Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Linear Response Laws and Causality in Electrodynamics
ERIC Educational Resources Information Center
Yuffa, Alex J.; Scales, John A.
2012-01-01
Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
Digital robust active control law synthesis for large order systems using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1987-01-01
This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.
Linear response of entanglement entropy from holography
NASA Astrophysics Data System (ADS)
Lokhande, Sagar F.; Oling, Gerben W. J.; Pedraza, Juan F.
2017-10-01
For time-independent excited states in conformal field theories, the entanglement entropy of small subsystems satisfies a `first law'-like relation, in which the change in entanglement is proportional to the energy within the entangling region. Such a law holds for time-dependent scenarios as long as the state is perturbatively close to the vacuum, but is not expected otherwise. In this paper we use holography to investigate the spread of entanglement entropy for unitary evolutions of special physical interest, the so-called global quenches. We model these using AdS-Vaidya geometries. We find that the first law of entanglement is replaced by a linear response relation, in which the energy density takes the role of the source and is integrated against a time-dependent kernel with compact support. For adiabatic quenches the standard first law is recovered, while for rapid quenches the linear response includes an extra term that encodes the process of thermalization. This extra term has properties that resemble a time-dependent `relative entropy'. We propose that this quantity serves as a useful order parameter to characterize far-from-equilibrium excited states. We illustrate our findings with concrete examples, including generic power-law and periodically driven quenches.
A Memory-Based Model of Hick's Law
ERIC Educational Resources Information Center
Schneider, Darryl W.; Anderson, John R.
2011-01-01
We propose and evaluate a memory-based model of Hick's law, the approximately linear increase in choice reaction time with the logarithm of set size (the number of stimulus-response alternatives). According to the model, Hick's law reflects a combination of associative interference during retrieval from declarative memory and occasional savings…
Wifall, Tim; Hazeltine, Eliot; Toby Mordkoff, J
2016-07-01
Hick/Hyman Law describes one of the core phenomena in the study of human information processing: mean response time is a linear function of average uncertainty. In the original work of Hick, (1952) and Hyman, (1953), along with many follow-up studies, uncertainty regarding the stimulus and uncertainty regarding the response were confounded such that the relative importance of these two factors remains mostly unknown. The present work first replicates Hick/Hyman Law with a new set of stimuli and then goes on to separately estimate the roles of stimulus and response uncertainty. The results demonstrate that, for a popular type of task-visual stimuli mapped to vocal responses-response uncertainty accounts for a majority of the effect. The results justify a revised expression of Hick/Hyman Law and place strong constraints on theoretical accounts of the law, as well as models of response selection in general.
On the linear relation between the mean and the standard deviation of a response time distribution.
Wagenmakers, Eric-Jan; Brown, Scott
2007-07-01
Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different experimental paradigms support a linear relation between RT mean and RT standard deviation. Both R. Ratcliff's (1978) diffusion model and G. D. Logan's (1988) instance theory of automatization provide explanations for this linear relation. The authors identify and discuss 3 specific boundary conditions for the linear law to hold. The law constrains RT models and supports the use of the coefficient of variation to (a) compare variability while controlling for differences in baseline speed of processing and (b) assess whether changes in performance with practice are due to quantitative speedup or qualitative reorganization. Copyright 2007 APA.
Context Effects in Multi-Alternative Decision Making: Empirical Data and a Bayesian Model
ERIC Educational Resources Information Center
Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan
2012-01-01
For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…
NASA Technical Reports Server (NTRS)
Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.
1998-01-01
This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.
Scaling the Non-linear Impact Response of Flat and Curved Composite Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.
2005-01-01
The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
1988-01-01
A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.
Results of an integrated structure/control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1989-01-01
A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.
Theory, Guidance, and Flight Control for High Maneuverability Projectiles
2014-01-01
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining...2.8 Linear System Modeling with Time Delay ...................................................................22 2.9 Linear System Modeling Without... Time Delay .............................................................23 3. Guidance and Flight Control 24 3.1 Proportional Navigation Guidance Law
Laboratory determination of effective stress laws for deformation and permeability of chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teufel, L W; Warpinski, N R
1990-01-01
Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a rangemore » of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.« less
Observed-Score Equating as a Test Assembly Problem.
ERIC Educational Resources Information Center
van der Linden, Wim J.; Luecht, Richard M.
1998-01-01
Derives a set of linear conditions of item-response functions that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly. An example illustrates the use of the model for an item pool from the Law School Admissions Test (LSAT). (SLD)
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Effects of Method of Instruction and Frequency of Response on Criterion Performance
ERIC Educational Resources Information Center
Troost, Cornelius J.; Morris, Stanley
1971-01-01
Grade six students were taught Newton's Second Law of Motion by a linear program, a lecture, or a video-taped lecture, with three different response modes: written responses to all questions, to one-third of the questions, or to no questions. There was no significant difference between teaching method, but the higher the overt response rate, the…
Non-linear identification of a squeeze-film damper
NASA Technical Reports Server (NTRS)
Stanway, Roger; Mottershead, John; Firoozian, Riaz
1987-01-01
Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.
Integration of Visual and Joint Information to Enable Linear Reaching Motions
NASA Astrophysics Data System (ADS)
Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu
2017-01-01
A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.
NASA Technical Reports Server (NTRS)
Kim, Frederick D.
1992-01-01
Frequency responses generated from a high-order linear model of the UH-60 Black Hawk have shown that the propulsion system influences significantly the vertical and yaw dynamics of the aircraft at frequencies important to high-bandwidth control law designs. The inclusion of the propulsion system comprises the latest step in the development of a high-order linear model of the UH-60 that models additionally the dynamics of the fuselage, rotor, and inflow. A complete validation study of the linear model is presented in the frequency domain for both on-axis and off-axis coupled responses in the hoverflight condition, and on-axis responses for forward speeds of 80 and 120 knots.
Propagation of femtosecond laser pulses through water in the linear absorption regime.
Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W
2009-04-01
We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Woodard, S.; Juang, J.-N.
1986-01-01
A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1986-01-01
A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
Unexpected power-law stress relaxation of entangled ring polymers
KAPNISTOS, M.; LANG, M.; PYCKHOUT-HINTZEN, W.; RICHTER, D.; CHO, D.; CHANG, T.
2016-01-01
After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers. PMID:18953345
Time-response shaping using output to input saturation transformation
NASA Astrophysics Data System (ADS)
Chambon, E.; Burlion, L.; Apkarian, P.
2018-03-01
For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.
Microprocessor based implementation of attitude and shape control of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1984-01-01
The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.
Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data
NASA Technical Reports Server (NTRS)
Bosworth, John T.
1992-01-01
Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.
Hitts Law? A test of the relationship between information load and movement precision
NASA Technical Reports Server (NTRS)
Zaleski, M.; Moray, N.
1986-01-01
Recent technological developments have made viable a man-machine interface heavily dependent on graphics and pointing devices. This has led to new interest in classical reaction and movement time work by Human Factors specialists. Two experiments were designed and run to test the dependence of target capture time on information load (Hitt's Law) and movement precision (Fitts' Law). The proposed model linearly combines Hitt's and Fitts' results into a combination law which then might be called Hitts' Law. Subjects were required to react to stimuli by manipulating a joystick so as to cause a cursor to capture a target on a CRT screen. Response entropy and the relative precision of the capture movement were crossed in a factorial design and data obtained that were found to support the model.
Evaluation of Iowa's anti-bullying law.
Ramirez, Marizen; Ten Eyck, Patrick; Peek-Asa, Corinne; Onwuachi-Willig, Angela; Cavanaugh, Joseph E
Bullying is the most common form of youth aggression. Although 49 of all 50 states in the U.S. have an anti-bullying law in place to prevent bullying, little is known about the effectiveness of these laws. Our objective was to measure the effectiveness of Iowa's anti-bullying law in preventing bullying and improving teacher response to bullying. Sixth, 8th, and 11th grade children who completed the 2005, 2008 and 2010 Iowa Youth Survey were included in this study ( n = 253,000). Students were coded according to exposure to the law: pre-law for 2005 survey data, one year post-law for 2008 data, and three years post-law for 2010 data. The outcome variables were: 1) being bullied (relational, verbal, physical, and cyber) in the last month and 2) extent to which teachers/adults on campus intervened with bullying. Generalized linear mixed models were constructed with random effects. The odds of being bullied increased from pre-law to one year post-law periods, and then decreased from one year to three years post-law but not below 2005 pre-law levels. This pattern was consistent across all bullying types except cyberbullying. The odds of teacher intervention decreased 11 % (OR = 0.89, 95 % CL = 0.88, 0.90) from 2005 (pre-law) to 2010 (post-law). Bullying increased immediately after Iowa's anti-bullying law was passed, possibly due to improved reporting. Reductions in bullying occurred as the law matured. Teacher response did not improve after the passage of the law.
Evaluation of Iowa's anti-bullying law.
Ramirez, Marizen; Ten Eyck, Patrick; Peek-Asa, Corinne; Onwuachi-Willig, Angela; Cavanaugh, Joseph E
2016-12-01
Bullying is the most common form of youth aggression. Although 49 of all 50 states in the U.S. have an anti-bullying law in place to prevent bullying, little is known about the effectiveness of these laws. Our objective was to measure the effectiveness of Iowa's anti-bullying law in preventing bullying and improving teacher response to bullying. Sixth, 8th, and 11th grade children who completed the 2005, 2008 and 2010 Iowa Youth Survey were included in this study (n = 253,000). Students were coded according to exposure to the law: pre-law for 2005 survey data, one year post-law for 2008 data, and three years post-law for 2010 data. The outcome variables were: 1) being bullied (relational, verbal, physical, and cyber) in the last month and 2) extent to which teachers/adults on campus intervened with bullying. Generalized linear mixed models were constructed with random effects. The odds of being bullied increased from pre-law to one year post-law periods, and then decreased from one year to three years post-law but not below 2005 pre-law levels. This pattern was consistent across all bullying types except cyberbullying. The odds of teacher intervention decreased 11 % (OR = 0.89, 95 % CL = 0.88, 0.90) from 2005 (pre-law) to 2010 (post-law). Bullying increased immediately after Iowa's anti-bullying law was passed, possibly due to improved reporting. Reductions in bullying occurred as the law matured. Teacher response did not improve after the passage of the law.
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
NASA Astrophysics Data System (ADS)
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-01
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-14
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
A kinetic approach to some quasi-linear laws of macroeconomics
NASA Astrophysics Data System (ADS)
Gligor, M.; Ignat, M.
2002-11-01
Some previous works have presented the data on wealth and income distributions in developed countries and have found that the great majority of population is described by an exponential distribution, which results in idea that the kinetic approach could be adequate to describe this empirical evidence. The aim of our paper is to extend this framework by developing a systematic kinetic approach of the socio-economic systems and to explain how linear laws, modelling correlations between macroeconomic variables, may arise in this context. Firstly we construct the Boltzmann kinetic equation for an idealised system composed by many individuals (workers, officers, business men, etc.), each of them getting a certain income and spending money for their needs. To each individual a certain time variable amount of money is associated this meaning him/her phase space coordinate. In this way the exponential distribution of money in a closed economy is explicitly found. The extension of this result, including states near the equilibrium, give us the possibility to take into account the regular increase of the total amount of money, according to the modern economic theories. The Kubo-Green-Onsager linear response theory leads us to a set of linear equations between some macroeconomic variables. Finally, the validity of such laws is discussed in relation with the time reversal symmetry and is tested empirically using some macroeconomic time series.
On Impedance Spectroscopy of Supercapacitors
NASA Astrophysics Data System (ADS)
Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.
2016-10-01
Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.
Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian
2010-01-01
Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.
Extended Malus Law with metallic linear polarizers in terahertz and microwave domains
NASA Astrophysics Data System (ADS)
Romain, Xavier; Baida, Fadi; Boyer, Philippe
2016-04-01
An extended Malus' Law for the well-known Polarizer-Analyzer Mounting (PAM) is analytically obtained and investigated. The PAM is composed of two perfectly parallel Metallic Linear Polarizers (MLP), with subwavelength periodic pattern composed of rectangular holes. Our analytical theory especially highlights the influence of multiple reflections between the two MLPs which leads to an extended and tunable Malus Law. We demonstrate that the classical Malus Law (obtained for dichroic polarizers) is modulated by a factor which also depends on the angular difference between both MLP axes. In our analysis, the Malus' law is studied at the resonance wavelengths. Due to the interactions between the two MLP, the modulation factor is tuned by the optical distance between them which makes substantial variations of the Malus Law. We mention that, for each reflections, the light is re-polarized according to the orientation of the MLP. This tunable Malus' Law provides an original tool for ultrasensitive detection in the terahertz or microwave regime. For example, one can use an ultra-narrow angle Malus' Law as a hyper-sensitive device to analyze with a high accuracy the electro-optical response of a material sandwiched between polarizer and analyzer. We theoretically propose one PAM designed to detect a refractive index variation as small as 10-5. Finally, we extend the theory, which takes the form of an extended Jones formalism, to a large number of stacked MLP. It is applied to achieve many polarization manipulation processes as total polarization conversion with tunable spectral bandwidth, for instance.
NASA Astrophysics Data System (ADS)
Rypdal, Kristoffer; Rypdal, Martin
2016-07-01
Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.
2011-01-01
Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520
Experimental and Analytical Evaluation of Stressing-Rate State Evolution in Rate-State Friction Laws
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Rubin, A. M.; Bayart, E.; Savage, H. M.; Marone, C.; Beeler, N. M.
2013-12-01
Standard rate and state friction laws fail to explain the full range of observations from laboratory friction experiments. A new state evolution law has been proposed by Nagata et al. (2012) that adds a linear stressing-rate-dependent term to the Dieterich (aging) law, which may provide a remedy. They introduce a parameter c that controls the contribution of the stressing rate to state evolution. We show through analytical approximations that the new law can transition between the responses of the traditional Dieterich (aging) and Ruina (slip) laws in velocity step up/down experiments when the value of c is tuned properly. In particular, for c = 0 the response is pure aging while for finite, non-zero c one observes slip law like behavior for small velocity jumps but aging law like response for larger jumps. The magnitude of the velocity jump required to see this transition between aging and slip behaviour increases as c increases. In the limit of c >> 1 the response to velocity steps becomes purely slip law like. In this limit, numerical simulations show that this law loses its appealing time dependent healing property. An approach using Markov Chain Monte Carlo parameter search on data for large magnitude velocity step tests reveals that it is only possible to determine a lower bound on c using datasets that are well explained by the slip law. For a dataset with velocity steps of two orders of magnitude on simulated fault gouge we find this lower bound to be c ≈ 10.0. This is significantly larger than c ≈ 2.0 used by Nagata et al. (2012) to fit their data (mainly bare rock experiments with smaller excursions from steady state than our dataset). Similar parameter estimation exercises on slide hold slide data reveal that none of the state evolution laws considered - Dieterich, Ruina, Kato-Tullis and Nagata - match the relevant features of the data. In particular, even the aging law predicts only the correct rate of healing for long hold times but not the correct amount of healing. For c = 10.0, the Nagata law shows significant slip dependence in healing rate for long hold times which is at odds with the lab data and similar to the slip law response. If one accepts frictional healing observed in the laboratory as a ';proper' analog for fault strengthening over the interseismic period, we conclude that none of the investigated state evolution laws provides a comprehensive and correct constitutive relation.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
NASA Astrophysics Data System (ADS)
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.
The spectral applications of Beer-Lambert law for some biological and dosimetric materials
NASA Astrophysics Data System (ADS)
Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.
2014-08-01
The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.
Application of modern control theory to the design of optimum aircraft controllers
NASA Technical Reports Server (NTRS)
Power, L. J.
1973-01-01
The synthesis procedure presented is based on the solution of the output regulator problem of linear optimal control theory for time-invariant systems. By this technique, solution of the matrix Riccati equation leads to a constant linear feedback control law for an output regulator which will maintain a plant in a particular equilibrium condition in the presence of impulse disturbances. Two simple algorithms are presented that can be used in an automatic synthesis procedure for the design of maneuverable output regulators requiring only selected state variables for feedback. The first algorithm is for the construction of optimal feedforward control laws that can be superimposed upon a Kalman output regulator and that will drive the output of a plant to a desired constant value on command. The second algorithm is for the construction of optimal Luenberger observers that can be used to obtain feedback control laws for the output regulator requiring measurement of only part of the state vector. This algorithm constructs observers which have minimum response time under the constraint that the magnitude of the gains in the observer filter be less than some arbitrary limit.
Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle
NASA Technical Reports Server (NTRS)
Adams, Richard J.
1993-01-01
High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.
Archimedes' law explains penetration of solids into granular media.
Kang, Wenting; Feng, Yajie; Liu, Caishan; Blumenfeld, Raphael
2018-03-16
Understanding the response of granular matter to intrusion of solid objects is key to modelling many aspects of behaviour of granular matter, including plastic flow. Here we report a general model for such a quasistatic process. Using a range of experiments, we first show that the relation between the penetration depth and the force resisting it, transiently nonlinear and then linear, is scalable to a universal form. We show that the gradient of the steady-state part, K ϕ , depends only on the medium's internal friction angle, ϕ, and that it is nonlinear in μ = tan ϕ, in contrast to an existing conjecture. We further show that the intrusion of any convex solid shape satisfies a modified Archimedes' law and use this to: relate the zero-depth intercept of the linear part to K ϕ and the intruder's cross-section; explain the curve's nonlinear part in terms of the stagnant zone's development.
Dual Mechanism Nonlinear Response of Selected Metal Organic Chromophores
2007-10-01
emission was observed due to the high quantum efficiency of the free ligand despite having a relatively low two photon cross section at this wavelength...nonlinear absorbing chromophores. .............................30 2-1 Beer’s Law relationships of linear absorption...optical processes; (4) structure-property relationships of nonlinear absorption as it relates to two photon absorption and reverse saturable absorption
Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects
Zhang, Fan; Wu, Min; Kwoh, Chee Keong; Zheng, Jie
2016-01-01
Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model. PMID:27764199
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Kapelner, Adam; Krieger, Abba; Blanford, William J
2016-10-14
When measuring Henry's law constants (k H ) using the phase ratio variation (PRV) method via headspace gas chromatography (G C ), the value of k H of the compound under investigation is calculated from the ratio of the slope to the intercept of a linear regression of the inverse G C response versus the ratio of gas to liquid volumes of a series of vials drawn from the same parent solution. Thus, an experimenter collects measurements consisting of the independent variable (the gas/liquid volume ratio) and dependent variable (the G C -1 peak area). A review of the literature found that the common design is a simple uniform spacing of liquid volumes. We present an optimal experimental design which estimates k H with minimum error and provides multiple means for building confidence intervals for such estimates. We illustrate performance improvements of our design with an example measuring the k H for Naphthalene in aqueous solution as well as simulations on previous studies. Our designs are most applicable after a trial run defines the linear G C response and the linear phase ratio to the G C -1 region (where the PRV method is suitable) after which a practitioner can collect measurements in bulk. The designs can be easily computed using our open source software optDesignSlopeInt, an R package on CRAN. Copyright © 2016 Elsevier B.V. All rights reserved.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Fast or slow? Compressions (or not) in number-to-line mappings.
Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael
2015-01-01
We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0-130, rather than the standard 0-100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0-130 range, but not in the reduced 0-100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0-100 range, but not in the 0-130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don't seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals.
Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.
Feedback linearizing control of a MIMO power system
NASA Astrophysics Data System (ADS)
Ilyes, Laszlo
Prior research has demonstrated that either the mechanical or electrical subsystem of a synchronous electric generator may be controlled using single-input single-output (SISO) nonlinear feedback linearization. This research suggests a new approach which applies nonlinear feedback linearization to a multi-input multi-output (MIMO) model of the synchronous electric generator connected to an infinite bus load model. In this way, the electrical and mechanical subsystems may be linearized and simultaneously decoupled through the introduction of a pair of auxiliary inputs. This allows well known, linear, SISO control methods to be effectively applied to the resulting systems. The derivation of the feedback linearizing control law is presented in detail, including a discussion on the use of symbolic math processing as a development tool. The linearizing and decoupling properties of the control law are validated through simulation. And finally, the robustness of the control law is demonstrated.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
NASA Astrophysics Data System (ADS)
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.; Abel, I.
1981-01-01
A method of synthesizing reduced-order optimal feedback control laws for a high-order system is developed. A nonlinear programming algorithm is employed to search for the control law design variables that minimize a performance index defined by a weighted sum of mean-square steady-state responses and control inputs. An analogy with the linear quadractic Gaussian solution is utilized to select a set of design variables and their initial values. To improve the stability margins of the system, an input-noise adjustment procedure is used in the design algorithm. The method is applied to the synthesis of an active flutter-suppression control law for a wind tunnel model of an aeroelastic wing. The reduced-order controller is compared with the corresponding full-order controller and found to provide nearly optimal performance. The performance of the present method appeared to be superior to that of two other control law order-reduction methods. It is concluded that by using the present algorithm, nearly optimal low-order control laws with good stability margins can be synthesized.
Digital robust control law synthesis using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivekananda
1989-01-01
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.
Hu, B; Wang, Y; Zealey, W
2009-12-01
A commercial Optical Stimulated Luminescence (OSL) dosimetry system developed by Landauer was tested to analyse the possibility of using OSL dosimetry for external beam radiotherapy planning checks. Experiments were performed to determine signal sensitivity, dose response range, beam type/energy dependency, reproducibility and linearity. Optical annealing processes to test OSL material reusability were also studied. In each case the measurements were converted into absorbed dose. The experimental results show that OSL dosimetry provides a wide dose response range, good linearity and reproducibility for the doses up to 800cGy. The OSL output is linear with dose up to 600cGy range showing a maximum deviation from linearity of 2.0% for the doses above 600cGy. The standard deviation in response of 20 dosimeters was 3.0%. After optical annealing using incandescent light, the readout intensity decreased by approximately 98% in the first 30 minutes. The readout intensity, I, decreased after repeated optical annealing as a power law, given by I infinity t (-1.3). This study concludes that OSL dosimetry can provide an alternative dosimetry technique for use in in-vivo dosimetry if rigorous measurement protocols are established.
NASA Technical Reports Server (NTRS)
Sheen, Jyh-Jong; Bishop, Robert H.
1992-01-01
The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.
Measured Leak Rate of Ammonia Through an Epoxy/Stainless-Steel Patch
2007-08-10
1 hour per response, includig the rime fo remwing instuctions, searchng existing data sours . gatheng and mantldnin te data needed, and comping and...obtained from the slope of a linear fit to the data in Figure 3.3 using the Beer -Lambert law; Log[-] IR- (3.1) Lx[NH 3 ]’ where I is laser intensity and
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle
2016-04-01
Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the linear (power-law exponent, n=1) and strongly non-linear models (n=10) do not match the measured data well. However, the moderately non-linear models (n=2-3) match the data quite well indicating that the creep of the Murtèl rockglacier is governed by a moderately non-linear viscous flow law with a power-law exponent close to the one of pure ice. Our results are crucial for improving existing numerical models of rockglacier flow that currently use simplified (i.e., linear viscous) flow-laws. References: Arenson L., Hoelzle M., and Springman S., 2002: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost and Periglacial Processes 13, 117-135. Frehner M., Ling A.H.M., and Gärtner-Roer I., 2015: Furrow-and-ridge morphology on rockglaciers explained by gravity-driven buckle folding: A case study from the Murtèl rockglacier (Switzerland), Permafrost and Periglacial Processes 26, 57-66.
1994-03-01
bilinear forms of their rates. Setting the partial derivatives of fl with respect to the rates to be zero, one obtains simultaneous linear algebraic ...Figure 3 shows the variation in 8/P with P for one such test. In this case, the degree of linearity is high, with a correlation coefficient, r...each cycle is shown.) The linearity of the data suggests that the traction law can be represented by a power law, with the power law exponent, d log
Katerndahl, David A
2009-06-01
Although symptoms of anxiety and depression correlate, they may covary in irregular and unpredictable ways. This non-linear covariation may be important to psychiatric diagnosis, treatment and relapse. This non-linear anxiety-depression interaction suggests that power laws may be observed. Power laws are statistical distributions found when systems vary in complex ways at the interface between chaotic dynamics and periodic dynamics, such that data points vary randomly but are still partially correlated with each other. Such non-linear dynamics and relationships should result in characteristic patterns of interaction among patients, stressors and treatment. This is important because non-linear dynamics could affect our understanding of mental disorders, the need for varied treatment approaches and patterns of early response to treatment. To determine whether the relationships between anxiety and depression levels, changes and rates of change follow power law distributions among patients with newly diagnosed major depressive episode (MDE), panic disorder (PD) and neither disorder (controls). Time series of hourly mood variation. Setting Acute and continuity primary care clinics. Five adult patients presenting each with MDE, PD and controls based on DSM-IV criteria. Four patients in each group completed 30 days of assessments. MAIN AND SECONDARY OUTCOME MEASURES: Hourly self-assessments (while awake) of levels of anxiety and depression using visual analogue scales for a 30-day period. Covariation in level of symptoms, in the change of symptoms and in the rate of change were assessed. Anxiety-depression matrices were prepared for pooled subjects. Power laws were sought using log-log plots of frequency versus order of that frequency. Although visual inspection of plots for symptoms levels, change and rates of change all suggest power laws, statistical assessments provide stronger support for power laws in symptom change than for either symptom levels or rates of change. Adjusted R(2) terms are larger for MDE and PD subjects compared with controls while the inverse slope is about 2.5 for controls and 1.7-1.9 for those with MDE or PD. This study found that power laws may be present in both the symptom change data for all three diagnostic groups. Evidence for power laws in symptom levels and rates of change was less compelling. The inverse slopes suggest that the anxiety-depression relationships among subjects with PD and major depression are similar but differ from those among controls. First, power laws suggest a scale-free relationship; the differences seen in transition from symptom level to change level may reflect that complex events at the level of mood assessment affect change in mood. Second, this covariation may be due to external factors acting on the patient or multiple internal interrelated factors. Third, different factors and populations can yield different slopes. Future research is needed to confirm these preliminary findings and to understand the origin of these dynamics.
