Sample records for linear response equation

  1. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  2. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  3. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  4. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  5. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    ERIC Educational Resources Information Center

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  6. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  7. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  8. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  9. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  10. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  11. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  12. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  13. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  14. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  15. Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ormiston, R. A.

    1975-01-01

    Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.

  16. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  17. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.

  18. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  19. Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving

    ERIC Educational Resources Information Center

    Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.

    2016-01-01

    This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…

  20. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  1. Linear response theory and transient fluctuation relations for diffusion processes: a backward point of view

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Tong, Huan; Ma, Rui; Ou-Yang, Zhong-can

    2010-12-01

    A formal apparatus is developed to unify derivations of the linear response theory and a variety of transient fluctuation relations for continuous diffusion processes from a backward point of view. The basis is a perturbed Kolmogorov backward equation and the path integral representation of its solution. We find that these exact transient relations could be interpreted as a consequence of a generalized Chapman-Kolmogorov equation, which intrinsically arises from the Markovian characteristic of diffusion processes.

  2. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  3. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  4. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    ERIC Educational Resources Information Center

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  5. A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes

    NASA Astrophysics Data System (ADS)

    Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat

    2018-07-01

    In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.

  6. On the subsystem formulation of linear-response time-dependent DFT.

    PubMed

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  7. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    ERIC Educational Resources Information Center

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  8. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    NASA Astrophysics Data System (ADS)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  9. An Evaluation of the Kernel Equating Method: A Special Study with Pseudotests Constructed from Real Test Data. Research Report. ETS RR-06-02

    ERIC Educational Resources Information Center

    von Davier, Alina A.; Holland, Paul W.; Livingston, Samuel A.; Casabianca, Jodi; Grant, Mary C.; Martin, Kathleen

    2006-01-01

    This study examines how closely the kernel equating (KE) method (von Davier, Holland, & Thayer, 2004a) approximates the results of other observed-score equating methods--equipercentile and linear equatings. The study used pseudotests constructed of item responses from a real test to simulate three equating designs: an equivalent groups (EG)…

  10. Hybrid finite element method for describing the electrical response of biological cells to applied fields.

    PubMed

    Ying, Wenjun; Henriquez, Craig S

    2007-04-01

    A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.

  11. Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2015-11-01

    FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.

  12. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  13. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  14. Analysis of control system responses for aircraft stability and efficient numerical techniques for real-time simulations

    NASA Astrophysics Data System (ADS)

    Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin

    2017-01-01

    The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.

  15. On Impedance Spectroscopy of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  16. Linear and nonlinear response in sheared soft spheres

    NASA Astrophysics Data System (ADS)

    Tighe, Brian

    2013-11-01

    Packings of soft spheres provide an idealized model of foams, emulsions, and grains, while also serving as the canonical example of a system undergoing a jamming transition. Packings' mechanical response has now been studied exhaustively in the context of ``strict linear response,'' i.e. by linearizing about a stable static packing and solving the resulting equations of motion. Both because the system is close to a critical point and because the soft sphere pair potential is non-analytic at the point of contact, it is reasonable to ask under what circumstances strict linear response provides a good approximation to the actual response. We simulate sheared soft sphere packings close to jamming and identify two distinct strain scales: (i) the scale on which strict linear response fails, coinciding with a topological change in the packing's contact network; and (ii) the scale on which linear superposition of the averaged stress-strain curve breaks down. This latter scale provides a ``weak linear response'' criterion and is likely to be more experimentally relevant.

  17. Response Surface Modeling Tolerance and Inference Error Risk Specifications: Proposed Industry Standards

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2012-01-01

    This paper reviews the derivation of an equation for scaling response surface modeling experiments. The equation represents the smallest number of data points required to fit a linear regression polynomial so as to achieve certain specified model adequacy criteria. Specific criteria are proposed which simplify an otherwise rather complex equation, generating a practical rule of thumb for the minimum volume of data required to adequately fit a polynomial with a specified number of terms in the model. This equation and the simplified rule of thumb it produces can be applied to minimize the cost of wind tunnel testing.

  18. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  19. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  20. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1985-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  1. Bounding solutions of geometrically nonlinear viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, J. M.; Simitses, G. J.

    1986-01-01

    Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.

  2. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    This paper describes a method to efficiently and accurately approximate the effect of design changes on structural response. The key to this new method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in msot cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacement are used to approximate bending stresses.

  3. Differential equation based method for accurate approximations in optimization

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1990-01-01

    A method to efficiently and accurately approximate the effect of design changes on structural response is described. The key to this method is to interpret sensitivity equations as differential equations that may be solved explicitly for closed form approximations, hence, the method is denoted the Differential Equation Based (DEB) method. Approximations were developed for vibration frequencies, mode shapes and static displacements. The DEB approximation method was applied to a cantilever beam and results compared with the commonly-used linear Taylor series approximations and exact solutions. The test calculations involved perturbing the height, width, cross-sectional area, tip mass, and bending inertia of the beam. The DEB method proved to be very accurate, and in most cases, was more accurate than the linear Taylor series approximation. The method is applicable to simultaneous perturbation of several design variables. Also, the approximations may be used to calculate other system response quantities. For example, the approximations for displacements are used to approximate bending stresses.

  4. Non-Linear Steady State Vibrations of Beams Excited by Vortex Shedding

    NASA Astrophysics Data System (ADS)

    LEWANDOWSKI, R.

    2002-05-01

    In this paper the non-linear vibrations of beams excited by vortex-shedding are considered. In particular, the steady state responses of beams near the synchronization region are taken into account. The main aerodynamic properties of wind are described by using the semi-empirical model proposed by Hartlen and Currie. The finite element method and the strip method are used to formulate the equation of motion of the system treated. The harmonic balance method is adopted to derive the amplitude equations. These equations are solved with the help of the continuation method which is very convenient to perform the parametric studies of the problem and to determine the response curve in the synchronization region. Moreover, the equations of motion are also integrated using the Newmark method. The results of calculations of several example problems are also shown to confirm the efficiency and accuracy of the presented method. The results obtained by the harmonic balance method and by the Newmark methods are in good agreement with each other.

  5. Enhancing the Equating of Item Difficulty Metrics: Estimation of Reference Distribution. Research Report. ETS RR-14-07

    ERIC Educational Resources Information Center

    Ali, Usama S.; Walker, Michael E.

    2014-01-01

    Two methods are currently in use at Educational Testing Service (ETS) for equating observed item difficulty statistics. The first method involves the linear equating of item statistics in an observed sample to reference statistics on the same items. The second method, or the item response curve (IRC) method, involves the summation of conditional…

  6. A Solution to the Fundamental Linear Fractional Order Differential Equation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  7. Response of an oscillatory differential delay equation to a single stimulus.

    PubMed

    Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto

    2017-04-01

    Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.

  8. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  9. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  10. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  11. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  12. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE PAGES

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  13. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  14. Examining Preservice Secondary Mathematics Teachers' Responses to Student Work to Solve Linear Equations

    ERIC Educational Resources Information Center

    Casey, Stephanie; Lesseig, Kristin; Monson, Debra; Krupa, Erin E.

    2018-01-01

    This study examined proposed teacher responses to students' work to investigate how they respond, what characteristics of a good response are more difficult than others to achieve, and whether particular student error types are more difficult to respond to appropriately. Sixteen preservice secondary mathematics teachers' proposed responses to five…

  15. Linear dynamic coupling in geared rotor systems

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  16. Generalized cable equation model for myelinated nerve fiber.

    PubMed

    Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph

    2005-10-01

    Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our generalized model.

  17. Linear and nonlinear stability of the Blasius boundary layer

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.

    1992-01-01

    Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.

  18. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  19. Flood Nowcasting With Linear Catchment Models, Radar and Kalman Filters

    NASA Astrophysics Data System (ADS)

    Pegram, Geoff; Sinclair, Scott

    A pilot study using real time rainfall data as input to a parsimonious linear distributed flood forecasting model is presented. The aim of the study is to deliver an operational system capable of producing flood forecasts, in real time, for the Mgeni and Mlazi catchments near the city of Durban in South Africa. The forecasts can be made at time steps which are of the order of a fraction of the catchment response time. To this end, the model is formulated in Finite Difference form in an equation similar to an Auto Regressive Moving Average (ARMA) model; it is this formulation which provides the required computational efficiency. The ARMA equation is a discretely coincident form of the State-Space equations that govern the response of an arrangement of linear reservoirs. This results in a functional relationship between the reservoir response con- stants and the ARMA coefficients, which guarantees stationarity of the ARMA model. Input to the model is a combined "Best Estimate" spatial rainfall field, derived from a combination of weather RADAR and Satellite rainfield estimates with point rain- fall given by a network of telemetering raingauges. Several strategies are employed to overcome the uncertainties associated with forecasting. Principle among these are the use of optimal (double Kalman) filtering techniques to update the model states and parameters in response to current streamflow observations and the application of short term forecasting techniques to provide future estimates of the rainfield as input to the model.

  20. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  1. Observed-Score Equating as a Test Assembly Problem.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Luecht, Richard M.

    1998-01-01

    Derives a set of linear conditions of item-response functions that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly. An example illustrates the use of the model for an item pool from the Law School Admissions Test (LSAT). (SLD)

  2. Cotton-type and joint invariants for linear elliptic systems.

    PubMed

    Aslam, A; Mahomed, F M

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.

  3. Cotton-Type and Joint Invariants for Linear Elliptic Systems

    PubMed Central

    Aslam, A.; Mahomed, F. M.

    2013-01-01

    Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871

  4. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  5. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  6. Endoreversible quantum heat engines in the linear response regime.

    PubMed

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  7. Characterization of the Earwig, Doru lineare, as a Predator of Larvae of the Fall Armyworm, Spodoptera frugiperda: A Functional Response Study

    PubMed Central

    Sueldo, Mabel Romero; Bruzzone, Octavio A.; Virla, Eduardo G.

    2010-01-01

    Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is considered as the most important pest of maize in almost all tropical America. In Argentina, the earwig Doru lineare Eschscholtz (Dermaptera: Forficulidae) has been observed preying on S. frugiperda egg masses in corn crops, but no data about its potential role as a biocontrol agent of this pest have been provided. The predation efficiency of D. lineare on newly emerged S. frugiperda larva was evaluated through a laboratory functional response study. D. lineare showed type II functional response to S. frugiperda larval density, and disc equation estimations of searching efficiency and handling time were (a) = 0.374 and (t) = 182.9 s, respectively. Earwig satiation occurred at 39.4 S. frugiperda larvae. PMID:20575739

  8. Modeling TAE Response To Nonlinear Drives

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  9. On mathematical modelling of aeroelastic problems with finite element method

    NASA Astrophysics Data System (ADS)

    Sváček, Petr

    2018-06-01

    This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.

  10. International Symposium on Solute-Solute-Solvent Interactions (7th) Held at Reading, United Kingdom on 15-19 July 1985.

    DTIC Science & Technology

    1985-07-19

    analytical, integral equation methods can be applied to the problem of elucidating the detailed structural properties of strongly interacting molecu- lar...curve. r. I equation -)f sate to calculate phase diagrams and critical irv,: for polar-non polar systems is described. Measurements with the .- r...FRANCE The fundamentai] equations of the Onsager approach of transport properties in linear response are summarized. From a reformula- tion of the

  11. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  12. Analyses of Multishaft Rotor-Bearing Response

    NASA Technical Reports Server (NTRS)

    Nelson, H. D.; Meacham, W. L.

    1985-01-01

    Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).

  13. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  14. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  15. Feedback Functions, Optimization, and the Relation of Response Rate to Reinforcer Rate

    ERIC Educational Resources Information Center

    Soto, Paul L.; McDowell, Jack J.; Dallery, Jesse

    2006-01-01

    The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer rate to response rate to test whether responding was consistent with an optimization account or with a one-to-one relation of response rate to reinforcer rate such as linear system theory's rate equation or Herrnstein's hyperbola. Reinforcer rate…

  16. Vibration analysis of partially cracked plate submerged in fluid

    NASA Astrophysics Data System (ADS)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  17. Pressure fluctuations and time scales in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh

    2015-11-01

    Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.

  18. A new approach for the calculation of response spectral density of a linear stationary random multidegree of freedom system

    NASA Astrophysics Data System (ADS)

    Sharan, A. M.; Sankar, S.; Sankar, T. S.

    1982-08-01

    A new approach for the calculation of response spectral density for a linear stationary random multidegree of freedom system is presented. The method is based on modifying the stochastic dynamic equations of the system by using a set of auxiliary variables. The response spectral density matrix obtained by using this new approach contains the spectral densities and the cross-spectral densities of the system generalized displacements and velocities. The new method requires significantly less computation time as compared to the conventional method for calculating response spectral densities. Two numerical examples are presented to compare quantitatively the computation time.

  19. Dielectric response in Bloch’s hydrodynamic model of an electron-ion plasma

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Felderhof, B. U.

    The linear response of an electron-ion plasma to an applied oscillating electric field is studied within the framework of Bloch’s classical hydrodynamic model. The ions are assumed to be fixed in space and distributed according to a known probability distribution. The linearized equations of motion for electron density and flow velocity are studied with the aid of a multiple scattering analysis and cluster expansion. This allows systematic reduction of the many-ion problem to a composition of few-ion problems, and shows how the longitudinal dielectric response function can in principle be calculated.

