorders. Cross-sectional study. Independent variables were those included in a sociodemographic questionnaire and the Hospital Anxiety and Depression Scale (HADS) scores. Dependent variables were those included in the short version of the World Health Organization Quality of Life (WHOQOL-BREF) and the scores for its subdomains (overall quality of life and general health, physical health, psychological health, social relationships, and environment). A multiple linear regression analysis was used to find the variables independently associated with each outcome. Seventy-five adult patients were evaluated. After multiple linear regression analysis, the HADS scores were associated with all outcomes, except social relationships (p = 0.08). Female gender was associated with poor total scores, as well as psychological health and environment. Unemployment was associated with poor physical health. Identifying the factors associated with HRQOL and recognizing that depression and anxiety are major factors are essential to improve the care of patients.

  3. A regression analysis of filler particle content to predict composite wear.

    PubMed

    Jaarda, M J; Wang, R F; Lang, B R

    1997-01-01

    It has been hypothesized that composite wear is correlated to filler particle content. There is a paucity of research to substantiate this theory despite numerous projects evaluating the correlation. The purpose of this study was to determine whether a linear relationship existed between composite wear and filler particle content of 12 composites. In vivo wear data had been previously collected for the 12 composites and served as basis for this study. Scanning electron microscopy and backscatter electron imaging were combined with digital imaging analysis to develop "profile maps" of the filler particle composition of the composites. These profile maps included eight parameters: (1) total number of filler particles/28742.6 microns2, (2) percent of area occupied by all of the filler particles, (3) mean filler particle size, (4) percent of area occupied by the matrix, (5) percent of area occupied by filler particles, r (radius) 1.0 < or = micron, (6) percent of area occupied by filler particles, r = 1.0 < or = 4.5 microns, (7) percent of area occupied by filler particles, r = 4.5 < or = 10 microns, and (8) percent of area occupied by filler particles, r > 10 microns. Forward stepwise regression analyses were used with composite wear as the dependent variable and the eight parameters as independent variables. The results revealed a linear relationship between composite wear and the filler particle content. A mathematical formula was developed to predict composite wear.

  4. Estimating labile particulate iron concentrations in coastal waters from remote sensing data

    NASA Astrophysics Data System (ADS)

    McGaraghan, Anna R.; Kudela, Raphael M.

    2012-02-01

    Owing to the difficulties inherent in measuring trace metals and the importance of iron as a limiting nutrient for biological systems, the ability to monitor particulate iron concentration remotely is desirable. This study examines the relationship between labile particulate iron, described here as weak acid leachable particulate iron or total dissolvable iron, and easily obtained bio-optical measurements. We develop a bio-optical proxy that can be used to estimate large-scale patterns of labile iron concentrations in surface waters, and we extend this by including other environmental variables in a multiple linear regression statistical model. By utilizing a ratio of optical backscatter and fluorescence obtained by satellite, we identify patterns in iron concentrations confirmed by traditional shipboard sampling. This basic relationship is improved with the addition of other environmental parameters in the statistical linear regression model. The optical proxy detects known temporal and spatial trends in average surface iron concentrations in Monterey Bay. The proxy is robust in that similar performance was obtained using two independent particulate iron data sets, but it exhibits weaker correlations than the full statistical model. This proxy will be a valuable tool for oceanographers seeking to monitor iron concentrations in coastal regions and allows for better understanding of the variability of labile particulate iron in surface waters to complement direct measurement of leachable particulate or total dissolvable iron.

  5. Resilience and risk for alcohol use disorders: A Swedish twin study

    PubMed Central

    Long, E.C.; Lönn, S.L.; Ji, J.; Lichtenstein, P.; Sundquist, J.; Sundquist, K.; Kendler, K.S.

    2016-01-01

    Background Resilience has been shown to be protective against alcohol use disorders (AUD), but the magnitude and nature of the relationship between these two phenotypes is not clear. The aim of this study is to examine the strength of this relationship and the degree to which it results from common genetic or common environmental influences. Methods Resilience was assessed on a nine-point scale during a personal interview in 1,653,721 Swedish men aged 17–25 years. AUD was identified based on Swedish medical, legal, and pharmacy registries. The magnitude of the relationship between resilience and AUD was examined using logistic regression. The extent to which the relationship arises from common genetic or common environmental factors was examined using a bivariate Cholesky decomposition model. Results The five single items that comprised the resilience assessment (social maturity, interest, psychological energy, home environment, and emotional control) all reduced risk for subsequent AUD, with social maturity showing the strongest effect. The linear effect by logistic regression showed that a one-point increase on the resilience scale was associated with a 29% decrease in odds of AUD. The Cholesky decomposition model demonstrated that the resilience-AUD relationship was largely attributable to overlapping genetic and shared environmental factors (57% and 36%, respectively). Conclusion Resilience is strongly associated with a reduction in risk for AUD. This relationship appears to be the result of overlapping genetic and shared environmental influences that impact resilience and risk of AUD, rather than a directly causal relationship. PMID:27918840

  6. Dietary intake in adults at risk for Huntington disease: analysis of PHAROS research participants.

    PubMed

    Marder, K; Zhao, H; Eberly, S; Tanner, C M; Oakes, D; Shoulson, I

    2009-08-04

    To examine caloric intake, dietary composition, and body mass index (BMI) in participants in the Prospective Huntington At Risk Observational Study (PHAROS). Caloric intake and macronutrient composition were measured using the National Cancer Institute Food Frequency Questionnaire (FFQ) in 652 participants at risk for Huntington disease (HD) who did not meet clinical criteria for HD. Logistic regression was used to examine the relationship between macronutrients, BMI, caloric intake, and genetic status (CAG <37 vs CAG > or =37), adjusting for age, gender, and education. Linear regression was used to determine the relationship between caloric intake, BMI, and CAG repeat length. A total of 435 participants with CAG <37 and 217 with CAG > or =37 completed the FFQ. Individuals in the CAG > or =37 group had a twofold odds of being represented in the second, third, or fourth quartile of caloric intake compared to the lowest quartile adjusted for age, gender, education, and BMI. This relationship was attenuated in the highest quartile when additionally adjusted for total motor score. In subjects with CAG > or =37, higher caloric intake, but not BMI, was associated with both higher CAG repeat length (adjusted regression coefficient = 0.26, p = 0.032) and 5-year probability of onset of HD (adjusted regression coefficient = 0.024; p = 0.013). Adjusted analyses showed no differences in macronutrient composition between groups. Increased caloric intake may be necessary to maintain body mass index in clinically unaffected individuals with CAG repeat length > or =37. This may be related to increased energy expenditure due to subtle motor impairment or a hypermetabolic state.