A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto
2003-01-01
This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.
Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar; Dutta, Pranamika
2017-11-01
The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.
Dynamics and control of tethered antennas/reflectors in orbit
NASA Astrophysics Data System (ADS)
Liu, Liangdong; Bainum, Peter M.
The system linear equations for the motion of a tethered shallow spherical shell in orbit with its symmetry axis nominally following the local vertical are developed. The shell roll, yaw, tether out-of-plane swing motion and elastic vibrations are decoupled from the shell and tether in-plane pitch motions and elastic vibrations. The neutral gravity stability conditions for the special case of a constant length rigid tether are given for in-plane motion and out-of-plant motion. It is proved that the in-plane motion of the system could be asymptotically stable based on Rupp's tension control law, for a variable length tether. However, the system simulation results indicate that the transient responses can be improved significantly, especially for the damping of the tether and shell pitch motion, by an optimal feedback control law for the rigid variable length tether model. It is also seen that the system could be unstable when the effect of tether flexibility is included if the control gains are not chosen carefully. The transient responses for three different tension control laws are compared during typical station keeping operations.
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2005-01-01
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.
Control design based on a linear state function observer
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1992-01-01
An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.
Sensitivity method for integrated structure/active control law design
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1987-01-01
The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Liu, Meiqin
2009-09-01
This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2016-10-01
We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.
Cancellation control law for lateral-directional dynamics of a supermaneuverable aircraft
NASA Technical Reports Server (NTRS)
Snell, Antony
1993-01-01
Cancellation control laws are designed which reduce the high levels of lateral acceleration encountered during aggressive rolling maneuvers executed at high angle of attack. Two independent problem are examined. One is to reduce lateral acceleration at the mass center, while the other focuses on lateral acceleration at the pilot's station, located 7.0 m forward of the mass center. Both of these problems are challenging and somewhat different in their limitations. In each case the design is based on a linearization of the lateral-directional dynamics about a high angle of attack condition. The controllers incorporate dynamic inversion inner loops to provide control of stability-axis roll- and yaw-rates and then employ cancellation filters in both feed-forward and feed-back signal paths. The relative simplicity of the control laws should allow nonlinear generalizations to be devised. Although it is shown that lateral acceleration can be reduced substantially by such control laws, this is at the cost of slowed roll response, poor dutch-roll damping or a combination of the two.
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
Design and experimental validation of linear and nonlinear vehicle steering control strategies
NASA Astrophysics Data System (ADS)
Menhour, Lghani; Lechner, Daniel; Charara, Ali
2012-06-01
This paper proposes the design of three control laws dedicated to vehicle steering control, two based on robust linear control strategies and one based on nonlinear control strategies, and presents a comparison between them. The two robust linear control laws (indirect and direct methods) are built around M linear bicycle models, each of these control laws is composed of two M proportional integral derivative (PID) controllers: one M PID controller to control the lateral deviation and the other M PID controller to control the vehicle yaw angle. The indirect control law method is designed using an oscillation method and a nonlinear optimisation subject to H ∞ constraint. The direct control law method is designed using a linear matrix inequality optimisation in order to achieve H ∞ performances. The nonlinear control method used for the correction of the lateral deviation is based on a continuous first-order sliding-mode controller. The different methods are designed using a linear bicycle vehicle model with variant parameters, but the aim is to simulate the nonlinear vehicle behaviour under high dynamic demands with a four-wheel vehicle model. These steering vehicle controls are validated experimentally using the data acquired using a laboratory vehicle, Peugeot 307, developed by National Institute for Transport and Safety Research - Department of Accident Mechanism Analysis Laboratory's (INRETS-MA) and their performance results are compared. Moreover, an unknown input sliding-mode observer is introduced to estimate the road bank angle.
Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation
NASA Technical Reports Server (NTRS)
Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.
1999-01-01
In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.
A Control Model: Interpretation of Fitts' Law
NASA Technical Reports Server (NTRS)
Connelly, E. M.
1984-01-01
The analytical results for several models are given: a first order model where it is assumed that the hand velocity can be directly controlled, and a second order model where it is assumed that the hand acceleration can be directly controlled. Two different types of control-laws are investigated. One is linear function of the hand error and error rate; the other is the time-optimal control law. Results show that the first and second order models with the linear control-law produce a movement time (MT) function with the exact form of the Fitts' Law. The control-law interpretation implies that the effect of target width on MT must be a result of the vertical motion which elevates the hand from the starting point and drops it on the target at the target edge. The time optimal control law did not produce a movement-time formula simular to Fitt's Law.
Active vibration damping of the Space Shuttle remote manipulator system
NASA Technical Reports Server (NTRS)
Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.
1991-01-01
The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model
NASA Astrophysics Data System (ADS)
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system
NASA Astrophysics Data System (ADS)
Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.
2016-08-01
Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.
Modeling and controlling a robotic convoy using guidance laws strategies.
Belkhouche, Fethi; Belkhouche, Boumediene
2005-08-01
This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method. Index Terms-Guidance laws, relative kinematics equations, robotic convoy, tracking.
`Un-Darkening' the Cosmos: New laws of physics for an expanding universe
NASA Astrophysics Data System (ADS)
George, William
2017-11-01
Dark matter is believed to exist because Newton's Laws are inconsistent with the visible matter in galaxies. Dark energy is necessary to explain the universe expansion. (also available from www.turbulence-online.com) suggested that the equations themselves might be in error because they implicitly assume that time is measured in linear increments. This presentation couples the possible non-linearity of time with an expanding universe. Maxwell's equations for an expanding universe with constant speed of light are shown to be invariant only if time itself is non-linear. Both linear and exponential expansion rates are considered. A linearly expanding universe corresponds to logarithmic time, while exponential expansion corresponds to exponentially varying time. Revised Newton's laws using either leads to different definitions of mass and kinetic energy, both of which appear time-dependent if expressed in linear time. And provide the possibility of explaining the astronomical observations without either dark matter or dark energy. We would have never noticed the differences on earth, since the leading term in both expansions is linear in δ /to where to is the current age.
Elastic robot control - Nonlinear inversion and linear stabilization
NASA Technical Reports Server (NTRS)
Singh, S. N.; Schy, A. A.
1986-01-01
An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Corner Polyhedron and Intersection Cuts
2011-03-01
any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98... finding valid inequalities for the set (1) that are violated by the point x̄. Typically, x̄ is an optimal solution of the linear programming (LP
Cording, Jacinta R; McLean, Anthony P; Grace, Randolph C
2011-05-01
We conducted a residual meta-analysis to test the assumptions of the generalized matching law that effects of relative reinforcer magnitude on response allocation in concurrent schedules can be described by a power function and are independent from the effects of relative reinforcer rate. We identified five studies which varied magnitude ratios over at least four levels and six studies in which reinforcer rate and magnitude ratios were varied factorially. The generalized matching law provided a reasonably good description of the data, accounting for 77.1% and 90.1% of the variance in the two sets of studies. Results of polynomial regressions showed that there were no systematic patterns in pooled residuals as a function of predicted log response ratios for data sets in which relative magnitude was varied. For data sets in which relative rate and magnitude were varied factorially, there was a significant negative cubic pattern in the pooled residuals, suggesting that obtained response allocation was less extreme than predicted for conditions with extreme predicted values. However, subsequent analyses showed that this result was associated with results from conditions in one study in which the product of the rate and magnitude ratios was 63:1, and in which response allocation may have been attenuated by a ceiling effect. When data from these conditions were omitted, there were no significant components in the residuals. Although the number of available studies was small, results provide tentative support for the assumptions of the generalized matching law that effects of reinforcer magnitude ratios on choice can be described by a power function and are independent from reinforcer rate ratios. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Clapp, Brian R.
2005-01-01
For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three rate gyros for n Controlling with alternate sensors to replace failing gyros can extend the HST science mission. A two-gyro control law has been designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms prior to science imaging. The Magnetometer and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth. occultation of star trackers and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and controls attitude in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law dampens T2G rates and controls HST attitude during science imaging. This paper describes the F2G control law. Details of F2G algorithms are presented, including computation of the FGS-measured star vector using non-linear equations, optimal estimation of HST body rate, design of the F2G control laws and gyro bias observer, SISO and MIMO linear stability analyses, and design of the F2G intramode transition and guide star acquisition logic. Results from an FGS flight spare ground test are presented that define acceptable HST jitter levels for successful guide star acquisition under two-gyro control. HST-specific disturbance and noise models are described that are based upon flight telemetry; these models are used in HSTSIM, a high-fidelity non-linear time domain simulation, to predict HST on-orbit disturbance responses and FGS interferometer Loss of Lock (LOL) characteristics under F2G control. Additional HSTSIM results are presented predicting HST quiescent boresight jitter performance, science maneuver performance, and observer configuration performance during F2G operation. Simulation results are compared to on-orbit data b m F2G flight tests performed in February 2005. Science images and point spread functions from the Advanced Camera for Surveys (ACS) High Resolution Camera (HRC) are presented that compare HST science performance under F2G versus three-gyro control. Images and flight telemetry show that HST boresight jitter with the new F2G control law is usually less than jitter using the three-gyro law, and HST boresight jitter during F2G operation is dependent upon guide star magnitude.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1992-01-01
The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.
Conservation laws and conserved quantities for (1+1)D linearized Boussinesq equations
NASA Astrophysics Data System (ADS)
Carvalho, Cindy; Harley, Charis
2017-05-01
Conservation laws and physical conserved quantities for the (1+1)D linearized Boussinesq equations at a constant water depth are presented. These equations describe incompressible, inviscid, irrotational fluid flow in the form of a non steady solitary wave. A systematic multiplier approach is used to obtain the conservation laws of the system of third order partial differential equations (PDEs) in dimensional form. Physical conserved quantities are derived by integrating the conservation laws in the direction of wave propagation and imposing decaying boundary conditions in the horizontal direction. One of these is a newly discovered conserved quantity which relates to an energy flux density.
Nistal-Nuño, Beatriz
2017-03-31
In Chile, a new law introduced in March 2012 lowered the blood alcohol concentration (BAC) limit for impaired drivers from 0.1% to 0.08% and the BAC limit for driving under the influence of alcohol from 0.05% to 0.03%, but its effectiveness remains uncertain. The goal of this investigation was to evaluate the effects of this enactment on road traffic injuries and fatalities in Chile. A retrospective cohort study. Data were analyzed using a descriptive and a Generalized Linear Models approach, type of Poisson regression, to analyze deaths and injuries in a series of additive Log-Linear Models accounting for the effects of law implementation, month influence, a linear time trend and population exposure. A review of national databases in Chile was conducted from 2003 to 2014 to evaluate the monthly rates of traffic fatalities and injuries associated to alcohol and in total. It was observed a decrease by 28.1 percent in the monthly rate of traffic fatalities related to alcohol as compared to before the law (P<0.001). Adding a linear time trend as a predictor, the decrease was by 20.9 percent (P<0.001).There was a reduction in the monthly rate of traffic injuries related to alcohol by 10.5 percent as compared to before the law (P<0.001). Adding a linear time trend as a predictor, the decrease was by 24.8 percent (P<0.001). Positive results followed from this new 'zero-tolerance' law implemented in 2012 in Chile. Chile experienced a significant reduction in alcohol-related traffic fatalities and injuries, being a successful public health intervention.
Violation of the second law of thermodynamics in the quantum microworld
NASA Astrophysics Data System (ADS)
Čápek, V.; Bok, J.
2001-02-01
One of the previously reported linear models of open quantum systems (interacting with a single thermal bath but otherwise not aided from outside) endowed with the faculty of spontaneous self-organization challenging standard thermodynamics is reconstructed here. It is then able to produce, in a cyclic manner, a useful (this time mechanical) work at the cost of just thermal energy in the bath whose quanta get properly in-phased. This means perpetuum mobile of the second kind explicitly violating the second law in its Thomson formulation. No approximations can be made responsible for the effect as a special scaling procedure is used that makes the chosen kinetic theory exact. The effect is purely quantum and disappears in the classical limit.
Linear and nonlinear dynamics of isospectral granular chains
NASA Astrophysics Data System (ADS)
Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.
2017-04-01
We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.
Zhou, Shengxi; Yan, Bo; Inman, Daniel J
2018-05-09
This paper presents a novel nonlinear piezoelectric energy harvesting system which consists of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden. The linear spring inevitably produces the nonlinear spring force on the connected harvesters, because of the geometrical relationship and the time-varying relative displacement between two adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics. A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified by comparing with its linear counterparts. In the case study, the output power area of the presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the output voltage.
Resolving Mixed Algal Species in Hyperspectral Images
Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.
2014-01-01
We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451
Users manual for flight control design programs
NASA Technical Reports Server (NTRS)
Nalbandian, J. Y.
1975-01-01
Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.
A physically based connection between fractional calculus and fractal geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butera, Salvatore, E-mail: sg.butera@gmail.com; Di Paola, Mario, E-mail: mario.dipaola@unipa.it
2014-11-15
We show a relation between fractional calculus and fractals, based only on physical and geometrical considerations. The link has been found in the physical origins of the power-laws, ruling the evolution of many natural phenomena, whose long memory and hereditary properties are mathematically modelled by differential operators of non integer order. Dealing with the relevant example of a viscous fluid seeping through a fractal shaped porous medium, we show that, once a physical phenomenon or process takes place on an underlying fractal geometry, then a power-law naturally comes up in ruling its evolution, whose order is related to the anomalousmore » dimension of such geometry, as well as to the model used to describe the physics involved. By linearizing the non linear dependence of the response of the system at hand to a proper forcing action then, exploiting the Boltzmann superposition principle, a fractional differential equation is found, describing the dynamics of the system itself. The order of such equation is again related to the anomalous dimension of the underlying geometry.« less
Hierarchical structure in sharply divided phase space for the piecewise linear map
NASA Astrophysics Data System (ADS)
Akaishi, Akira; Aoki, Kazuki; Shudo, Akira
2017-05-01
We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable regions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions, each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distribution of the recurrence time obeys a power law as ˜t-2 , the same as the one for the system with phase space, which is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law exponent and that only the marginal instability on the boundary of stable regions is responsible for determining the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.
On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2011-01-01
This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.
Relativistic Linear Restoring Force
ERIC Educational Resources Information Center
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
1979-06-01
also extended to the class of stabilizable systems and the required compensator shown to possess a separation property. Finally the design methodology...Page 1.1. Block diagram of transfer function given in (1.28) ........... 15 3.3.1. Compensator structure for controllable and stabilizable systems ...response will be stable. The implemented output feedback control law will stabilize the total closed loop system . n nn Let [uin and iJi= 1 be the
The Super-linear Slope of the Spatially Resolved Star Formation Law in NGC 3521 and NGC 5194 (M51a)
NASA Astrophysics Data System (ADS)
Liu, Guilin; Koda, Jin; Calzetti, Daniela; Fukuhara, Masayuki; Momose, Rieko
2011-07-01
We have conducted interferometric observations with the Combined Array for Research in Millimeter Astronomy (CARMA) and an on-the-fly mapping with the 45 m telescope at Nobeyama Radio Observatory (NRO45) in the CO (J = 1-0) emission line of the nearby spiral galaxy NGC 3521. Using the new combined CARMA + NRO45 data of NGC 3521, together with similar data for NGC 5194 (M51a) and archival SINGS Hα, 24 μm THINGS H I, and Galaxy Evolution Explorer/Far-UV (FUV) data for these two galaxies, we investigate the empirical scaling law that connects the surface density of star formation rate (SFR) and cold gas (known as the Schmidt-Kennicutt law or S-K law) on a spatially resolved basis and find a super-linear slope for the S-K law when carefully subtracting the background emissions in the SFR image. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar and dust background emission to be subtracted carefully (especially in the mid-infrared and to a lesser extent in the FUV). Applying this approach, we perform a pixel-by-pixel analysis on both galaxies and quantitatively show that the controversial result whether the molecular S-K law (expressed as \\Sigma _SFR\\propto \\Sigma _H_2^{\\gamma _H_2}) is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is super-linear (\\gamma _H_2\\gtrsim 1.5) at the highest available resolution (~230 pc) and decreases monotonically for decreasing resolution. We also find in both galaxies that the scatter of the molecular S-K law (\\sigma _H_2) monotonically increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both \\gamma _H_2 and \\sigma _H_2 are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale (δdp), both quantities become highly consistent for the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the scale being considered, without varying among spiral galaxies. A logarithmic function \\gamma _H_2=-1.1 log [\\delta _dp/kpc]+1.4 and a linear relation \\sigma _H_2=-0.2 [\\delta _dp/kpc]+0.7 are obtained through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. A larger sample of galaxies with better sensitivity, resolution, and broader field of view are required to test the general applicability of these relations.
Similarity law and critical properties in ionic systems.
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Delhommelle, Jerome
2017-11-01
Using molecular simulations, we determine the locus of ideal compressibility, or Zeno line, for a series of ionic compounds. We find that the shape of this thermodynamic contour follows a linear law, leading to the determination of the Boyle parameters. We also show that a similarity law, based on the Boyle parameters, yields accurate critical data when compared to the experiment. Furthermore, we show that the Boyle density scales linearly with the size-asymmetry, providing a direct route to establish a correspondence between the thermodynamic properties of different ionic compounds.
Gust alleviation - Criteria and control laws
NASA Technical Reports Server (NTRS)
Rynaski, E. G.
1979-01-01
The relationships between criteria specified for aircraft gust alleviation and the form of the control laws that result from the criteria are considered. Open-loop gust alleviation based on the linearized, small perturbation equations of aircraft motion is discussed, and an approximate solution of the open-loop control law is presented for the case in which the number of degrees of freedom of the aircraft exceeds the rank of the control effectiveness matrix. Excessive actuator lag is compensated for by taking into account actuator dynamics in the equations of motion, resulting in the specification of a general load network. Criteria for gust alleviation when output motions are gust alleviated and the closed-loop control law derived from them are examined and linear optimal control law is derived. Comparisons of the control laws reveal that the effectiveness of an open-loop control law is greatest at low aircraft frequencies but deteriorates as the natural frequency of the actuators is approached, while closed-loop methods are found to be more effective at higher frequencies.
The extinction law from photometric data: linear regression methods
NASA Astrophysics Data System (ADS)
Ascenso, J.; Lombardi, M.; Lada, C. J.; Alves, J.
2012-04-01
Context. The properties of dust grains, in particular their size distribution, are expected to differ from the interstellar medium to the high-density regions within molecular clouds. Since the extinction at near-infrared wavelengths is caused by dust, the extinction law in cores should depart from that found in low-density environments if the dust grains have different properties. Aims: We explore methods to measure the near-infrared extinction law produced by dense material in molecular cloud cores from photometric data. Methods: Using controlled sets of synthetic and semi-synthetic data, we test several methods for linear regression applied to the specific problem of deriving the extinction law from photometric data. We cover the parameter space appropriate to this type of observations. Results: We find that many of the common linear-regression methods produce biased results when applied to the extinction law from photometric colors. We propose and validate a new method, LinES, as the most reliable for this effect. We explore the use of this method to detect whether or not the extinction law of a given reddened population has a break at some value of extinction. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO programmes 069.C-0426 and 074.C-0728).
Linearizing feedforward/feedback attitude control
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1991-01-01
An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.
Scaling of Perceptual Errors Can Predict the Shape of Neural Tuning Curves
NASA Astrophysics Data System (ADS)
Shouval, Harel Z.; Agarwal, Animesh; Gavornik, Jeffrey P.
2013-04-01
Weber’s law, first characterized in the 19th century, states that errors estimating the magnitude of perceptual stimuli scale linearly with stimulus intensity. This linear relationship is found in most sensory modalities, generalizes to temporal interval estimation, and even applies to some abstract variables. Despite its generality and long experimental history, the neural basis of Weber’s law remains unknown. This work presents a simple theory explaining the conditions under which Weber’s law can result from neural variability and predicts that the tuning curves of neural populations which adhere to Weber’s law will have a log-power form with parameters that depend on spike-count statistics. The prevalence of Weber’s law suggests that it might be optimal in some sense. We examine this possibility, using variational calculus, and show that Weber’s law is optimal only when observed real-world variables exhibit power-law statistics with a specific exponent. Our theory explains how physiology gives rise to the behaviorally characterized Weber’s law and may represent a general governing principle relating perception to neural activity.
Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys
Lau, Brian; Glimcher, Paul W
2005-01-01
We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies similar to those Herrnstein (1961) used when he described the matching law. In each session, the monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes with unsignalled transitions between the blocks. Steady-state data following adjustment to each transition were well characterized by the generalized matching law; response ratios undermatched reinforcer frequency ratios but matched reinforcer magnitude ratios. We modelled response-by-response behavior with linear models that used past reinforcers as well as past choices to predict the monkeys' choices on each trial. We found that more recently obtained reinforcers more strongly influenced choice behavior. Perhaps surprisingly, we also found that the monkeys' actions were influenced by the pattern of their own past choices. It was necessary to incorporate both past reinforcers and past choices in order to accurately capture steady-state behavior as well as the fluctuations during block transitions and the response-by-response patterns of behavior. Our results suggest that simple reinforcement learning models must account for the effects of past choices to accurately characterize behavior in this task, and that models with these properties provide a conceptual tool for studying how both past reinforcers and past choices are integrated by the neural systems that generate behavior. PMID:16596980
Creep and fracture of a model yoghurt
NASA Astrophysics Data System (ADS)
Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut
2014-11-01
Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.
Light propagation with phase discontinuities: generalized laws of reflection and refraction.
Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno
2011-10-21
Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.
Arena, Alessandro; Lamanna, Jacopo; Gemma, Marco; Ripamonti, Maddalena; Ravasio, Giuliano; Zimarino, Vincenzo; De Vitis, Assunta; Beretta, Luigi; Malgaroli, Antonio
2017-01-01
The mechanisms of action of anaesthetics on the living brain are still poorly understood. In this respect, the analysis of the differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity might provide important and novel cues. Here we show that the anaesthetic sevoflurane strongly silences the brain but potentiates in a dose- and frequency-dependent manner the cortical visual response. Such enhancement arises from a linear scaling by sevoflurane of the power-law relation between light intensity and the cortical response. The fingerprint of sevoflurane action suggests that circuit silencing can boost linearly synaptic responsiveness presumably by scaling the number of responding units and/or their correlation following a sensory stimulation. General anaesthetics, which are expected to silence brain activity, often spare sensory responses. To evaluate differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity, we characterized their modulation by sevoflurane and propofol. Power spectra and the bust-suppression ratio from EEG data were used to evaluate anaesthesia depth. ON and OFF cortical responses were elicited by light pulses of variable intensity, duration and frequency, during light and deep states of anaesthesia. Both anaesthetics reduced spontaneous cortical activity but sevoflurane greatly enhanced while propofol diminished the ON visual response. Interestingly, the large potentiation of the ON visual response by sevoflurane was found to represent a linear scaling of the encoding mechanism for light intensity. To the contrary, the OFF cortical visual response was depressed by both anaesthetics. The selective depression of the OFF component by sevoflurane could be converted into a robust potentiation by the pharmacological blockade of the ON pathway, suggesting that the temporal order of ON and OFF responses leads to a depression of the latter. This hypothesis agrees with the finding that the enhancement of the ON response was converted into a depression by increasing the frequency of light-pulse stimulation from 0.1 to 1 Hz. Overall, our results support the view that inactivity-dependent modulation of cortical circuits produces an increase in their responsiveness. Among the implications of our findings, the silencing of cortical circuits can boost linearly the cortical responsiveness but with negative impact on their frequency transfer and with a loss of the information content of the sensory signal. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Active Vibration damping of Smart composite beams based on system identification technique
NASA Astrophysics Data System (ADS)
Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed
2018-03-01
In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.