  20. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

    NASA Astrophysics Data System (ADS)

    Průša, Vít; Řehoř, Martin; Tůma, Karel

    2017-02-01

    The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.

  1. Physical lumping methods for developing linear reduced models for high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Immel, S. M.; Hartley, Tom T.; Deabreu-Garcia, J. Alex

    1991-01-01

    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented.

  2. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Hu, Haiyan; Zhao, Yonghui

    2013-10-01

    In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.

  3. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  4. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    NASA Astrophysics Data System (ADS)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  5. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  6. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  7. Iterative Methods to Solve Linear RF Fields in Hot Plasma

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2014-10-01

    Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.

  8. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  9. Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2016-01-01

    The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…

  10. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  11. Nonlinear response from transport theory and quantum field theory at finite temperature

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Defu, Hou; Kobes, R.

    2001-07-01

    We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.

  12. Efficient computational nonlinear dynamic analysis using modal modification response technique

    NASA Astrophysics Data System (ADS)

    Marinone, Timothy; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2012-08-01

    Generally, structural systems contain nonlinear characteristics in many cases. These nonlinear systems require significant computational resources for solution of the equations of motion. Much of the model, however, is linear where the nonlinearity results from discrete local elements connecting different components together. Using a component mode synthesis approach, a nonlinear model can be developed by interconnecting these linear components with highly nonlinear connection elements. The approach presented in this paper, the Modal Modification Response Technique (MMRT), is a very efficient technique that has been created to address this specific class of nonlinear problem. By utilizing a Structural Dynamics Modification (SDM) approach in conjunction with mode superposition, a significantly smaller set of matrices are required for use in the direct integration of the equations of motion. The approach will be compared to traditional analytical approaches to make evident the usefulness of the technique for a variety of test cases.

  13. The Adiabatic Theorem and Linear Response Theory for Extended Quantum Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, Sven; De Roeck, Wojciech; Fraas, Martin

    2018-03-01

    The adiabatic theorem refers to a setup where an evolution equation contains a time-dependent parameter whose change is very slow, measured by a vanishing parameter ɛ. Under suitable assumptions the solution of the time-inhomogenous equation stays close to an instantaneous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is independent of the number of degrees of freedom. Our setup is that of quantum spin systems where the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One important application is the proof of the validity of linear response theory for such extended, genuinely interacting systems. In general, this is a long-standing mathematical problem, which can be solved in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.

  14. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  15. A homogenization approach for characterization of the fluid-solid coupling parameters in Biot's equations for acoustic poroelastic materials

    NASA Astrophysics Data System (ADS)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2015-09-01

    In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.

  16. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  17. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  18. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  19. Local Linear Observed-Score Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; van der Linden, Wim J.

    2011-01-01

    Two methods of local linear observed-score equating for use with anchor-test and single-group designs are introduced. In an empirical study, the two methods were compared with the current traditional linear methods for observed-score equating. As a criterion, the bias in the equated scores relative to true equating based on Lord's (1980)…

  20. Dynamic response of a riser under excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Lou, Min; Yu, Chenglong; Chen, Peng

    2015-12-01

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

  1. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  2. Investigation of frequency-response characteristics of engine speed for a typical turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Taylor, Burt L , III; Oppenheimer, Frank L

    1951-01-01

    Experimental frequency-response characteristics of engine speed for a typical turbine-propeller engine are presented. These data were obtained by subjecting the engine to sinusoidal variations of fuel flow and propeller-blade-angle inputs. Correlation is made between these experimental data and analytical frequency-response characteristics obtained from a linear differential equation derived from steady-state torque-speed relations.

  3. Linear Mechanisms and Pressure Fluctuations in Wall Turbulence

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan

    2014-11-01

    Full-domain, linear feedback control of turbulent channel flow at Reτ <= 400 via vU' at low wavenumbers is an effective method to attenuate turbulent channel flow such that it is relaminarised. The passivity-based control approach is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al .Phys .Fluids 2011). The linear forcing acts on the wall-normal velocity field and thus the pressure field via the linear (rapid) source term of the Poisson equation for pressure fluctuations, 2U'∂v/∂x . The minimum required spanwise wavelength resolution without losing control is constant at λz+ = 125, based on the wall friction velocity at t = 0 . The result shows that the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The effectiveness of linear control is qualitatively explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is much shorter than both the nonlinear and viscous timescales. The response of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control is examined and discussed.

  4. Nonlocal response in plasmonic waveguiding with extreme light confinement

    NASA Astrophysics Data System (ADS)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei; Jeppesen, Claus; Xiao, Sanshui; Wubs, Martijn; Jauho, Antti-Pekka; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2013-07-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allowing us to study waveguides with subnanometer cross-sections exhibiting extreme light confinement. We show that groove and wedge waveguides have a fundamental lower limit in their mode confinement, only captured by the nonlocal theory. The limitation translates into an upper limit for the corresponding Purcell factors, and thus has important implications for quantum plasmonics.

  5. Pore pressure diffusion and the hydrologic response of nearly saturated, thin landslide deposits of rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haneberg, W.C.

    1991-11-01

    Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.

  6. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  7. Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.

    PubMed

    Yang, Kun; Qi, Long; Wei, Wei; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (SW) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely SW, octanol-water partition coefficients (KOW), and the hydrogen-bonding donor parameter (αm). The effect of pH on the sorption of ionizable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction.

  8. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  9. Isogeometric Kirchhoff-Love shell formulations for biological membranes

    PubMed Central

    Tepole, Adrián Buganza; Kabaria, Hardik; Bletzinger, Kai-Uwe; Kuhl, Ellen

    2015-01-01

    Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on linear isotropic materials, while biological tissues are characterized by a nonlinear anisotropic stress-strain response. Here we present a thin shell formulation for thin biological membranes. We derive the equilibrium equations using curvilinear convective coordinates on NURBS tensor product surface patches. We linearize the weak form of the generic linear momentum balance without a particular choice of a constitutive law. We then incorporate the constitutive equations that have been designed specifically for collagenous tissues. We explore three common anisotropic material models: Mooney-Rivlin, May Newmann-Yin, and Gasser-Ogden-Holzapfel. Our work will allow scientists in biomechanics and mechanobiology to adopt the constitutive equations that have been developed for solid three-dimensional soft tissues within the framework of isogeometric thin shell analysis. PMID:26251556

  10. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization

    DOE PAGES

    Jonkman, Jason M.; Jonkman, Bonnie J.

    2016-10-03

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  11. FAST modularization framework for wind turbine simulation: full-system linearization

    NASA Astrophysics Data System (ADS)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  12. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  13. Non-intrusive parameter identification procedure user's guide

    NASA Technical Reports Server (NTRS)

    Hanson, G. D.; Jewell, W. F.

    1983-01-01

    Written in standard FORTRAN, NAS is capable of identifying linear as well as nonlinear relations between input and output parameters; the only restriction is that the input/output relation be linear with respect to the unknown coefficients of the estimation equations. The output of the identification algorithm can be specified to be in either the time domain (i.e., the estimation equation coefficients) or in the frequency domain (i.e., a frequency response of the estimation equation). The frame length ("window") over which the identification procedure is to take place can be specified to be any portion of the input time history, thereby allowing the freedom to start and stop the identification procedure within a time history. There also is an option which allows a sliding window, which gives a moving average over the time history. The NAS software also includes the ability to identify several assumed solutions simultaneously for the same or different input data.

  14. Design and Laboratory Testing of a Prototype Linear Temperature Sensor

    DTIC Science & Technology

    1982-07-01

    computer, critical quantities such as the line sensor’s voltage, vertical position and, occasionally, a point sensor were also monitored in real time on a...REUT.............. ........... * 30 5.1 Linearity - Comparison With Thoy............... 31 5.2 Response Time ...from some initial time t 0 is more relevant to the measurement of internal waves (since the second term in 0 the above equation is usually small

  15. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  16. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  17. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  18. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  19. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  20. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  1. Linear and nonlinear response of a rotating tokamak plasma to a resonant error-field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-09-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of constant-ψ, resistive-magnetohydrodynamical theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived and their domains of validity mapped out in parameter space.

  2. Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.

    PubMed

    Keller, Ole

    2005-08-01

    On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.

  3. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  4. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  5. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  6. Equating Scores from Adaptive to Linear Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2006-01-01

    Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…

  7. Spacecraft Constrained Maneuver Planning Using Positively Invariant Constraint Admissible Sets (Postprint)

    DTIC Science & Technology

    2013-08-14

    Connectivity Graph; Graph Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17...the linearization of the relative motion model given by the Hill- Clohessy - Wiltshire (CWH) equations is used [14]. A. Nonlinear equations of motion...equations can be used to describe the motion of the debris. B. Linearized HCW equations in discrete-time For δr << R, the linearized Hill- Clohessy

  8. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  9. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  10. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    PubMed

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  11. Linear response theory for long-range interacting systems in quasistationary states.

    PubMed

    Patelli, Aurelio; Gupta, Shamik; Nardini, Cesare; Ruffo, Stefano

    2012-02-01

    Long-range interacting systems, while relaxing to equilibrium, often get trapped in long-lived quasistationary states which have lifetimes that diverge with the system size. In this work, we address the question of how a long-range system in a quasistationary state (QSS) responds to an external perturbation. We consider a long-range system that evolves under deterministic Hamilton dynamics. The perturbation is taken to couple to the canonical coordinates of the individual constituents. Our study is based on analyzing the Vlasov equation for the single-particle phase-space distribution. The QSS represents a stable stationary solution of the Vlasov equation in the absence of the external perturbation. In the presence of small perturbation, we linearize the perturbed Vlasov equation about the QSS to obtain a formal expression for the response observed in a single-particle dynamical quantity. For a QSS that is homogeneous in the coordinate, we obtain an explicit formula for the response. We apply our analysis to a paradigmatic model, the Hamiltonian mean-field model, which involves particles moving on a circle under Hamiltonian dynamics. Our prediction for the response of three representative QSSs in this model (the water-bag QSS, the Fermi-Dirac QSS, and the Gaussian QSS) is found to be in good agreement with N-particle simulations for large N. We also show the long-time relaxation of the water-bag QSS to the Boltzmann-Gibbs equilibrium state. © 2012 American Physical Society

  12. User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.

    1988-01-01

    An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  13. An alternative to the breeder's and Lande's equations.

    PubMed

    Houchmandzadeh, Bahram

    2014-01-10

    The breeder's equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) - E(Z0) to the selection differential S = E(ZW) - E(Z0) through a simple proportionality relation R = h(2)S, where the heritability coefficient h(2) is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R' = j(2)S' can be derived, regardless of the parental genotype distribution. Here R' = E(Z1) - μ and S' = E(ZW) - μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j(2) is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande's equation Δ(z) = GP(-1)S. The linearity coefficient of the alternative equation are not changed by Gaussian selection.

  14. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  15. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    NASA Astrophysics Data System (ADS)

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  16. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    NASA Technical Reports Server (NTRS)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  17. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    PubMed

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  18. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    NASA Astrophysics Data System (ADS)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  19. Dynamic response and stability of a gas-lubricated Rayleigh-step pad

    NASA Technical Reports Server (NTRS)

    Cheng, C.; Cheng, H. S.

    1973-01-01

    The quasi-static, pressure characteristics of a gas-lubricated thrust bearing with shrouded, Rayleigh-step pads are determined for a time-varying film thickness. The axial response of the thrust bearing to an axial forcing function or an axial rotor disturbance is investigated by treating the gas film as a spring having nonlinear restoring and damping forces. These forces are related to the film thickness by a power relation. The nonlinear equation of motion in the axial mode is solved by the Ritz-Galerkin method as well as the direct, numerical integration. Results of the nonlinear response by both methods are compared with the response based on the linearized equation. Further, the gas-film instability of an infinitely wide Rayleigh step thrust pad is determined by solving the transient Reynolds equation coupled with the equation of the motion of the pad. Results show that the Rayleigh-step geometry is very stable for bearing number A up to 50. The stability threshold is shown to exist only for ultrahigh values of Lambda equal to or greater than 100, where the stability can be achieved by making the mass heavier than the critical mass.

  20. Nonlinear dynamics of electromagnetic turbulence in a nonuniform magnetized plasma

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mirza, Arshad M.; Faria, R. T.

    1998-03-01

    By using the hydrodynamic electron response with fixed (kinetic) ions along with Poisson's equation as well as Ampère's law, a system of nonlinear equations for low-frequency (in comparison with the electron gyrofrequency) long-(short-) wavelength electromagnetic waves in a nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfvén-like electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that possible stationary solutions of the nonlinear equations without dissipation can be represented in the form of various types of vortices. On the other hand, the temporal behavior of our nonlinear dissipative systems without the equilibrium density inhomogeneity can be described by the generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead to even qualitative changes in the chaotic dynamics. The results of our investigation should be useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in space and laboratory plasmas.