  7. Use of probabilistic weights to enhance linear regression myoelectric control

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  8. QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa

    PubMed Central

    Podunavac-Kuzmanović, Sanja O.; Cvetković, Dragoljub D.; Barna, Dijana J.

    2009-01-01

    A set of benzimidazole derivatives were tested for their inhibitory activities against the Gram-negative bacterium Pseudomonas aeruginosa and minimum inhibitory concentrations were determined for all the compounds. Quantitative structure activity relationship (QSAR) analysis was applied to fourteen of the abovementioned derivatives using a combination of various physicochemical, steric, electronic, and structural molecular descriptors. A multiple linear regression (MLR) procedure was used to model the relationships between molecular descriptors and the antibacterial activity of the benzimidazole derivatives. The stepwise regression method was used to derive the most significant models as a calibration model for predicting the inhibitory activity of this class of molecules. The best QSAR models were further validated by a leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. To confirm the predictive power of the models, an external set of molecules was used. High agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the derived QSAR models. PMID:19468332

  9. A Landsat study of water quality in Lake Okeechobee

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Marshall, M. L.

    1976-01-01

    This paper uses multiple regression techniques to investigate the relationship between Landsat radiance values and water quality measurements. For a period of over one year, the Central and Southern Florida Flood Control District sampled the water of Lake Okeechobee for chlorophyll, carotenoids, turbidity, and various nutrients at the time of Landsat overpasses. Using an overlay map of the sampling stations, Landsat radiance values were measured from computer compatible tapes using a GE image 100 and averaging over a 22-acre area at each station. These radiance values in four bands were used to form a number of functions (powers, logarithms, exponentials, and ratios), which were then compared with the ground measurements using multiple linear regression techniques. Several dates were used to provide generality and to study possible seasonal variations. Individual correlations were presented for the various water quality parameters and best fit equations were examined for chlorophyll and turbidity. The results and their relationship to past hydrological research were discussed.

  10. Ataque de nervios: relationship to anxiety sensitivity and dissociation predisposition.

    PubMed

    Hinton, Devon E; Chong, Roberto; Pollack, Mark H; Barlow, David H; McNally, Richard J

    2008-01-01

    We investigated the relative importance of "fear of arousal symptoms" (i.e., anxiety sensitivity) and "dissociation tendency" in generating ataque de nervios. Puerto Rican patients attending an outpatient psychiatric clinic were assessed for ataque de nervios frequency in the previous month, and they completed the Anxiety Sensitivity Index (ASI) and the Dissociation Experiences Scale (DES). ASI scores were especially high in the ataque-positive group (M=41.6, SD=12.8) as compared with the ataque-negative group (M=27.2, SD=11.7), t(2, 68)=4.6, P<.001. Among the whole sample (N=70), in a logistic regression analysis, the ASI significantly predicted (odds ratio=2.6) the presence of ataque de nervios, but the DES did not. In a linear regression analysis, ataque severity was significantly predicted by both the ASI (beta=.46) and the DES (beta=.29). The theoretical and clinical implications of the strong relationship of the ASI to ataque severity are discussed.

  11. Perinatal Medical Variables Predict Executive Function within a Sample of Preschoolers Born Very Low Birth Weight

    PubMed Central

    Duvall, Susanne W.; Erickson, Sarah J.; MacLean, Peggy; Lowe, Jean R.

    2014-01-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed three executive function tasks (Dimensional Change Card Sort-Separated (inhibition, working memory and cognitive flexibility), Bear Dragon (inhibition and working memory) and Gift Delay Open (inhibition)). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids and number of surgeries), and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we may be able to identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  12. Increasing body mass index z-score is continuously associated with complications of overweight in children, even in the healthy weight range.

    PubMed

    Bell, Lana M; Byrne, Sue; Thompson, Alisha; Ratnam, Nirubasini; Blair, Eve; Bulsara, Max; Jones, Timothy W; Davis, Elizabeth A

    2007-02-01

    Overweight/obesity in children is increasing. Incidence data for medical complications use arbitrary cutoff values for categories of overweight and obesity. Continuous relationships are seldom reported. The objective of this study is to report relationships of child body mass index (BMI) z-score as a continuous variable with the medical complications of overweight. This study is a part of the larger, prospective cohort Growth and Development Study. Children were recruited from the community through randomly selected primary schools. Overweight children seeking treatment were recruited through tertiary centers. Children aged 6-13 yr were community-recruited normal weight (n = 73), community-recruited overweight (n = 53), and overweight treatment-seeking (n = 51). Medical history, family history, and symptoms of complications of overweight were collected by interview, and physical examination was performed. Investigations included oral glucose tolerance tests, fasting lipids, and liver function tests. Adjusted regression was used to model each complication of obesity with age- and sex-specific child BMI z-scores entered as a continuous dependent variable. Adjusted logistic regression showed the proportion of children with musculoskeletal pain, obstructive sleep apnea symptoms, headaches, depression, anxiety, bullying, and acanthosis nigricans increased with child BMI z-score. Adjusted linear regression showed BMI z-score was significantly related to systolic and diastolic blood pressure, insulin during oral glucose tolerance test, total cholesterol, high-density lipoprotein, triglycerides, and alanine aminotransferase. Child's BMI z-score is independently related to complications of overweight and obesity in a linear or curvilinear fashion. Children's risks of most complications increase across the entire range of BMI values and are not defined by thresholds.