1996-09-01
more accurate than the ideal gas law to derive a modified Gibbs-Thomson relation . Simulations of island and pit decay will be presented in which we...for Ag on Ag( 111) is studied as a function of lattice mismatch. The step formation energies for Pt( 111) are computed and the equilibrium shape of Pt... linear response expressions for thermalized system. The relation between the dynamic mobility and the frequency-dependent diffusion coefficient is still
Fall with Linear Drag and Wien's Displacement Law: Approximate Solution and Lambert Function
ERIC Educational Resources Information Center
Vial, Alexandre
2012-01-01
We present an approximate solution for the downward time of travel in the case of a mass falling with a linear drag force. We show how a quasi-analytical solution implying the Lambert function can be found. We also show that solving the previous problem is equivalent to the search for Wien's displacement law. These results can be of interest for…
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
NASA Astrophysics Data System (ADS)
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
STEM Educators' Integration of Formative Assessment in Teaching and Lesson Design
NASA Astrophysics Data System (ADS)
Moreno, Kimberly A.
Air-breathing hypersonic vehicles, when fully developed, will offer travel in the atmosphere at unprecendented speeds. Capturing their physical behavior by analytical / numerical models is still a major challenge, still limiting the development of controls technology for such vehicles. To study, in an exploratory manner, active control of air-breathing hypersonic vehicles, an analtical, simplified, model of a generic hypersonic air-breathing vehicle in flight was developed by researchers at the Air Force Research Labs in Dayton, Ohio, along with control laws. Elevator deflection and fuel-to-air ratio were used as inputs. However, that model is very approximate, and the field of hypersonics still faces many unknowns. This thesis contributes to the study of control of air-breating hypersonic vehicles in a number of ways: First, regarding control laws synthesis, optimal gains are chosen for the previously developed control law alongside an alternate control law modified from existing literature by minimizing the Lyapunov function derivative using Monte Carlo simulation. This is followed by analysis of the robustness of the control laws in the face of system parametric uncertainties using Monte Carlo simulations. The resulting statistical distributions of the commanded response are analyzed, and linear regression is used to determine, via sensitivity analysis, which uncertain parameters have the largest impact on the desired outcome.
The Super-Linear Slope Of The Spatially-resolved Star Formation Law In NGC 3521 And NGC 5194 (m51a)
NASA Astrophysics Data System (ADS)
Liu, Guilin; Koda, J.; Calzetti, D.; Fukuhara, M.; Momose, R.
2011-01-01
We have conducted interferometric observations with CARMA and an OTF mapping with the 45-m telescope at NRO in the CO (1-0) emission line of NGC 3521. Combining these new data, together with similar data for M51a and archival SINGS H-alpha, 24um, THINGS H I and GALEX FUV data for both galaxies, we investigate the empirical scaling law that connects the surface density of star formation rate (SFR) and cold gas (the Schmidt-Kennicutt law) on a spatially-resolved basis, and find a super-linear slope when carefully subtracting the background emissions in the SFR image. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar/dust background emission to be carefully subtracted (especially in mid-IR). An approach to complete this task is presented and applied in our pixel-by-pixel analysis on both galaxies, showing that the controversial results whether the molecular S-K law is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is super-linear (1.5-1.9) at the highest available resolution (230 pc), and decreases monotonically for decreasing resolution; while the scatter (mainly intrinsic) increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both quantities are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale, they become highly consistent between the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the scale being considered, without varying amongst spiral galaxies. We obtaion slope=-1.1[log(scale/kpc)]+1.4 and scatter=-0.2 [scale/kpc]+0.7 through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. However, a larger sample of galaxies with better sensitivity, resolution and broader FoV are required to test these results.
Unusual Stiffening and Elastic Response of Polyisobutylene Nanometric Thin Films
NASA Astrophysics Data System (ADS)
Yoon, Heedong; Wigham, Caleb; McKenna, Gregory
The TTU bubble inflation technique was used to study the elastic response and unusual stiffening behavior of nanometirc polyisobutylene (PIB) films. Mechanical properties and surface tension of PIB films were measured through the strain-stress response for film thicknesses ranging from 13 nm to 126 nm. The tests were performed at room temperature, far above the glass transition temperature of PIB. It is found that the stiffening increases with decreasing film thickness, while the surface tension is independent of the film thickness. Similar to the prior bubble inflation measurements in polymeric thin films, the thickness dependence of the stiffening followed a power law behavior in this case of Ds h1.5. These results are consistent with the Ngai et al proposition that rubbery stiffening is related to the separation of the α relaxation and Rouse modes. In addition, we compare stiffening index (S) with fragility (m) based on our prior observation that the S follows a linear behavior with dynamic m. Unlike other polymeric materials seen in prior bubble inflation measurements, the S of PIB does not follow the linear behavior with m.
Second Law of Thermodynamics Applied to Metabolic Networks
NASA Technical Reports Server (NTRS)
Nigam, R.; Liang, S.
2003-01-01
We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.
Porcaro, Antonio B; Petrozziello, Aldo; Migliorini, Filippo; Lacola, Vincenzo; Romano, Mario; Sava, Teodoro; Ghimenton, Claudio; Caruso, Beatrice; Zecchini Antoniolli, Stefano; Rubilotta, Emanuele; Monaco, Carmelo; Comunale, Luigi
2011-01-01
To explore, in operated prostate cancer patients, functional relationships of total testosterone (tt) predicting free testosterone (ft) and total PSA. 128 operated prostate cancer patients were simultaneously investigated for tt, ft and PSA before surgery. Patients were not receiving 5α-reductase inhibitors, LH-releasing hormone analogues and testosterone replacement treatment. Scatter plots including ft and PSA versus tt were computed in order to assess the functional relationship of the variables. Linear regression analysis of tt predicting ft and PSA was computed. tt was a significant predictor of the response variable (ft) and different subsets of the patient population were assessed according to the ft to tt ratio. PSA was related to tt according to a nonlinear law. tt was a significant predictor of PSA according to an inversely nonlinear law and different significant clusters of the patient population were assessed according to the different constant of proportionality computed from experimental data. In our prostate cancer population, ft was significantly predicted by tt according to a linear law, and the ft/tt ratio was a significant parameter for assessing the different clusters. Also, tt was a significant variable predicting PSA by a nonlinear law and different clusters of the patient population were assessed by the different constants of proportionality. As a theory, we explain the nonlinear relation of tt in predicting PSA as follows: (a) the number of androgen-independent prostate cancer cells increases as tumor volume and PSA serum levels rise, (b) the prevalence of androgen-independent cells producing a substance which inhibits serum LH, and (c) as a result lower levels of serum tt are detected. Copyright © 2011 S. Karger AG, Basel.
Low velocity impact analysis of composite laminated plates
NASA Astrophysics Data System (ADS)
Zheng, Daihua
2007-12-01
In the past few decades polymer composites have been utilized more in structures where high strength and light weight are major concerns, e.g., aircraft, high-speed boats and sports supplies. It is well known that they are susceptible to damage resulting from lateral impact by foreign objects, such as dropped tools, hail and debris thrown up from the runway. The impact response of the structures depends not only on the material properties but also on the dynamic behavior of the impacted structure. Although commercial software is capable of analyzing such impact processes, it often requires extensive expertise and rigorous training for design and analysis. Analytical models are useful as they allow parametric studies and provide a foundation for validating the numerical results from large-scale commercial software. Therefore, it is necessary to develop analytical or semi-analytical models to better understand the behaviors of composite structures under impact and their associated failure process. In this study, several analytical models are proposed in order to analyze the impact response of composite laminated plates. Based on Meyer's Power Law, a semi-analytical model is obtained for small mass impact response of infinite composite laminates by the method of asymptotic expansion. The original nonlinear second-order ordinary differential equation is transformed into two linear ordinary differential equations. This is achieved by neglecting high-order terms in the asymptotic expansion. As a result, the semi-analytical solution of the overall impact response can be applied to contact laws with varying coefficients. Then an analytical model accounting for permanent deformation based on an elasto-plastic contact law is proposed to obtain the closed-form solutions of the wave-controlled impact responses of composite laminates. The analytical model is also used to predict the threshold velocity for delamination onset by combining with an existing quasi-static delamination criterion. The predictions are compared with experimental data and explicit finite element LS-DYNA simulation. The comparisons show reasonable agreement. Furthermore, an analytical model is developed to evaluate the combined effects of prestresses and permanent deformation based on the linearized elasto-plastic contact law and the Laplace Transform technique. It is demonstrated that prestresses do not have noticeable effects on the time history of contact force and strains, but they have significant consequences on the plate central displacement. For a impacted composite laminate with the presence of prestresses, the contact force increases with the increasing of the mass of impactor, thickness and interlaminar shear strength of the laminate. The combined analytical and numerical investigations provide validated models for elastic and elasto-plastic impact analysis of composite structures and shed light on the design of impact-resistant composite systems.
Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny
2018-03-14
Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.
NASA Astrophysics Data System (ADS)
Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny
2018-03-01
Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.
High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation
NASA Technical Reports Server (NTRS)
Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.
1999-01-01
The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.
A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.
2002-01-01
This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.
Sea-level response to abrupt ocean warming of Antarctic ice shelves
NASA Astrophysics Data System (ADS)
Pattyn, Frank
2016-04-01
Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher sensitivity compared to power-law sliding. On longer time scales, West-antarctic inter-basin connections favor nonlinear response.
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
Control law system for X-Wing aircraft
NASA Technical Reports Server (NTRS)
Lawrence, Thomas H. (Inventor); Gold, Phillip J. (Inventor)
1990-01-01
Control law system for the collective axis, as well as pitch and roll axes, of an X-Wing aircraft and for the pneumatic valving controlling circulation control blowing for the rotor. As to the collective axis, the system gives the pilot single-lever direct lift control and insures that maximum cyclic blowing control power is available in transition. Angle-of-attach de-coupling is provided in rotary wing flight, and mechanical collective is used to augment pneumatic roll control when appropriate. Automatic gain variations with airspeed and rotor speed are provided, so a unitary set of control laws works in all three X-Wing flight modes. As to pitch and roll axes, the system produces essentially the same aircraft response regardless of flight mode or condition. Undesirable cross-couplings are compensated for in a manner unnoticeable to the pilot without requiring pilot action, as flight mode or condition is changed. A hub moment feedback scheme is implemented, utilizing a P+I controller, significantly improving bandwidth. Limits protect aircraft structure from inadvertent damage. As to pneumatic valving, the system automatically provides the pressure required at each valve azimuth location, as dictated by collective, cyclic and higher harmonic blowing commands. Variations in the required control phase angle are automatically introduced, and variations in plenum pressure are compensated for. The required switching for leading, trailing and dual edge blowing is automated, using a simple table look-up procedure. Non-linearities due to valve characteristics of circulation control lift are linearized by map look-ups.
Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou
2016-05-05
The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer
1997-01-01
The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.
Interpreting Recoil for Undergraduate Students
NASA Astrophysics Data System (ADS)
Elsayed, Tarek A.
2012-04-01
The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is closely related to Newton's third law. Since the actual microscopic causes of recoil differ from one problem to another, some students (and teachers) may not be satisfied with understanding recoil through the principles of conservation of linear momentum and Newton's third law. For these students, the origin of the recoil motion should be presented in more depth.
Explosive Yield Estimation using Fourier Amplitude Spectra of Velocity Histories
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2016-12-01
The Source Physics Experiment (SPE) is a series of explosive shots of various size detonated at varying depths in a borehole in jointed granite. The testbed includes an extensive array of accelerometers for measuring the shock environment close-in to the explosive source. One goal of SPE is to develop greater understanding of the explosion phenomenology in all regimes: from near-source, non-linear response to the far-field linear elastic region, and connecting the analyses from the respective regimes. For example, near-field analysis typically involves review of kinematic response (i.e., acceleration, velocity and displacement) in the time domain and looks at various indicators (e.g., peaks, pulse duration) to facilitate comparison among events. Review of far-field data more often is based on study of response in the frequency domain to facilitate comparison of event magnitudes. To try to "bridge the gap" between approaches, we have developed a scaling law for Fourier amplitude spectra of near-field velocity histories that successfully collapses data from a wide range of yields (100 kg to 5000 kg) and range to sensors in jointed granite. Moreover, we show that we can apply this scaling law to data from a new event to accurately estimate the explosive yield of that event. This approach presents a new way of working with near-field data that will be more compatible with traditional methods of analysis of seismic data and should serve to facilitate end-to-end event analysis. The goal is that this new approach to data analysis will eventually result in improved methods for discrimination of event type (i.e., nuclear or chemical explosion, or earthquake) and magnitude.
NASA Astrophysics Data System (ADS)
Schirrer, A.; Westermayer, C.; Hemedi, M.; Kozek, M.
2013-12-01
This paper shows control design results, performance, and limitations of robust lateral control law designs based on the DGK-iteration mixed-μ-synthesis procedure for a large, flexible blended wing body (BWB) passenger aircraft. The aircraft dynamics is preshaped by a low-complexity inner loop control law providing stabilization, basic response shaping, and flexible mode damping. The μ controllers are designed to further improve vibration damping of the main flexible modes by exploiting the structure of the arising significant parameter-dependent plant variations. This is achieved by utilizing parameterized Linear Fractional Representations (LFR) of the aircraft rigid and flexible dynamics. Designs with various levels of LFR complexity are carried out and discussed, showing the achieved performance improvement over the initial controller and their robustness and complexity properties.
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Morris, D. H.; Brinson, H. F.
1981-01-01
An incremental numerical procedure based on lamination theory is developed to predict creep and creep rupture of general laminates. Existing unidirectional creep compliance and delayed failure data is used to develop analytical models for lamina response. The compliance model is based on a procedure proposed by Findley which incorporates the power law for creep into a nonlinear constitutive relationship. The matrix octahedral shear stress is assumed to control the stress interaction effect. A modified superposition principle is used to account for the varying stress level effect on the creep strain. The lamina failure model is based on a modification of the Tsai-Hill theory which includes the time dependent creep rupture strength. A linear cumulative damage law is used to monitor the remaining lifetime in each ply.
New approach for simulating groundwater flow in discrete fracture network
NASA Astrophysics Data System (ADS)
Fang, H.; Zhu, J.
2017-12-01
In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.
The analysis and large-angle control of a flexible beam using an adaptive truss
NASA Technical Reports Server (NTRS)
Warrington, Thomas J.; Clark, William W.; Robertshaw, Harry H.; Horner, C. Garnett
1991-01-01
This preliminary study of an adaptive truss slewing problem investigates the static positioning of an adaptive truss at slewed orientations and the dynamic vibrations of an attached flexible beam. A nonlinear model of an adaptive truss and flexible beam is derived. Linear control laws are developed and simulated for various truss configurations. Results show the linear control laws developed at a slewed configuration perform best at that configuration.
Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth
NASA Astrophysics Data System (ADS)
De Martino, Daniele; Masoero, Davide
2016-12-01
We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.
Plastic deformation in a metallic granular chain
NASA Astrophysics Data System (ADS)
Musson, Ryan W.; Carlson, William
2016-03-01
Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.
Regimes of heating and dynamical response in driven many-body localized systems
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene
2016-09-01
We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power law of time. We discuss the mechanisms underlying this crossover in the MBL phase. We comment on implications for the subdiffusive thermal phase near the MBL transition, and for response in imperfectly isolated MBL systems.
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389
Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.
Casals, Marc; Ottewill, Adrian
2012-09-14
Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.
Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance
NASA Astrophysics Data System (ADS)
Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema
2013-03-01
We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.
Controlling Flexible Manipulators, an Experimental Investigation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hastings, Gordon Greene
1986-01-01
Lightweight, slender manipulators offer faster response and/or greater workspace range for the same size actuators than tradional manipulators. Lightweight construction of manipulator links results in increased structural flexibility. The increase flexibility must be considered in the design of control systems to properly account for the dynamic flexible vibrations and static deflections. Real time control of the flexible manipulator vibrations are experimentally investigated. Models intended for real-time control of distributed parameter system such as flexible manipulators rely on model approximation schemes. An linear model based on the application of Lagrangian dynamics to a rigid body mode and a series of separable flexible modes is examined with respect to model order requirements, and modal candidate selection. Balanced realizations are applied to the linear flexible model to obtain an estimate of appropriate order for a selected model. Describing the flexible deflections as a linear combination of modes results in measurements of beam state, which yield information about several modes. To realize the potential of linear systems theory, knowledge of each state must be available. State estimation is also accomplished by implementation of a Kalman Filter. State feedback control laws are implemented based upon linear quadratic regulator design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holst, Bastian; French, Martin; Redmer, Ronald
2011-06-15
Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.
STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer
We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia
2011-02-01
An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.; ...
2018-04-22
Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruzzini, Matthew L.; Hall, Howard L.; Spencer, Khalil J.
Investigations of the isotope fractionation behaviors of plutonium and uranium reference standards were conducted employing platinum and rhenium (Pt/Re) porous ion emitter (PIE) sources, a relatively new thermal ionization mass spectrometry (TIMS) ion source strategy. The suitability of commonly employed, empirically developed mass bias correction laws (i.e., the Linear, Power, and Russell's laws) for correcting such isotope ratio data was also determined. Corrected plutonium isotope ratio data, regardless of mass bias correction strategy, were statistically identical to that of the certificate, however, the process of isotope fractionation behavior of plutonium using the adopted experimental conditions was determined to be bestmore » described by the Power law. Finally, the fractionation behavior of uranium, using the analytical conditions described herein, is also most suitably modeled using the Power law, though Russell's and the Linear law for mass bias correction rendered results that were identical, within uncertainty, to the certificate value.« less
Nonlinear response and avalanche behavior in metallic glasses
NASA Astrophysics Data System (ADS)
Riechers, B.; Samwer, K.
2017-08-01
The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.
NASA Astrophysics Data System (ADS)
Demourant, F.; Ferreres, G.
2013-12-01
This article presents a methodology for a linear parameter-varying (LPV) multiobjective flight control law design for a blended wing body (BWB) aircraft and results. So, the method is a direct design of a parametrized control law (with respect to some measured flight parameters) through a multimodel convex design to optimize a set of specifications on the full-flight domain and different mass cases. The methodology is based on the Youla parameterization which is very useful since closed loop specifications are affine with respect to Youla parameter. The LPV multiobjective design method is detailed and applied to the BWB flexible aircraft example.
Piecewise affine models of chaotic attractors: the Rossler and Lorenz systems.
Amaral, Gleison F V; Letellier, Christophe; Aguirre, Luis Antonio
2006-03-01
This paper proposes a procedure by which it is possible to synthesize Rossler [Phys. Lett. A 57, 397-398 (1976)] and Lorenz [J. Atmos. Sci. 20, 130-141 (1963)] dynamics by means of only two affine linear systems and an abrupt switching law. Comparison of different (valid) switching laws suggests that parameters of such a law behave as codimension one bifurcation parameters that can be changed to produce various dynamical regimes equivalent to those observed with the original systems. Topological analysis is used to characterize the resulting attractors and to compare them with the original attractors. The paper provides guidelines that are helpful to synthesize other chaotic dynamics by means of switching affine linear systems.
Digital controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.
The "normal" elongation of river basins
NASA Astrophysics Data System (ADS)
Castelltort, Sebastien
2013-04-01
The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)
Response Strength in Extreme Multiple Schedules
McLean, Anthony P; Grace, Randolph C; Nevin, John A
2012-01-01
Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess resistance to change. Contrary to the generalized matching law, logarithms of response ratios in the two components were not a linear function of log reinforcer ratios, implying a failure of parameter invariance. Over a 2 log unit range, the function appeared linear and indicated undermatching, but in conditions with more extreme reinforcer ratios, approximate matching was observed. A model suggested by McLean (1991), originally for local contrast, predicts these changes in sensitivity to reinforcer ratios somewhat better than models by Herrnstein (1970) and by Williams and Wixted (1986). Prefeeding tests of resistance to change were conducted at each reinforcer ratio, and relative resistance to change was also a nonlinear function of log reinforcer ratios, again contrary to conclusions from previous work. Instead, the function suggests that resistance to change in a component may be determined partly by the rate of reinforcement and partly by the ratio of reinforcers to responses. PMID:22287804
Discrete-time Markovian-jump linear quadratic optimal control
NASA Technical Reports Server (NTRS)
Chizeck, H. J.; Willsky, A. S.; Castanon, D.
1986-01-01
This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.
A Note on the Disturbance Decoupling Problem for Retarded Systems.
1984-10-01
disturbance decoupling problem f or linear control system is to design a feedback control law in such a way that the disturbances do not * influence...and in 141 by Pandolfi who analyses the situation in some detail. HeU concludes that for retarded systems one needs an unbounded feedback control law...ult) 6 JP is the control input, d(t) 6 AR is same disturbance, and z(t) e 3k is the output to be regularted. We assume that L is a bounded linear
NASA Astrophysics Data System (ADS)
Ponte Castañeda, Pedro
2016-11-01
This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.
Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Turski, Andrzej J.
2011-11-01
The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.
DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale
Price, Allen C.; Pilkiewicz, Kevin R.; Graham, Thomas G.W.; Song, Dan; Eaves, Joel D.; Loparo, Joseph J.
2015-01-01
Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. PMID:25992731
Control of a flexible planar truss using proof mass actuators
NASA Technical Reports Server (NTRS)
Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.
1989-01-01
A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.
High efficiency and non-Richardson thermionics in three dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao
2017-10-01
Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.
Application of modern control design methodology to oblique wing research aircraft
NASA Technical Reports Server (NTRS)
Vincent, James H.
1991-01-01
A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.
NASA Astrophysics Data System (ADS)
Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.
2013-03-01
A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Roll-Yaw control at high angle of attack by forebody tangential blowing
NASA Technical Reports Server (NTRS)
Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.
1995-01-01
The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.
Roll-yaw control at high angle of attack by forebody tangential blowing
NASA Technical Reports Server (NTRS)
Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.
1995-01-01
The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
NASA Astrophysics Data System (ADS)
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)
Perna, Andrea; Granovskiy, Boris; Garnier, Simon; Nicolis, Stamatios C.; Labédan, Marjorie; Theraulaz, Guy; Fourcassié, Vincent; Sumpter, David J. T.
2012-01-01
We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed. PMID:22829756
Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M
2004-04-01
In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.
Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.
Holly, Jan E
2004-01-01
The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component.
25 CFR 12.1 - Who is responsible for the Bureau of Indian Affairs law enforcement function?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Who is responsible for the Bureau of Indian Affairs law enforcement function? 12.1 Section 12.1 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.1 Who is responsible for the Bureau of Indian...
25 CFR 12.1 - Who is responsible for the Bureau of Indian Affairs law enforcement function?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Who is responsible for the Bureau of Indian Affairs law enforcement function? 12.1 Section 12.1 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.1 Who is responsible for the Bureau of Indian...
25 CFR 12.1 - Who is responsible for the Bureau of Indian Affairs law enforcement function?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Who is responsible for the Bureau of Indian Affairs law enforcement function? 12.1 Section 12.1 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.1 Who is responsible for the Bureau of Indian...
25 CFR 12.1 - Who is responsible for the Bureau of Indian Affairs law enforcement function?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Who is responsible for the Bureau of Indian Affairs law enforcement function? 12.1 Section 12.1 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.1 Who is responsible for the Bureau of Indian...
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
Kerckhoffs, Roy C.P.; Omens, Jeffrey; McCulloch, Andrew D.
2011-01-01
Adult cardiac muscle adapts to mechanical changes in the environment by growth and remodeling (G&R) via a variety of mechanisms. Hypertrophy develops when the heart is subjected to chronic mechanical overload. In ventricular pressure overload (e.g. due to aortic stenosis) the heart typically reacts by concentric hypertrophic growth, characterized by wall thickening due to myocyte radial growth when sarcomeres are added in parallel. In ventricular volume overload, an increase in filling pressure (e.g. due to mitral regurgitation) leads to eccentric hypertrophy as myocytes grow axially by adding sarcomeres in series leading to ventricular cavity enlargement that is typically accompanied by some wall thickening. The specific biomechanical stimuli that stimulate different modes of ventricular hypertrophy are still poorly understood. In a recent study, based on in-vitro studies in micropatterned myocyte cell cultures subjected to stretch, we proposed that cardiac myocytes grow longer to maintain a preferred sarcomere length in response to increased fiber strain and grow thicker to maintain interfilament lattice spacing in response to increased cross-fiber strain. Here, we test whether this growth law is able to predict concentric and eccentric hypertrophy in response to aortic stenosis and mitral valve regurgitation, respectively, in a computational model of the adult canine heart coupled to a closed loop model of circulatory hemodynamics. A non-linear finite element model of the beating canine ventricles coupled to the circulation was used. After inducing valve alterations, the ventricles were allowed to adapt in shape in response to mechanical stimuli over time. The proposed growth law was able to reproduce major acute and chronic physiological responses (structural and functional) when integrated with comprehensive models of the pressure-overloaded and volume-overloaded canine heart, coupled to a closed-loop circulation. We conclude that strain-based biomechanical stimuli can drive cardiac growth, including wall thickening during pressure overload. PMID:22639476
Zipf law: an extreme perspective
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-04-01
Extreme value theory (EVT) asserts that the Fréchet law emerges universally from linearly scaled maxima of collections of independent and identically distributed random variables that are positive-valued. Observations of many real-world sizes, e.g. city-sizes, give rise to the Zipf law: if we rank the sizes decreasingly, and plot the log-sizes versus the log-ranks, then an affine line emerges. In this paper we present an EVT approach to the Zipf law. Specifically, we establish that whenever the Fréchet law emerges from the EVT setting, then the Zipf law follows. The EVT generation of the Zipf law, its universality, and its associated phase transition, are analyzed and described in detail.