  1. New Results on the Linear Equating Methods for the Non-Equivalent-Groups Design

    ERIC Educational Resources Information Center

    von Davier, Alina A.

    2008-01-01

    The two most common observed-score equating functions are the linear and equipercentile functions. These are often seen as different methods, but von Davier, Holland, and Thayer showed that any equipercentile equating function can be decomposed into linear and nonlinear parts. They emphasized the dominant role of the linear part of the nonlinear…

  2. Linear stability analysis of the Vlasov-Poisson equations in high density plasmas in the presence of crossed fields and density gradients

    NASA Technical Reports Server (NTRS)

    Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.

    1986-01-01

    The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.

  3. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  4. Hugoniot equation of state of rock materials under shock compression

    PubMed Central

    Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506

  5. The rotational feedback on linear-momentum balance in glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Martinec, Zdenek; Hagedoorn, Jan

    2015-04-01

    The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial-isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea-level equation, has been mathematically described by the sea-level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea-level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar motion response to the GIA process and the rotationally-induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea-level change between these situations since the Last Glacial Maximum reaches values of ± 25 m and ± 1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10% in areas of former or ongoing glaciation, but by up to 50% at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada, and along the Chinese, Australian, or Argentinian coastlines.

  6. The rotational feedback on linear-momentum balance in glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Martinec, Zdeněk; Hagedoorn, Jan

    2014-12-01

    The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea level change between these situations since the Last Glacial Maximum reaches values of ±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian or Argentinian coastlines.

  7. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  8. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition energies being equal to 1.46, 1.50, 1.38, and 0.89 eV.

  9. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  10. A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.

    PubMed

    Mihalaş, Stefan; Niebur, Ernst

    2009-03-01

    For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model's rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation.

  11. A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors

    PubMed Central

    Mihalaş, Ştefan; Niebur, Ernst

    2010-01-01

    For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the model produces spiking or bursting, tonic, phasic or adapting responses, depolarizing or hyperpolarizing after potentials and so forth. The model consists of a diagonalizable set of linear differential equations describing the time evolution of membrane potential, a variable threshold, and an arbitrary number of firing-induced currents. Each of these variables is modified by an update rule when the potential reaches threshold. The variables used are intuitive and have biological significance. The model’s rich behavior does not come from the differential equations, which are linear, but rather from complex update rules. This single-neuron model can be implemented using algorithms similar to the standard integrate-and-fire model. It is a natural match with event-driven algorithms for which the firing times are obtained as a solution of a polynomial equation. PMID:18928368

  12. Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,

    DTIC Science & Technology

    1986-08-01

    KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and

  13. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID.

    PubMed

    Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.

  14. Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID

    PubMed Central

    Elshenawy, Ahmed K.; El Singaby, M.I.

    2017-01-01

    In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071

  15. Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Kresse, Georg

    2017-02-01

    Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.

  16. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  17. A refinement of the combination equations for evaporation

    USGS Publications Warehouse

    Milly, P.C.D.

    1991-01-01

    Most combination equations for evaporation rely on a linear expansion of the saturation vapor-pressure curve around the air temperature. Because the temperature at the surface may differ from this temperature by several degrees, and because the saturation vapor-pressure curve is nonlinear, this approximation leads to a certain degree of error in those evaporation equations. It is possible, however, to introduce higher-order polynomial approximations for the saturation vapor-pressure curve and to derive a family of explicit equations for evaporation, having any desired degree of accuracy. Under the linear approximation, the new family of equations for evaporation reduces, in particular cases, to the combination equations of H. L. Penman (Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, Ser. A193, 120-145, 1948) and of subsequent workers. Comparison of the linear and quadratic approximations leads to a simple approximate expression for the error associated with the linear case. Equations based on the conventional linear approximation consistently underestimate evaporation, sometimes by a substantial amount. ?? 1991 Kluwer Academic Publishers.

  18. Nonlinear Diophantine equation 11 x +13 y = z 2

    NASA Astrophysics Data System (ADS)

    Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.

    2018-03-01

    This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.

  19. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  20. A new method for analysis of limit cycle behavior of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    A piecewise linear method of analyzing the effects of discontinuous nonlinearities on control system performance is described. The limit cycle oscillatory behavior of the system resulting from the nonlinearities is described in terms of a sequence of linear system transient responses. The equations are derived which relate the initial and the terminal conditions of successive transients and the boundary conditions imposed by the non-linearities. The method leads to a convenient computation algorithm for prediction of limit cycle characteristics resulting from discontinuous nonlinearities such as friction, deadzones, and hysteresis.

  1. Simple taper: Taper equations for the field forester

    Treesearch

    David R. Larsen

    2017-01-01

    "Simple taper" is set of linear equations that are based on stem taper rates; the intent is to provide taper equation functionality to field foresters. The equation parameters are two taper rates based on differences in diameter outside bark at two points on a tree. The simple taper equations are statistically equivalent to more complex equations. The linear...

  2. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  3. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  4. On the effect of acoustic coupling on random and harmonic plate vibrations

    NASA Technical Reports Server (NTRS)

    Frendi, A.; Robinson, J. H.

    1993-01-01

    The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.

  5. Measuring and statistically testing the size of the effect of a chemical compound on a continuous in-vitro pharmacological response through a new statistical model of response detection limit

    PubMed Central

    Diaz, Francisco J.; McDonald, Peter R.; Pinter, Abraham; Chaguturu, Rathnam

    2018-01-01

    Biomolecular screening research frequently searches for the chemical compounds that are most likely to make a biochemical or cell-based assay system produce a strong continuous response. Several doses are tested with each compound and it is assumed that, if there is a dose-response relationship, the relationship follows a monotonic curve, usually a version of the median-effect equation. However, the null hypothesis of no relationship cannot be statistically tested using this equation. We used a linearized version of this equation to define a measure of pharmacological effect size, and use this measure to rank the investigated compounds in order of their overall capability to produce strong responses. The null hypothesis that none of the examined doses of a particular compound produced a strong response can be tested with this approach. The proposed approach is based on a new statistical model of the important concept of response detection limit, a concept that is usually neglected in the analysis of dose-response data with continuous responses. The methodology is illustrated with data from a study searching for compounds that neutralize the infection by a human immunodeficiency virus of brain glioblastoma cells. PMID:24905187

  6. Sound waves and flexural mode dynamics in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Michel, K. H.; Scuracchio, P.; Peeters, F. M.

    2017-09-01

    Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and out-of-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.

  7. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  8. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  9. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    PubMed

    Fraenkel, Dan

    2015-12-05

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions. © 2015 Wiley Periodicals, Inc.

  10. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David Michael

    1997-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. The formulation uses the principle of virtual work. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are then derived after the application of several simplifying assumptions. These equations are then modified to allow the reference surface of the plate to be located at a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described as well. The terms of the plate stiffness matrix using both Classical Plate Theory (CPT) and first-order Shear-Deformation Plate Theory (SDPT) are presented. The necessary steps to include the effects of in-plane transverse and in-plane shear loads in the in-plane stability equations are also outlined. Numerical results are presented using the newly implemented capability. Comparisons of results for several example problems with different loading states are made. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPF are also made. Results comparing the computational effort required by the new analysis to that of the analysis currently in the VICONOPT program are presented. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  11. An Alternative to the Breeder’s and Lande’s Equations

    PubMed Central

    Houchmandzadeh, Bahram

    2013-01-01

    The breeder’s equation is a cornerstone of quantitative genetics, widely used in evolutionary modeling. Noting the mean phenotype in parental, selected parents, and the progeny by E(Z0), E(ZW), and E(Z1), this equation relates response to selection R = E(Z1) − E(Z0) to the selection differential S = E(ZW) − E(Z0) through a simple proportionality relation R = h2S, where the heritability coefficient h2 is a simple function of genotype and environment factors variance. The validity of this relation relies strongly on the normal (Gaussian) distribution of the parent genotype, which is an unobservable quantity and cannot be ascertained. In contrast, we show here that if the fitness (or selection) function is Gaussian with mean μ, an alternative, exact linear equation of the form R′ = j2S′ can be derived, regardless of the parental genotype distribution. Here R′ = E(Z1) − μ and S′ = E(ZW) − μ stand for the mean phenotypic lag with respect to the mean of the fitness function in the offspring and selected populations. The proportionality coefficient j2 is a simple function of selection function and environment factors variance, but does not contain the genotype variance. To demonstrate this, we derive the exact functional relation between the mean phenotype in the selected and the offspring population and deduce all cases that lead to a linear relation between them. These results generalize naturally to the concept of G matrix and the multivariate Lande’s equation Δz¯=GP−1S. The linearity coefficient of the alternative equation are not changed by Gaussian selection. PMID:24212080

  12. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  13. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.

    PubMed

    George, Jineesh; Ebenezer, D D; Bhattacharyya, S K

    2010-10-01

    A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.

  14. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  15. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  16. Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2014-10-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.

  17. The Effect of Viscosity of a Fluid on the Frequency Response of a Viscoelastic Plate Loaded by This Fluid

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.; Ismailov, M. I.; Akbarov, S. D.

    2018-03-01

    A hydroviscoelastic system consisting of a viscoelastic plate and a half-plane filled with a viscous fluid is considered. The effect of viscosity of the fluid on the frequency response of the system and its dependence on the rheological parameters of plate material are estimated. The problem on forced vibrations of the system in the plane strain state is investigated using the exact equations of viscoelastodynamics for describing the motion of the plate and linearized Navier-Stokes equations for describing the flow of the fluid. The results found in the cases of nonviscous compressible and Newtonian compressible viscous fluids are compared.

  18. Spacecraft Debris Avoidance Using Positively Invariant Constraint Admissible Sets (Postprint)

    DTIC Science & Technology

    2013-08-14

    LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...linear time-invariant Clohessy - Wiltshire -Hill (CWH) equations. See Ref. 13. A nominal circular orbit is assumed in this work. 2 Approved for public

  19. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    ERIC Educational Resources Information Center

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  20. A canonical form of the equation of motion of linear dynamical systems

    NASA Astrophysics Data System (ADS)

    Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias

    2018-03-01

    The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.

  1. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.; Trifonov, A. Yu.

    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

  2. Phase Radio Engineering Systems (Selected Pages),

    DTIC Science & Technology

    1983-04-28

    that if on the linear network functions the delta-function, which has the uniform spectrum, then the spectrum of response repeats frequency DOC...integrator can be used, for example, chain/ network RC with the slow response. Page 222. As the being congruent/equating cascade/stage can be used, for example...the elements of the networks which are ensured with the great technical difficulties or not at all can be achieved/reached. !.( .... . 2

  3. Green's function and Bloch theory for the analysis of the dynamic response of a periodically supported beam to a moving load

    NASA Astrophysics Data System (ADS)

    Lassoued, R.; Lecheheb, M.; Bonnet, G.

    2012-08-01

    This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.

  4. Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery

    PubMed Central

    Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin

    2017-01-01

    This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565

  5. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  6. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less

  7. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  8. A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi

    2016-09-01

    We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.

  9. Solution of Volterra and Fredholm Classes of Equations via Triangular Orthogonal Function (A Combination of Right Hand Triangular Function and Left Hand Triangular Function) and Hybrid Orthogonal Function (A Combination of Sample Hold Function and Right Hand Triangular Function)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep

    2018-04-01

    In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.

  10. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  11. SYNTHESIS OF NOVEL ALL-DIELECTRIC GRATING FILTERS USING GENETIC ALGORITHMS

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Cwik, Tom; Ditchman, Christopher

    1997-01-01

    We are concerned with the design of inhomogeneous, all dielectric (lossless) periodic structures which act as filters. Dielectric filters made as stacks of inhomogeneous gratings and layers of materials are being used in optical technology, but are not common at microwave frequencies. The problem is then finding the periodic cell's geometric configuration and permittivity values which correspond to a specified reflectivity/transmittivity response as a function of frequency/illumination angle. This type of design can be thought of as an inverse-source problem, since it entails finding a distribution of sources which produce fields (or quantities derived from them) of given characteristics. Electromagnetic sources (electric and magnetic current densities) in a volume are related to the outside fields by a well known linear integral equation. Additionally, the sources are related to the fields inside the volume by a constitutive equation, involving the material properties. Then, the relationship linking the fields outside the source region to those inside is non-linear, in terms of material properties such as permittivity, permeability and conductivity. The solution of the non-linear inverse problem is cast here as a combination of two linear steps, by explicitly introducing the electromagnetic sources in the computational volume as a set of unknowns in addition to the material unknowns. This allows to solve for material parameters and related electric fields in the source volume which are consistent with Maxwell's equations. Solutions are obtained iteratively by decoupling the two steps. First, we invert for the permittivity only in the minimization of a cost function and second, given the materials, we find the corresponding electric fields through direct solution of the integral equation in the source volume. The sources thus computed are used to generate the far fields and the synthesized triter response. The cost function is obtained by calculating the deviation between the synthesized value of reflectivity/transmittivity and the desired one. Solution geometries for the periodic cell are sought as gratings (ensembles of columns of different heights and widths), or combinations of homogeneous layers of different dielectric materials and gratings. Hence the explicit unknowns of the inversion step are the material permittivities and the relative boundaries separating homogeneous parcels of the periodic cell.