  13. Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease

    PubMed Central

    Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen

    2014-01-01

    Rationale: Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives: To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods: Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results: Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥ 1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions: In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum biomarkers of lung disease. PMID:25295756

  14. Association between Serum Uric Acid Level and Carotid Atherosclerosis in Chinese Individuals Aged 75 Years or Older: A Hospital-Based Case-Control Study.

    PubMed

    Feng, L; Hua, C; Sun, H; Qin, L-Y; Niu, P-P; Guo, Z-N; Yang, Y

    2018-01-01

    To investigate the association between serum uric acid level and the presence and progression of carotid atherosclerosis in Chinese individuals aged 75 years or older. Case-control study. In a teaching hospital. Five hundred and sixty-four elderlies (75 years or above) who underwent general health screening in our hospital were enrolled. The detailed carotid ultrasound results, physical examination information, medical history, and laboratory test results including serum uric acid level were recorded, these data were used to analyze the relationship between serum uric acid level and carotid atherosclerosis. Then, subjects who underwent the second carotid ultrasound 1.5-2 years later were further identified to analyzed the relationship between serum uric acid and the progression of carotid atherosclerosis. A total of 564 subjects were included, carotid plaque was found in 482 (85.5%) individuals. Logistic regression showed that subjects with elevated serum uric acid (expressed per 1 standard deviation change) had significantly higher incidence of carotid plaque (odds ratio, 1.37; 95% confidence interval, 1.07-1.75; P= 0.012) after controlling for other factors. A total of 236 subjects underwent the follow-up carotid ultrasound. Linear regression showed that serum uric acid level (expressed per 1 standard deviation change; 1 standard deviation = 95.5 μmol/L) was significantly associated with percentage of change of plaque score (P = 0.008). Multivariable linear regression showed that 1 standard deviation increase in serum uric acid levels was expected to increase 0.448% of plaque score (P = 0.023). The elevated serum uric acid level may be independently and significantly associated with the presence and progression of carotid atherosclerosis in Chinese individuals aged 75 years or older.

  15. Serum Vitamin D Levels and Markers of Severity of Childhood Asthma in Costa Rica

    PubMed Central

    Brehm, John M.; Celedón, Juan C.; Soto-Quiros, Manuel E.; Avila, Lydiana; Hunninghake, Gary M.; Forno, Erick; Laskey, Daniel; Sylvia, Jody S.; Hollis, Bruce W.; Weiss, Scott T.; Litonjua, Augusto A.

    2009-01-01

    Rationale: Maternal vitamin D intake during pregnancy has been inversely associated with asthma symptoms in early childhood. However, no study has examined the relationship between measured vitamin D levels and markers of asthma severity in childhood. Objectives: To determine the relationship between measured vitamin D levels and both markers of asthma severity and allergy in childhood. Methods: We examined the relation between 25-hydroxyvitamin D levels (the major circulating form of vitamin D) and markers of allergy and asthma severity in a cross-sectional study of 616 Costa Rican children between the ages of 6 and 14 years. Linear, logistic, and negative binomial regressions were used for the univariate and multivariate analyses. Measurements and Main Results: Of the 616 children with asthma, 175 (28%) had insufficient levels of vitamin D (<30 ng/ml). In multivariate linear regression models, vitamin D levels were significantly and inversely associated with total IgE and eosinophil count. In multivariate logistic regression models, a log10 unit increase in vitamin D levels was associated with reduced odds of any hospitalization in the previous year (odds ratio [OR], 0.05; 95% confidence interval [CI], 0.004–0.71; P = 0.03), any use of antiinflammatory medications in the previous year (OR, 0.18; 95% CI, 0.05–0.67; P = 0.01), and increased airway responsiveness (a ≤8.58-μmol provocative dose of methacholine producing a 20% fall in baseline FEV1 [OR, 0.15; 95% CI, 0.024–0.97; P = 0.05]). Conclusions: Our results suggest that vitamin D insufficiency is relatively frequent in an equatorial population of children with asthma. In these children, lower vitamin D levels are associated with increased markers of allergy and asthma severity. PMID:19179486

  16. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Bondár, István; Storchak, Dmitry A.; Engdahl, E. Robert; Bormann, Peter; Harris, James

    2015-02-01

    This paper outlines the re-computation and compilation of the magnitudes now contained in the final ISC-GEM Reference Global Instrumental Earthquake Catalogue (1900-2009). The catalogue is available via the ISC website (http://www.isc.ac.uk/iscgem/). The available re-computed MS and mb provided an ideal basis for deriving new conversion relationships to moment magnitude MW. Therefore, rather than using previously published regression models, we derived new empirical relationships using both generalized orthogonal linear and exponential non-linear models to obtain MW proxies from MS and mb. The new models were tested against true values of MW, and the newly derived exponential models were then preferred to the linear ones in computing MW proxies. For the final magnitude composition of the ISC-GEM catalogue, we preferred directly measured MW values as published by the Global CMT project for the period 1976-2009 (plus intermediate-depth earthquakes between 1962 and 1975). In addition, over 1000 publications have been examined to obtain direct seismic moment M0 and, therefore, also MW estimates for 967 large earthquakes during 1900-1978 (Lee and Engdahl, 2015) by various alternative methods to the current GCMT procedure. In all other instances we computed MW proxy values by converting our re-computed MS and mb values into MW, using the newly derived non-linear regression models. The final magnitude composition is an improvement in terms of magnitude homogeneity compared to previous catalogues. The magnitude completeness is not homogeneous over the 110 years covered by the ISC-GEM catalogue. Therefore, seismicity rate estimates may be strongly affected without a careful time window selection. In particular, the ISC-GEM catalogue appears to be complete down to MW 5.6 starting from 1964, whereas for the early instrumental period the completeness varies from ∼7.5 to 6.2. Further time and resources would be necessary to homogenize the magnitude of completeness over the entire catalogue length.