Spacecraft stability and control using new techniques for periodic and time-delayed systems
NASA Astrophysics Data System (ADS)
NAzari, Morad
This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.
Flight Control System Development for the BURRO Autonomous UAV
NASA Technical Reports Server (NTRS)
Colbourne, Jason D.; Frost, Chad R.; Tischler, Mark B.; Ciolani, Luigi; Sahai, Ranjana; Tomoshofski, Chris; LaMontagne, Troy; Rutkowski, Michael (Technical Monitor)
2000-01-01
Developing autonomous flying vehicles has been a growing field in aeronautical research within the last decade and will continue into the next century. With concerns about safety, size, and cost of manned aircraft, several autonomous vehicle projects are currently being developed; uninhabited rotorcraft offer solutions to requirements for hover, vertical take-off and landing, as well as slung load transportation capabilities. The newness of the technology requires flight control engineers to question what design approaches, control law architectures, and performance criteria apply to control law development and handling quality evaluation. To help answer these questions, this paper documents the control law design process for Kaman Aerospace BURRO project. This paper will describe the approach taken to design control laws and develop math models which will be used to convert the manned K-MAX into the BURRO autonomous rotorcraft. With the ability of the K-MAX to lift its own weight (6000 lb) the load significantly affects the dynamics of the system; the paper addresses the additional design requirements for slung load autonomous flight. The approach taken in this design was to: 1) generate accurate math models of the K-MAX helicopter with and without slung loads, 2) select design specifications that would deliver good performance as well as satisfy mission criteria, and 3) develop and tune the control system architecture to meet the design specs and mission criteria. An accurate math model was desired for control system development. The Comprehensive Identification from Frequency Responses (CIFER(R)) software package was used to identify a linear math model for unloaded and loaded flight at hover, 50 kts, and 100 kts. The results of an eight degree-of-freedom CIFER(R)-identified linear model for the unloaded hover flight condition are presented herein, and the identification of the two-body slung-load configuration is in progress.
NASA Astrophysics Data System (ADS)
El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane
2017-10-01
Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.
Linear network representation of multistate models of transport.
Sandblom, J; Ring, A; Eisenman, G
1982-01-01
By introducing external driving forces in rate-theory models of transport we show how the Eyring rate equations can be transformed into Ohm's law with potentials that obey Kirchhoff's second law. From such a formalism the state diagram of a multioccupancy multicomponent system can be directly converted into linear network with resistors connecting nodal (branch) points and with capacitances connecting each nodal point with a reference point. The external forces appear as emf or current generators in the network. This theory allows the algebraic methods of linear network theory to be used in solving the flux equations for multistate models and is particularly useful for making proper simplifying approximation in models of complex membrane structure. Some general properties of linear network representation are also deduced. It is shown, for instance, that Maxwell's reciprocity relationships of linear networks lead directly to Onsager's relationships in the near equilibrium region. Finally, as an example of the procedure, the equivalent circuit method is used to solve the equations for a few transport models. PMID:7093425
NASA Technical Reports Server (NTRS)
Sreenivas, Kidambi; Whitfield, David L.
1995-01-01
Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.
Discovery of Hubble's Law as a Series of Type III Errors
ERIC Educational Resources Information Center
Belenkiy, Ari
2015-01-01
Recently much attention has been paid to the history of the discovery of Hubble's law--the linear relation between the rate of recession of the remote galaxies and distance to them from Earth. Though historians of cosmology now mention several names associated with this law instead of just one, the motivation of each actor of that remarkable…
The Integration of Social-Ecological Resilience and Law
Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...
Implementation of Nonlinear Control Laws for an Optical Delay Line
NASA Technical Reports Server (NTRS)
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Effect of the material properties on the crumpling of a thin sheet.
Habibi, Mehdi; Adda-Bedia, Mokhtar; Bonn, Daniel
2017-06-07
While simple at first glance, the dense packing of sheets is a complex phenomenon that depends on material parameters and the packing protocol. We study the effect of plasticity on the crumpling of sheets of different materials by performing isotropic compaction experiments on sheets of different sizes and elasto-plastic properties. First, we quantify the material properties using a dimensionless foldability index. Then, the compaction force required to crumple a sheet into a ball as well as the average number of layers inside the ball are measured. For each material, both quantities exhibit a power-law dependence on the diameter of the crumpled ball. We experimentally establish the power-law exponents and find that both depend nonlinearly on the foldability index. However the exponents that characterize the mechanical response and morphology of the crumpled materials are related linearly. A simple scaling argument explains this in terms of the buckling of the sheets, and recovers the relation between the crumpling force and the morphology of the crumpled structure. Our results suggest a new approach to tailor the mechanical response of the crumpled objects by carefully selecting their material properties.
[Scale Relativity Theory in living beings morphogenesis: fratal, determinism and chance].
Chaline, J
2012-10-01
The Scale Relativity Theory has many biological applications from linear to non-linear and, from classical mechanics to quantum mechanics. Self-similar laws have been used as model for the description of a huge number of biological systems. Theses laws may explain the origin of basal life structures. Log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps. The existence of such a law does not mean that the role of chance in evolution is reduced, but instead that randomness and contingency may occur within a framework which may itself be structured in a partly statistical way. The scale relativity theory can open new perspectives in evolution. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
A variable structure approach to robust control of VTOL aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kramer, F.
1982-01-01
This paper examines the application of variable structure control theory to the design of a flight control system for the AV-8A Harrier in a hover mode. The objective in variable structure design is to confine the motion to a subspace of the total state space. The motion in this subspace is insensitive to system parameter variations and external disturbances that lie in the range space of the control. A switching type of control law results from the design procedure. The control system was designed to track a vector velocity command defined in the body frame. For comparison purposes, a proportional controller was designed using optimal linear regulator theory. Both control designs were first evaluated for transient response performance using a linearized model, then a nonlinear simulation study of a hovering approach to landing was conducted. Wind turbulence was modeled using a 1052 destroyer class air wake model.
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
NASA Astrophysics Data System (ADS)
Wyszkowska, Patrycja
2017-12-01
The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
Integrated structure/control law design by multilevel optimization
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Schmidt, David K.
1989-01-01
A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.
Validity of Darcy's law under transient conditions
Mongan, C.E.
1985-01-01
Darcy 's Law, which describes fluid flow through porous materials, was developed for steady flow conditions. The validity of applying this law to transient flows has been mathematically verified for most ground-water flow conditions. The verification was accomplished through application of Hankel transforms to linearized Navier-Stokes equations which described flow in a small diameter cylindrical tube. The tube was chosen to represent a single pore in a porous medium. (USGS)
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
NASA Astrophysics Data System (ADS)
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.
Nomura, Y; Hazeki, O; Tamura, M
1997-06-01
The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.
NASA Astrophysics Data System (ADS)
Desvillettes, Laurent; Lorenzani, Silvia
2012-09-01
The mechanism leading to gas damping in micro-electro-mechanical systems (MEMS) devices vibrating at high frequencies is investigated by using the linearized Boltzmann equation based on simplified kinetic models and diffuse reflection boundary conditions. Above a certain frequency of oscillation, the sound waves propagating through the gas are trapped in the gaps between the moving elements and the fixed boundaries of the microdevice. In particular, we found a scaling law, valid for all Knudsen numbers Kn (defined as the ratio between the gas mean free path and a characteristic length of the gas flow), that predicts a resonant response of the system. This response enables a minimization of the damping force exerted by the gas on the oscillating wall of the microdevice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madronich, Sasha; Kleinman, Larry; Conley, Andrew
Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less
Development of a Model Following Control Law for Inflight Simulation and Flight Controls Research
NASA Technical Reports Server (NTRS)
Takahashi, Mark; Fletcher, Jay; Aiken, Edwin W. (Technical Monitor)
1994-01-01
The U.S. Army and NASA are currently developing the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) at the Ames Research Center. RASCAL, shown in Figure 1, is a UH-60, which is being modified in a phased development program to have a research fly-by-wire flight control system, and an advanced navigation research platform. An important part of the flight controls and handling qualities research on RASCAL will be an FCS design for the aircraft to achieve high bandwidth control responses and disturbance rejection characteristics. Initially, body states will be used as feedbacks, but research into the use of rotor states will also be considered in later stages to maximize agility and maneuverability. In addition to supporting flight controls research, this FCS design will serve as the inflight simulation control law to support basic handling qualities, guidance, and displays research. Research in high bandwidth controls laws is motivated by the desire to improve the handling qualities in aggressive maneuvering and in severely degraded weather conditions. Naturally, these advantages will also improve the quality of the model following, thereby improving the inflight simulation capabilities of the research vehicle. High bandwidth in the control laws provides tighter tracking allowing for higher response bandwidths which can meet handling qualities requirements for aggressive maneuvering. System sensitivity is also reduced preventing variations in the response from the vehicle due to changing flight conditions. In addition, improved gust rejection will result from this reduced sensitivity. The gust rejection coupled with a highly stable system will make more precise maneuvering and pointing possible in severely degraded weather conditions. The difficulty in achieving higher bandwidths from the control laws in the feedback and in the responses arises from the complexity of the models that are needed to produce a satisfactory design. In this case, high quality models that include rotor dynamics in a physically meaningful context must be available. A non-physical accounting of the rotor, such as lumping the effect as a time delay, is not likely to produce the desired results. High order simulation models based on first principals are satisfactory for the initial design phase in order to work out the control law design concept and get an initial set of gains. These models, however, have known deficiencies, which must be resolved in the final control law design. The error in the pitch-roll cross coupling is one notable deficiency that even sophisticated rotorcraft models including complex wake aerodynamics have yet to capture successfully. This error must be accounted for to achieve the desired decoupling. The approach to design the proposed inflight simulation control law is based on using a combination of simulation and identified models. The linear and nonlinear higher order models were used to develop an explicit model following control structure. This structure was developed to accommodate the design of control laws compliant to many of the quantitative requirements in ADS-33C. Furthermore, it also allows for control law research using rotor-state feedback and other design methodologies such as Quantitative Feedback and H-Infinity. Final gain selection will be based on higher order identified models which include rotor degrees of freedom.
Flight control synthesis for flexible aircraft using Eigenspace assignment
NASA Technical Reports Server (NTRS)
Davidson, J. B.; Schmidt, D. K.
1986-01-01
The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.
25 CFR 12.1 - Who is responsible for the Bureau of Indian Affairs law enforcement function?
Code of Federal Regulations, 2010 CFR
2010-04-01
..., the Deputy Commissioner, is responsible for Bureau of Indian Affairs-operated and contracted law... 25 Indians 1 2010-04-01 2010-04-01 false Who is responsible for the Bureau of Indian Affairs law enforcement function? 12.1 Section 12.1 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND...
Isogeometric Kirchhoff-Love shell formulations for biological membranes
Tepole, Adrián Buganza; Kabaria, Hardik; Bletzinger, Kai-Uwe; Kuhl, Ellen
2015-01-01
Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on linear isotropic materials, while biological tissues are characterized by a nonlinear anisotropic stress-strain response. Here we present a thin shell formulation for thin biological membranes. We derive the equilibrium equations using curvilinear convective coordinates on NURBS tensor product surface patches. We linearize the weak form of the generic linear momentum balance without a particular choice of a constitutive law. We then incorporate the constitutive equations that have been designed specifically for collagenous tissues. We explore three common anisotropic material models: Mooney-Rivlin, May Newmann-Yin, and Gasser-Ogden-Holzapfel. Our work will allow scientists in biomechanics and mechanobiology to adopt the constitutive equations that have been developed for solid three-dimensional soft tissues within the framework of isogeometric thin shell analysis. PMID:26251556
NASA Astrophysics Data System (ADS)
Tarasov, V. N.; Boyarkina, I. V.
2017-06-01
Analytical calculation methods of dynamic processes of the self-propelled boom hydraulic machines working equipment are more preferable in comparison with numerical methods. The analytical research method of dynamic processes of the boom hydraulic machines working equipment by means of differential equations of acceleration and braking of the working equipment is proposed. The real control law of a hydraulic distributor electric spool is considered containing the linear law of the electric spool activation and stepped law of the electric spool deactivation. Dependences of dynamic processes of the working equipment on reduced mass, stiffness of hydraulic power cylinder, viscous drag coefficient, piston acceleration, pressure in hydraulic cylinders, inertia force are obtained. Definite recommendations relative to the reduction of dynamic loads, appearing during the working equipment control are considered as the research result. The nature and rate of parameter variations of the speed and piston acceleration dynamic process depend on the law of the ports opening and closure of the hydraulic distributor electric spool. Dynamic loads in the working equipment are decreased during a smooth linear activation of the hydraulic distributor electric spool.
Bryan's effect and anisotropic nonlinear damping
NASA Astrophysics Data System (ADS)
Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.
2018-03-01
In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.
NASA Astrophysics Data System (ADS)
Nutku, Y.
1985-06-01
We point out a class of nonlinear wave equations which admit infinitely many conserved quantities. These equations are characterized by a pair of exact one-forms. The implication that they are closed gives rise to equations, the characteristics and Riemann invariants of which are readily obtained. The construction of the conservation laws requires the solution of a linear second-order equation which can be reduced to canonical form using the Riemann invariants. The hodograph transformation results in a similar linear equation. We discuss also the symplectic structure and Bäcklund transformations associated with these equations.
Learning physics in a water park
NASA Astrophysics Data System (ADS)
Cabeza, Cecilia; Rubido, Nicolás; Martí, Arturo C.
2014-03-01
Entertaining and educational experiments that can be conducted in a water park, illustrating physics concepts, principles and fundamental laws, are described. These experiments are suitable for students ranging from senior secondary school to junior university level. Newton’s laws of motion, Bernoulli’s equation, based on the conservation of energy, buoyancy, linear and non-linear wave propagation, turbulence, thermodynamics, optics and cosmology are among the topics that can be discussed. Commonly available devices like smartphones, digital cameras, laptop computers and tablets, can be used conveniently to enable accurate calculation and a greater degree of engagement on the part of students.
Triangle based TVD schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn
1990-01-01
A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.
Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices
NASA Astrophysics Data System (ADS)
Benaych-Georges, Florent; Guionnet, Alice; Male, Camille
2014-07-01
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.
43 CFR 422.5 - Responsibilities of the Law Enforcement Administrator.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Responsibilities of the Law Enforcement Administrator. 422.5 Section 422.5 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR LAW ENFORCEMENT AUTHORITY AT BUREAU OF RECLAMATION PROJECTS Responsibilities § 422.5 Responsibilities of...
Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law
NASA Astrophysics Data System (ADS)
Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang
2017-04-01
This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.
Paper-cutting operations using scissors in Drury's law tasks.
Yamanaka, Shota; Miyashita, Homei
2018-05-01
Human performance modeling is a core topic in ergonomics. In addition to deriving models, it is important to verify the kinds of tasks that can be modeled. Drury's law is promising for path tracking tasks such as navigating a path with pens or driving a car. We conducted an experiment based on the observation that paper-cutting tasks using scissors resemble such tasks. The results showed that cutting arc-like paths (1/4 of a circle) showed an excellent fit with Drury's law (R 2 > 0.98), whereas cutting linear paths showed a worse fit (R 2 > 0.87). Since linear paths yielded better fits when path amplitudes were divided (R 2 > 0.99 for all amplitudes), we discuss the characteristics of paper-cutting operations using scissors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comments Regarding the Binary Power Law for Heterogeneity of Disease Incidence
USDA-ARS?s Scientific Manuscript database
The binary power law (BPL) has been successfully used to characterize heterogeneity (over dispersion or small-scale aggregation) of disease incidence for many plant pathosystems. With the BPL, the log of the observed variance is a linear function of the log of the theoretical variance for a binomial...
Code of Federal Regulations, 2010 CFR
2010-07-01
... reporting requirements and the control of expenditures. (b) Contracts for law enforcement services, as... responsibilities of the State or local law enforcement agencies. (d) Contract law enforcement personnel shall not... regulations shall remain the responsibility of the Corps of Engineers. (e) Contracts for increased law...
NASA Technical Reports Server (NTRS)
Adams, W. M., Jr.; Tiffany, S. H.
1983-01-01
A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.
Quantitative fault tolerant control design for a hydraulic actuator with a leaking piston seal
NASA Astrophysics Data System (ADS)
Karpenko, Mark
Hydraulic actuators are complex fluid power devices whose performance can be degraded in the presence of system faults. In this thesis a linear, fixed-gain, fault tolerant controller is designed that can maintain the positioning performance of an electrohydraulic actuator operating under load with a leaking piston seal and in the presence of parametric uncertainties. Developing a control system tolerant to this class of internal leakage fault is important since a leaking piston seal can be difficult to detect, unless the actuator is disassembled. The designed fault tolerant control law is of low-order, uses only the actuator position as feedback, and can: (i) accommodate nonlinearities in the hydraulic functions, (ii) maintain robustness against typical uncertainties in the hydraulic system parameters, and (iii) keep the positioning performance of the actuator within prescribed tolerances despite an internal leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. Experimental tests verify the functionality of the fault tolerant control under normal and faulty operating conditions. The fault tolerant controller is synthesized based on linear time-invariant equivalent (LTIE) models of the hydraulic actuator using the quantitative feedback theory (QFT) design technique. A numerical approach for identifying LTIE frequency response functions of hydraulic actuators from acceptable input-output responses is developed so that linearizing the hydraulic functions can be avoided. The proposed approach can properly identify the features of the hydraulic actuator frequency response that are important for control system design and requires no prior knowledge about the asymptotic behavior or structure of the LTIE transfer functions. A distributed hardware-in-the-loop (HIL) simulation architecture is constructed that enables the performance of the proposed fault tolerant control law to be further substantiated, under realistic operating conditions. Using the HIL framework, the fault tolerant hydraulic actuator is operated as a flight control actuator against the real-time numerical simulation of a high-performance jet aircraft. A robust electrohydraulic loading system is also designed using QFT so that the in-flight aerodynamic load can be experimentally replicated. The results of the HIL experiments show that using the fault tolerant controller to compensate the internal leakage fault at the actuator level can benefit the flight performance of the airplane.
FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols
Madronich, Sasha; Kleinman, Larry; Conley, Andrew; ...
2015-12-17
Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less
China's Marriage Law: a model for family responsibilities and relationships.
Hare-Mustin, R T
1982-12-01
China's Marriage Law of 1981 is presented with a brief commentary. The law encompasses the responsibilities of spouses, parents, children, grandparents, and siblings to one another. The new law is contrasted with the 1950 Marriage Law, which prohibited such feudal practices of former times as arranged marriages and child betrothals. The 1981 law is concerned with equality and the lawful needs of women, children, and the aged. Family planning is encouraged. Divorce is made easier to obtain. Adoptees and stepchildren are provided for. The law provides a legislative model for personal relationships.
Computing Linear Mathematical Models Of Aircraft
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.
1991-01-01
Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.
DNA motion capture reveals the mechanical properties of DNA at the mesoscale.
Price, Allen C; Pilkiewicz, Kevin R; Graham, Thomas G W; Song, Dan; Eaves, Joel D; Loparo, Joseph J
2015-05-19
Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Strength computation of forged parts taking into account strain hardening and damage
NASA Astrophysics Data System (ADS)
Cristescu, Michel L.
2004-06-01
Modern non-linear simulation software, such as FORGE 3 (registered trade mark of TRANSVALOR), are able to compute the residual stresses, the strain hardening and the damage during the forging process. A thermally dependent elasto-visco-plastic law is used to simulate the behavior of the material of the hot forged piece. A modified Lemaitre law coupled with elasticiy, plasticity and thermic is used to simulate the damage. After the simulation of the different steps of the forging process, the part is cooled and then virtually machined, in order to obtain the finished part. An elastic computation is then performed to equilibrate the residual stresses, so that we obtain the true geometry of the finished part after machining. The response of the part to the loadings it will sustain during it's life is then computed, taking into account the residual stresses, the strain hardening and the damage that occur during forging. This process is illustrated by the forging, virtual machining and stress analysis of an aluminium wheel hub.
Generalized hydrodynamics and non-equilibrium steady states in integrable many-body quantum systems
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Bulchandani, Vir; Karrasch, Christoph; Moore, Joel
The long-time dynamics of thermalizing many-body quantum systems can typically be described in terms of a conventional hydrodynamics picture that results from the decay of all but a few slow modes associated with standard conservation laws (such as particle number, energy, or momentum). However, hydrodynamics is expected to fail for integrable systems that are characterized by an infinite number of conservation laws, leading to unconventional transport properties and to complex non-equilibrium states beyond the traditional dogma of statistical mechanics. In this talk, I will describe recent attempts to understand such stationary states far from equilibrium using a generalized hydrodynamics picture. I will discuss the consistency of ``Bethe-Boltzmann'' kinetic equations with linear response Drude weights and with density-matrix renormalization group calculations. This work was supported by the Department of Energy through the Quantum Materials program (R. V.), NSF DMR-1206515, AFOSR MURI and a Simons Investigatorship (J. E. M.), DFG through the Emmy Noether program KA 3360/2-1 (C. K.).
Variational formulation for dissipative continua and an incremental J-integral
NASA Astrophysics Data System (ADS)
Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.
2018-01-01
Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.
Unruh effect for general trajectories
NASA Astrophysics Data System (ADS)
Obadia, N.; Milgrom, M.
2007-03-01
We consider two-level detectors coupled to a scalar field and moving on arbitrary trajectories in Minkowski space-time. We first derive a generic expression for the response function using a (novel) regularization procedure based on the Feynman prescription that is explicitly causal, and we compare it to other expressions used in the literature. We then use this expression to study, analytically and numerically, the time dependence of the response function in various nonstationarity situations. We show that, generically, the response function decreases like a power in the detector’s level spacing, E, for high E. It is only for stationary worldlines that the response function decays faster than any power law, in keeping with the known exponential behavior for some stationary cases. Under some conditions the (time-dependent) response function for a nonstationary worldline is well approximated by the value of the response function for a stationary worldline having the same instantaneous acceleration, torsion, and hypertorsion. While we cannot offer general conditions for this to apply, we discuss special cases; in particular, the low-energy limit for linear space trajectories.
43 CFR 422.6 - Responsibilities of the Chief Law Enforcement Officer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Responsibilities of the Chief Law Enforcement Officer. 422.6 Section 422.6 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR LAW ENFORCEMENT AUTHORITY AT BUREAU OF RECLAMATION PROJECTS Responsibilities § 422.6 Responsibilities of...
Energy dissipation in polymer-polymer adhesion contacts
NASA Astrophysics Data System (ADS)
Garif, Yev Skip
This study focuses on self-adhesion in elastomers as a way of approaching a broader polymer adhesion problem. The model systems studied are cross-linked acrylic pressure-sensitive adhesives (PSA-LNs) synthesized to attain four surface types: neutral, acidic, basic, and polar. As the study progressed, it distinguished itself as the first of its kind to consistently report the effect of temperature on measurable intrinsic parameters of polymer adhesion. The main goal of the study was to understand why the magnitude of the practical adhesion energies of the four PSA-LN systems tested varies disproportionately greater than their respective surface energies. To achieve this goal, continuous sweeps of adhesion energy as a function of rate of interfacial separation were performed using three different adhesion-probing techniques--- peel, micro-scratch, and normal contact. The answer was found in the sub-micron-per-second limit of separation rates. In approaching this limit, the power law behavior of adhesion gradually transitioned into a linear region of markedly weaker sensitivity to rate. Referred to as the "intrinsic window", this linear region was characterized by three parameters: (1) the intrinsic adhesion energy at zero rate of separation; (2) the intrinsic rate sensitivity equal to the proportionality constant of the linear fit; and (3) the critical separation rate in the middle of the transition to the power law. All three were found to be thermally activated. Activation energies suggested that interfacial processes are attributed mainly to dispersive and electrostatic molecular interactions such as hydrogen bonding or van der Waals attraction. Comparative analysis of the intrinsic window of the four PSA-LNs tested showed that an increase in the intrinsic adhesion energy associated with higher surface energy is inherently coupled with an increase in the intrinsic rate sensitivity and reduction in the critical separation rate. When combined, the three parameters reshape the intrinsic window such that the entire power-law portion of the adhesion response is shifted to a level that appears disproportionately high based on the false assumption that there is only one intrinsic parameter contributing to the shift. Thus, the goal of explaining this disproportionality was achieved.