  12. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  13. A method for the analysis of nonlinearities in aircraft dynamic response to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1976-01-01

    An analytical method is developed which combines the equivalent linearization technique for the analysis of the response of nonlinear dynamic systems with the amplitude modulated random process (Press model) for atmospheric turbulence. The method is initially applied to a bilinear spring system. The analysis of the response shows good agreement with exact results obtained by the Fokker-Planck equation. The method is then applied to an example of control-surface displacement limiting in an aircraft with a pitch-hold autopilot.

  14. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows frommore » the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.« less

  15. Encouraging Students to Think Strategically when Learning to Solve Linear Equations

    ERIC Educational Resources Information Center

    Robson, Daphne; Abell, Walt; Boustead, Therese

    2012-01-01

    Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…

  16. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  17. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  18. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  19. Multiscale modeling and computation of optically manipulated nano devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less

  20. S{sub 2}SA preconditioning for the S{sub n} equations with strictly non negative spatial discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruss, D. E.; Morel, J. E.; Ragusa, J. C.

    2013-07-01

    Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less

  1. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  2. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    ERIC Educational Resources Information Center

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  3. LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1994-01-01

    The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.

  4. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  5. Ultrasonic waves in classical gases

    NASA Astrophysics Data System (ADS)

    Magner, A. G.; Gorenstein, M. I.; Grygoriev, U. V.

    2017-12-01

    The velocity and absorption coefficient for the plane sound waves in a classical gas are obtained by solving the Boltzmann kinetic equation, which describes the reaction of the single-particle distribution function to a periodic external field. Within the linear response theory, the nonperturbative dispersion equation valid for all sound frequencies is derived and solved numerically. The results are in agreement with the approximate analytical solutions found for both the frequent- and rare-collision regimes. These results are also in qualitative agreement with the experimental data for ultrasonic waves in dilute gases.

  6. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  7. Optical soliton solutions of the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman

    2018-07-01

    A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.

  8. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  9. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  10. Study on longitudinal force simulation of heavy-haul train

    NASA Astrophysics Data System (ADS)

    Chang, Chongyi; Guo, Gang; Wang, Junbiao; Ma, Yingming

    2017-04-01

    The longitudinal dynamics model of heavy-haul trains and air brake model used in the longitudinal train dynamics (LTDs) are established. The dry friction damping hysteretic characteristic of steel friction draft gears is simulated by the equation which describes the suspension forces in truck leaf springs. The model of draft gears introduces dynamic loading force, viscous friction of steel friction and the damping force. Consequently, the numerical model of the draft gears is brought forward. The equation of LTDs is strongly non-linear. In order to solve the response of the strongly non-linear system, the high-precision and equilibrium iteration method based on the Newmark-β method is presented and numerical analysis is made. Longitudinal dynamic forces of the 20,000 tonnes heavy-haul train are tested, and models and solution method provided are verified by the test results.

  11. Application of variational and Galerkin equations to linear and nonlinear finite element analysis

    NASA Technical Reports Server (NTRS)

    Yu, Y.-Y.

    1974-01-01

    The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.

  12. A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development

    DTIC Science & Technology

    1980-06-01

    sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426

  13. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  14. Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States.

    PubMed

    Tajti, Attila; Szalay, Péter G

    2016-11-08

    Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.

  15. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less

  16. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.

  17. The second hyperpolarizability of systems described by the space-fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Nottage, Onassis; Kounta, Moussa

    2018-01-01

    The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule matrix elements and the three-level ansatz determines the maximum second hyperpolarizability for a space-fractional quantum system. The total oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces the optical response of a quantum system in the presence of an external field. This damped response is caused by the wavefunction dependent position and momentum commutation relation. Although the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator is no longer a linear system for α ≠ 1, where the second hyperpolarizability becomes negative before ultimately damping to zero at the lower fractional limit of α → 1 / 2.

  18. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  19. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  20. Perturbations of linear delay differential equations at the verge of instability.

    PubMed

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  1. How Darcy's equation is linked to the linear reservoir at catchment scale

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2017-04-01

    In groundwater hydrology two simple linear equations exist that describe the relation between groundwater flow and the gradient that drives it: Darcy's equation and the linear reservoir. Both equations are empirical at heart: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they show similarity, without having detailed knowledge of the structure of the underlying aquifers it is not trivial to upscale Darcy's equation to the watershed scale. In this paper, a relatively simple connection is provided between the two, based on the assumption that the groundwater system is organized by an efficient drainage network, a mostly invisible pattern that has evolved over geological time scales. This drainage network provides equally distributed resistance to flow along the streamlines that connect the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance.

  2. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  3. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive.

    PubMed

    Richardson, Magnus J E

    2007-08-01

    Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.

  4. Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, T. H.; Perala, R. A.

    1983-01-01

    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.

  5. A three operator split-step method covering a larger set of non-linear partial differential equations

    NASA Astrophysics Data System (ADS)

    Zia, Haider

    2017-06-01

    This paper describes an updated exponential Fourier based split-step method that can be applied to a greater class of partial differential equations than previous methods would allow. These equations arise in physics and engineering, a notable example being the generalized derivative non-linear Schrödinger equation that arises in non-linear optics with self-steepening terms. These differential equations feature terms that were previously inaccessible to model accurately with low computational resources. The new method maintains a 3rd order error even with these additional terms and models the equation in all three spatial dimensions and time. The class of non-linear differential equations that this method applies to is shown. The method is fully derived and implementation of the method in the split-step architecture is shown. This paper lays the mathematical ground work for an upcoming paper employing this method in white-light generation simulations in bulk material.

  6. Optical solitons in nematic liquid crystals: model with saturation effects

    NASA Astrophysics Data System (ADS)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  7. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; Scott, Michael H.

    2017-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  8. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.

    PubMed

    Theodorakis, Stavros

    2003-06-01

    We emulate the cubic term Psi(3) in the nonlinear Schrödinger equation by a piecewise linear term, thus reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of the kink, the vortex, and a delta function trap. Such a piecewise linear emulation can be used for any differential equation where the only nonlinearity is a Psi(3) one. In particular, it can be used for the nonlinear Schrödinger equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce very accurately the numerically calculated ones in one, two, and three dimensions.

  9. Dissipative behavior of some fully non-linear KdV-type equations

    NASA Astrophysics Data System (ADS)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  10. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  11. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  12. A General Linear Method for Equating with Small Samples

    ERIC Educational Resources Information Center

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  13. ESEA Title I Linking Project. Final Report.

    ERIC Educational Resources Information Center

    Holmes, Susan E.

    The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…

  14. A Factorization Approach to the Linear Regulator Quadratic Cost Problem

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.

  15. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  16. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    ERIC Educational Resources Information Center

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  17. The Equation, the Whole Equation, and Nothing but the Equation! One Approach to the Teaching of Linear Equations.

    ERIC Educational Resources Information Center

    Pirie, Susan E. B.; Martin, Lyndon

    1997-01-01

    Presents the results of a case study which looked at the mathematics classroom of one teacher trying to teach mathematics with meaning to pupils or lower ability at the secondary level. Contrasts methods of teaching linear equations to a variety of ability levels and uses the Pirie-Kieren model to account for the successful growth in understanding…

  18. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.

  19. Equivalent reduced model technique development for nonlinear system dynamic response

    NASA Astrophysics Data System (ADS)

    Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet

    2013-04-01

    The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.

  20. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  1. A Novel Blast-mitigation Concept for Light Tactical Vehicles

    DTIC Science & Technology

    2013-01-01

    analysis which utilizes the mass and energy (but not linear momentum ) conservation equations is provided. It should be noted that the identical final...results could be obtained using an analogous analysis which combines the mass and the linear momentum conservation equations. For a calorically...governing mass, linear momentum and energy conservation and heat conduction equations are solved within ABAQUS/ Explicit with a second-order accurate

  2. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  3. Computational technique for stepwise quantitative assessment of equation correctness

    NASA Astrophysics Data System (ADS)

    Othman, Nuru'l Izzah; Bakar, Zainab Abu

    2017-04-01

    Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.

  4. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    NASA Astrophysics Data System (ADS)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  5. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  6. Linear-time reconstruction of zero-recombinant Mendelian inheritance on pedigrees without mating loops.

    PubMed

    Liu, Lan; Jiang, Tao

    2007-01-01

    With the launch of the international HapMap project, the haplotype inference problem has attracted a great deal of attention in the computational biology community recently. In this paper, we study the question of how to efficiently infer haplotypes from genotypes of individuals related by a pedigree without mating loops, assuming that the hereditary process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants. We model the haplotype inference problem as a system of linear equations as in [10] and present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular solution (A particular solution of any linear system is an assignment of numerical values to the variables in the system which satisfies the equations in the system.) to the haplotype inference problem, where m is the number of loci (or markers) in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm also provides a general solution (A general solution of any linear system is denoted by the span of a basis in the solution space to its associated homogeneous system, offset from the origin by a vector, namely by any particular solution. A general solution for ZRHC is very useful in practice because it allows the end user to efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.) in O(mn2) time, which is optimal because the size of a general solution could be as large as Theta(mn2). The key ingredients of our construction are (i) a fast consistency checking procedure for the system of linear equations introduced in [10] based on a careful investigation of the relationship between the equations (ii) a novel linear-time method for solving linear equations without invoking the Gaussian elimination method. Although such a fast method for solving equations is not known for general systems of linear equations, we take advantage of the underlying loop-free pedigree graph and some special properties of the linear equations.

  7. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  8. Internal null controllability of a linear Schrödinger-KdV system on a bounded interval

    NASA Astrophysics Data System (ADS)

    Araruna, Fágner D.; Cerpa, Eduardo; Mercado, Alberto; Santos, Maurício C.

    2016-01-01

    The control of a linear dispersive system coupling a Schrödinger and a linear Korteweg-de Vries equation is studied in this paper. The system can be viewed as three coupled real-valued equations by taking real and imaginary parts in the Schrödinger equation. The internal null controllability is proven by using either one complex-valued control on the Schrödinger equation or two real-valued controls, one on each equation. Notice that the single Schrödinger equation is not known to be controllable with a real-valued control. The standard duality method is used to reduce the controllability property to an observability inequality, which is obtained by means of a Carleman estimates approach.

  9. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  10. Nonlinearly driven harmonics of Alfvén modes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  11. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    PubMed

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  12. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  13. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  14. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.

  15. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  16. Piezoresistive microcantilever aptasensor for ricin detection and kinetic analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Wei; Tong, Zhao-Yang; Liu, Bing; Hao, Lan-Qun; Mu, Xi-Hui; Zhang, Jin-Ping; Gao, Chuan

    2015-04-01

    Up to now, there has been no report on target molecules detection by a piezoresistive microcantilever aptasensor. In order to evaluate the test performance and investigate the response dynamic characteristics of a piezoresistive microcantilever aptasensor, a novel method for ricin detection and kinetic analysis based on a piezoresistive microcantilever aptasensor was proposed, where ricin aptamer was immobilised on the microcantilever surface by biotin-avidin binding system. Results showed that the detection limit of ricin was 0.04μg L-1 (S/N ≥ 3). A linear relationship between the response voltage and the concentration of ricin in the range of 0.2μg L-1-40μg L-1 was obtained, with the linear regression equation of ΔUe = 0.904C + 5.852 (n = 5, R = 0.991, p < 0.001). The sensor showed no response for abrin, BSA, and could overcome the influence of complex environmental disruptors, indicating high specificity and good selectivity. Recovery and reproducibility in the result of simulated samples (simulated water, soil, and flour sample) determination met the analysis requirements, which was 90.5˜95.5% and 7.85%˜9.39%, respectively. On this basis, a reaction kinetic model based on ligand-receptor binding and the relationship with response voltage was established. The model could well reflect the dynamic response of the sensor. The correlation coefficient (R) was greater than or equal to 0.9456 (p < 0.001). Response voltage (ΔUe) and response time (t0) obtained from the fitting equation on different concentrations of ricin fitted well with the measured values.

  17. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, K. A.; Friedmann, P. P.

    1995-01-01

    This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.

  18. Understory response following varying levels of overstory removal in mixed conifer stands

    Treesearch

    Fabian C.C. Uzoh; Leroy K. Dolph; John R. Anstead

    1997-01-01

    Diameter growth rates of understory trees were measured for periods both before and after overstory removal on six study areas in northern California. All the species responded with increased diameter growth after adjusting to their new environments. Linear regression equations that predict post treatment diameter growth increment of the residual trees are presented...

  19. Deriving the Regression Equation without Using Calculus

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  1. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations

    DTIC Science & Technology

    2008-02-01

    Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates

  2. The development of optimal control laws for orbiting tethered platform systems

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Woodard, S.; Juang, J.-N.

    1986-01-01

    A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.

  3. The development of optimal control laws for orbiting tethered platform systems

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.

    1986-01-01

    A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.

  4. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Cornelissen, L. J.; Peters, K. J. H.; Bauer, G. E. W.; Duine, R. A.; van Wees, B. J.