  17. Screening-level models to estimate partition ratios of organic chemicals between polymeric materials, air and water.

    PubMed

    Reppas-Chrysovitsinos, Efstathios; Sobek, Anna; MacLeod, Matthew

    2016-06-15

    Polymeric materials flowing through the technosphere are repositories of organic chemicals throughout their life cycle. Equilibrium partition ratios of organic chemicals between these materials and air (KMA) or water (KMW) are required for models of fate and transport, high-throughput exposure assessment and passive sampling. KMA and KMW have been measured for a growing number of chemical/material combinations, but significant data gaps still exist. We assembled a database of 363 KMA and 910 KMW measurements for 446 individual compounds and nearly 40 individual polymers and biopolymers, collected from 29 studies. We used the EPI Suite and ABSOLV software packages to estimate physicochemical properties of the compounds and we employed an empirical correlation based on Trouton's rule to adjust the measured KMA and KMW values to a standard reference temperature of 298 K. Then, we used a thermodynamic triangle with Henry's law constant to calculate a complete set of 1273 KMA and KMW values. Using simple linear regression, we developed a suite of single parameter linear free energy relationship (spLFER) models to estimate KMA from the EPI Suite-estimated octanol-air partition ratio (KOA) and KMW from the EPI Suite-estimated octanol-water (KOW) partition ratio. Similarly, using multiple linear regression, we developed a set of polyparameter linear free energy relationship (ppLFER) models to estimate KMA and KMW from ABSOLV-estimated Abraham solvation parameters. We explored the two LFER approaches to investigate (1) their performance in estimating partition ratios, and (2) uncertainties associated with treating all different polymers as a single "bulk" polymeric material compartment. The models we have developed are suitable for screening assessments of the tendency for organic chemicals to be emitted from materials, and for use in multimedia models of the fate of organic chemicals in the indoor environment. In screening applications we recommend that KMA and KMW be modeled as 0.06 ×KOA and 0.06 ×KOW respectively, with an uncertainty range of a factor of 15.

  18. Ecologic regression analysis and the study of the influence of air quality on mortality.

    PubMed Central

    Selvin, S; Merrill, D; Wong, L; Sacks, S T

    1984-01-01

    This presentation focuses entirely on the use and evaluation of regression analysis applied to ecologic data as a method to study the effects of ambient air pollution on mortality rates. Using extensive national data on mortality, air quality and socio-economic status regression analyses are used to study the influence of air quality on mortality. The analytic methods and data are selected in such a way that direct comparisons can be made with other ecologic regression studies of mortality and air quality. Analyses are performed by use of two types of geographic areas, age-specific mortality of both males and females and three pollutants (total suspended particulates, sulfur dioxide and nitrogen dioxide). The overall results indicate no persuasive evidence exists of a link between air quality and general mortality levels. Additionally, a lack of consistency between the present results and previous published work is noted. Overall, it is concluded that linear regression analysis applied to nationally collected ecologic data cannot be used to usefully infer a causal relationship between air quality and mortality which is in direct contradiction to other major published studies. PMID:6734568

  19. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

    PubMed

    Demissie, Serkalem; Cupples, L Adrienne

    2011-11-01

    Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

  20. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.

    PubMed

    Ding, H; Chen, C; Zhang, X

    2016-01-01

    The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.

  1. Cell metabolic changes of porphyrins and superoxide anions by anthracene and benzo(a)pyrene.

    PubMed

    Uribe-Hernández, Raúl; Pérez-Zapata, Aura J; Vega-Barrita, María L; Ramón-Gallegos, Eva; Amezcua-Allieri, Myriam A

    2008-09-01

    The aim of this work was to evaluate the induction of protoporphyrins IX (PpIX) activity and superoxide anions (SO) in human leukocytes exposed to anthracene (ANT) and benzo(a)pyrene (B(a)P). The leukocyte LC(50)s for both hydrocarbons and the PpIX accumulation and SO overproduction were measured. The LC(50)s were 0.35 and 3.23μM for ANT and B(a)P, respectively. A linear relationship (r=0.97, p<0.01) between PpIX and ANT concentration was obtained. The induced accumulation of PpIX was proportional (r=0.63, p<0.01) to B(a)P concentration. SO overproduction showed a linear relationship (r=0.83, p<0.05) with ANT concentrations. The linear regression analysis of the effect of B(a)P on the superoxide anion overproduction showed a good coefficient (r=0.97, p<0.01), showed that ANT and B(a)P exposure induces PpIX accumulation, probably by disruption of the haem biosynthesis. ANT and B(a)P induce SO overproduction, perhaps through a process of redox cycling. Copyright © 2008 Elsevier B.V. All rights reserved.

  2. Measurement of hydroxyapatite density and Knoop hardness in sound human enamel and a correlational analysis between them.

    PubMed

    He, Bing; Huang, Shengbin; Jing, Junjun; Hao, Yuqing

    2010-02-01

    The aim of this study was to measure the hydroxyapatite (HAP) density and Knoop hardness (KHN) of enamel slabs and to analyse the relationship between them. Twenty enamel slabs (10 lingual sides and 10 buccal sides) were prepared and scanned with micro-CT. Tomographic images of each slab from dental cusp to dentinoenamel junction (DEJ) were reconstructed. On these three-dimensional (3D) images, regions of interest (ROIs) were defined at an interval of 50 microm, and the HAP density for each ROI was calculated. Then the polished surfaces were indented from cusp to DEJ at intervals of 50 microm with a Knoop indenter. Finally, the data were analysed with one-way ANOVA, Student's t-test, and linear regression analysis. The HAP density and KHN decreased from the dental cusp to DEJ. Both HAP density and KHN in the outer-layer enamel were significantly higher than those in the middle- or inner-layer enamel (P<0.05). The HAP density showed no significant difference between the buccal and lingual sides for enamel in the outer, middle and inner layers, respectively (P>0.05). The KHN in the outer-layer enamel of the lingual sides was significantly lower than that of the buccal sides (P<0.05); there was no significant difference between the lingual and buccal sides in the middle or inner layer. Linear regression analysis revealed a linear relationship between the mean KHN and the mean HAP density (r=0.87). Both HAP density and KHN decrease simultaneously from dental cusp to DEJ, and the two properties are highly correlated. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Substituting values for censored data from Texas, USA, reservoirs inflated and obscured trends in analyses commonly used for water quality target development.