Universal modal radiation laws for all thermal emitters
Zhu, Linxiao; Fan, Shanhui
2017-01-01
We derive four laws relating the absorptivity and emissivity of thermal emitters. Unlike the original Kirchhoff radiation law derivations, these derivations include diffraction, and so are valid also for small objects, and can also cover nonreciprocal objects. The proofs exploit two recent approaches. First, we express all fields in terms of the mode-converter basis sets of beams; these sets, which can be uniquely established for any linear optical object, give orthogonal input beams that are coupled one-by-one to orthogonal output beams. Second, we consider thought experiments using universal linear optical machines, which allow us to couple appropriate beams and black bodies. Two of these laws can be regarded as rigorous extensions of previously known laws: One gives a modal version of a radiation law for reciprocal objects—the absorptivity of any input beam equals the emissivity into the “backward” (i.e., phase-conjugated) version of that beam; another gives the overall equality of the sums of the emissivities and the absorptivities for any object, including nonreciprocal ones. The other two laws, valid for reciprocal and nonreciprocal objects, are quite different from previous relations. One shows universal equivalence of the absorptivity of each mode-converter input beam and the emissivity into its corresponding scattered output beam. The other gives unexpected equivalences of absorptivity and emissivity for broad classes of beams. Additionally, we prove these orthogonal mode-converter sets of input and output beams are the ones that maximize absorptivities and emissivities, respectively, giving these beams surprising additional physical meaning. PMID:28396436
Microturbulence in HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi
1993-08-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
NASA Astrophysics Data System (ADS)
Liu, Jian; Xu, Rui
2018-04-01
Chaotic synchronisation has caused extensive attention due to its potential application in secure communication. This paper is concerned with the problem of adaptive synchronisation for two different kinds of memristor-based neural networks with time delays in leakage terms. By applying set-valued maps and differential inclusions theories, synchronisation criteria are obtained via linear matrix inequalities technique, which guarantee drive system being synchronised with response system under adaptive control laws. Finally, a numerical example is given to illustrate the feasibility of our theoretical results, and two schemes for secure communication are introduced based on chaotic masking method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.
2016-04-14
Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.
Hidden Area and Mechanical Nonlinearities in Freestanding Graphene.
Nicholl, Ryan J T; Lavrik, Nickolay V; Vlassiouk, Ivan; Srijanto, Bernadeta R; Bolotin, Kirill I
2017-06-30
We investigated the effect of out-of-plane crumpling on the mechanical response of graphene membranes. In our experiments, stress was applied to graphene membranes using pressurized gas while the strain state was monitored through two complementary techniques: interferometric profilometry and Raman spectroscopy. By comparing the data obtained through these two techniques, we determined the geometric hidden area which quantifies the crumpling strength. While the devices with hidden area ∼0% obeyed linear mechanics with biaxial stiffness 428±10 N/m, specimens with hidden area in the range 0.5%-1.0% were found to obey an anomalous nonlinear Hooke's law with an exponent ∼0.1.
Hidden Area and Mechanical Nonlinearities in Freestanding Graphene
NASA Astrophysics Data System (ADS)
Nicholl, Ryan J. T.; Lavrik, Nickolay V.; Vlassiouk, Ivan; Srijanto, Bernadeta R.; Bolotin, Kirill I.
2017-06-01
We investigated the effect of out-of-plane crumpling on the mechanical response of graphene membranes. In our experiments, stress was applied to graphene membranes using pressurized gas while the strain state was monitored through two complementary techniques: interferometric profilometry and Raman spectroscopy. By comparing the data obtained through these two techniques, we determined the geometric hidden area which quantifies the crumpling strength. While the devices with hidden area ˜0 % obeyed linear mechanics with biaxial stiffness 428 ±10 N /m , specimens with hidden area in the range 0.5%-1.0% were found to obey an anomalous nonlinear Hooke's law with an exponent ˜0.1 .
34 CFR 81.5 - Authority and responsibility of an Administrative Law Judge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Authority and responsibility of an Administrative Law... PROVISIONS ACT-ENFORCEMENT General Provisions § 81.5 Authority and responsibility of an Administrative Law... the proceedings and the conduct of the parties to ensure a fair, expeditious, and economical...
Extraction of phase information in daily stock prices
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshi; Maekawa, Satoshi
2000-06-01
It is known that, in an intermediate time-scale such as days, stock market fluctuations possess several statistical properties that are common to different markets. Namely, logarithmic returns of an asset price have (i) truncated Pareto-Lévy distribution, (ii) vanishing linear correlation, (iii) volatility clustering and its power-law autocorrelation. The fact (ii) is a consequence of nonexistence of arbitragers with simple strategies, but this does not mean statistical independence of market fluctuations. Little attention has been paid to temporal structure of higher-order statistics, although it contains some important information on market dynamics. We applied a signal separation technique, called Independent Component Analysis (ICA), to actual data of daily stock prices in Tokyo and New York Stock Exchange (TSE/NYSE). ICA does a linear transformation of lag vectors from time-series to find independent components by a nonlinear algorithm. We obtained a similar impulse response for these dataset. If it were a Martingale process, it can be shown that impulse response should be a delta-function under a few conditions that could be numerically checked and as was verified by surrogate data. This result would provide information on the market dynamics including speculative bubbles and arbitrating processes. .
A finite nonlinear hyper-viscoelastic model for soft biological tissues.
Panda, Satish Kumar; Buist, Martin Lindsay
2018-03-01
Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid) or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable to properly capture the materials characteristics because hyperelastic models are unsuited for time-dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite strain viscoelastic tissue responses. The convolution integral based models can demonstrate a finite viscoelastic response; however, their derivations are not consistent with the laws of thermodynamics. The aim of this work was to develop a three-dimensional finite hyper-viscoelastic model for soft tissues using a thermodynamically consistent approach. In addition, a nonlinear function, dependent on strain and strain rate, was adopted to capture the nonlinear variation of viscosity during a loading process. To demonstrate the efficacy and versatility of this approach, the model was used to recreate the experimental results performed on different types of soft tissues. In all the cases, the simulation results were well matched (R 2 ⩾0.99) with the experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Predictive IP controller for robust position control of linear servo system.
Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi
2016-07-01
Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
The relation of turbulence to diffusion in open-channel flows
Keefer, Thomas N.
1971-01-01
The exponent in the power-law equation describing the decay of scalar quantities downstream of a jet is a linear function of the shear velocity of the channel. The length of the core region of a jet is a power-law function of the jet strength with the exponent depending on boundary roughness.
Stoichiometric network theory for nonequilibrium biochemical systems.
Qian, Hong; Beard, Daniel A; Liang, Shou-dan
2003-02-01
We introduce the basic concepts and develop a theory for nonequilibrium steady-state biochemical systems applicable to analyzing large-scale complex isothermal reaction networks. In terms of the stoichiometric matrix, we demonstrate both Kirchhoff's flux law sigma(l)J(l)=0 over a biochemical species, and potential law sigma(l) mu(l)=0 over a reaction loop. They reflect mass and energy conservation, respectively. For each reaction, its steady-state flux J can be decomposed into forward and backward one-way fluxes J = J+ - J-, with chemical potential difference deltamu = RT ln(J-/J+). The product -Jdeltamu gives the isothermal heat dissipation rate, which is necessarily non-negative according to the second law of thermodynamics. The stoichiometric network theory (SNT) embodies all of the relevant fundamental physics. Knowing J and deltamu of a biochemical reaction, a conductance can be computed which directly reflects the level of gene expression for the particular enzyme. For sufficiently small flux a linear relationship between J and deltamu can be established as the linear flux-force relation in irreversible thermodynamics, analogous to Ohm's law in electrical circuits.
Plowes, Nicola J.R; Adams, Eldridge S
2005-01-01
Lanchester's models of attrition describe casualty rates during battles between groups as functions of the numbers of individuals and their fighting abilities. Originally developed to describe human warfare, Lanchester's square law has been hypothesized to apply broadly to social animals as well, with important consequences for their aggressive behaviour and social structure. According to the square law, the fighting ability of a group is proportional to the square of the number of individuals, but rises only linearly with fighting ability of individuals within the group. By analyzing mortality rates of fire ants (Solenopsis invicta) fighting in different numerical ratios, we provide the first quantitative test of Lanchester's model for a non-human animal. Casualty rates of fire ants were not consistent with the square law; instead, group fighting ability was an approximately linear function of group size. This implies that the relative numbers of casualties incurred by two fighting groups are not strongly affected by relative group sizes and that battles do not disproportionately favour group size over individual prowess. PMID:16096093
On the stabilization of decentralized control systems.
NASA Technical Reports Server (NTRS)
Wang, S.-H.; Davison, E. J.
1973-01-01
This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.
NASA Technical Reports Server (NTRS)
Wendel, Thomas R.; Boland, Joseph R.; Hahne, David E.
1991-01-01
Flight-control laws are developed for a wind-tunnel aircraft model flying at a high angle of attack by using a synthesis technique called direct eigenstructure assignment. The method employs flight guidelines and control-power constraints to develop the control laws, and gain schedules and nonlinear feedback compensation provide a framework for considering the nonlinear nature of the attack angle. Linear and nonlinear evaluations show that the control laws are effective, a conclusion that is further confirmed by a scale model used for free-flight testing.
Threshold law for positron-atom impact ionisation
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.
Numerical Studies into Flow Profiles in Confined Lubricant
NASA Astrophysics Data System (ADS)
di Mare, Luca; Ponjavic, Aleks; Wong, Janet
2013-03-01
This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.
COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, David F.; Winther, Hans A.
2011-05-20
In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less
Spacecraft flight control with the new phase space control law and optimal linear jet select
NASA Technical Reports Server (NTRS)
Bergmann, E. V.; Croopnick, S. R.; Turkovich, J. J.; Work, C. C.
1977-01-01
An autopilot designed for rotation and translation control of a rigid spacecraft is described. The autopilot uses reaction control jets as control effectors and incorporates a six-dimensional phase space control law as well as a linear programming algorithm for jet selection. The interaction of the control law and jet selection was investigated and a recommended configuration proposed. By means of a simulation procedure the new autopilot was compared with an existing system and was found to be superior in terms of core memory, central processing unit time, firings, and propellant consumption. But it is thought that the cycle time required to perform the jet selection computations might render the new autopilot unsuitable for existing flight computer applications, without modifications. The new autopilot is capable of maintaining attitude control in the presence of a large number of jet failures.
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters
Phibbs, Suzanne; Kenney, Christine; Rivera-Munoz, Graciela; Severinsen, Christina; Curtis, Bruce
2018-01-01
The Inverse Care Law is principally concerned with the effect of market forces on health care which create inequities in access to health services through privileging individuals who possess the forms of social capital that are valued within health care settings. The fields of disaster risk reduction need to consider the ways in which inequities, driven by economic and social policy as well as institutional decision-making, create vulnerabilities prior to a disaster, which are then magnified post disaster through entrenched structural differences in access to resources. Drawing on key principles within the Inverse Care Law, the Inverse Response Law refers to the idea that people in lower socio-economic groups are more likely to be impacted and to experience disparities in service provision during the disaster response and recovery phase. In a market model of recovery, vulnerable groups struggle to compete for necessary services creating inequities in adaptive capacity as well as in social and wellbeing outcomes over time. Both the Inverse Care Law and the Inverse Response Law focus on the structural organisation of services at a macro level. In this article, the Inverse Care Law is outlined, its application to medical treatment following disasters considered and an explanation of the Inverse Response Law provided. Case studies from recent disasters, in London, New Zealand, Puerto Rico and Mexico City are examined in order to illustrate themes at work relating to the Inverse Response Law. PMID:29734692
The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters.
Phibbs, Suzanne; Kenney, Christine; Rivera-Munoz, Graciela; Huggins, Thomas J; Severinsen, Christina; Curtis, Bruce
2018-05-04
The Inverse Care Law is principally concerned with the effect of market forces on health care which create inequities in access to health services through privileging individuals who possess the forms of social capital that are valued within health care settings. The fields of disaster risk reduction need to consider the ways in which inequities, driven by economic and social policy as well as institutional decision-making, create vulnerabilities prior to a disaster, which are then magnified post disaster through entrenched structural differences in access to resources. Drawing on key principles within the Inverse Care Law, the Inverse Response Law refers to the idea that people in lower socio-economic groups are more likely to be impacted and to experience disparities in service provision during the disaster response and recovery phase. In a market model of recovery, vulnerable groups struggle to compete for necessary services creating inequities in adaptive capacity as well as in social and wellbeing outcomes over time. Both the Inverse Care Law and the Inverse Response Law focus on the structural organisation of services at a macro level. In this article, the Inverse Care Law is outlined, its application to medical treatment following disasters considered and an explanation of the Inverse Response Law provided. Case studies from recent disasters, in London, New Zealand, Puerto Rico and Mexico City are examined in order to illustrate themes at work relating to the Inverse Response Law.
Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.
2018-05-01
A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.
Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study.
Gires, P Y; Danker, G; Misbah, C
2012-07-01
Interactions between two vesicles in an imposed linear shear flow are studied theoretically, in the limit of almost spherical vesicles, with a large intervesicle distance, in a strong flow, with a large inner to outer viscosity ratio. This allows to derive a system of ordinary equations describing the dynamics of the two vesicles. We provide an analytic expression for the interaction law. We find that when the vesicles are in the same shear plane, the hydrodynamic interaction leads to a repulsion. When they are not, the interaction may turn into attraction instead. The interaction law is discussed and analyzed as a function of relevant parameters.
Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.
NASA Technical Reports Server (NTRS)
Burns, John A.; Marrekchi, Hamadi
1993-01-01
The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.
NASA Astrophysics Data System (ADS)
Kladis, Georgios P.; Menon, Prathyush P.; Edwards, Christopher
2016-12-01
This article proposes a systematic analysis for a tracking problem which ensures cooperation amongst a swarm of unmanned aerial vehicles (UAVs), modelled as nonlinear systems with linear and angular velocity constraints, in order to achieve different goals. A distributed Takagi-Sugeno (TS) framework design is adopted for the representation of the nonlinear model of the dynamics of the UAVs. The distributed control law which is introduced is composed of both node and network level information. Firstly, feedback gains are synthesised using a parallel distributed compensation (PDC) control law structure, for a collection of isolated UAVs; ignoring communications among the swarm. Then secondly, based on an alternation-like procedure, the resulting feedback gains are used to determine Lyapunov matrices which are utilised at network level to incorporate into the control law, the relative differences in the states of the vehicles, and to induce cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The control synthesis is performed using tools from linear control theory: in particular the design criteria are posed as linear matrix inequalities (LMIs). An example based on a UAV tracking scenario is included to outline the efficacy of the approach.
Friction laws at the nanoscale.
Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela
2009-02-26
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.
The matching law in and within groups of rats1
Graft, D. A.; Lea, S. E. G.; Whitworth, T. L.
1977-01-01
In each of the two experiments, a group of five rats lived in a complex maze containing four small single-lever operant chambers. In two of these chambers, food was available on variable-interval schedules of reinforcement. In Experiment I, nine combinations of variable intervals were used, and the aggregate lever-pressing rates (by the five rats together) were studied. The log ratio of the rates in the two chambers was linearly related to the log ratio of the reinforcement rates in them; this is an instance of Herrnstein's matching law, as generalized by Baum. Summing over the two food chambers, food consumption decreased, and response output increased, as the time required to earn each pellet increased. In Experiment II, the behavior of individual rats was observed by time-sampling on selected days, while different variable-interval schedules were arranged in the two chambers where food was available. Individual lever-pressing rates for the rats were obtained, and their median bore the same “matching” relationship to the reinforcement rates as the group aggregate in Experiment I. There were differences between the rats in their distribution of time and responses between the two food chambers; these differences were correlated with differences in the proportions of reinforcements the rats obtained from each chamber. PMID:16811975
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
On Faraday's law in the presence of extended conductors
NASA Astrophysics Data System (ADS)
Bilbao, Luis
2018-06-01
The use of Faraday's Law of induction for calculating the induced currents in an extended conducting body is discussed. In a general case with arbitrary geometry, the solution to the problem of a moving metal object in the presence of a magnetic field is difficult and implies solving Maxwell's equations in a time-dependent situation. In many cases, including cases with good conductors (but not superconductors) Ampère's Law can be neglected and a simpler solution based solely in Faraday's law can be obtained. The integral form of Faraday's Law along any loop in the conducting body is equivalent to a Kirkhhoff's voltage law of a circuit. Therefore, a numerical solution can be obtained by solving a linear system of equations corresponding to a discrete number of loops in the body.
Comparative study of flare control laws. [optimal control of b-737 aircraft approach and landing
NASA Technical Reports Server (NTRS)
Nadkarni, A. A.; Breedlove, W. J., Jr.
1979-01-01
A digital 3-D automatic control law was developed to achieve an optimal transition of a B-737 aircraft between various initial glid slope conditions and the desired final touchdown condition. A discrete, time-invariant, optimal, closed-loop control law presented for a linear regulator problem, was extended to include a system being acted upon by a constant disturbance. Two forms of control laws were derived to solve this problem. One method utilized the feedback of integral states defined appropriately and augmented with the original system equations. The second method formulated the problem as a control variable constraint, and the control variables were augmented with the original system. The control variable constraint control law yielded a better performance compared to feedback control law for the integral states chosen.
Law 20-30: Teacher Resource Manual.
ERIC Educational Resources Information Center
King, John; Jackson, Landis
Law 20, in the Alberta (Canada) educational system, is an introductory course with three core modules: (1) "Nature of Law and Civil Law System," (2) "Contract Law," and (3) "Family Law." Law 30 consists of (1) "Basic Rights and Responsibilities," (2) "Labour Law," and (3) "Property Law."…
Lü, Yongjun; Cheng, Hao; Chen, Min
2012-06-07
The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni(95)Si(5), Ni(90)Si(10), and the glass transitions of Ni(80)Si(20) and Ni(75)Si(25). The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni(95)Si(5) and Ni(90)Si(10). For the two glass-forming alloys, Ni(80)Si(20) and Ni(75)Si(25), the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.
NASA Astrophysics Data System (ADS)
Lü, Yongjun; Cheng, Hao; Chen, Min
2012-06-01
The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni95Si5, Ni90Si10, and the glass transitions of Ni80Si20 and Ni75Si25. The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni95Si5 and Ni90Si10. For the two glass-forming alloys, Ni80Si20 and Ni75Si25, the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.
A characterization of persistence at short times in the WFC3/IR detector
NASA Astrophysics Data System (ADS)
Gennaro, M.; Bajaj, V.; Long, K.
2018-05-01
Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.
An Initial evaluation of law enforcement overdose training in Rhode Island.
Saucier, Cory D; Zaller, Nickolas; Macmadu, Alexandria; Green, Traci C
2016-05-01
To assess initial change in knowledge, self-efficacy, and anticipated behaviors among Rhode Island law enforcement officers on drug overdose response and prevention. Law enforcement officers (N=316) voluntarily completed a pre-post evaluation immediately before and after taking part in overdose prevention and response trainings. Assessment items included measures of knowledge (Brief Overdose Recognition and Response Assessment (BORRA)), self-efficacy, attitudes toward drugs and overdose prevention, awareness of the Good Samaritan Law, and open-ended items pertaining to overdose knowledge and response behaviors. Non-parametric tests measured within-group and between-group differences. Wilcoxon Signed Rank tests and Kruskal-Wallis tests evaluated changes in BORRA scores and self-efficacy items. McNemar's tests assessed changes regarding the Good Samaritan law and open-ended items. Wilcoxon Signed Rank tests measured post-training change in attitudes. Law enforcement officers demonstrated statistically significant improvements in self-efficacy (identifying signs of opioid overdose, naloxone indication, counseling witnesses in overdose prevention, and referring witnesses for more information), overdose identification knowledge (BORRA mean increased from 7.00 to 10.39), naloxone administration knowledge (BORRA mean increased from 10.15 to 12.59), Good Samaritan Law awareness (17.9% increase after training), and anticipated behaviors in response to future observed overdose (65.7% changed from passive to active response post training). Harm reduction programs can provide law enforcement officers with the knowledge and skills necessary to intervene and reduce overdose mortality. Given the statistically significant improvements in self-efficacy, attitudinal changes, and Good Samaritan law awareness, law enforcement officers are more prepared to actively interact with drug users during a drug-involved emergency. Copyright © 2016. Published by Elsevier Ireland Ltd.
Apparatus for Teaching Physics: Linearizing a Nonlinear Spring.
ERIC Educational Resources Information Center
Wagner, Glenn
1995-01-01
Describes a method to eliminate the nonlinearity from a spring that is used in experimental verification of Hooke's Law where students are asked to determine the force constant and the linear equation that describes the extension of the spring as a function of the mass placed on it. (JRH)
On the universality of power laws for tokamak plasma predictions
NASA Astrophysics Data System (ADS)
Garcia, J.; Cambon, D.; Contributors, JET
2018-02-01
Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.
ERIC Educational Resources Information Center
Reynolds, Matthew R.
2013-01-01
The linear loadings of intelligence test composite scores on a general factor ("g") have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the "g" loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of…
Logarithmic and power law input-output relations in sensory systems with fold-change detection.
Adler, Miri; Mayo, Avi; Alon, Uri
2014-08-01
Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.
Self-consistent modeling of electrochemical strain microscopy of solid electrolytes
Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; ...
2014-10-10
Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less
Study of a pursuit-evasion guidance law for high performance aircraft
NASA Technical Reports Server (NTRS)
Williams, Peggy S.; Menon, P. K. A.; Antoniewicz, Robert F.; Duke, Eugene L.
1989-01-01
The study of a one-on-one aircraft pursuit-evasion guidance scheme for high-performance aircraft is discussed. The research objective is to implement a guidance law derived earlier using differential game theory in conjunction with the theory of feedback linearization. Unlike earlier research in this area, the present formulation explicitly recognizes the two-sided nature of the pursuit-evasion scenario. The present research implements the guidance law in a realistic model of a modern high-performance fighter aircraft. Also discussed are the details of the guidance law, implementation in a highly detailed simulation of a high-performance fighter, and numerical results for two engagement geometries. Modifications of the guidance law for onboard implementation is also discussed.
Flutter suppression digital control law design and testing for the AFW wind tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1994-01-01
The design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and it also involved control law order reduction, a gain root-locus study, and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Flutter suppression digital control law design and testing for the AFW wind tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1992-01-01
Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory, and involved control law order reduction, a gain root-locus study and use of previous experimental results. A 23 percent increase in the open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
Flutter suppression digital control law design and testing for the AFW wind-tunnel model
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1992-01-01
Design of a control law for simultaneously suppressing the symmetric and antisymmetric flutter modes of a string mounted fixed-in-roll aeroelastic wind tunnel model is described. The flutter suppression control law was designed using linear quadratic Gaussian theory and involved control law order reduction, a gain root-locus study, and the use of previous experimental results. A 23 percent increase in open-loop flutter dynamic pressure was demonstrated during the wind tunnel test. Rapid roll maneuvers at 11 percent above the symmetric flutter boundary were also performed when the model was in a free-to-roll configuration.
NASA Astrophysics Data System (ADS)
Chakraborty, Ahana; Sensarma, Rajdeep
2018-03-01
The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.
Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J
2016-09-01
Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lytra, A.; Pelekasis, N.
2018-03-01
The static response of coated microbubbles is investigated with a novel approach employed for modeling contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aqueous film is formed, which transfers the force onto the shell. An interaction potential describes the local pressure applied on the shell. The problem is solved in axisymmetric form with the finite element method. The response is governed by the dimensionless bending, k^ b=kb/(χ R02 ), pressure, P^ A=(PAR0 )/χ , and interaction potential, W ^ =w0/χ . Hard polymeric shells have negligible resistance to gas compression, while for the softer lipid shells gas compressibility is comparable with shell elasticity. As the external force increases, numerical simulations reveal that the force versus deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner) regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov) regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested, buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas compression and area dilatation form the dominant balance providing a nonlinear regime with an O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the shell mechanical properties.
Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique
2015-01-01
Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-26
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-01-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287
NASA Astrophysics Data System (ADS)
Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.
1990-05-01
A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.
A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.
Algorithms for adaptive stochastic control for a class of linear systems
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R. V.
1977-01-01
Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.