    2016-07-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation lengths. Proceeding from a linearized Boltzmann equation, we derive expressions for length scales and transport coefficients. For yttrium iron garnet (YIG) at room temperature we find that long-range transport is dominated by the magnon chemical potential. We compare the model's results with recent experiments on YIG with Pt contacts [L. J. Cornelissen et al., Nat. Phys. 11, 1022 (2015), 10.1038/nphys3465] and extract a magnon spin conductivity of σm=5 ×105 S/m. Our results for the spin Seebeck coefficient in YIG agree with published experiments. We conclude that the magnon chemical potential is an essential ingredient for energy and spin transport in magnetic insulators.

  5. The Dynamic Response and Vibration of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) Truncated Conical Shells Resting on Elastic Foundations

    PubMed Central

    Nguyen Dinh, Duc; Nguyen, Pham Dinh

    2017-01-01

    Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821

  6. Stress stiffening and approximate equations in flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Padilla, Carlos E.; Vonflotow, Andreas H.

    1993-01-01

    A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.

  7. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  8. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  9. Structural vibration-based damage classification of delaminated smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo

    2018-03-01

    Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.

  10. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Whitham modulation theory for the Kadomtsev- Petviashvili equation.

    PubMed

    Ablowitz, Mark J; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  12. Whitham modulation theory for the Kadomtsev- Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  13. Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method

    NASA Astrophysics Data System (ADS)

    Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.

    2017-12-01

    The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.

  14. Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves

    PubMed Central

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M.; Katz, Joanne; Zeger, Scott L.; Checkley, William; Curriero, Frank C.; Breysse, Patrick N.

    2014-01-01

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward. PMID:24950062

  15. Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves.

    PubMed

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M; Katz, Joanne; Zeger, Scott L; Checkley, William; Curriero, Frank C; Breysse, Patrick N

    2014-06-19

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.

  16. Stability analysis of ultrasound thick-shell contrast agents

    PubMed Central

    Lu, Xiaozhen; Chahine, Georges L.; Hsiao, Chao-Tsung

    2012-01-01

    The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. PMID:22280568

  17. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  18. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  19. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  20. A new formulation for anisotropic radiative transfer problems. I - Solution with a variational technique

    NASA Technical Reports Server (NTRS)

    Cheyney, H., III; Arking, A.

    1976-01-01

    The equations of radiative transfer in anisotropically scattering media are reformulated as linear operator equations in a single independent variable. The resulting equations are suitable for solution by a variety of standard mathematical techniques. The operators appearing in the resulting equations are in general nonsymmetric; however, it is shown that every bounded linear operator equation can be embedded in a symmetric linear operator equation and a variational solution can be obtained in a straightforward way. For purposes of demonstration, a Rayleigh-Ritz variational method is applied to three problems involving simple phase functions. It is to be noted that the variational technique demonstrated is of general applicability and permits simple solutions for a wide range of otherwise difficult mathematical problems in physics.

  1. Oscillation criteria for half-linear dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Hassan, Taher S.

    2008-09-01

    This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.

  2. Mathematical Modeling of Chemical Stoichiometry

    ERIC Educational Resources Information Center

    Croteau, Joshua; Fox, William P.; Varazo, Kristofoland

    2007-01-01

    In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…

  3. Construction of reduced order models for the non-linear Navier-Stokes equations using the proper orthogonal fecomposition (POD)/Galerkin method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fike, Jeffrey A.

    2013-08-01

    The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.

  4. A Semi-linear Backward Parabolic Cauchy Problem with Unbounded Coefficients of Hamilton–Jacobi–Bellman Type and Applications to Optimal Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addona, Davide, E-mail: d.addona@campus.unimib.it

    2015-08-15

    We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.

  5. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  6. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  7. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    PubMed

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  8. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  9. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  10. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  12. Nonlinear rovibrational polarization response of water vapor to ultrashort long-wave infrared pulses

    NASA Astrophysics Data System (ADS)

    Schuh, K.; Rosenow, P.; Kolesik, M.; Wright, E. M.; Koch, S. W.; Moloney, J. V.

    2017-10-01

    We study the rovibrational polarization response of water vapor using a fully correlated optical Bloch equation approach employing data from the HITRAN database. For a 10 -μ m long-wave infrared pulse the resulting linear response is negative, with a negative nonlinear response at intermediate intensities and a positive value at higher intensities. For a model atmosphere comprised of the electronic response of argon combined with the rovibrational response of water vapor this leads to a weakened positive nonlinear response at intermediate intensities. Propagation simulations using a simplified noncorrelated approach show the resultant reduction in the peak filament intensity sustained during filamentation due to the presence of the water vapor.

  13. Parameter estimation of Monod model by the Least-Squares method for microalgae Botryococcus Braunii sp

    NASA Astrophysics Data System (ADS)

    See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.

    2018-04-01

    This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.

  14. Aeroelastic Stability and Response of Rotating Structures

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Reddy, Tondapu

    2004-01-01

    A summary of the work performed under NASA grant is presented. More details can be found in the cited references. This grant led to the development of relatively faster aeroelastic analysis methods for predicting flutter and forced response in fans, compressors, and turbines using computational fluid dynamic (CFD) methods. These methods are based on linearized two- and three-dimensional, unsteady, nonlinear aerodynamic equations. During the period of the grant, aeroelastic analysis that includes the effects of uncertainties in the design variables has also been developed.

  15. Anilinomethylrhodamines: pH sensitive probes with tunable photophysical properties by substituent effect.

    PubMed

    Best, Quinn A; Liu, Chuangjun; van Hoveln, Paul D; McCarroll, Matthew E; Scott, Colleen N

    2013-10-18

    A series of pH dependent rhodamine analogues possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These anilinomethylrhodamines (AnMR) maintain a colorless, nonfluorescent spirocyclic structure at high pH. The spirocyclic structures open in mildly acidic conditions and are weakly fluorescent; however, at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation.

  16. Lyapunov stability and its application to systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Kennedy, E. W.

    1979-01-01

    An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.

  17. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  18. Approximating a nonlinear advanced-delayed equation from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-10-01

    We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.

  19. On a new class of completely integrable nonlinear wave equations. I. Infinitely many conservation laws

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1985-06-01

    We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.

  20. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  1. Using MathCAD to Teach One-Dimensional Graphs

    ERIC Educational Resources Information Center

    Yushau, B.

    2004-01-01

    Topics such as linear and nonlinear equations and inequalities, compound inequalities, linear and nonlinear absolute value equations and inequalities, rational equations and inequality are commonly found in college algebra and precalculus textbooks. What is common about these topics is the fact that their solutions and graphs lie in the real line…

  2. A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co

    2015-05-15

    In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.

  3. Universal equation for estimating ideal body weight and body weight at any BMI1

    PubMed Central

    Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B

    2016-01-01

    Background: Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. Objective: For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. Design: With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Results: Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5–0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Conclusions: Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. PMID:27030535

  4. Universal equation for estimating ideal body weight and body weight at any BMI.

    PubMed

    Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B

    2016-05-01

    Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5-0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. © 2016 American Society for Nutrition.

  5. Linear analysis of auto-organization in Hebbian neural networks.

    PubMed

    Carlos Letelier, J; Mpodozis, J

    1995-01-01

    The self-organization of neurotopies where neural connections follow Hebbian dynamics is framed in terms of linear operator theory. A general and exact equation describing the time evolution of the overall synaptic strength connecting two neural laminae is derived. This linear matricial equation, which is similar to the equations used to describe oscillating systems in physics, is modified by the introduction of non-linear terms, in order to capture self-organizing (or auto-organizing) processes. The behavior of a simple and small system, that contains a non-linearity that mimics a metabolic constraint, is analyzed by computer simulations. The emergence of a simple "order" (or degree of organization) in this low-dimensionality model system is discussed.

  6. Perfect commuting-operator strategies for linear system games

    NASA Astrophysics Data System (ADS)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  7. Partner symmetries and non-invariant solutions of four-dimensional heavenly equations

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2004-07-01

    We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.

  8. The method of Ritz applied to the equation of Hamilton. [for pendulum systems

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1976-01-01

    Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.

  9. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  10. Bayesian parameter estimation for nonlinear modelling of biological pathways.

    PubMed

    Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang

    2011-01-01

    The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.

  11. User's manual for LINEAR, a FORTRAN program to derive linear aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.

    1987-01-01

    This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.

  12. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  13. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  14. Multi-scale modeling of the CD8 immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less

  15. Wave propagation problem for a micropolar elastic waveguide

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.

  16. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  17. [Research on the method of interference correction for nondispersive infrared multi-component gas analysis].

    PubMed

    Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

    2011-10-01

    A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.

  18. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  19. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  20. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  1. Conceptualization of the Sexual Response Models in Men: Are there Differences Between Sexually Functional and Dysfunctional Men?

    PubMed

    Connaughton, Catherine; McCabe, Marita; Karantzas, Gery

    2016-03-01

    Research to validate models of sexual response empirically in men with and without sexual dysfunction (MSD), as currently defined, is limited. To explore the extent to which the traditional linear or the Basson circular model best represents male sexual response for men with MSD and sexually functional men. In total, 573 men completed an online questionnaire to assess sexual function and aspects of the models of sexual response. In total, 42.2% of men (242) were sexually functional, and 57.8% (331) had at least one MSD. Models were built and tested using bootstrapping and structural equation modeling. Fit of models for men with and without MSD. The linear model and the initial circular model were a poor fit for men with and without MSD. A modified version of the circular model demonstrated adequate fit for the two groups and showed important interactions between psychological factors and sexual response for men with and without MSD. Male sexual response was not represented by the linear model for men with or without MSD, excluding possible healthy responsive desire. The circular model provided a better fit for the two groups of men but demonstrated that the relations between psychological factors and phases of sexual response were different for men with and without MSD as currently defined. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  2. New stochastic approach for extreme response of slow drift motion of moored floating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Shunji; Okazaki, Takashi

    1995-12-31

    A new stochastic method for investigating the flow drift response statistics of moored floating structures is described. Assuming that wave drift excitation process can be driven by a Gaussian white noise process, an exact stochastic equation governing a time evolution of the response Probability Density Function (PDF) is derived on a basis of Projection operator technique in the field of statistical physics. In order to get an approximate solution of the GFP equation, the authors develop the renormalized perturbation technique which is a kind of singular perturbation methods and solve the GFP equation taken into account up to third ordermore » moments of a non-Gaussian excitation. As an example of the present method, a closed form of the joint PDF is derived for linear response in surge motion subjected to a non-Gaussian wave drift excitation and it is represented by the product of a form factor and the quasi-Cauchy PDFs. In this case, the motion displacement and velocity processes are not mutually independent if the excitation process has a significant third order moment. From a comparison between the response PDF by the present solution and the exact one derived by Naess, it is found that the present solution is effective for calculating both the response PDF and the joint PDF. Furthermore it is shown that the displacement-velocity independence is satisfied if the damping coefficient in equation of motion is not so large and that both the non-Gaussian property of excitation and the damping coefficient should be taken into account for estimating the probability exceedance of the response.« less

  3. On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order

    NASA Astrophysics Data System (ADS)

    Tu, Jin; Yi, Cai-Feng

    2008-04-01

    In this paper, the authors investigate the growth of solutions of a class of higher order linear differential equationsf(k)+Ak-1f(k-1)+...+A0f=0 when most coefficients in the above equations have the same order with each other, and obtain some results which improve previous results due to K.H. Kwon [K.H. Kwon, Nonexistence of finite order solutions of certain second order linear differential equations, Kodai Math. J. 19 (1996) 378-387] and ZE-X. Chen [Z.-X. Chen, The growth of solutions of the differential equation f''+e-zf'+Q(z)f=0, Sci. China Ser. A 31 (2001) 775-784 (in Chinese); ZE-X. Chen, On the hyper order of solutions of higher order differential equations, Chinese Ann. Math. Ser. B 24 (2003) 501-508 (in Chinese); Z.-X. Chen, On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B 24 (2004) 52-60 (in Chinese); Z.-X. Chen, C.-C. Yang, Quantitative estimations on the zeros and growth of entire solutions of linear differential equations, Complex Var. 42 (2000) 119-133].

  4. Chandrasekhar equations for infinite dimensional systems. Part 2: Unbounded input and output case

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Powers, Robert K.

    1987-01-01

    A set of equations known as Chandrasekhar equations arising in the linear quadratic optimal control problem is considered. In this paper, we consider the linear time-invariant system defined in Hilbert spaces involving unbounded input and output operators. For a general class of such systems, the Chandrasekhar equations are derived and the existence, uniqueness, and regularity of the results of their solutions established.

  5. The Shock and Vibration Digest. Volume 16, Number 11

    DTIC Science & Technology

    1984-11-01

    wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude

  6. Comparison of heaving buoy and oscillating flap wave energy converters

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  7. Modified Chapman-Enskog moment approach to diffusive phonon heat transport.

    PubMed

    Banach, Zbigniew; Larecki, Wieslaw

    2008-12-01

    A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  9. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  10. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  11. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  12. Schwarzschild and linear potentials in Mannheim's model of conformal gravity

    NASA Astrophysics Data System (ADS)

    Phillips, Peter R.