    PubMed

    Grantz, Erin; Haggard, Brian; Scott, J Thad

    2018-06-12

    We calculated four median datasets (chlorophyll a, Chl a; total phosphorus, TP; and transparency) using multiple approaches to handling censored observations, including substituting fractions of the quantification limit (QL; dataset 1 = 1QL, dataset 2 = 0.5QL) and statistical methods for censored datasets (datasets 3-4) for approximately 100 Texas, USA reservoirs. Trend analyses of differences between dataset 1 and 3 medians indicated percent difference increased linearly above thresholds in percent censored data (%Cen). This relationship was extrapolated to estimate medians for site-parameter combinations with %Cen > 80%, which were combined with dataset 3 as dataset 4. Changepoint analysis of Chl a- and transparency-TP relationships indicated threshold differences up to 50% between datasets. Recursive analysis identified secondary thresholds in dataset 4. Threshold differences show that information introduced via substitution or missing due to limitations of statistical methods biased values, underestimated error, and inflated the strength of TP thresholds identified in datasets 1-3. Analysis of covariance identified differences in linear regression models relating transparency-TP between datasets 1, 2, and the more statistically robust datasets 3-4. Study findings identify high-risk scenarios for biased analytical outcomes when using substitution. These include high probability of median overestimation when %Cen > 50-60% for a single QL, or when %Cen is as low 16% for multiple QL's. Changepoint analysis was uniquely vulnerable to substitution effects when using medians from sites with %Cen > 50%. Linear regression analysis was less sensitive to substitution and missing data effects, but differences in model parameters for transparency cannot be discounted and could be magnified by log-transformation of the variables.

  4. Commuting and Sleep: Results From the Hispanic Community Health Study/Study of Latinos Sueño Ancillary Study.

    PubMed

    Petrov, Megan E; Weng, Jia; Reid, Kathryn J; Wang, Rui; Ramos, Alberto R; Wallace, Douglas M; Alcantara, Carmela; Cai, Jianwen; Perreira, Krista; Espinoza Giacinto, Rebeca A; Zee, Phyllis C; Sotres-Alvarez, Daniela; Patel, Sanjay R

    2018-03-01

    Commute time is associated with reduced sleep time, but previous studies have relied on self-reported sleep assessment. The present study investigated the relationships between commute time for employment and objective sleep patterns among non-shift working U.S. Hispanic/Latino adults. From 2010 to 2013, Hispanic/Latino employed, non-shift-working adults (n=760, aged 18-64 years) from the Sueño study, ancillary to the Hispanic Community Health Study/Study of Latinos, reported their total daily commute time to and from work, completed questionnaires on sleep and other health behaviors, and wore wrist actigraphs to record sleep duration, continuity, and variability for 1 week. Survey linear regression models of the actigraphic and self-reported sleep measures regressed on categorized commute time (short: 1-44 minutes; moderate: 45-89 minutes; long: ≥90 minutes) were built adjusting for relevant covariates. For associations that suggested a linear relationship, continuous commute time was modeled as the exposure. Moderation effects by age, sex, income, and depressive symptoms also were explored. Commute time was linearly related to sleep duration on work days such that each additional hour of commute time conferred 15 minutes of sleep loss (p=0.01). Compared with short commutes, individuals with moderate commutes had greater sleep duration variability (p=0.04) and lower interdaily stability (p=0.046, a measure of sleep/wake schedule regularity). No significant associations were detected for self-reported sleep measures. Commute time is significantly associated with actigraphy-measured sleep duration and regularity among Hispanic/Latino adults. Interventions to shorten commute times should be evaluated to help improve sleep habits in this minority population. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. LAS bioconcentration is isomer specific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolls, J.; Haller, M.; Graaf, I. de

    1995-12-31

    The authors measured parent compound specific bioconcentration data for linear alkylbenzene sulfonates in Pimephales promelas. They did so by using cold, custom synthesized sulfophenyl alkanes. They observed that, within homologous series of isomers, the uptake rate constants (k{sub 1}) and the bioconcentration factor (BCF) increase with increasing number of carbon atoms in the alkyl chain (n{sub C-atoms}). In contrast, the elimination rate constant k{sub 2} appears to be independent of the alkyl chain length. Regressions of log BCF vs n{sub C-atoms} yielded different slopes for the homologous groups of the 5- and the 2-sulfophenyl alkane isomers. Regression of all logmore » BCF-data vs log 1/CMC yielded a good description of the data. However, when regressing the data for both homologous series separately again very different slopes are obtained. The results therefore indicate that hydrophobicity-bioconcentration relationships may be different for different homologous groups of sulfophenyl alkanes.« less

  6. Father and adolescent son variables related to son's HIV prevention.

    PubMed

    Glenn, Betty L; Demi, Alice; Kimble, Laura P

    2008-02-01

    The purpose of this study was to examine the relationship between fathers' influences and African American male adolescents' perceptions of self-efficacy to reduce high-risk sexual behavior. A convenience sample of 70 fathers was recruited from churches in a large metropolitan area in the South. Hierarchical multiple linear regression analysis indicated father-related factors and son-related factors were associated with 26.1% of the variance in son's self-efficacy to be abstinent. In the regression model greater son's perception of the communication of sexual standards and greater father's perception of his son's self-efficacy were significantly related to greater son's self-efficacy for abstinence. The second regression model with son's self-efficacy for safer sex as the criterion was not statistically significant. Data support the need for fathers to express confidence in their sons' ability to be abstinent or practice safer sex and to communicate with their sons regarding sexual issues and standards.