Flynn, Sarah McQueary; Schipper, Lindsey J; Roach, Abbey R; Segerstrom, Suzanne C
2009-07-01
Law students show significant deficits in emotional and physical well-being compared with groups of students in other areas of higher education. Furthermore, evidence suggests that these effects may be worse for women than for men. The use of active coping can positively affect immunity under stress, but this may be most true for men in the context of law school. The current study examined the delayed-type hypersensitivity (DTH) skin responses of first-year law students (n=121) and a comparison group (n=30). Students' health behaviors, self-evaluative emotions, and coping strategies were also reported. Male law students had larger DTH responses than females, but this gender effect was not present in the comparison group. Endorsement of perseverance under stress (n=19), an active coping strategy, moderated the gender effect on immunity. Perseverance associated with larger DTH responses and more positive self-evaluative emotion, but only among men. These results indicate that active coping may be less efficacious for women than for men in law school, which in turn may limit women's opportunities to attenuate negative effects of law school.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Density fluctuation in HT-6M tokamak by CO2 laser scattering
NASA Astrophysics Data System (ADS)
Zeng, Lei; Cao, Jinxiang; Zhu, Guoliang; Ding, Weixing; Yu, Chang-Xuan; Zhang, Daqing; Li, Youyi
1993-09-01
The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a wide range of nqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time (tau) E decreases with the fluctuation level increasing in the region where (tau) E linearly increases with nq0.5a and satisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.
Listing triangles in expected linear time on a class of power law graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann
Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less
Energetically consistent collisional gyrokinetics
Burby, J. W.; Brizard, A. J.; Qin, H.
2015-10-30
Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.
A Zero-One Dichotomy Theorem for r-Semi-Stable Laws on Infinite Dimensional Linear Spaces.
1978-10-01
SEMISTABLE LAWS - LIKE STABLE ONES - ARE CONTINUOUS: i.e. THEY ASSIGN’ ZERO MASS TO SIIMGLETONS.. DD 172 1 1473 sov’ow as, IMail , 62 i 1 SOee..S $.M 0 102 LfP.Of 4 6601 1ECIuatY CLASSI’PICA1 130N 00 1 100 0449 (W%4 Dma rwer
Pettersen, Klas H.; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T.
2014-01-01
Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation. PMID:25393030
Pettersen, Klas H; Lindén, Henrik; Tetzlaff, Tom; Einevoll, Gaute T
2014-11-01
Power laws, that is, power spectral densities (PSDs) exhibiting 1/f(α) behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency 1/f(α) power laws with power-law exponents analytically identified as α∞(I) = 1/2 for the soma membrane current, α∞(p) = 3/2 for the current-dipole moment, and α∞(V) = 2 for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink (1/f) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how 1/f(α) power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
The rotational feedback on linear-momentum balance in glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Martinec, Zdenek; Hagedoorn, Jan
2015-04-01
The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial-isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea-level equation, has been mathematically described by the sea-level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea-level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar motion response to the GIA process and the rotationally-induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea-level change between these situations since the Last Glacial Maximum reaches values of ± 25 m and ± 1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10% in areas of former or ongoing glaciation, but by up to 50% at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada, and along the Chinese, Australian, or Argentinian coastlines.
The rotational feedback on linear-momentum balance in glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Hagedoorn, Jan
2014-12-01
The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea level change between these situations since the Last Glacial Maximum reaches values of ±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian or Argentinian coastlines.
ERIC Educational Resources Information Center
Data Quality Campaign, 2011
2011-01-01
Under security breach response laws, businesses--and sometimes state and governmental agencies--are required to inform individuals when the security, confidentiality or integrity of their personal information has been compromised. This resource provides a state-by-state analysis of security breach response laws. [The Data Quality Campaign has…
A class of stabilizing controllers for flexible multibody systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.
1995-01-01
The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry
NASA Astrophysics Data System (ADS)
Jaouen, Stéphane
2007-07-01
In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Dark Energy and the Hubble Law
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.
The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.
Self-consistent description of a system of interacting phonons
NASA Astrophysics Data System (ADS)
Poluektov, Yu. M.
2015-11-01
A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.
A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.
2011-01-01
Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.
Amiad Pavlov, Daria; Landesberg, Amir
2016-01-01
The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antidote: Civic Responsibility. Maine Law.
ERIC Educational Resources Information Center
Phi Alpha Delta Law Fraternity International, Washington, DC.
Designed for middle school through high school students, this unit contains eight lesson plans that focus on Maine state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student, or…
Antidote: Civic Responsibility. Illinois Law.
ERIC Educational Resources Information Center
Phi Alpha Delta Law Fraternity International, Washington, DC.
Designed for middle school through high school students, this unit contains eight lesson plans that focus on Illinois state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student,…
Antidote: Civic Responsibility. Alaska Law.
ERIC Educational Resources Information Center
Phi Alpha Delta Law Fraternity International, Washington, DC.
Designed for middle school through high school students, this unit contains eight lesson plans that focus on Alaska state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students." Developed to be presented by educators, law student,…
Law enforcement attitudes toward overdose prevention and response.
Green, Traci C; Zaller, Nickolas; Palacios, Wilson R; Bowman, Sarah E; Ray, Madeline; Heimer, Robert; Case, Patricia
2013-12-01
Law enforcement is often the first to respond to medical emergencies in the community, including overdose. Due to the nature of their job, officers have also witnessed first-hand the changing demographic of drug users and devastating effects on their community associated with the epidemic of nonmedical prescription opioid use in the United States. Despite this seminal role, little data exist on law enforcement attitudes toward overdose prevention and response. We conducted key informant interviews as part of a 12-week Rapid Assessment and Response (RAR) process that aimed to better understand and prevent nonmedical prescription opioid use and overdose deaths in locations in Connecticut and Rhode Island experiencing overdose "outbreaks." Interviews with 13 law enforcement officials across three study sites were analyzed to uncover themes on overdose prevention and naloxone. Findings indicated support for law enforcement involvement in overdose prevention. Hesitancy around naloxone administration by laypersons was evident. Interview themes highlighted officers' feelings of futility and frustration with their current overdose response options, the lack of accessible local drug treatment, the cycle of addiction, and the pervasiveness of easily accessible prescription opioid medications in their communities. Overdose prevention and response, which for some officers included law enforcement-administered naloxone, were viewed as components of community policing and good police-community relations. Emerging trends, such as existing law enforcement medical interventions and Good Samaritan Laws, suggest the need for broader law enforcement engagement around this pressing public health crisis, even in suburban and small town locations, to promote public safety. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Law enforcement attitudes toward overdose prevention and response
Green, Traci C.; Zaller, Nickolas; Palacios, Wilson R.; Bowman, Sarah E.; Ray, Madeline; Heimer, Robert; Case, Patricia
2014-01-01
Background Law enforcement is often the first to respond to medical emergencies in the community, including overdose. Due to the nature of their job, officers have also witnessed first-hand the changing demographic of drug users and devastating effects on their community associated with the epidemic of nonmedical prescription opioid use in the United States. Despite this seminal role, little data exist on law enforcement attitudes toward overdose prevention and response. Methods We conducted key informant interviews as part of a 12-week Rapid Assessment and Response (RAR) process that aimed to better understand and prevent nonmedical prescription opioid use and overdose deaths in locations in Connecticut and Rhode Island experiencing overdose “outbreaks.” Interviews with 13 law enforcement officials across three study sites were analyzed to uncover themes on overdose prevention and naloxone. Results Findings indicated support for law enforcement involvement in overdose prevention. Hesitancy around naloxone administration by laypersons was evident. Interview themes highlighted officers’ feelings of futility and frustration with their current overdose response options, the lack of accessible local drug treatment, the cycle of addiction, and the pervasiveness of easily accessible prescription opioid medications in their communities. Overdose prevention and response, which for some officers included law enforcement-administered naloxone, were viewed as components of community policing and good police-community relations. Conclusion Emerging trends, such as existing law enforcement medical interventions and Good Samaritan Laws, suggest the need for broader law enforcement engagement around this pressing public health crisis, even in suburban and small town locations, to promote public safety. PMID:24051061
Prescription opioid forgery: reporting to law enforcement and protection of medical information.
Singh, Naileshni; Fishman, Scott; Rich, Ben; Orlowski, Anna
2013-06-01
To review confidentiality requirements of prescribers who become aware of a forged prescription. A case is reviewed in which a prescriber believes that a prescription has been forged. The literature and law related to prescription forgery and confidentiality are reviewed. Although prescription forgery is a crime, the prescriber's responsibility for reporting to law enforcement is not clear under current state and federal law. Federal laws and regulations, including the Health Insurance Portability and Accountability Act (HIPAA), do not permit prescribers in all circumstances to disclose prescription fraud to law enforcement. Under common circumstances, HIPAA may prohibit prescribers from reporting prescription forgery to law enforcement. However, collaborating with a dispensing pharmacist may offer a lawful pathway to reporting prescription forgery. State legislature may consider laws that clarify the reporting responsibilities of prescribers in cases of prescription forgery. Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.
2015-09-01
In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.
Freedom and Responsibility in First Amendment Theory: Defamation Law and Media Credibility.
ERIC Educational Resources Information Center
Hunsaker, David M.
1979-01-01
Explores the concepts of freedom and responsibility in the context of First Amendment theory through an examination of the interrelationships between defamation law, access to media, and media credibility. Calls for a reassessment of the importance of defamation law in First Amendment theory. (JMF)
Code of Federal Regulations, 2013 CFR
2013-07-01
... law enforcement, immigration, and Department of State officials under the Trafficking Victims... and responsibilities of federal law enforcement, immigration, and Department of State officials under... trafficking in persons as early as possible in the investigation and prosecution process, to ensure efforts...
Code of Federal Regulations, 2011 CFR
2011-07-01
... law enforcement, immigration, and Department of State officials under the Trafficking Victims... and responsibilities of federal law enforcement, immigration, and Department of State officials under... trafficking in persons as early as possible in the investigation and prosecution process, to ensure efforts...
Code of Federal Regulations, 2012 CFR
2012-07-01
... law enforcement, immigration, and Department of State officials under the Trafficking Victims... and responsibilities of federal law enforcement, immigration, and Department of State officials under... trafficking in persons as early as possible in the investigation and prosecution process, to ensure efforts...
Code of Federal Regulations, 2014 CFR
2014-07-01
... law enforcement, immigration, and Department of State officials under the Trafficking Victims... and responsibilities of federal law enforcement, immigration, and Department of State officials under... trafficking in persons as early as possible in the investigation and prosecution process, to ensure efforts...
Responses to the Law: A Word of Caution.
ERIC Educational Resources Information Center
Parr, Preston; Buchanan, E. T.
1979-01-01
Universities have faced a wave of legalism. The lowering of the legal age of adulthood and the case law revolution that led to the death of "in loco parentis" implies a greater responsibility by the institution. Together, deans and lawyers must work to support the law and institutional purposes. (Author/CMG)
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
43 CFR 4.1114 - Advancement of proceedings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... law judge or the Board, any party filing a motion under this section shall— (1) Make the motion in... statement in response to the motion. (e) Following the timely receipt by the administrative law judge of statements in response to the motion, the administrative law judge may schedule a hearing regarding the...
Galland, Paul
2002-09-01
The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work.
Quadratic correlation filters for optical correlators
NASA Astrophysics Data System (ADS)
Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.
2003-08-01
Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.
Fitts' Law? a Test of the Relationship Between Information Load and Movement Precision
NASA Technical Reports Server (NTRS)
Zalaski, M.; Sanderson, P.
1984-01-01
The independence of information load (Hick's Law) and movement precision (Fitts' Law) was tested using additive factors methodology. Subjects were required to classify stimuli according to a decision rule with a variable entropy. The stimuli were presented in the center of the CRT screen. In response, subjects had to move a cursor from a starting point near the stimulus to the appropriate target. The precision of the response movement was varied by manipulating the ratio of the radius of the annulus to the width of the target area. The dependent measure was elapsed time between onset of the stimulus and completion of the response movement. Independence of the Hick's Law and Fitts' Law components of the reaction time was tested with an analysis of variance. Presence of an interaction would suggest that a decision stage and a response stage are dependent, and cannot be considered discrete steps in a serial process.
Flynn, Sarah McQueary; Schipper, Lindsey J.; Roach, Abbey R.; Segerstrom, Suzanne C.
2009-01-01
Law students show significant deficits in emotional and physical well-being compared with groups of students in other areas of higher education. Furthermore, evidence suggests that these effects may be worse for women than for men. The use of active coping can positively affect immunity under stress, but this may be most true for men in the context of law school. The current study examined the delayed-type hypersensitivity (DTH) skin responses of first year law students (n=121) and a comparison group (n=30). Students' health behaviors, self-evaluative emotions, and coping strategies were also reported. Male law students had larger DTH responses than females, but this gender effect was not present in the comparison group. Endorsement of perseverance under stress (n = 19), an active coping strategy, moderated the gender effect on immunity. Perseverance associated with larger DTH responses and more positive self-evaluative emotion, but only among men. These results indicate that active coping may be less efficacious for women than for men in law school, which in turn may limit women's opportunities to attenuate negative effects of law school. PMID:19162169
Some observations on boundary conditions for numerical conservation laws
NASA Technical Reports Server (NTRS)
Kamowitz, David
1988-01-01
Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.
Dynamics and thermodynamics of linear quantum open systems.
Martinez, Esteban A; Paz, Juan Pablo
2013-03-29
We analyze the evolution of the quantum state of networks of quantum oscillators coupled with arbitrary external environments. We show that the reduced density matrix of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the long time regime demonstrating two main results: First, we show that it is impossible to build a quantum absorption refrigerator using linear networks (thus, nonlinearity is an essential resource for such refrigerators recently studied by Levy and Kosloff [Phys. Rev. Lett. 108, 070604 (2012)] and Levy et al. [Phys. Rev. B 85, 061126 (2012)]). Then, we show that the third law imposes constraints on the low frequency behavior of the environmental spectral densities.
Waveform Design for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Clerckx, Bruno; Bayguzina, Ekaterina
2016-12-01
Far-field Wireless Power Transfer (WPT) has attracted significant attention in recent years. Despite the rapid progress, the emphasis of the research community in the last decade has remained largely concentrated on improving the design of energy harvester (so-called rectenna) and has left aside the effect of transmitter design. In this paper, we study the design of transmit waveform so as to enhance the DC power at the output of the rectenna. We derive a tractable model of the non-linearity of the rectenna and compare with a linear model conventionally used in the literature. We then use those models to design novel multisine waveforms that are adaptive to the channel state information (CSI). Interestingly, while the linear model favours narrowband transmission with all the power allocated to a single frequency, the non-linear model favours a power allocation over multiple frequencies. Through realistic simulations, waveforms designed based on the non-linear model are shown to provide significant gains (in terms of harvested DC power) over those designed based on the linear model and over non-adaptive waveforms. We also compute analytically the theoretical scaling laws of the harvested energy for various waveforms as a function of the number of sinewaves and transmit antennas. Those scaling laws highlight the benefits of CSI knowledge at the transmitter in WPT and of a WPT design based on a non-linear rectenna model over a linear model. Results also motivate the study of a promising architecture relying on large-scale multisine multi-antenna waveforms for WPT. As a final note, results stress the importance of modeling and accounting for the non-linearity of the rectenna in any system design involving wireless power.
ERIC Educational Resources Information Center
Treglia, Joseph V.
2013-01-01
This dissertation identifies what may be done to overcome barriers to information sharing among federal, tribal, state, and local law enforcement agencies and emergency responders. Social, technical, and policy factors related to information sharing and collaboration in the law enforcement and emergency response communities are examined. This…
It's the Law: Student's Rights and Responsibilities!
ERIC Educational Resources Information Center
Oklahoma Bar Association, Oklahoma City.
Secondary-level learning activities dealing with youth and the law are included in this resource guide. Although the guide was written specifically for use in Oklahoma schools, it can, with modifications, serve as a model for other states. There are seven sections dealing with youth and: employment law, business rights and responsibilities,…
12 CFR 308.29 - Summary disposition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 509.29 - Summary disposition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 308.29 - Summary disposition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 109.29 - Summary disposition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 263.29 - Summary disposition.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 509.29 - Summary disposition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 263.29 - Summary disposition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 263.29 - Summary disposition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 509.29 - Summary disposition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 109.29 - Summary disposition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 509.29 - Summary disposition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 308.29 - Summary disposition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 109.29 - Summary disposition.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 263.29 - Summary disposition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
12 CFR 308.29 - Summary disposition.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a matter of law. (b) Filing of motions and responses. (1) Any party who believes that there is no... administrative law judge, may file a response to such motion. (2) A motion for summary disposition must be... administrative law judge may hear oral argument on the motion for summary disposition. (d) Decision on motion...
Ferreira, Iuri E P; Zocchi, Silvio S; Baron, Daniel
2017-11-01
Reliable fertilizer recommendations depend on the correctness of the crop production models fitted to the data, but generally the crop models are built empirically, neglecting important physiological aspects related with response to fertilizers, or they are based in laws of plant mineral nutrition seen by many authors as conflicting theories: the Liebig's Law of the Minimum and Mitscherlich's Law of Diminishing Returns. We developed a new approach to modelling the crop response to fertilizers that reconcile these laws. In this study, the Liebig's Law is applied at the cellular level to explain plant production and, as a result, crop models compatible with the Law of Diminishing Returns are derived. Some classical crop models appear here as special cases of our methodology, and a new interpretation for Mitscherlich's Law is also provided. Copyright © 2017 Elsevier Inc. All rights reserved.
A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1998-01-01
This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.
Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu
2015-08-01
The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
Regularization of Grad’s 13 -Moment-Equations in Kinetic Gas Theory
2011-01-01
variant of the moment method has been proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum- entropy 10-moment system has been used...small amplitude linear waves, the R13 system is linearly stable in time for all modes and wave lengths. The instability of the Burnett system indicates...Boltzmann equation. Related to the problem of global hyperbolicity is the questions of the existence of an entropy law for the R13 system . In the linear
Medical responsibility in the United Arab Emirates.
Benomran, Fawzi
2010-05-01
Medical responsibility in the United Arab Emirates was formerly defined and governed according to Law 7 of 1975 for the practice of medical professions, which had been a part of civil law. The passing of Law 10 of 2008, namely the "Law on Medical Responsibility in UAE", enacted on 16th December 2008 created a new framework to deal with this issue. One of its provisions required medical practitioners to hold insurance policies, so that insurance companies pays damages to the plaintiff (patient) injured as a result of a physicians' negligence. This paper outlines the issue of medical responsibility and medical negligence. The author's translation of the new law into English is included so that its full text is available for the readers, especially expatriate doctors working in the UAE. Where appropriate, a brief comparison between the old law and new laws is also presented. The objective of this paper is to provide medical practitioners with basic information about the subject in general and to this legislation in particular. It is mandatory for doctors to realize inherent risks involved in the course of their practice. A basic knowledge of the law is required to avoid pitfalls and to safeguard oneself against errors arising from ignorance of the duties and rights of the professional person. Copyright (c) 2009 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The Fourth Law of Motion in Classical Mechanics and Electrodynamics
NASA Astrophysics Data System (ADS)
Pinheiro, Mario J.
2010-01-01
Newton's second law has limited scope of application when transient phenomena are at stake. We endeavor here to consider a modification of Newton's second law in order to take into account sudden change (surge) of angular momentum or linear momentum. It is shown that space react back according to a kind of induction law that is related to inertia, but also appears to give evidence of a "fluidic" nature of space itself. The back-reaction is quantified by the time rate of the angular momentum flux threading a surface, mass dependent, and bearing similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects, thus giving evidence of the property of vacuum polarization, a phenomena which is relative to local space. It is formulated a kind of (qualitative) Lenz law that gives an explanation to precession.
Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions
Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun
2015-01-01
We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.
NASA Astrophysics Data System (ADS)
Fontana, Robert E.; Decad, Gary M.
2018-05-01
This paper describes trends in the storage technologies associated with Linear Tape Open (LTO) Tape cartridges, hard disk drives (HDD), and NAND Flash based storage devices including solid-state drives (SSD). This technology discussion centers on the relationship between cost/bit and bit density and, specifically on how the Moore's Law perception that areal density doubling and cost/bit halving every two years is no longer being achieved for storage based components. This observation and a Moore's Law Discussion are demonstrated with data from 9-year storage technology trends, assembled from publically available industry reporting sources.
Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun
We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.
Active vibration control with model correction on a flexible laboratory grid structure
NASA Technical Reports Server (NTRS)
Schamel, George C., II; Haftka, Raphael T.
1991-01-01
This paper presents experimental and computational comparisons of three active damping control laws applied to a complex laboratory structure. Two reduced structural models were used with one model being corrected on the basis of measured mode shapes and frequencies. Three control laws were investigated, a time-invariant linear quadratic regulator with state estimation and two direct rate feedback control laws. Experimental results for all designs were obtained with digital implementation. It was found that model correction improved the agreement between analytical and experimental results. The best agreement was obtained with the simplest direct rate feedback control.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Guidance strategies and analysis for low thrust navigation
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1973-01-01
A low-thrust guidance algorithm suitable for operational use was formulated. A constrained linear feedback control law was obtained using a minimum terminal miss criterion and restricting control corrections to constant changes for specified time periods. Both fixed- and variable-time-of-arrival guidance were considered. The performance of the guidance law was evaluated by applying it to the approach phase of the 1980 rendezvous mission with the comet Encke.
ERIC Educational Resources Information Center
Ruckle, L. J.; Belloni, M.; Robinett, R. W.
2012-01-01
The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
29 CFR 801.72 - Responsibility of the Office of Administrative Law Judges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Responsibility of the Office of Administrative Law Judges. 801.72 Section 801.72 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative Proceedings Modification Or Vacation of Decision...
Addressing the Gap between Case Law and Professional Practice: A Response to Zirkel
ERIC Educational Resources Information Center
Smith, Carl; Katsiyannis, Antonis; Ryan, Joseph
2014-01-01
In this article, authors Carl Smith, Antonis Katsiyannis, and Joseph Ryan respond to Zirkel's most recent article, "The Law in the Special Education Literature: A Brief Legal Critique," published in this issue of "Behavioral Disorders." Smith, Katsiyannis, and Ryan begin their response by saying that "The Law in the…
Shuttle entry guidance revisited
NASA Technical Reports Server (NTRS)
Mease, Kenneth D.; Kremer, Jean-Paul
1992-01-01
The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.
NASA Astrophysics Data System (ADS)
Leys, Jan; Losada-Pérez, Patricia; Cordoyiannis, George; Cerdeiriña, Claudio A.; Glorieux, Christ; Thoen, Jan
2010-03-01
Detailed results are reported for the dielectric constant ɛ as a function of temperature, concentration, and frequency near the upper critical point of the binary liquid mixture nitrobenzene-tetradecane. The data have been analyzed in the context of the recently developed concept of complete scaling. It is shown that the amplitude of the low frequency critical Maxwell-Wagner relaxation (with a relaxation frequency around 10 kHz) along the critical isopleth is consistent with the predictions of a droplet model for the critical fluctuations. The temperature dependence of ɛ in the homogeneous phase can be well described with a combination of a (1-α) power law term (with α the heat capacity critical exponent) and a linear term in reduced temperature with the Ising value for α. For the proper description of the temperature dependence of the difference Δɛ between the two coexisting phases below the critical temperature, it turned out that good fits with the Ising value for the order parameter exponent β required the addition of a corrections-to-scaling contribution or a linear term in reduced temperature. Good fits to the dielectric diameter ɛd require a (1-α) power law term, a 2β power law term (in the past considered as spurious), and a linear term in reduced temperature, consistent with complete scaling.
NASA Astrophysics Data System (ADS)
Im, Kyungjae; Elsworth, Derek; Marone, Chris; Leeman, John
2017-12-01
Interseismic frictional healing is an essential process in the seismic cycle. Observations of both natural and laboratory earthquakes demonstrate that the magnitude of stress drop scales with the logarithm of recurrence time, which is a cornerstone of the rate and state friction (RSF) laws. However, the origin of this log linear behavior and short time "cutoff" for small recurrence intervals remains poorly understood. Here we use RSF laws to demonstrate that the back-projected time of null-healing intrinsically scales with the initial frictional state θi. We explore this behavior and its implications for (1) the short-term cutoff time of frictional healing and (2) the connection between healing rates derived from stick-slip sliding versus slide-hold-slide tests. We use a novel, continuous solution of RSF for a one-dimensional spring-slider system with inertia. The numerical solution continuously traces frictional state evolution (and healing) and shows that stick-slip cutoff time also scales with frictional state at the conclusion of the dynamic slip process θi (=Dc/Vpeak). This numerical investigation on the origins of stick-slip response is verified by comparing laboratory data for a range of peak slip velocities. Slower slip motions yield lesser magnitude of friction drop at a given time due to higher frictional state at the end of each slip event. Our results provide insight on the origin of log linear stick-slip evolution and suggest an approach to estimating the critical slip distance on faults that exhibit gradual accelerations, such as for slow earthquakes.