    2018-05-01

    We study the equations of conformal gravity, as given by Mannheim, in the weak field limit, so that a linear approximation is adequate. Specialising to static fields with spherical symmetry, we obtain a second-order equation for one of the metric functions. We obtain the Green function for this equation, and represent the metric function in the form of integrals over the source. Near a compact source such as the Sun the solution no longer has a form that is compatible with observations. We conclude that a solution of Mannheim type (a Schwarzschild term plus a linear potential of galactic scale) cannot exist for these field equations.

  13. A decentralized process for finding equilibria given by linear equations.

    PubMed Central

    Reiter, S

    1994-01-01

    I present a decentralized process for finding the equilibria of an economy characterized by a finite number of linear equilibrium conditions. The process finds all equilibria or, if there are none, reports that, in a finite number of steps at most equal to the number of equations. The communication and computational complexity compare favorably with other decentralized processes. The process may also be interpreted as an algorithm for solving a distributed system of linear equations. Comparisons with the Linpack program for LU (lower and upper triangular decomposition of the matrix of the equation system, a version of Gaussian elimination) are presented. PMID:11607486

  14. Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise.

    PubMed

    Bonjour, Julien; Bringard, Aurélien; Antonutto, Guglielmo; Capelli, Carlo; Linnarsson, Dag; Pendergast, David R; Ferretti, Guido

    2011-12-01

    The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.

  15. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    NASA Astrophysics Data System (ADS)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  16. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  17. Nonlinear vibration of viscoelastic beams described using fractional order derivatives

    NASA Astrophysics Data System (ADS)

    Lewandowski, Roman; Wielentejczyk, Przemysław

    2017-07-01

    The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.

  18. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  19. Linear and nonlinear analysis of fluid slosh dampers

    NASA Astrophysics Data System (ADS)

    Sayar, B. A.; Baumgarten, J. R.

    1982-11-01

    A vibrating structure and a container partially filled with fluid are considered coupled in a free vibration mode. To simplify the mathematical analysis, a pendulum model to duplicate the fluid motion and a mass-spring dashpot representing the vibrating structure are used. The equations of motion are derived by Lagrange's energy approach and expressed in parametric form. For a wide range of parametric values the logarithmic decrements of the main system are calculated from theoretical and experimental response curves in the linear analysis. However, for the nonlinear analysis the theoretical and experimental response curves of the main system are compared. Theoretical predictions are justified by experimental observations with excellent agreement. It is concluded finally that for a proper selection of design parameters, containers partially filled with viscous fluids serve as good vibration dampers.

  20. Squared eigenfunctions for the Sasa-Satsuma equation

    NASA Astrophysics Data System (ADS)

    Yang, Jianke; Kaup, D. J.

    2009-02-01

    Squared eigenfunctions are quadratic combinations of Jost functions and adjoint Jost functions which satisfy the linearized equation of an integrable equation. They are needed for various studies related to integrable equations, such as the development of its soliton perturbation theory. In this article, squared eigenfunctions are derived for the Sasa-Satsuma equation whose spectral operator is a 3×3 system, while its linearized operator is a 2×2 system. It is shown that these squared eigenfunctions are sums of two terms, where each term is a product of a Jost function and an adjoint Jost function. The procedure of this derivation consists of two steps: First is to calculate the variations of the potentials via variations of the scattering data by the Riemann-Hilbert method. The second one is to calculate the variations of the scattering data via the variations of the potentials through elementary calculations. While this procedure has been used before on other integrable equations, it is shown here, for the first time, that for a general integrable equation, the functions appearing in these variation relations are precisely the squared eigenfunctions and adjoint squared eigenfunctions satisfying, respectively, the linearized equation and the adjoint linearized equation of the integrable system. This proof clarifies this procedure and provides a unified explanation for previous results of squared eigenfunctions on individual integrable equations. This procedure uses primarily the spectral operator of the Lax pair. Thus two equations in the same integrable hierarchy will share the same squared eigenfunctions (except for a time-dependent factor). In the Appendix, the squared eigenfunctions are presented for the Manakov equations whose spectral operator is closely related to that of the Sasa-Satsuma equation.

  1. Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.

    1990-01-01

    A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.

  2. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  3. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.

  4. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granita, E-mail: granitafc@gmail.com; Bahar, A.

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  5. Fluid equations with nonlinear wave-particle resonances^

    NASA Astrophysics Data System (ADS)

    Mattor, Nathan

    1997-11-01

    We have derived fluid equations that include linear and nonlinear wave-particle resonance effects. This greatly extends previous ``Landau-fluid'' closures, which include linear Landau damping. (G.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64,) 3019 (1990).^, (Z. Chang and J. D. Callen, Phys. Fluids B 4,) 1167 (1992). The new fluid equations are derived with no approximation regarding nonlinear kinetic interaction, and so additionally include numerous nonlinear kinetic effects. The derivation starts with the electrostatic drift kinetic equation for simplicity, with a Maxwellian distribution function. Fluid closure is accomplished through a simple integration trick applied to the drift kinetic equation, using the property that the nth moment of Maxwellian distribution is related to the nth derivative. The result is a compact closure term appearing in the highest moment equation, a term which involves a plasma dispersion function of the electrostatic field and its derivatives. The new term reduces to the linear closures in appropriate limits, so both approaches retain linear Landau damping. But the nonlinearly closed equations have additional desirable properties. Unlike linear closures, the nonlinear closure retains the time-reversibility of the original kinetic equation. We have shown directly that the nonlinear closure retains at least two nonlinear resonance effects: wave-particle trapping and Compton scattering. Other nonlinear kinetic effects are currently under investigation. The new equations correct two previous discrepancies between kinetic and Landau-fluid predictions, including a propagator discrepancy (N. Mattor, Phys. Fluids B 4,) 3952 (1992). and a numerical discrepancy for the 3-mode shearless bounded slab ITG problem. (S. E. Parker et al.), Phys. Plasmas 1, 1461 (1994). ^* In collaboration with S. E. Parker, Department of Physics, University of Colorado, Boulder. ^ Work performed at LLNL under DoE contract No. W7405-ENG-48.

  6. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state

    NASA Astrophysics Data System (ADS)

    Wang, Yan Qing

    2018-02-01

    To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.

  7. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  8. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Symal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  9. Broad-band simulation of M7.2 earthquake on the North Tehran fault, considering non-linear soil effects

    NASA Astrophysics Data System (ADS)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-05-01

    The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to medium peaks and motions with higher than 3 Hz frequencies.

  10. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    PubMed

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  11. The Development of Web-based Graphical User Interface for Unified Modeling Data with Multi (Correlated) Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian

    2018-04-01

    Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.

  12. Symmetry operators and decoupled equations for linear fields on black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2017-02-01

    In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.

  13. The limitation and applicability of Musher-Sturman equation to two dimensional lower hybrid wave collapse

    NASA Technical Reports Server (NTRS)

    Tam, Sunny W. Y.; Chang, Tom

    1995-01-01

    The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.

  14. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  15. Treatment of late time instabilities in finite-difference EMP scattering codes

    NASA Astrophysics Data System (ADS)

    Simpson, L. T.; Holland, R.; Arman, S.

    1982-12-01

    Constraints applicable to a finite difference mesh for solution of Maxwell's equations are defined. The equations are applied in the time domain for computing electromagnetic coupling to complex structures, e.g., rectangular, cylindrical, or spherical. In a spatially varying grid, the amplitude growth of high frequency waves becomes exponential through multiple reflections from the outer boundary in cases of late-time solution. The exponential growth of the numerical noise exceeds the value of the real signal. The correction technique employs an absorbing surface and a radiating boundary, along with tailored selection of the grid mesh size. High frequency noise is removed through use of a low-pass digital filter, a linear least squares fit is made to thy low frequency filtered response, and the original, filtered, and fitted data are merged to preserve the high frequency early-time response.

  16. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  17. ISAC: A tool for aeroservoelastic modeling and analysis

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood Tiffany

    1993-01-01

    The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  18. Stability analysis of ultrasound thick-shell contrast agents.

    PubMed

    Lu, Xiaozhen; Chahine, Georges L; Hsiao, Chao-Tsung

    2012-01-01

    The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. © 2012 Acoustical Society of America.

  19. Control of sound radiation from a wavepacket over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; El Hady, Nabil M.

    1989-01-01

    Active control of acoustic pressure in the far field resulting from the growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is investigated numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. The acoustic far field exhibits directivity type of behavior that points upstream to the flow direction. A fixed control algorithm is used where the attenuation signal is synthesized by a filter which actively adapt it to the amplitude-time response of the outgoing acoustic wave.

  20. Finite-dimensional linear approximations of solutions to general irregular nonlinear operator equations and equations with quadratic operators

    NASA Astrophysics Data System (ADS)

    Kokurin, M. Yu.

    2010-11-01

    A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.

  1. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  2. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    NASA Astrophysics Data System (ADS)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  3. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    NASA Astrophysics Data System (ADS)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  4. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  5. Transit and lifespan in neutrophil production: implications for drug intervention.

    PubMed

    Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R

    2018-02-01

    A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.

  6. Numerical computation of linear instability of detonations

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry; Kasimov, Aslan

    2017-11-01

    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  7. A Textbook for a First Course in Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)

    1999-01-01

    This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.

  8. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  9. Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J

    2016-09-01

    Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  11. Conical Lens for 5-Inch/54 Gun Launched Missile

    DTIC Science & Technology

    1981-06-01

    Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the

  12. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  13. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  14. Review: Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: A Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Spacetime

    NASA Astrophysics Data System (ADS)

    Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca

    2004-05-01

    In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.

  15. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  16. Mechanisms Inducing Jet Rotation in Shear-Formed Shaped-Charge Liners.

    DTIC Science & Technology

    1990-03-01

    of deviatoric strain, and compressibility affects only the equation of state , not the deviatoric stress /strain relation. An anisotropic formulation is...strains, a more accurate scalar equation of state should simultaneously be employed to account for non-linear compressibility effects . A4 A.3 Elastic... obtainable knowing the previous and present cycles’ average stress . However, many non-linear equations

  17. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  18. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  19. New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya; Bluman, George

    2002-11-01

    The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.

  20. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    NASA Astrophysics Data System (ADS)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  1. Systems of fuzzy equations in structural mechanics

    NASA Astrophysics Data System (ADS)

    Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej

    2008-08-01

    Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series, , Texas Research Report No. 2007-01, 2007].

  2. Comparison of Linear and Nonlinear Processing with Acoustic Vector Sensors

    DTIC Science & Technology

    2008-09-01

    can write the general form of the time invariant vector sensor planewave response as mik rm mv V e = i , (2.21) where mik rxm xmv V e = i , mik rym...ymv V e = i , and mik rzm zmv V e = i . Using the vector geometry defined, the response of each component is defined by cosxm mV V θ= , sin...velocity values relative to the other by the acoustic impedance, ρc, according to Equation (2.19) , e.g. , mik r mpm pm pm Pv V e V cρ = =i

  3. AnilinoMethylRhodamines: pH Sensitive Probes with Tunable Photophysical Properties by Substituent Effect

    PubMed Central

    Best, Quinn A.; Liu, Chuangjun; van Hoveln, Paul D.; McCarroll, Matthew E.

    2013-01-01

    A series of pH dependent rhodamine analogs possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These Anilinomethylrhodamines (AnMR) maintain a colorless, non-fluorescent spiro-cyclic structure at high pH. The spiro-cyclic structures open in mildly acidic conditions and are weakly fluorescent; however at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation. PMID:24050117

  4. An Instructional Media using Comics on the Systems of Linear Equation

    NASA Astrophysics Data System (ADS)

    Widyastuti, P. D.; Mardiyana, M.; Saputro, D. R. S.

    2017-09-01

    Comic is one of the frequently used media in our daily life. This media has been familiar for the community. Comic is mostly used as entertainment facilities. Along with the current development, comics are not only functioned as a means of entertainment, but also used in the field of education. There were some problems in a classroom which encouraged the researchers to use comics as a solution for those problems. This article aims at discussing on comics as an instructional media which is appropriate for students. This research uses research and development (R and D) method. The results obtained from this study are based on the students’ responses of the questionnaires and validation to help them understanding the system of linear equations material. Results show that comics can be used to replace LKS (student worksheet). Feedbacks from students and validators also show that comic is an attractive medium. It is said so since comics link the concrete into abstract things so that it is easily understood by the students.

  5. A novel formulation for unsteady counterflow flames using a thermal-conductivity-weighted coordinate

    NASA Astrophysics Data System (ADS)

    Weiss, Adam D.; Vera, Marcos; Liñán, Amable; Sánchez, Antonio L.; Williams, Forman A.

    2018-01-01

    A general formulation is given for the description of reacting mixing layers in stagnation-type flows subject to both time-varying strain and pressure. The salient feature of the formulation is the introduction of a thermal-conductivity-weighted transverse coordinate that leads to a compact transport operator that facilitates numerical integration and theoretical analysis. For steady counterflow mixing layers, the associated transverse mass flux is shown to be effectively linear in terms of the new coordinate, so that the conservation equations for energy and chemical species uncouple from the mass and momentum conservation equations, thereby greatly simplifying the solution. Comparisons are shown with computations of diffusion flames with infinitely fast reaction using both the classic Howarth-Dorodnitzyn density-weighted coordinate and the new thermal-conductivity-weighted coordinate, illustrating the advantages of the latter. Also, as an illustrative application of the formulation to the computation of unsteady counterflows, the flame response to harmonically varying strain is examined in the linear limit.