  7. An introduction to using Bayesian linear regression with clinical data.

    PubMed

    Baldwin, Scott A; Larson, Michael J

    2017-11-01

    Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Age- and sex-dependent regression models for predicting the live weight of West African Dwarf goat from body measurements.

    PubMed

    Sowande, O S; Oyewale, B F; Iyasere, O S

    2010-06-01

    The relationships between live weight and eight body measurements of West African Dwarf (WAD) goats were studied using 211 animals under farm condition. The animals were categorized based on age and sex. Data obtained on height at withers (HW), heart girth (HG), body length (BL), head length (HL), and length of hindquarter (LHQ) were fitted into simple linear, allometric, and multiple-regression models to predict live weight from the body measurements according to age group and sex. Results showed that live weight, HG, BL, LHQ, HL, and HW increased with the age of the animals. In multiple-regression model, HG and HL best fit the model for goat kids; HG, HW, and HL for goat aged 13-24 months; while HG, LHQ, HW, and HL best fit the model for goats aged 25-36 months. Coefficients of determination (R(2)) values for linear and allometric models for predicting the live weight of WAD goat increased with age in all the body measurements, with HG being the most satisfactory single measurement in predicting the live weight of WAD goat. Sex had significant influence on the model with R(2) values consistently higher in females except the models for LHQ and HW.

  9. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  10. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual.

    PubMed

    Hemmila, April; McGill, Jim; Ritter, David

    2008-03-01

    To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.

  11. Linearity versus Nonlinearity of Offspring-Parent Regression: An Experimental Study of Drosophila Melanogaster

    PubMed Central

    Gimelfarb, A.; Willis, J. H.

    1994-01-01

    An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818

  12. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a

  13. [The mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents].

    PubMed

    Yavuzer, Yasemin; Karataş, Zeynep

    2013-01-01

    This study aimed to examine the mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents. The study included 224 adolescents in the 9th grade of 3 different high schools in central Burdur during the 2011-2012 academic year. Participants completed the Aggression Questionnaire and Automatic Thoughts Scale in their classrooms during counseling sessions. Data were analyzed using simple and multiple linear regression analysis. There were positive correlations between the adolescents' automatic thoughts, and physical aggression, and anger. According to regression analysis, automatic thoughts effectively predicted the level of physical aggression (b= 0.233, P < 0.001)) and anger (b= 0.325, P < 0.001). Analysis of the mediating role of anger showed that anger fully mediated the relationship between automatic thoughts and physical aggression (Sobel z = 5.646, P < 0.001). Anger fully mediated the relationship between automatic thoughts and physical aggression. Providing adolescents with anger management skills training is very important for the prevention of physical aggression. Such training programs should include components related to the development of an awareness of dysfunctional and anger-triggering automatic thoughts, and how to change them. As the study group included adolescents from Burdur, the findings can only be generalized to groups with similar characteristics.

  14. Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space.

    PubMed

    Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J

    2010-05-01

    Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.

  15. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  16. The timing of alcohol use and sexual initiation among a sample of Black, Hispanic, and White adolescents.

    PubMed

    Rothman, Emily F; Wise, Lauren A; Bernstein, Edward; Bernstein, Judith

    2009-01-01

    The goals of this study were to examine the relationship between age at first drink and age at first sex among an emergency department sample of Black, Hispanic, and White adolescents (N = 1,1110) and to assess two sexual behavior-related consequences of underage drinking. The authors used multivariable linear regression to analyze data from a self-reported survey. Age at first sex decreased linearly with decreasing age at first drink (p < .001) for all adolescents in the sample. In analyses stratified by race, significant positive trends between age at first drink and age at first sex were observed for all race and ethnic subgroups, although the relationship between age at first drink and age at first sex was not as strong for Black males and females as their White counterparts, respectively. Compared to White males, Black males were less likely to report having had sex without using a condom or birth control after drinking in the past month and during their lifetimes.

  17. Job Crafting, Employee Well-being, and Quality of Care.

    PubMed

    Yepes-Baldó, Montserrat; Romeo, Marina; Westerberg, Kristina; Nordin, Maria

    2018-01-01

    The main objective is to study the effects of job crafting activities of elder care and nursing home employees on their perceived well-being and quality of care in two European countries, Spain and Sweden. The Job Crafting, the General Health, and the Quality of Care questionnaires were administered to 530 employees. Correlations and hierarchical regression analyses were performed. Results confirm the effects of job crafting on quality of care ( r = .291, p < .01; β = .261, p < .01; Δ R 2 = .065, p < .01) and employees' well-being ( r = .201, p < .01; β = .171, p < .01; Δ R 2 = .028, p < .01). A positive linear relationship was found between job crafting and well-being in Spain and Sweden and with quality of care in Spain. On the contrary, in Sweden, the relationship between job crafting and well-being was not linear. Job crafting contributes significantly to employees' and residents' well-being. Management should promote job crafting to co-create meaningful and productive work. Cultural effects are proposed to explain the differences found.

  18. Validation and application of single breath cardiac output determinations in man

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Fletcher, E. R.; Myhre, L. G.; Luft, U. C.

    1986-01-01

    The results of a procedure for estimating cardiac output by a single-breath technique (Qsb), obtained in healthy males during supine rest and during exercise on a bicycle ergometer, were compared with the results on cardiac output obtained by the direct Fick method (QF). The single breath maneuver consisted of a slow exhalation to near residual volume following an inspiration somewhat deeper than normal. The Qsb calculations incorporated an equation of the CO2 dissociation curve and a 'moving spline' sequential curve-fitting technique to calculate the instantaneous R from points on the original expirogram. The resulting linear regression equation indicated a 24-percent underestimation of QF by the Qsb technique. After applying a correction, the Qsb-QF relationship was improved. A subsequent study during upright rest and exercise to 80 percent of VO2(max) in 6 subjects indicated a close linear relationship between Qsb and VO2 for all 95 values obtained, with slope and intercept close to those in published studies in which invasive cardiac output measurements were used.