A simple smoothness indicator for the WENO scheme with adaptive order
NASA Astrophysics Data System (ADS)
Huang, Cong; Chen, Li Li
2018-01-01
The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.
Gain optimization with non-linear controls
NASA Technical Reports Server (NTRS)
Slater, G. L.; Kandadai, R. D.
1984-01-01
An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.
Strength of smoke-free air laws and indoor air quality.
Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J
2009-04-01
Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.
Strength of smoke-free air laws and indoor air quality
Hahn, Ellen J.; Robertson, Heather E.; Vogel, Suzann L.; Travers, Mark J.
2009-01-01
Introduction: Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Methods: Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 μm aerodynamic diameter or smaller (PM2.5) were obtained. Results: When comprehensive smoke-free air laws were implemented, indoor PM2.5 concentrations decreased significantly from 161 to 20 μg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM2.5 concentrations were 304 μg/m3 before the law, 338 μg/m3 after the partial law, and 9 μg/m3 after the comprehensive law. Discussion: The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM2.5 levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke. PMID:19346510
Di Landro, Andrea R
2012-06-01
The paper is divided into three parts. The first part sets out the comparative differences between the tort of malpractice in common law and the criminal negligence in civil law: while the common law takes for mens rea only the "gross" negligence, and rarely medical negligence, other law systems instead (and particularly Italian law) criminalize also ordinary negligence, frequently in medical malpractice cases. The second part of the paper addresses the pluses of using criminal law as response to medical malpractice: inadequate medical self-policing and "repeat offenders" problems are analysed, in the perspective of the patient, of the doctor, of the insurance company, and of the community. The third part addresses the minuses of the criminal law as response: medical "shame and blame" mentality, criminal stigma and culture of fear are disincentives to incident reporting and to system analysis (the most important means of prevention); "defensive medicine" and "courts-abiding medicine" are managed not yet in the patient's exclusive interest, but in the egoistic/utilitarian aim to avoid denunciations; finally, the uncertainty of the medicine, the accusatory system and the proof "beyond a reasonable doubt" seem hardly compatible with each other.
NASA Technical Reports Server (NTRS)
Christhilf, David M.; Pototzky, Anthony S.; Stevens, William L.
2010-01-01
The Simulink-based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) was modified to incorporate linear models representing aeroservoelastic characteristics of the SemiSpan SuperSonic Transport (S4T) wind-tunnel model. The S4T planform is for a Technology Concept Aircraft (TCA) design from the 1990s. The model has three control surfaces and is instrumented with accelerometers and strain gauges. Control laws developed for wind-tunnel testing for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression System functions were implemented in the simulation. The simulation models open- and closed-loop response to turbulence and to control excitation. It provides time histories for closed-loop stable conditions above the open-loop flutter boundary. The simulation is useful for assessing the potential impact of closed-loop control rate and position saturation. It also provides a means to assess fidelity of system identification procedures by providing time histories for a known plant model, with and without unmeasured turbulence as a disturbance. Sets of linear models representing different Mach number and dynamic pressure conditions were implemented as MATLAB Linear Time Invariant (LTI) objects. Configuration changes were implemented by selecting which LTI object to use in a Simulink template block. A limited comparison of simulation versus wind-tunnel results is shown.
Control of a lithium-ion battery storage system for microgrid applications
NASA Astrophysics Data System (ADS)
Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol
2014-12-01
The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.
Exploring corrections to the Optomechanical Hamiltonian.
Sala, Kamila; Tufarelli, Tommaso
2018-06-14
We compare two approaches for deriving corrections to the "linear model" of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law's microscopic model, which we take as the "true" system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model.
The mathematical formulation of a generalized Hooke's law for blood vessels.
Zhang, Wei; Wang, Chong; Kassab, Ghassan S
2007-08-01
It is well known that the stress-strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic-exponential (log-exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola-Kirchhoff stresses by differentiating the potential with respect to the log-exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log-exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log-exp strains. In this paper, the proposed linear stress-strain relation is shown to represent the pseudoelastic Fung model very well.
50 CFR 10.22 - Law enforcement offices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Law enforcement offices. 10.22 Section 10... GENERAL PROVISIONS Addresses § 10.22 Law enforcement offices. Service law enforcement offices and their areas of responsibility follow. Mail should be addressed: “Assistant Regional Director, Division of Law...
Profiling Campus Administration: A Demographic Survey of Campus Police Chiefs
ERIC Educational Resources Information Center
Linebach, Jared A.; Kovacsiss, Lea M.; Tesch, Brian P.
2011-01-01
Campus law enforcement faces unique challenges, as there are different societal expectations compared to municipal law enforcement. Municipal law enforcement models typically focus on traditionally reactive law and order, while campus law enforcement models typically focus on proactive responses to crime and its deterrence. Stressors experienced…
Iyer, Rugmani Padmanabhan; Jung, Mira; Lindsey, Merry L
Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of molecular, cellular, and functional alterations that are both part of the wound healing response to form a scar in the infarct region and the consequence of that response. Using the laws of thermodynamics as an analogy, we present here three laws for categorizing the post-MI LV remodeling process. The first law is that the LV will attempt to maintain equilibrium and compensate as a way to maximize function, the second law is that remodeling is progressive and unidirectional, and the third law is that the final goal is (ideally, but not always achievable) a stable, equilibrated scar. This comparison helps to define the boundaries of the system, whether it be the infarct zone, the LV, the heart, or the entire body. This review provides an overview for those not directly in the field and establishes a framework to help prioritize future research directions.
Iyer, Rugmani Padmanabhan; Jung, Mira; Lindsey, Merry L
2016-01-01
Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of molecular, cellular, and functional alterations that are both part of the wound healing response to form a scar in the infarct region and the consequence of that response. Using the laws of thermodynamics as an analogy, we present here three laws for categorizing the post-MI LV remodeling process. The first law is that the LV will attempt to maintain equilibrium and compensate as a way to maximize function, the second law is that remodeling is progressive and unidirectional, and the third law is that the final goal is (ideally, but not always achievable) a stable, equilibrated scar. This comparison helps to define the boundaries of the system, whether it be the infarct zone, the LV, the heart, or the entire body. This review provides an overview for those not directly in the field and establishes a framework to help prioritize future research directions. PMID:27376092
NASA Astrophysics Data System (ADS)
Ream, Allen E.; Slattery, John C.; Cizmas, Paul G. A.
2018-04-01
This paper presents a new method for determining the Arrhenius parameters of a reduced chemical mechanism such that it satisfies the second law of thermodynamics. The strategy is to approximate the progress of each reaction in the reduced mechanism from the species production rates of a detailed mechanism by using a linear least squares method. A series of non-linear least squares curve fittings are then carried out to find the optimal Arrhenius parameters for each reaction. At this step, the molar rates of production are written such that they comply with a theorem that provides the sufficient conditions for satisfying the second law of thermodynamics. This methodology was used to modify the Arrhenius parameters for the Westbrook and Dryer two-step mechanism and the Peters and Williams three-step mechanism for methane combustion. Both optimized mechanisms showed good agreement with the detailed mechanism for species mole fractions and production rates of most major species. Both optimized mechanisms showed significant improvement over previous mechanisms in minor species production rate prediction. Both optimized mechanisms produced no violations of the second law of thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongbin; White, R. D.
In the calculation of the linearized Boltzmann collision operator for an inverse-square force law interaction (Coulomb interaction) F(r)=κ/r{sup 2}, we found the widely used scattering angle cutoff θ≥θ{sub min} is a wrong practise since the divergence still exists after the cutoff has been made. When the correct velocity change cutoff |v′−v|≥δ{sub min} is employed, the scattering angle can be integrated. A unified linearized Boltzmann collision operator for both inverse-square force law and rigid-sphere interactions is obtained. Like many other unified quantities such as transition moments, Fokker-Planck expansion coefficients and energy exchange rates obtained recently [Y. B. Chang and L. A.more » Viehland, AIP Adv. 1, 032128 (2011)], the difference between the two kinds of interactions is characterized by a parameter, γ, which is 1 for rigid-sphere interactions and −3 for inverse-square force law interactions. When the cutoff is removed by setting δ{sub min}=0, Hilbert's well known kernel for rigid-sphere interactions is recovered for γ = 1.« less
An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law
NASA Astrophysics Data System (ADS)
Páez-Hernández, Ricardo T.; Portillo-Díaz, Pedro; Ladino-Luna, Delfino; Ramírez-Rojas, Alejandro; Pacheco-Paez, Juan C.
2016-01-01
In the present article, an endoreversible Curzon-Ahlborn engine is studied by considering a non-linear heat transfer law, particularly the Dulong-Petit heat transfer law, using the `componendo and dividendo' rule as well as a simple differentiation to obtain the Curzon-Ahlborn efficiency as proposed by Agrawal in 2009. This rule is actually a change of variable that simplifies a two-variable problem to a one-variable problem. From elemental calculus, we obtain an analytical expression of efficiency and the power output. The efficiency is given only in terms of the temperatures of the reservoirs, such as both Carnot and Curzon-Ahlborn cycles. We make a comparison between efficiencies measured in real power plants and theoretical values from analytical expressions obtained in this article and others found in literature from several other authors. This comparison shows that the theoretical values of efficiency are close to real efficiency, and in some cases, they are exactly the same. Therefore, we can say that the Agrawal method is good in calculating thermal engine efficiencies approximately.
NASA Astrophysics Data System (ADS)
Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.
2017-06-01
In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Forest Service law enforcement officer report: nationwide study
Deborah J. Chavez; Joanne F. Tynon
2007-01-01
This study is the first in a series of studies to evaluate perceptions of USDA Forest Service law enforcement personnel of the roles, responsibilities, and issues entailed in their jobs. An email survey was administered to 404 law enforcement officers (LEOs) in national forests across the United States. In all, 294 were completed and returned. In response to the safety...
Changes of Attitudes and Patronage Behaviors in Response to a Smoke-Free Bar Law
Tang, Hao; Cowling, David W.; Lloyd, Jon C.; Rogers, Todd; Koumjian, Kristi L.; Stevens, Colleen M.; Bal, Dileep G.
2003-01-01
Objectives. We examined patron responses to a California smoke-free bar law. Methods. Three telephone surveys measured attitudes and behavior changes after implementation of the law. Results. Approval of the law rose from 59.8% to 73.2% (odds ratio [OR] = 1.95; 95% confidence interval [CI] = 1.58, 2.40). Self-reported noncompliance decreased from 24.6% to 14.0% (OR = 0.50; 95% CI = 0.30, 0.85). Likelihood of visiting a bar or of not changing bar patronage after the law was implemented increased from 86% to 91% (OR = 1.76; 95% CI = 1.29, 2.40). Conclusions. California bar patrons increasingly support and comply with the smoke-free bar law. PMID:12660206
Herminia di Liscia, María
2012-01-01
The passage of a Law requires previous negotiation processes that consider the background, arguments, support and the appropriate terminology for approaching the issue. The legal domain is a discursive field in which a dual struggle develops: to establish designations and to introduce that which the law establishes into everyday practice. Hence, conflictive processes are unleashed in which social agents are confronted by political parties, by institutions and by their own political and subjective identities. This article analyses the development of the "1363 Law", which was passed in November 1991 in the legislature of La Pampa province (Argentina). This Law created a provincial programme for responsible procreation, the first provincial legislation on contraception to be established. Although reproduction also involves males, special account is taken of speeches referring to females, given that the culture superimposes maternity on the female identity and references are therefore weighted towards the condition of women. We use the particularity of this case and its analytical potential in order to understand others, using as empirical material the parliamentary debate and interviews with the author of the Law and with key informants. We address the following questions: What was the national and provincial context in which the Law on responsible procreation was framed? What were the strategies adopted to achieve it? How was contraception articulated within the Peronist worldview of women? What meanings did the term "responsible procreation" bring into play? Finally, we present a brief assessment of the law's application.
Quantifying time-varying cellular secretions with local linear models.
Byers, Jeff M; Christodoulides, Joseph A; Delehanty, James B; Raghu, Deepa; Raphael, Marc P
2017-07-01
Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.
NASA Astrophysics Data System (ADS)
Goutianos, S.; Arévalo, R.; Sørensen, B. F.; Peijs, T.
2014-12-01
The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general method was first developed to obtain fracture resistance values from the DCB specimens taking into account the non-linear material response. The binderfree all-cellulose composites were prepared by a mechanical refinement process that allows the formation of intramolecular bonds between the cellulose molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance.
Nonlinear dynamics of electromagnetic turbulence in a nonuniform magnetized plasma
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Mirza, Arshad M.; Faria, R. T.
1998-03-01
By using the hydrodynamic electron response with fixed (kinetic) ions along with Poisson's equation as well as Ampère's law, a system of nonlinear equations for low-frequency (in comparison with the electron gyrofrequency) long-(short-) wavelength electromagnetic waves in a nonuniform resistive magnetoplasma has been derived. The plasma contains equilibrium density gradient and sheared equilibrium plasma flows. In the linear limit, local dispersion relations are obtained and analyzed. It is found that sheared equilibrium flows can cause instability of Alfvén-like electromagnetic waves even in the absence of a density gradient. Furthermore, it is shown that possible stationary solutions of the nonlinear equations without dissipation can be represented in the form of various types of vortices. On the other hand, the temporal behavior of our nonlinear dissipative systems without the equilibrium density inhomogeneity can be described by the generalized Lorenz equations which admit chaotic trajectories. The density inhomogeneity may lead to even qualitative changes in the chaotic dynamics. The results of our investigation should be useful in understanding the linear and nonlinear properties of nonthermal electromagnetic waves in space and laboratory plasmas.
NASA Astrophysics Data System (ADS)
Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram
2008-11-01
We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Fractal ladder models and power law wave equations
Kelly, James F.; McGough, Robert J.
2009-01-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816
Blais, Étienne; Bellavance, François; Marcil, Alexandra; Carnis, Laurent
2015-09-01
Except for Quebec, all Canadian provinces have introduced administrative laws to lower the permitted blood alcohol concentration (BAC) to .05% or .04% for driving-or having the care of-a motor vehicle. Using linear mixed effects models for longitudinal data, this study evaluates the effect of administrative BAC laws on fatal alcohol related crashes and law enforcement patterns in Canada from 1987 to 2010. Results reveal a significant decrease of 3.7% (95% C.I.: 0.9-6.5%) in fatally injured drivers with a BAC level equal or greater than .05% following the introduction of these laws. Reductions were also observed for fatally injured drivers with BAC levels greater that .08% and .15%. The introduction of administrative BAC laws led neither to significant changes in the rate of driving while impaired (DWI) incidents reported by police officers nor in the probability of being charged for DWI under the Criminal Code. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Simple Power Law Governs Many Sensory Amplifications and Multisensory Enhancements.
Billock, Vincent A; Havig, Paul R
2018-05-16
When one sensory response occurs in the presence of a different sensory stimulation, the sensory response is often amplified. The variety of sensory enhancement data tends to obscure the underlying rules, but it has long been clear that weak signals are usually amplified more than strong ones (the Principle of Inverse Effectiveness). Here we show that for many kinds of sensory amplification, the underlying law is simple and elegant: the amplified response is a power law of the unamplified response, with a compressive exponent that amplifies weak signals more than strong. For both psychophysics and cortical electrophysiology, for both humans and animals, and for both sensory integration and enhancement within a sense, gated power law amplification (amplification of one sense triggered by the presence of a different sensory signal) is often sufficient to explain sensory enhancement.
25 CFR 12.2 - What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services?
Code of Federal Regulations, 2014 CFR
2014-04-01
... of Law Enforcement Services? 12.2 Section 12.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.2 What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services? The Director of the Office of Law...
25 CFR 12.2 - What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services?
Code of Federal Regulations, 2012 CFR
2012-04-01
... of Law Enforcement Services? 12.2 Section 12.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.2 What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services? The Director of the Office of Law...
25 CFR 12.2 - What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services?
Code of Federal Regulations, 2011 CFR
2011-04-01
... of Law Enforcement Services? 12.2 Section 12.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.2 What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services? The Director of the Office of Law...
25 CFR 12.2 - What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services?
Code of Federal Regulations, 2013 CFR
2013-04-01
... of Law Enforcement Services? 12.2 Section 12.2 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY LAW ENFORCEMENT Responsibilities § 12.2 What is the role of the Bureau of Indian Affairs Director of Law Enforcement Services? The Director of the Office of Law...
Evidence for power-law frequency dependence of intrinsic dielectric response in the Ca Cu3 Ti4 O12
NASA Astrophysics Data System (ADS)
Tselev, Alexander; Brooks, Charles M.; Anlage, Steven M.; Zheng, Haimei; Salamanca-Riba, Lourdes; Ramesh, R.; Subramanian, M. A.
2004-10-01
We investigated the dielectric response of CaCu3Ti4O12 (CCTO) thin films grown epitaxially on LaAlO3 (001) substrates by pulsed laser deposition. The dielectric response of the films was found to be strongly dominated by a power law in frequency, typical of materials with localized hopping charge carriers, in contrast to the Debye-like response of the bulk material. The film conductivity decreases with annealing in oxygen, and it suggests that oxygen deficit is a cause of the relatively high film conductivity. With increase of the oxygen content, the room temperature frequency response of the CCTO thin films changes from the response indicating the presence of some relatively low conducting capacitive layers to purely power law, and then toward a frequency independent response with a relative dielectric constant ɛ'˜102 . The film conductance and dielectric response decrease upon decrease of the temperature, with dielectric response being dominated by the power-law frequency dependence. Below ˜80K , the dielectric response of the films is frequency independent with ɛ' close to 102 . The results provide another piece of evidence for an extrinsic, Maxwell-Wagner type, origin of the colossal dielectric response of the bulk CCTO material, connected with electrical inhomogeneity of the bulk material.
Sebrié, Ernesto Marcelo; Sandoya, Edgardo; Bianco, Eduardo; Hyland, Andrew; Cummings, K Michael; Glantz, Stanton A
2015-01-01
Background Comprehensive smoke-free laws have been followed by drops in hospitalisations for acute myocardial infarction (AMI), including in a study with 2 years follow-up for such a law in Uruguay. Methods Multiple linear and negative binomial regressions for AMI admissions (ICD-10 code 121) from 37 hospitals for 2 years before and 4 years after Uruguay implemented a 100% nationwide smoke-free law. Results Based on 11 135 cases, there was a significant drop of −30.9 AMI admissions/month (95% CI −49.8 to −11.8, p=0.002) following implementation of the smoke-free law. The effect of the law did not increase or decrease over time following implementation (p=0.234). This drop represented a 17% drop in AMI admissions following the law (IRR=0.829, 95% CI 0.743 to 0.925, p=0.001). Conclusions Adding two more years of follow-up data confirmed that Uruguay’s smoke-free law was followed by a substantial and sustained reduction in AMI hospitalisations. PMID:25324157
Safety belt laws and disparities in safety belt use among US high-school drivers.
García-España, J Felipe; Winston, Flaura K; Durbin, Dennis R
2012-06-01
We compared reported safety belt use, for both drivers and passengers, among teenagers with learner's permits, provisional licenses, and unrestricted licenses in states with primary or secondary enforcement of safety belt laws. Our data source was the 2006 National Young Driver Survey, which included a national representative sample of 3126 high-school drivers. We used multivariate, log-linear regression analyses to assess associations between safety belt laws and belt use. Teenaged drivers were 12% less likely to wear a safety belt as drivers and 15% less likely to wear one as passengers in states with a secondary safety belt law than in states with a primary law. The apparent reduction in belt use among teenagers as they progressed from learner to unrestricted license holder occurred in only secondary enforcement states. Groups reporting particularly low use included African American drivers, rural residents, academically challenged students, and those driving pickup trucks. The results provided further evidence for enactment of primary enforcement provisions in safety belt laws because primary laws are associated with higher safety belt use rates and lower crash-related injuries and mortality.
Covariant balance laws in continua with microstructure
NASA Astrophysics Data System (ADS)
Yavari, Arash; Marsden, Jerrold E.
2009-02-01
The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured elasticity is revisited and a connection is made between covariance and Noether's theorem.
Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.
This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental design was completed by a center-point glass, a Vitreous State Laboratory glass, and replicates of the center point and Vitreous State Laboratory glasses.« less
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
Manipulator control by exact linearization
NASA Technical Reports Server (NTRS)
Kruetz, K.
1987-01-01
Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
Improving Rice Modeling Success Rate with Ternary Non-structural Fertilizer Response Model.
Li, Juan; Zhang, Mingqing; Chen, Fang; Yao, Baoquan
2018-06-13
Fertilizer response modelling is an important technical approach to realize metrological fertilization on rice. With the goal of solving the problems of a low success rate of a ternary quadratic polynomial model (TPFM) and to expand the model's applicability, this paper established a ternary non-structural fertilizer response model (TNFM) based on the experimental results from N, P and K fertilized rice fields. Our research results showed that the TNFM significantly improved the modelling success rate by addressing problems arising from setting the bias and multicollinearity in a TPFM. The results from 88 rice field trials in China indicated that the proportion of typical TNFMs that satisfy the general fertilizer response law of plant nutrition was 40.9%, while the analogous proportion of TPFMs was only 26.1%. The recommended fertilization showed a significant positive linear correlation between the two models, and the parameters N 0 , P 0 and K 0 that estimated the value of soil supplying nutrient equivalents can be used as better indicators of yield potential in plots where no N or P or K fertilizer was applied. The theoretical analysis showed that the new model has a higher fitting accuracy and a wider application range.
On connecting large vessels to small. The meaning of Murray's law
1981-01-01
A large part of the branching vasculature of the mammalian circulatory and respiratory systems obeys Murray's law, which states that the cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughters. Where this law is obeyed, a functional relationship exists between vessel radius and volumetric flow, average linear velocity of flow, velocity profile, vessel-wall shear stress, Reynolds number, and pressure gradient in individual vessels. In homogeneous, full-flow sets of vessels, a relation is also established between vessel radius and the conductance, resistance, and cross- sectional area of a full-flow set. PMID:7288393
New class of control laws for robotic manipulators. I - Nonadaptive case. II - Adaptive case
NASA Technical Reports Server (NTRS)
Wen, John T.; Bayard, David S.
1988-01-01
A new class of exponentially stabilizing control laws for joint level control of robot arms is discussed. Closed-loop exponential stability has been demonstrated for both the set point and tracking control problems by a slight modification of the energy Lyapunov function and the use of a lemma which handles third-order terms in the Lyapunov function derivatives. In the second part, these control laws are adapted in a simple fashion to achieve asymptotically stable adaptive control. The analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and uses a parameterization based on physical (time-invariant) quantities.
NASA Technical Reports Server (NTRS)
Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas
2009-01-01
This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.
A Pressure-Dependent Damage Model for Energetic Materials
2013-04-01
appropriate damage nucleation and evolution laws, and the equation of state ) with its reactive response. 15. SUBJECT TERMS pressure-dependent...evolution laws, and the equation of state ) with its reactive response. INTRODUCTION Explosions and deflagrations are classifications of sub-detonative...energetic material’s mechanical response (through the yield criterion, damage evolution and equation of state ) with its reactive response. DAMAGE-FREE
Effective Response to School Violence: A Guide for Educators and Law Enforcement Personnel.
ERIC Educational Resources Information Center
Jones, Tony L.
This guide is designed to meet the security response needs of educators and law-enforcement personnel by detailing how an effective response plan can be developed to deal with school violence. By implementing the guidelines detailed in this book, those in responsible positions can help prevent the incalculable costs of death and chaos these acts…
Power laws for gravity and topography of Solar System bodies
NASA Astrophysics Data System (ADS)
Ermakov, A.; Park, R. S.; Bills, B. G.
2017-12-01
When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the power law can be found by rescaling the values known for other bodies. Third, an ensemble of synthetic shapes that follow the defined power law can be generated and gravity-from-shape can be found. The averaged power spectrum can be used as an a priori constraint for the gravity field and variance of power can be computed for individual degrees.
Southern states radiological emergency response laws and regulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-07-01
The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary.
Low-Cost Linear Optical Sensors.
ERIC Educational Resources Information Center
Kinsey, Kenneth F.; Meisel, David D.
1994-01-01
Discusses the properties and application of three light-to-voltage optical sensors. The sensors have been used for sensing diffraction patterns, the inverse-square law, and as a fringe counter with an interferometer. (MVL)
On the Misuse of the Laplace Law in Bio Fluid Dynamics
NASA Astrophysics Data System (ADS)
Thatte, Azam
2005-11-01
The Laplace law is commonly applied in biomechanical analyses of blood vessels, lung alveoli, and the gastrointestinal tract, often without concern to assumptions that underlie its use. This ``law'' is a simple force balance applied across the wall of a static pressurized (δP) vessel for small thickness-to-radius ratio τ/r. However, the true thin-wall requirement is more severe than τ/r << 1. Furthermore, because the Laplace law estimates total stress rather than deviatoric stress, the common practice of evaluating material stiffness by plotting Laplace law stress against strain is, in principle, incorrect. To study the validity of the Laplace law in biomechanical applications, we solved exactly the model problem of an axisymmetric pressurized cylinder of arbitrary thickness, linearly elastic isotropic material, in steady state, with the no-load state (δP = 0) as the zero stress state. Vessel radii and all stresses (total, deviatoric, hydrostatic) are predicted as functions of δP. We find that the Laplace law is invalid for many biomechanical applications and that total stress is not an appropriate surrogate for deviatoric stress to evaluate stiffness. We propose a model for deviatoric stress that we argue should replace the Laplace law for many biomechanical applications.