  6. Internal resonance and low frequency vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  7. Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient

    NASA Astrophysics Data System (ADS)

    Tarantino, Walter; Mendoza, Bernardo S.; Romaniello, Pina; Berger, J. A.; Reining, Lucia

    2018-04-01

    Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green’s function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called ‘one-point model’) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green’s function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.

  8. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.

    PubMed

    Song, M; Ouyang, Z; Liu, Z L

    2009-05-01

    Composed of linear difference equations, a discrete dynamical system (DDS) model was designed to reconstruct transcriptional regulations in gene regulatory networks (GRNs) for ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural (HMF), a bioethanol conversion inhibitor. The modelling aims at identification of a system of linear difference equations to represent temporal interactions among significantly expressed genes. Power stability is imposed on a system model under the normal condition in the absence of the inhibitor. Non-uniform sampling, typical in a time-course experimental design, is addressed by a log-time domain interpolation. A statistically significant DDS model of the yeast GRN derived from time-course gene expression measurements by exposure to HMF, revealed several verified transcriptional regulation events. These events implicate Yap1 and Pdr3, transcription factors consistently known for their regulatory roles by other studies or postulated by independent sequence motif analysis, suggesting their involvement in yeast tolerance and detoxification of the inhibitor.

  9. Satellite Formation Control Using Atmospheric Drag

    DTIC Science & Technology

    2007-03-01

    of the formation. The linearized Clohessy - Wiltshire equations of motion are used to describe the motion of the two-satellite formation about an empty...control methods were applied to both the linear and nonlinear forms of the Clohessy - Wiltshire equations, and the performance of each control method was...r0δθ̈ = −2nδṙ + fθ (2.16) δz̈ = −n2δz + fz (2.17) These three equations are commonly known as Hill’s equations or the Clohessy - Wiltshire (CW

  10. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response.

    PubMed

    Caricato, Marco

    2018-04-07

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  11. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    NASA Astrophysics Data System (ADS)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  12. Gaussian step-pressure loading of rigid viscoplastic plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Durling, B. J.

    1978-01-01

    The response of a thin, rigid viscoplastic plate subjected to a spatially axisymmetric Gaussian step pressure impulse loading was studied analytically. A Gaussian pressure distribution in excess of the collapse load was applied to the plate, held constant for a length of time, and then suddenly removed. The plate deforms with monotonically increasing deflections until the dynamic energy is completely dissipated in plastic work. The simply supported plate of uniform thickness obeys the von Mises yield criterion and a generalized constitutive equation for rigid viscoplastic materials. For the small deflection bending response of the plate, the governing system of equations is essentially nonlinear. Transverse shear stress is neglected in the yield condition and rotary inertia in the equations of dynamic equilibrium. A proportional loading technique, known to give excellent approximations of the exact solution for the uniform load case, was used to linearize the problem and to obtain the analytical solutions in the form of eigenvalue expansions. The effects of load concentration, of an order of magnitude change in the viscosity of the plate material, and of load duration were examined while holding the total impulse constant.

  13. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models

    PubMed Central

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M

    2016-01-01

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI. PMID:27867219

  14. Higher symmetries and exact solutions of linear and nonlinear Schr{umlt o}dinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fushchych, W.I.; Nikitin, A.G.

    1997-11-01

    A new approach for the analysis of partial differential equations is developed which is characterized by a simultaneous use of higher and conditional symmetries. Higher symmetries of the Schr{umlt o}dinger equation with an arbitrary potential are investigated. Nonlinear determining equations for potentials are solved using reductions to Weierstrass, Painlev{acute e}, and Riccati forms. Algebraic properties of higher order symmetry operators are analyzed. Combinations of higher and conditional symmetries are used to generate families of exact solutions of linear and nonlinear Schr{umlt o}dinger equations. {copyright} {ital 1997 American Institute of Physics.}

  15. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  16. RAS one-equation turbulence model with non-singular eddy-viscosity coefficient

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Agarwal, R. K.; Siikonen, T.

    2016-02-01

    A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.

  17. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Shafquatullah; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration) are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number) which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters.

  18. Energy Accumulation and Emanation at Low Latitudes. Part II: Nonlinear Response to Strong Episodic Equatorial Forcing.

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Ru; Webster, Peter J.

    1990-11-01

    A fully nonlinear model is used to reexamine the impact of a zonally varying basic state on the propagation characteristics of latitudinally equatorially trapped modes. Linear studies have shown that such modes are longitudinally trapped in regions of negative stretching deformation of the equatorial time-mean zonal flow (i.e., where Ux < 0) forming `accumulation' regions of wave action flux. Furthermore, the accumulation regions tend to act as local emanation regions to the extratropics. These physical communications between the tropics and extratropics are referred to as fast teleconnections due to their rapidity (periods of days to weeks) compared to the much slower climatological differences in the mean states such as occur between El Niño and La Niña. The latter form of communication between low and high latitudes, which is induced by very low frequency SST changes, is referred to as a slow teleconnection.It is generally found that accumulation and emanation regions are present in the nonlinear regime with much the same character as with the linear model. The similarity exists even when realistic forcing functions are used with amplitudes and temporal and spatial characteristics that correspond to impulsive convection in the western Pacific Ocean. A description of the convection is given. A diagnosis of the linear and nonlinear results shows that, in the tropics, the linear advection by the mean flow plays a dominant role and probably is the reason for the great similarity of the linear and nonlinear tropical atmosphere. However, there are some differences between the linear and nonlinear results. Nonlinear waves appear to propagate more rapidly through the maximum westerlies along the equator and with less difficulty than linear waves. The differences that do occur arise from the nonlinear changes in the tropical mass field, especially in the accumulation zone. Differences between linear and nonlinear responses in the midlatitude response to equatorial forcing appear to reflect changes in the tropics. Nonlinear maxima occur poleward of the region of tropical westerlies but only after accumulation has occurred along the equator.The results of the study are used to discuss the problem of why there is considerable similarity between simple linear models and more sophisticated nonlinear models. Such similarity would probably explain why the NMC and the NEPRF global models exhibit phase locked responses in the middle latitudes to imposed and impulsive tropical forcing. The role of fast teleconnenions in the longer term general circulation of the atmosphere is discussed, especially during El Niño and La Niña. Whereas an aggregate role for the fast teleconnections in producing very slowly evolving climate features remains obscure, it does appear that the accumulation-emanation theory may infer different routings for transient communications between the tropics and higher latitudes and vice vera depending upon the state of the basic flow.

  19. Comparison of kinetic model for biogas production from corn cob

    NASA Astrophysics Data System (ADS)

    Shitophyta, L. M.; Maryudi

    2018-04-01

    Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.

  20. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  1. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  2. Exact finite element method analysis of viscoelastic tapered structures to transient loads

    NASA Technical Reports Server (NTRS)

    Spyrakos, Constantine Chris

    1987-01-01

    A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.

  3. HESS Opinions: Linking Darcy's equation to the linear reservoir

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2018-03-01

    In groundwater hydrology, two simple linear equations exist describing the relation between groundwater flow and the gradient driving it: Darcy's equation and the linear reservoir. Both equations are empirical and straightforward, but work at different scales: Darcy's equation at the laboratory scale and the linear reservoir at the watershed scale. Although at first sight they appear similar, it is not trivial to upscale Darcy's equation to the watershed scale without detailed knowledge of the structure or shape of the underlying aquifers. This paper shows that these two equations, combined by the water balance, are indeed identical provided there is equal resistance in space for water entering the subsurface network. This implies that groundwater systems make use of an efficient drainage network, a mostly invisible pattern that has evolved over geological timescales. This drainage network provides equally distributed resistance for water to access the system, connecting the active groundwater body to the stream, much like a leaf is organized to provide all stomata access to moisture at equal resistance. As a result, the timescale of the linear reservoir appears to be inversely proportional to Darcy's conductance, the proportionality being the product of the porosity and the resistance to entering the drainage network. The main question remaining is which physical law lies behind pattern formation in groundwater systems, evolving in a way that resistance to drainage is constant in space. But that is a fundamental question that is equally relevant for understanding the hydraulic properties of leaf veins in plants or of blood veins in animals.

  4. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  5. Classifying bilinear differential equations by linear superposition principle

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Khalique, Chaudry Masood; Ma, Wen-Xiu

    2016-09-01

    In this paper, we investigate the linear superposition principle of exponential traveling waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A necessary and sufficient condition for Hirota bilinear equations possessing this specific sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions to the (2+1)-dimensional KP equation, a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation, a (3+1)-dimensional generalized BKP equation and the (2+1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilinear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is proposed. As examples, we construct two very general kinds of Hirota bilinear equations of order 4 possessing N-wave solutions among which one satisfies dispersion relation and another does not satisfy dispersion relation.

  6. Periodic solutions of second-order nonlinear difference equations containing a small parameter. II - Equivalent linearization

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.

  7. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  8. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  9. Non-Linear Acoustic Concealed Weapons Detector

    DTIC Science & Technology

    2006-05-01

    signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns

  10. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    PubMed

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  11. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    NASA Astrophysics Data System (ADS)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  12. Analysis of randomly time varying systems by gaussian closure technique

    NASA Astrophysics Data System (ADS)

    Dash, P. K.; Iyengar, R. N.

    1982-07-01

    The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.

  13. Analysis of dynamic system response to product random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1978-01-01

    The response of dynamic systems to the product of two independent Gaussian random processes is developed by use of the Fokker-Planck and associated moment equations. The development is applied to the amplitude modulated process which is used to model atmospheric turbulence in aeronautical applications. The exact solution for the system response is compared with the solution obtained by the quasi-steady approximation which omits the dynamic properties of the random amplitude modulation. The quasi-steady approximation is valid as a limiting case of the exact solution for the dynamic response of linear systems to amplitude modulated processes. In the nonlimiting case the quasi-steady approximation can be invalid for dynamic systems with low damping.

  14. A study of the effect of a boundary layer profile on the dynamic response and acoustic radiation of flat panels. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.

    1973-01-01

    The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.

  15. A kinetic approach to some quasi-linear laws of macroeconomics

    NASA Astrophysics Data System (ADS)

    Gligor, M.; Ignat, M.

    2002-11-01

    Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach of the socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain income and spending money for their needs. To each individual a certain time variable amount of money is associated this meaning him/her phase space coordinate. In this way the exponential distribution of money in a closed economy is explicitly found. The extension of this result, including states near the equilibrium, give us the possibility to take into account the regular increase of the total amount of money, according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic time series.

  16. Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines

    NASA Astrophysics Data System (ADS)

    Boldea, I.; Nasar, S. A.

    1987-01-01

    The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.

  17. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  18. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  19. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  20. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  1. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  2. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  3. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  4. Characteristics pertaining to a stiffness cross-coupled Jeffcott model

    NASA Technical Reports Server (NTRS)

    Spanyer, K. L.

    1985-01-01

    Rotordynamic studies of complex systems utilizing multiple degree-of-freedom analysis have been performed to understand response, loads, and stability. In order to understand the fundamental nature of rotordynamic response, the Jeffcott rotor model has received wide attention. The purpose of this paper is to provide a generic rotordynamic analysis of a stiffness cross-coupled Jeffcott rotor model to illustrate characteristics of a second order stiffness-coupled linear system. The particular characteristics investigated were forced response, force vector diagrams, response orbits, and stability. Numerical results were achieved through a fourth order Runge-Kutta method for solving differential equations and the Routh Hurwitz stability criterion. The numerical results were verified to an exact mathematical solution for the steady state response.

  5. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  6. Space-time models based on random fields with local interactions

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Tsantili, Ivi C.

    2016-08-01

    The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.

  7. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  8. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  9. Dilations and the Equation of a Line

    ERIC Educational Resources Information Center

    Yopp, David A.

    2016-01-01

    Students engage in proportional reasoning when they use covariance and multiple comparisons. Without rich connections to proportional reasoning, students may develop inadequate understandings of linear relationships and the equations that model them. Teachers can improve students' understanding of linear relationships by focusing on realistic…

  10. On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients

    ERIC Educational Resources Information Center

    Si, Do Tan

    1977-01-01

    Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)

  11. ISAC - A tool for aeroservoelastic modeling and analysis. [Interaction of Structures, Aerodynamics, and Control

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood T.

    1993-01-01

    This paper discusses the capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrate some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  12. Time-dependent mean-field theory for x-ray near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Lee, A. J.

    2014-02-01

    We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.

  13. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    PubMed

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Collisional redistribution of radiation. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    Computations were made of the scattering of monochromatic radiation by a degenerate atom in the binary-collision approximation for field strengths whose products of the Rabi frequency for atomic transition and the duration of a strong collision are much less than 1. An expression of motion for the correlation function is derived which does not exclude the region where thermal correlations may be neglected; the equation is valid outside the quantum-regression regime, and has a straightforward solution for practical cases. Solutions for the weak-field linear response regime are presented in terms of generalized absorption and emission profiles which depend on the indices of the atomic multipoles.