  19. Mathematical model for determining the effects of intracytoplasmic inclusions on volume and density of microorganisms.

    PubMed Central

    Mas, J; Pedrós-Alió, C; Guerrero, R

    1985-01-01

    Procaryotic microorganisms accumulate several polymers in the form of intracellular inclusions as a strategy to increase survival in a changing environment. Such inclusions avoid osmotic pressure increases by tightly packaging certain macromolecules into the inclusion. In the present paper, a model describing changes in volume and density of the microbial cell as a function of the weight of the macromolecule forming the inclusion is derived from simple theoretical principles. The model is then tested by linear regression with experimental data from glycogen accumulation in Escherichia coli, poly-beta-hydroxybutyrate accumulation in Alcaligenes eutrophus, and sulfur accumulation in Chromatium spp. The model predicts a certain degree of hydration of the polymer in the inclusion and explains both the linear relationship between volume of the cell and weight of the polymer and the hyperbolic relationship between density of the cell and weight of the polymer. Other implications of the model are also discussed. PMID:3902798

  20. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  1. Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing

    2018-02-01

    The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.

  2. Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils.

    PubMed

    Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Ma, Yibing; Wang, Xingxiang

    2014-10-01

    Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Complexity analysis of spontaneous brain activity in mood disorders: A magnetoencephalography study of bipolar disorder and major depression.

    PubMed

    Fernández, Alberto; Al-Timemy, Ali H; Ferre, Francisco; Rubio, Gabriel; Escudero, Javier

    2018-04-26

    The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Musculotendinous Stiffness of Triceps Surae, Maximal Rate of Force Development, and Vertical Jump Performance

    PubMed Central

    Driss, Tarak; Rouis, Majdi; Jaafar, Hamdi; Vandewalle, Henry

    2015-01-01

    The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S 0.2), 40 (S 0.4), 60 (S 0.6), and 80% (S 0.8) of maximal voluntary torque (T MVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM, S 0.4/BM. The slope α 2 and intercept β 2 of the torque-stiffness relationships from 40 to 80% T MVC were correlated negatively (α 2) and positively (β 2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers. PMID:25710026

  5. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  6. An Expert System for the Evaluation of Cost Models

    DTIC Science & Technology

    1990-09-01

    contrast to the condition of equal error variance, called homoscedasticity. (Reference: Applied Linear Regression Models by John Neter - page 423...normal. (Reference: Applied Linear Regression Models by John Neter - page 125) Click Here to continue -> Autocorrelation Click Here for the index - Index...over time. Error terms correlated over time are said to be autocorrelated or serially correlated. (REFERENCE: Applied Linear Regression Models by John

  7. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression.

    PubMed

    Beckstead, Jason W

    2012-03-30

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic strategy to isolate, examine, and remove suppression effects has been offered. In this article such an approach, rooted in confirmatory factor analysis theory and employing matrix algebra, is developed. Suppression is viewed as the result of criterion-irrelevant variance operating among predictors. Decomposition of predictor variables into criterion-relevant and criterion-irrelevant components using structural equation modeling permits derivation of regression weights with the effects of criterion-irrelevant variance omitted. Three examples with data from applied research are used to illustrate the approach: the first assesses child and parent characteristics to explain why some parents of children with obsessive-compulsive disorder accommodate their child's compulsions more so than do others, the second examines various dimensions of personal health to explain individual differences in global quality of life among patients following heart surgery, and the third deals with quantifying the relative importance of various aptitudes for explaining academic performance in a sample of nursing students. The approach is offered as an analytic tool for investigators interested in understanding predictor-criterion relationships when complex patterns of intercorrelation among predictors are present and is shown to augment dominance analysis.

  9. A rational model of function learning.

    PubMed

    Lucas, Christopher G; Griffiths, Thomas L; Williams, Joseph J; Kalish, Michael L

    2015-10-01

    Theories of how people learn relationships between continuous variables have tended to focus on two possibilities: one, that people are estimating explicit functions, or two that they are performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, which provide a probabilistic basis for similarity-based function learning, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a rational model of human function learning that combines the strengths of both approaches and accounts for a wide variety of experimental results.

  10. The relationship between severity of violence in the home and dating violence.

    PubMed

    Sims, Eva Nowakowski; Dodd, Virginia J Noland; Tejeda, Manuel J

    2008-01-01

    This study used propositions from the social learning theory to explore the effects of the combined influences of child maltreatment, childhood witness to parental violence, sibling violence, and gender on dating violence perpetration using a modified version of the Conflict Tactics Scale 2 (CTS2). A weighted scoring method was utilized to determine how severity of violence in the home impacts dating violence perpetration. Bivariate correlations and linear regression models indicate significant associations between child maltreatment, sibling violence perpetration, childhood witness to parental violence, gender, and subsequent dating violence perpetration. Multiple regression analyses indicate that for men, history of severe violence victimization (i.e., child maltreatment and childhood witness to parental violence) and severe perpetration (sibling violence) significantly predict dating violence perpetration.

  11. Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations

    NASA Astrophysics Data System (ADS)

    Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael

    2016-04-01

    Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.

  12. The Importance of Leisure Activities in the Relationship between Physical Health and Well-Being in a Life Span Sample.

    PubMed

    Paggi, Michelle E; Jopp, Daniela; Hertzog, Christopher

    2016-01-01

    Previous studies have examined the relationships between physical health and leisure activities and between leisure activities and well-being, but, to our knowledge, none has examined these relationships simultaneously. This study investigated the relationships between leisure activities, health and well-being considering the role of age, and whether leisure activities mediate the relationship between physical health and well-being. Utilizing a cross-sectional database of 259 adults (ages 18-81 years) who completed several questionnaires, linear regression models and mediation models were tested. Regression analyses indicated that physical health was related to leisure activities and leisure activities were related to well-being. When physical health was measured by subjective ratings, age had a stronger relationship with leisure activities. However, when physical health was indicated by health restrictions, physical health had a stronger relationship with leisure activities than did age. Leisure activities were a partial mediator of the relationship between physical health and well-being. The results demonstrated that the reduction in leisure activities with age has more to do with physical health limitations than with older age itself. In addition, regardless of age, the benefits of physical health for well-being are due in part to the level of leisure activity participation. These results highlight the importance of leisure activities for successful aging throughout the adult life span. Interventions designed to improve well-being through increasing leisure activity participation should take physical health into consideration, particularly for older adults. © 2016 S. Karger AG, Basel.

  13. Standardization and validation of the body weight adjustment regression equations in Olympic weightlifting.

    PubMed

    Kauhanen, Heikki; Komi, Paavo V; Häkkinen, Keijo

    2002-02-01

    The problems in comparing the performances of Olympic weightlifters arise from the fact that the relationship between body weight and weightlifting results is not linear. In the present study, this relationship was examined by using a nonparametric curve fitting technique of robust locally weighted regression (LOWESS) on relatively large data sets of the weightlifting results made in top international competitions. Power function formulas were derived from the fitted LOWESS values to represent the relationship between the 2 variables in a way that directly compares the snatch, clean-and-jerk, and total weightlifting results of a given athlete with those of the world-class weightlifters (golden standards). A residual analysis of several other parametric models derived from the initial results showed that they all experience inconsistencies, yielding either underestimation or overestimation of certain body weights. In addition, the existing handicapping formulas commonly used in normalizing the performances of Olympic weightlifters did not yield satisfactory results when applied to the present data. It was concluded that the devised formulas may provide objective means for the evaluation of the performances of male weightlifters, regardless of their body weights, ages, or performance levels.

  14. The Changing Nonlinear Relationship between Income and Terrorism

    PubMed Central

    Enders, Walter; Hoover, Gary A.

    2014-01-01

    This article reinvestigates the relationship between real per capita gross domestic product (GDP) and terrorism. We devise a terrorism Lorenz curve to show that domestic and transnational terrorist attacks are each more concentrated in middle-income countries, thereby suggesting a nonlinear income–terrorism relationship. Moreover, this point of concentration shifted to lower income countries after the rising influence of the religious fundamentalist and nationalist/separatist terrorists in the early 1990s. For transnational terrorist attacks, this shift characterized not only the attack venue but also the perpetrators’ nationality. The article then uses nonlinear smooth transition regressions to establish the relationship between real per capita GDP and terrorism for eight alternative terrorism samples, accounting for venue, perpetrators’ nationality, terrorism type, and the period. Our nonlinear estimates are shown to be favored over estimates using linear or quadratic income determinants of terrorism. These nonlinear estimates are robust to additional controls. PMID:28579636

  15. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.

    PubMed

    Can, Alper

    2014-11-04

    Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Compound Identification Using Penalized Linear Regression on Metabolomics

    PubMed Central

    Liu, Ruiqi; Wu, Dongfeng; Zhang, Xiang; Kim, Seongho

    2014-01-01

    Compound identification is often achieved by matching the experimental mass spectra to the mass spectra stored in a reference library based on mass spectral similarity. Because the number of compounds in the reference library is much larger than the range of mass-to-charge ratio (m/z) values so that the data become high dimensional data suffering from singularity. For this reason, penalized linear regressions such as ridge regression and the lasso are used instead of the ordinary least squares regression. Furthermore, two-step approaches using the dot product and Pearson’s correlation along with the penalized linear regression are proposed in this study. PMID:27212894

  17. Ventilation-Perfusion Relationships Following Experimental Pulmonary Contusion

    DTIC Science & Technology

    2007-06-14

    696.7 6.1 to 565.0 24.3 Hounsfield units ), as did VOL (4.3 0.5 to 33.5 3.2%). Multivariate linear regression of MGSD, VOL, VD/VT, and QS vs. PaO2...parenchyma was separated into four regions based on the Hounsfield unit (HU) ranges reported by Gattinoni et al. (23) via a segmentation process executed...determined by repeated measures ANOVA. CT, computed tomography; MGSD, mean gray-scale density of the entire lung by CT scan; HU, Hounsfield units

  18. Attachment style and readiness for psychotherapy among psychiatric outpatients.

    PubMed

    Kealy, David; Tsai, Michelle; Ogrodniczuk, John S

    2017-06-01

    Ninety-two adults attending outpatient mental health services completed measures of attachment style and readiness to engage in psychotherapy. Correlation and linear regression analyses found anxious attachment to be positively associated with treatment-seeking distress and found avoidant attachment to be negatively associated with openness to personal disclosure in the therapy relationship. Insecure attachment may influence prospective patients' readiness for psychotherapy. Patients with an avoidant attachment style may need assistance in preparing for the relational aspects of psychotherapy. © 2016 The British Psychological Society.

  19. Psychosocial factors and financial literacy.

    PubMed

    Murphy, John L

    2013-01-01

    This study uses data from the Health and Retirement Study (HRS) to analyze the psychological and social variables associated with financial literacy. The HRS is a nationally representative longitudinal survey of individuals older than age 50 and their spouses. An ordinary least squares linear regression analysis explores the relationship between financial literacy and several economic and psychosocial variables. After controlling for earnings, level of education, and other socioeconomic variables in this exploratory study, I find that financial satisfaction and religiosity are correlated with financial literacy.

  20. Early Student Support to Investigate the Role of Sea Ice Albedo Feedback in Sea Ice Predictions

    DTIC Science & Technology

    2015-09-30

    time periods: 1925-1960, 1970-2005, 2015-2050, and 2060 -2095. Model runs from the first two time periods had historical radiative forcing, whereas the...of the Arctic exhibits the relationship seen near the sea ice edge in the late 20th century. • Between 2015-2050 and 2060 -2095, there is a regime...1980). Ice-free summers are not found until 2060s . • From the linear regressions, air temperatures decrease in importance over time as good

Top