  15. Multiple Equilibria Associated with Response of the ITCZ to Seasonal SST Forcing

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    1998-01-01

    Supported by numerical experiment results, the abrupt change of the location of the intertropical convergence zone (ITCZ), from the equatorial trough flow regime to the monsoon trough flow regime is interpreted as a subcritical instability. The existence of these multiple quasi-equilibria is due to the balance of two "forces" on the ITCZ: one toward the equator, due to the earth's rotation, has a nonlinear latitudinal dependence; and the other toward the latitude of the sea surface (or ground) temperature peak has a relatively linear latitudinal dependence. This work pivots on the finding that the ITCZ and Hadley circulation can still exist without the pole-to-equator gradient of radiative-convective equilibrium temperature.

  16. Shapes of star-gas waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.

    1988-01-01

    Density-wave profile shapes are influenced by several effects. By solving viscous fluid equations, the nonlinear effects of the gas and its gravitational interaction with the stars can be analyzed. The stars are treated through a linear theory developed by Lin and coworkers. Short wavelength gravitational forces are important in determining the gas density profile shape. With the inclusion of disk finite thickness effects, the gas gravitational field remains important, but is significantly reduced at short wavelengths. Softening of the gas equation of state results in an enhanced response and a smoothing of the gas density profile. A Newtonian stress relation is marginally acceptable for HI gas clouds, but not acceptable for giant molecular clouds.

  17. Development and validation of a general purpose linearization program for rigid aircraft models

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Antoniewicz, R. F.

    1985-01-01

    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.

  18. Response to Comments on: "Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor-stator contact system" by Philip Varney, Itzhak Green [J. Sound Vib. 336 (2015) 207-226

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    The authors would like to thank the discussers for their interest in the paper. The discussers raise several objections to the original work; namely, that the state-space equations of motion were derived incorrectly, thus rendering the original results incorrect by association. In actuality, the error in the original state-space equations (Eq. (16) in the original work) is typographic only. This, in conjunction with a typographic error in Table A1, prevented the discussers from replicating a subset of the original results (though the discussers were able to replicate many of the results presented in the original work, despite the presumed error in the equations). These typographic errors are rectified here. In addition, results are presented here corresponding to the solution that would have been obtained had the state-space equations been incorrect in the manner presumed by the discussers. Finally, the discussers state that the results presented in the original work do not adhere to physical principles because the steady-state solution in one case indicates contact even though the linear response to imbalance is less than the radial clearance. This seeming discrepancy is also addressed here.

  19. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  20. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  1. Development of an Integrated Modeling Framework for Simulations of Coastal Processes in Deltaic Environments Using High-Performance Computing

    DTIC Science & Technology

    2008-01-01

    exceeds the local water depth. The approximation eliminates the vertical dimension of the elliptic equation that is normally required for the fully non...used for vertical resolution. The shallow water equations (SWE) are a set of non-linear hyperbolic equations. As the equations are derived under...linear standing wave with a wavelength of 10 m in a square 10 m by 10 m basin. The still water depth is 0.5 m. In order to compare with the analytical

  2. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.

    2013-03-01

    A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.

  3. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  4. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  5. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  6. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  7. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    NASA Astrophysics Data System (ADS)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  8. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  9. Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains

    NASA Astrophysics Data System (ADS)

    Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier

    2018-01-01

    The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.

  10. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  11. MagIC: Fluid dynamics in a spherical shell simulator

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.

    2017-09-01

    MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

  12. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  13. A computationally efficient scheme for the non-linear diffusion equation

    NASA Astrophysics Data System (ADS)

    Termonia, P.; Van de Vyver, H.

    2009-04-01

    This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered version of the linearized Crank-Nicholson scheme, showing that, although this scheme is slightly less accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems, (ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more computationally cheap, and (iv) is easier in implementation.

  14. Kromoscopic measurement of glucose in the first overtone region of the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Amerov, Airat K.; Sun, Yu; Small, Gary W.; Arnold, Mark A.

    2002-05-01

    The ability of Kromoscopy to measure glucose selectively is demonstrated in solutions composed glucose, urea, triacetin, bovine serum albumin (BSA), cholesterol, and hemoglobin (Hb). Kromoscopic measurements are made with a four-channel instrument designed for measuring light between 1500 and 1900 nm. The channels are configured to respond to four individual bands of near infrared light centered at 1600, 1700, 1750, and 1800 nm. An equation is proposed that describes the relative response for each channel as a function of relevant experimental parameters. This equation predicts the linear response observed for these types of measurements as a function of solute concentration. In addition, molar absorptivities are provided for glucose, urea, triacetin, BSA, Hb, and water. The non-negligible absorptivity of water demands the consideration of water displacement caused by solute dissolution. Channel responses are measured for a series of thirty-one samples. The chemical composition of these samples is designed to minimize the correlations between glucose concentration and the concentrations of all other solutes. Likewise, these samples provide negligible correlation between the concentration of glucose and the extent of water displacement. A calibration model is constructed for glucose by using a conventional P-matrix multiple linear regression analysis of the four-channel information. The resulting model demonstrates selectivity for glucose with values of 1.27 and 1.34 mM for the standard errors of calibration and prediction, respectively, over a glucose concentration range of 1.9 to 19 mM.

  15. Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers

    NASA Astrophysics Data System (ADS)

    Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo

    2017-11-01

    The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.

  16. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  17. Generating Linear Equations Based on Quantitative Reasoning

    ERIC Educational Resources Information Center

    Lee, Mi Yeon

    2017-01-01

    The Common Core's Standards for Mathematical Practice encourage teachers to develop their students' ability to reason abstractly and quantitatively by helping students make sense of quantities and their relationships within problem situations. The seventh-grade content standards include objectives pertaining to developing linear equations in…

  18. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    PubMed

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  19. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    NASA Astrophysics Data System (ADS)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  20. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  1. Helicopter flight dynamics simulation with a time-accurate free-vortex wake model

    NASA Astrophysics Data System (ADS)

    Ribera, Maria

    This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.

  2. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  3. Optimisation of an idealised primitive equation ocean model using stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Cooper, Fenwick C.

    2017-05-01

    Using a simple parameterization, an idealised low resolution (biharmonic viscosity coefficient of 5 × 1012 m4s-1 , 128 × 128 grid) primitive equation baroclinic ocean gyre model is optimised to have a much more accurate climatological mean, variance and response to forcing, in all model variables, with respect to a high resolution (biharmonic viscosity coefficient of 8 × 1010 m4s-1 , 512 × 512 grid) equivalent. For example, the change in the climatological mean due to a small change in the boundary conditions is more accurate in the model with parameterization. Both the low resolution and high resolution models are strongly chaotic. We also find that long timescales in the model temperature auto-correlation at depth are controlled by the vertical temperature diffusion parameter and time mean vertical advection and are caused by short timescale random forcing near the surface. This paper extends earlier work that considered a shallow water barotropic gyre. Here the analysis is extended to a more turbulent multi-layer primitive equation model that includes temperature as a prognostic variable. The parameterization consists of a constant forcing, applied to the velocity and temperature equations at each grid point, which is optimised to obtain a model with an accurate climatological mean, and a linear stochastic forcing, that is optimised to also obtain an accurate climatological variance and 5 day lag auto-covariance. A linear relaxation (nudging) is not used. Conservation of energy and momentum is discussed in an appendix.

  4. Study on the Variation of Groundwater Level under Time-varying Recharge

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chang; Hsieh, Ping-Cheng

    2017-04-01

    The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.

  5. Gradient-Induced Voltages on 12-Lead ECGs during High Duty-Cycle MRI Sequences and a Method for Their Removal considering Linear and Concomitant Gradient Terms

    PubMed Central

    Zhang, Shelley HuaLei; Ho Tse, Zion Tsz; Dumoulin, Charles L.; Kwong, Raymond Y.; Stevenson, William G.; Watkins, Ronald; Ward, Jay; Wang, Wei; Schmidt, Ehud J.

    2015-01-01

    Purpose To restore 12-lead ECG signal fidelity inside MRI by removing magnetic-field gradient induced-voltages during high gradient-duty-cycle sequences. Theory and Methods A theoretical equation was derived, providing first- and second-order electrical fields induced at individual ECG electrode as a function of gradient fields. Experiments were performed at 3T on healthy volunteers, using a customized acquisition system which captured full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived by linear regression of data from accelerated sequences, and used to compute induced-voltages in real-time during full-resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. Results Measured induced-voltages were 0.7V peak-to-peak during balanced Steady-State Free Precession (bSSFP) with heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo and multi-slice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes farther from the magnet isocenter. Equation coefficients are evaluated with high repeatability (ρ = 0.996) and are subject, sequence, and slice-orientation dependent. Conclusion Close agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence-periods where large induced-voltages occur may allow hardware removal of these signals. PMID:26101951

  6. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less

  7. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].

    PubMed

    Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan

    2002-07-01

    In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.

  8. Linear Quantum Systems: Non-Classical States and Robust Stability

    DTIC Science & Technology

    2016-06-29

    quantum linear systems subject to non-classical quantum fields. The major outcomes of this project are (i) derivation of quantum filtering equations for...derivation of quantum filtering equations for systems non-classical input states including single photon states, (ii) determination of how linear...history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control

  9. Instability of isolated planar shock waves

    DTIC Science & Technology

    2007-06-07

    Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in

  10. On the Duffin-Kemmer-Petiau equation with linear potential in the presence of a minimal length

    NASA Astrophysics Data System (ADS)

    Chargui, Yassine

    2018-04-01

    We point out an erroneous handling in the literature regarding solutions of the (1 + 1)-dimensional Duffin-Kemmer-Petiau equation with linear potentials in the context of quantum mechanics with minimal length. Furthermore, using Brau's approach, we present a perturbative treatment of the effect of the minimal length on bound-state solutions when a Lorentz-scalar linear potential is applied.

  11. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  12. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  13. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  14. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  15. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  16. On homogeneous second order linear general quantum difference equations.

    PubMed

    Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M

    2017-01-01

    In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.

  17. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  18. On conforming mixed finite element methods for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.

    1982-01-01

    The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.

  19. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  20. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  1. A spectral reflectance estimation technique using multispectral data from the Viking lander camera

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Huck, F. O.

    1976-01-01

    A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.

  2. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  3. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  4. Method of Conjugate Radii for Solving Linear and Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1999-01-01

    This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.

  5. Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots

    NASA Technical Reports Server (NTRS)

    Scheuer, M. A.; Thomas, J. H.

    1981-01-01

    Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.

  6. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  7. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    PubMed

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  8. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

    PubMed Central

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-01-01

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440

  9. Abel's Theorem Simplifies Reduction of Order

    ERIC Educational Resources Information Center

    Green, William R.

    2011-01-01

    We give an alternative to the standard method of reduction or order, in which one uses one solution of a homogeneous, linear, second order differential equation to find a second, linearly independent solution. Our method, based on Abel's Theorem, is shorter, less complex and extends to higher order equations.

  10. Formulation of Efficient Finite Element Prediction Models.

    DTIC Science & Technology

    1980-01-01

    vorticity-divergence FEM formulation. This paper will compare these FEM formulations by considering the Vgeostrophic adjustment process with the linearized...by Fourier transforming the terms that are independent of t in (2.12)-(2.14) or (2.19)-(2.21). However, in this paper the final state will be...filtering in a baroclinic primitive equation model. 17 L . , 5. Conclusions The objective of this paper is to determine the response of various finite

  11. EIT Intensity Noise Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Xiao, Yanhong; Baryakhtar, Maria; Hohensee, Michael; Phillips, David; Walsworth, Ron

    2008-10-01

    Intensity noise correlations in coherently-prepared media can reveal underlying spectroscopic detail, such as power broadening-free resonances. We analyze recent experimental results using very simple theory: The intensity noise correlation spectra can be quantitatively understood entirely in terms of static ensemble averages of the medium's steady state response. This is significantly simpler than stochastic integration of the Bloch equations, and leads to physical insights we apply to non-linear Faraday rotation and noise spectra in optically thick media.

  12. Nonlinear magnetoacoustic wave propagation with chemical reactions

    NASA Astrophysics Data System (ADS)

    Margulies, Timothy Scott

    2002-11-01

    The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.

  13. Stochastic control of inertial sea wave energy converter.

    PubMed

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  14. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  15. Effect of Initial Stress on the Dynamic Response of a Multi-Layered Plate-Strip Subjected to an Arbitrary Inclined Time-Harmonic Force

    NASA Astrophysics Data System (ADS)

    Daşdemir, A.

    2017-08-01

    The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.

  16. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  17. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  18. A linear complementarity method for the solution of vertical vehicle-track interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gao, Qiang; Wu, Feng; Zhong, Wan-Xie

    2018-02-01

    A new method is proposed for the solution of the vertical vehicle-track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel-rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel-rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel-rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle-track interaction including a separation between wheel and rail.

  19. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  20. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

Top