Guclu, Hasan; Ferrell Bjerke, Elizabeth; Galvan, Jared; Sweeney, Patricia; Potter, Margaret A
2014-01-01
This study explored if and to what extent the laws of U.S. states mirrored the U.S. federal laws for responding to nuclear-radiological emergencies (NREs). Emergency laws from a 12-state sample and the federal government were retrieved and translated into numeric codes representing acting agents, their partner agents, and the purposes of activity in terms of preparedness, response, and recovery. We used network analysis to explore the relationships among agents in terms of legally directed NRE activities. States' legal networks for NREs appear as not highly inclusive, involving an average of 28% of agents among those specified in the federal laws. Certain agents are highly central in NRE networks, so that their capacity and effectiveness might strongly influence an NRE response. State-level lawmakers and planners might consider whether or not greater inclusion of agents, modeled on the federal government laws, would enhance their NRE laws and if more agents should be engaged in planning and policy-making for NRE incidents. Further research should explore if and to what extent legislated NRE directives impose constraints on practical response activities including emergency planning.
Aregay, Mehreteab; Shkedy, Ziv; Molenberghs, Geert; David, Marie-Pierre; Tibaldi, Fabián
2013-01-01
In infectious diseases, it is important to predict the long-term persistence of vaccine-induced antibodies and to estimate the time points where the individual titers are below the threshold value for protection. This article focuses on HPV-16/18, and uses a so-called fractional-polynomial model to this effect, derived in a data-driven fashion. Initially, model selection was done from among the second- and first-order fractional polynomials on the one hand and from the linear mixed model on the other. According to a functional selection procedure, the first-order fractional polynomial was selected. Apart from the fractional polynomial model, we also fitted a power-law model, which is a special case of the fractional polynomial model. Both models were compared using Akaike's information criterion. Over the observation period, the fractional polynomials fitted the data better than the power-law model; this, of course, does not imply that it fits best over the long run, and hence, caution ought to be used when prediction is of interest. Therefore, we point out that the persistence of the anti-HPV responses induced by these vaccines can only be ascertained empirically by long-term follow-up analysis.
Propagation of Disturbances in AC Electricity Grids.
Tamrakar, Samyak; Conrath, Michael; Kettemann, Stefan
2018-04-24
The energy transition towards high shares of renewable energy will affect the stability of electricity grids in many ways. Here, we aim to study its impact on propagation of disturbances by solving nonlinear swing equations describing coupled rotating masses of synchronous generators and motors on different grid topologies. We consider a tree, a square grid and as a real grid topology, the german transmission grid. We identify ranges of parameters with different transient dynamics: the disturbance decays exponentially in time, superimposed by oscillations with the fast decay rate of a single node, or with a smaller decay rate without oscillations. Most remarkably, as the grid inertia is lowered, nodes may become correlated, slowing down the propagation from ballistic to diffusive motion, decaying with a power law in time. Applying linear response theory we show that tree grids have a spectral gap leading to exponential relaxation as protected by topology and independent on grid size. Meshed grids are found to have a spectral gap which decreases with increasing grid size, leading to slow power law relaxation and collective diffusive propagation of disturbances. We conclude by discussing consequences if no measures are undertaken to preserve the grid inertia in the energy transition.
A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests
NASA Astrophysics Data System (ADS)
Collins, Ian F.; Hilder, Tamsyn
2002-11-01
Modern ideas of thermomechanics are used to develop families of models describing the elastic/plastic behaviour of cohesionless soils deforming under triaxial conditions. Once the form of the free energy and dissipation potential functions have been specified, the corresponding yield loci, flow rules, isotropic and kinematic hardening rules as well as the elasticity law are deduced in a systematic manner. The families contain the classical linear frictional (Coulomb type) models and the classical critical state models as special cases. The generalized models discussed here include non-associated flow rules, shear as well as volumetric hardening, anisotropic responses and rotational yield loci. The various parameters needed to describe the models can be interpreted in terms of ratio of the plastic work, which is dissipated, to that which is stored. Non-associated behaviour is found to occur whenever this division between dissipated and stored work is not equal. Micro-level interpretations of stored plastic work are discussed. The models automatically satisfy the laws of thermodynamics, and there is no need to invoke any stability postulates. Some classical forms of the peak-strength/dilatancy relationship are established theoretically. Some representative drained and undrained paths are computed.
Growing trees in internet news groups and forums
NASA Astrophysics Data System (ADS)
Kujawski, B.; Hołyst, J.; Rodgers, G. J.
2007-09-01
We present an empirical study of the networks created by users within internet news groups and forums and show that they organize themselves into scale-free trees. The structure of these trees depends on the topic under discussion; specialist topics have trees with a short shallow structure whereas more universal topics are discussed widely and have a deeper tree structure. For news groups we find that the distribution of the time intervals between when a message is posted and when it receives a response exhibits a composite power-law behavior. From our statistics we can see if the news group or forum is free or is overseen by a moderator. The correlation function of activity, the number of messages posted in a given time, shows long-range correlations connected with the users’ daily routines. The distribution of distances between each message and its root is exponential for most news groups and power law for the forums. For both formats we find that the relation between the supremacy (the total number of nodes that are under the node i , including node i ) and the degree is linear s(k)˜k , in contrast to the analytical relation for the Barabási-Albert network.
Regulatory-Science: Biphasic Cancer Models or the LNT—Not Just a Matter of Biology!
Ricci, Paolo F.; Sammis, Ian R.
2012-01-01
There is no doubt that prudence and risk aversion must guide public decisions when the associated adverse outcomes are either serious or irreversible. With any carcinogen, the levels of risk and needed protection before and after an event occurs, are determined by dose-response models. Regulatory law should not crowd out the actual beneficial effects from low dose exposures—when demonstrable—that are inevitably lost when it adopts the linear non-threshold (LNT) as its causal model. Because regulating exposures requires planning and developing protective measures for future acute and chronic exposures, public management decisions should be based on minimizing costs and harmful exposures. We address the direct and indirect effects of causation when the danger consists of exposure to very low levels of carcinogens and toxicants. The societal consequences of a policy can be deleterious when that policy is based on a risk assumed by the LNT, in cases where low exposures are actually beneficial. Our work develops the science and the law of causal risk modeling: both are interwoven. We suggest how their relevant characteristics differ, but do not attempt to keep them separated; as we demonstrate, this union, however unsatisfactory, cannot be severed. PMID:22740778
Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads
NASA Technical Reports Server (NTRS)
Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.
2013-01-01
The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.
Simulation model of a twin-tail, high performance airplane
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.
1992-01-01
The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.
The Behavioral Economics of Choice and Interval Timing
Jozefowiez, J.; Staddon, J. E. R.; Cerutti, D. T.
2009-01-01
We propose a simple behavioral economic model (BEM) describing how reinforcement and interval timing interact. The model assumes a Weber-law-compliant logarithmic representation of time. Associated with each represented time value are the payoffs that have been obtained for each possible response. At a given real time, the response with the highest payoff is emitted. The model accounts for a wide range of data from procedures such as simple bisection, metacognition in animals, economic effects in free-operant psychophysical procedures and paradoxical choice in double-bisection procedures. Although it assumes logarithmic time representation, it can also account for data from the time-left procedure usually cited in support of linear time representation. It encounters some difficulties in complex free-operant choice procedures, such as concurrent mixed fixed-interval schedules as well as some of the data on double bisection, that may involve additional processes. Overall, BEM provides a theoretical framework for understanding how reinforcement and interval timing work together to determine choice between temporally differentiated reinforcers. PMID:19618985
NASA Technical Reports Server (NTRS)
Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.
1981-01-01
Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.
Pawlikowski, Marek; Jankowski, Krzysztof; Skalski, Konstanty
2018-05-30
A new constitutive model for human trabecular bone is presented in the present study. As the model is based on indentation tests performed on single trabeculae it is formulated in a microscale. The constitutive law takes into account non-linear viscoelasticity of the tissue. The elastic response is described by the hyperelastic Mooney-Rivlin model while the viscoelastic effects are considered by means of the hereditary integral in which stress depends on both time and strain. The material constants in the constitutive equation are identified on the basis of the stress relaxation tests and the indentation tests using curve-fitting procedure. The constitutive model is implemented into finite element package Abaqus ® by means of UMAT subroutine. The curve-fitting error is low and the viscoelastic behaviour of the tissue predicted by the proposed constitutive model corresponds well to the realistic response of the trabecular bone. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
X-ray irradiation of yeast cells
NASA Astrophysics Data System (ADS)
Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel
1997-10-01
Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.
The effect of legal and hospital policies on physician response to prenatal substance exposure.
Mendez, David; Jacobson, Peter D; Hassmiller, Kristen M; Zellman, Gail L
2003-09-01
To determine the influence of a state's legal environment and a hospital's Prenatal Substance Exposure (PSE) protocol on physicians' propensity to respond when prenatal substance exposure is suspected. Using a sample of 1367 physicians from every state and the District of Columbia, we formulate a set of linear models to determine the impact of the legal environment and hospital protocol on physicians' response to PSE, the agreement between physicians' perceptions and actual state legal environments, and physicians' motivation to act when PSE is suspected. Both protocol and legal environment showed to be significantly correlated with physicians' propensity to take action when PSE is suspected (p < 0.05). Our analysis shows that physicians prefer a public health (patient-centered) approach to more punitive measures. Our results suggest a policy strategy focused first on enacting laws that would encourage a patient-centered approach, by developing and using hospital protocols to implement state policy, and then on educating physicians about the actual legal environment.
New broadband square-law detector
NASA Technical Reports Server (NTRS)
Reid, M. S.; Gardner, R. A.; Stelzried, C. T.
1975-01-01
Compact device has wide dynamic range, accurate square-law response, good thermal stability, high-level dc output with immunity to ground-loop problems, ability to insert known time constants for radiometric applications, and fast response times compatible with computer systems.
Contact law and impact responses of laminated composites
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yang, S. H.
1980-01-01
Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
The power-proportion method for intracranial volume correction in volumetric imaging analysis.
Liu, Dawei; Johnson, Hans J; Long, Jeffrey D; Magnotta, Vincent A; Paulsen, Jane S
2014-01-01
In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.
The Effect of High-pressure Densification on Ballistic-penetration Resistance of a Soda-lime Glass
2011-01-01
equation of state and the strength constitutive laws of an existing material model for glass. This was fol- lowed by a set of transient non-linear... of irreversible densification. These relations are next used to upgrade the equation of state and the strength constitutive laws of an existing...its effect on the conti- nuum-level pressure versus degree- of -compression (the negative of volumetric strain) relation, also known as the
On Teaching Morality to Law Students.
ERIC Educational Resources Information Center
Modjeska, Lee
1991-01-01
Within the limits of law and process, the lawyer's concern must be the client's cause, not his own agenda. Effective legal representation requires objectivity. The lawyer's role is to counsel legality, not morality, and the law school's responsibility is to teach law, not moral obligation. (MSE)
Tackling the Law and Raising the Issues: Summer Program Prepares Students.
ERIC Educational Resources Information Center
Bowannie, Mary
2003-01-01
An intensive 8-week summer program in New Mexico prepares American Indian and Alaska Native students to succeed in law school, focusing on law research, analysis, and writing. Two program graduates who went on to complete law school discuss the complexities of federal Indian law and the Native lawyers' responsibility to their communities--an…
Navigating Law School: Paths in Legal Education. Annual Survey Results, 2011
ERIC Educational Resources Information Center
Law School Survey of Student Engagement, 2011
2011-01-01
The Law School Survey of Student Engagement (LSSSE) focuses on activities that affect learning in law school. This year's results show how law students spend their time, what they think about their experience in law school, and guide schools in their efforts to improve engagement and learning. The selected results are based on responses from more…
Weber's law implies neural discharge more regular than a Poisson process.
Kang, Jing; Wu, Jianhua; Smerieri, Anteo; Feng, Jianfeng
2010-03-01
Weber's law is one of the basic laws in psychophysics, but the link between this psychophysical behavior and the neuronal response has not yet been established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds, and found that the efferent spike train of a single neuron is less variable than a Poisson process. For population neurons, Weber's law is satisfied only when the population size is small (< 10 neurons). However, if the population neurons share a weak correlation in their discharges and individual neuronal spike train is more regular than a Poisson process, Weber's law is true without any restriction on the population size. Biased competition attractor network also demonstrates that the coefficient of variation of interspike interval in the winning pool should be less than one for the validity of Weber's law. Our work links Weber's law with neural firing property quantitatively, shedding light on the relation between psychophysical behavior and neuronal responses.
Prosthetic Leg Control in the Nullspace of Human Interaction.
Gregg, Robert D; Martin, Anne E
2016-07-01
Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.
LaAlO3: A substrate material with unusual ferroelastic properties
NASA Astrophysics Data System (ADS)
Kustov, S.; Liubimova, Iu.; Salje, E. K. H.
2018-01-01
Twin boundary dynamics in LaAlO3 is associated with non-linear anelasticity. Ultrasonic studies of non-linear twin boundary dynamics between 80 and 520 K show that cooling substrates from temperatures near the ferroelastic transition at 813 K generate three characteristic thermal regimes with different non-linear dynamics. Twin boundaries are initially highly mobile. Anelastic strain amplitudes versus stress are power law distributed with an exponent of 2.5. No de-pinning was found down to elastic strain amplitudes of ɛ0 ˜ 10-7. The power law is gradually replaced between 370 K and 280 K by few large singularities (jerks) due to massive rearrangements of the domain structure for ɛ0 larger than ca. 5 × 10-5. At lower temperatures, the domain structure is pinned with well-defined thresholds for de-pinning. The de-pinning is not accompanied by global rearrangements of twin patterns below room temperature. Unexpectedly, the low-temperature critical de-pinning strain amplitude decreases with decreasing temperature, which may indicate an additional, so far unknown phase transition near 40 K.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2017-10-01
We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.
The Spectrum of Thermally Stimulated Surface Plasmon Polaritons of a Linear Sample
NASA Astrophysics Data System (ADS)
Gerasimov, V. V.; Nikitin, A. K.; Khasanov, I. Sh.; Trang, Ta Thu
2017-12-01
An analytical model of the spectrum of thermally stimulated surface plasmon polaritons (TSSPPs) coming to the edge of a linear conducting sample has been developed. It has been found that the spectrum of such TSSPPs obeys neither the Wien law nor the Stefan-Boltzmann law for thermal radiation. The maximum of this spectrum is shifted to the low-frequency region with respect to the spectrum of the absolutely black body, and the magnitude of the shift is proportional to the sample length. The plasmon nature of the intensity increment of thermal radiation from the edge of a plane face of a duralumin sample has been verified experimentally. It has been shown that the intensity and spectrum of this increment can be controlled both by the sample temperature and by the extension of the face.
The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.
Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan
2016-04-13
We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.
1980-01-01
A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.
Linear Inverse Modeling and Scaling Analysis of Drainage Inventories.
NASA Astrophysics Data System (ADS)
O'Malley, C.; White, N. J.
2016-12-01
It is widely accepted that the stream power law can be used to describe the evolution of longitudinal river profiles. Over the last 5 years, this phenomenological law has been used to develop non-linear and linear inversion algorithms that enable uplift rate histories to be calculated by minimizing the misfit between observed and calculated river profiles. Substantial, continent-wide inventories of river profiles have been successfully inverted to yield uplift as a function of time and space. Erosional parameters can be determined by independent geological calibration. Our results help to illuminate empirical scaling laws that are well known to the geomorphological community. Here we present an analysis of river profiles from Asia. The timing and magnitude of uplift events across Asia, including the Himalayas and Tibet, have long been debated. River profile analyses have played an important role in clarifying the timing of uplift events. However, no attempt has yet been made to invert a comprehensive database of river profiles from the entire region. Asian rivers contain information which allows us to investigate putative uplift events quantitatively and to determine a cumulative uplift history for Asia. Long wavelength shapes of river profiles are governed by regional uplift and moderated by erosional processes. These processes are parameterised using the stream power law in the form of an advective-diffusive equation. Our non-negative, least-squares inversion scheme was applied to an inventory of 3722 Asian river profiles. We calibrate the key erosional parameters by predicting solid sedimentary flux for a set of Asian rivers and by comparing the flux predictions against published depositional histories for major river deltas. The resultant cumulative uplift history is compared with a range of published geological constraints for uplift and palaeoelevation. We have found good agreement for many regions across Asia. Surprisingly, single values of erosional constants can be shown to produce reliable uplift histories. However, these erosional constants appear to vary from continent to continent. Future work will investigate the global relationship between our inversion results, scaling laws, climate models, lithological variation and sedimentary flux.
Valenzano, Federico; Balugani, Luca
2015-04-01
The aim of this article is to present a training experience on the Italian Law "to prevent and contrast corruption in the Public Administration", carried on in the Public Health Service of Modena. It has been two years since the Law 190/2012 was approved, and with this contribution we would like to explore what type of training is congruous with the legislator's aims. Necessary, the consulter has had to assume the institutional mandate (imposed by the Law), but moreover he tried to understand what are the management approaches and organizational cultures that derive from it. Therefore, in addition to the "normative code" derived from the Law, it was necessary (during the training) to assume a "community code" that derives from building alliances and people's sense of responsibility. This step was crucial to start speaking of anti-corruption. Due to these premises, we assume the idea of a training as a stimulus for changing and strengthening capabilities in complex organizational contexts. In this case, instead of static, equilibrium and linearity, people's uncertainty and freedom prevails; relationships and individuals' identification with organizations is weak. Thus, the consulter has to project and develop people's capacity to think and to increase knowledge. Here knowledge means understanding problematic contexts and not building theoretical models to be applied. This contribution would like to prove how it is necessary to develop a knowledge connected to people actions and behaviors; it is a co-construct process done with some key- individuals in the organization, starting from concrete problems instead of abstract subjects. The consulter has used the indications that derives from the Law, but he has projected and developed a training system based on information and sensitization aimed at powering best practices that already exists in the organization. In fact, the key factor of this experience was to take the point of view of different professional experiences in the organization and to work on case studies that people themselves have proposed on the subjects derived from the application of the Law.
Employment, Production and Consumption model: Patterns of phase transitions
NASA Astrophysics Data System (ADS)
Lavička, H.; Lin, L.; Novotný, J.
2010-04-01
We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.
Normal modes of a small gamelan gong.
Perrin, Robert; Elford, Daniel P; Chalmers, Luke; Swallowe, Gerry M; Moore, Thomas R; Hamdan, Sinin; Halkon, Benjamin J
2014-10-01
Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. A finite-element model has been constructed and its predictions for normal modes compared with experimental results obtained using electronic speckle pattern interferometry. Agreement was reasonable in view of the lack of precision in the manufacture of the instrument. The results agree with expectations for an axially symmetric system subject to small symmetry breaking. The extent to which the results obey Chladni's law is discussed. Comparison with vibrational and acoustical spectra enabled the identification of the small number of modes responsible for the sound output when played normally. Evidence of non-linear behavior was found, mainly in the form of subharmonics of true modes. Experiments using scanning laser Doppler vibrometry gave satisfactory agreement with the other methods.
Thermal conductivity in one-dimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Patek, Stephen D.
1988-01-01
Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.
Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T
2015-09-01
Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels
NASA Astrophysics Data System (ADS)
Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth
2016-11-01
Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
Legislation coverage for child injury prevention in China
Li, Li; Scherpbier, Robert; Wu, Jing; Zhu, Xu; Zhang, Wei; Zhang, Lin; Gao, Xin; Luo, Jiesi
2015-01-01
Abstract Objective To examine the extent to which effective interventions to prevent unintentional child injury are reflected in the laws and regulations of China. Methods We focused on the six common causes of fatal child injuries – drowning, road traffic injury, falls, poisoning, burns and suffocation. We investigated 27 interventions recommended by the United Nations Children’s Fund, the World Health Organization or the European Child Safety Alliance. We searched China National Knowledge Infrastructure and Lawyee for Chinese legislations using keywords and synonyms for the 27 interventions. We reviewed the identified legislations for statements specifying the responsible implementation department. Findings Seven national laws, nine regulations of the State Council and 46 departmental regulations were found to relate to at least one of the interventions. Although seven of the 27 internationally recommended interventions were covered by Chinese laws, 10 were not covered by any current Chinese law or regulation. None of the interventions against drowning and falls that we investigated was covered by national laws. The implementation responsibilities for effective interventions were either not specified or were assigned to multiple governmental departments in 11 or 20 legislative documents, respectively. Conclusion In Chinese laws and regulations, interventions proven to prevent major causes of unintentional child injuries are underrepresented and the associated implementation responsibilities are often poorly defined. China should include all such interventions in laws and regulations, and assign implementation responsibility for each to a single department of the national government. PMID:25838612
20 CFR 416.1032 - Other Federal laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Other Federal laws and regulations. 416.1032... § 416.1032 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.2123 - Other Federal laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Other Federal laws and regulations. 404.2123....2123 Other Federal laws and regulations. Each State VR agency and alternate participant shall comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in...
20 CFR 404.1632 - Other Federal laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Other Federal laws and regulations. 404.1632... § 404.1632 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.2123 - Other Federal laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Other Federal laws and regulations. 404.2123....2123 Other Federal laws and regulations. Each State VR agency and alternate participant shall comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in...
20 CFR 416.1032 - Other Federal laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Other Federal laws and regulations. 416.1032... § 416.1032 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.1632 - Other Federal laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Other Federal laws and regulations. 404.1632... § 404.1632 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.2123 - Other Federal laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Other Federal laws and regulations. 404.2123....2123 Other Federal laws and regulations. Each State VR agency and alternate participant shall comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in...
20 CFR 416.1032 - Other Federal laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Other Federal laws and regulations. 416.1032... § 416.1032 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 416.1032 - Other Federal laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Other Federal laws and regulations. 416.1032... § 416.1032 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.1632 - Other Federal laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Other Federal laws and regulations. 404.1632... § 404.1632 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.2123 - Other Federal laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Other Federal laws and regulations. 404.2123....2123 Other Federal laws and regulations. Each State VR agency and alternate participant shall comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in...
20 CFR 404.2123 - Other Federal laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Other Federal laws and regulations. 404.2123....2123 Other Federal laws and regulations. Each State VR agency and alternate participant shall comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in...
20 CFR 416.1032 - Other Federal laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Other Federal laws and regulations. 416.1032... § 416.1032 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.1632 - Other Federal laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Other Federal laws and regulations. 404.1632... § 404.1632 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
20 CFR 404.1632 - Other Federal laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Other Federal laws and regulations. 404.1632... § 404.1632 Other Federal laws and regulations. The State will comply with the provisions of other Federal laws and regulations that directly affect its responsibilities in carrying out the disability...
25 CFR 163.4 - Secretarial recognition of tribal laws.
Code of Federal Regulations, 2010 CFR
2010-04-01
... REGULATIONS General Provisions § 163.4 Secretarial recognition of tribal laws. Subject to the Secretary's trust responsibilities, and unless otherwise prohibited by Federal statutory law, the Secretary shall... 25 Indians 1 2010-04-01 2010-04-01 false Secretarial recognition of tribal laws. 163.4 Section 163...
24 CFR 115.202 - Request for interim certification.
Code of Federal Regulations, 2010 CFR
2010-04-01
... housing law. The request shall be supported by the text of the jurisdiction's fair housing law, the law... shall also include organizational information of the agency responsible for administering and enforcing the law. (b) The request and supporting materials shall be filed with the Assistant Secretary for Fair...
Law and Legal Systems: The Family Connection. 1981 Burgess Address.
ERIC Educational Resources Information Center
Sussman, Marvin B.
1983-01-01
Discusses the concept of law, presenting philosophical bases and historic antecedents. Reviews research studies which illustrate the connections of law to family structure as well as different family and legal issues, including inheritance, marriage contracts and common law, visitation rights, filial responsibility, and child support enforcement.…
31 CFR 10.68 - Motions and requests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Administrative Law Judge. Unless otherwise ordered by the Administrative Law Judge, motions must... unless ordered otherwise by the Administrative Law Judge. (3) Good Faith. A party filing a motion for... the Administrative Law Judge, the nonmoving party is not required to file a response to a motion. If...
31 CFR 10.68 - Motions and requests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Administrative Law Judge. Unless otherwise ordered by the Administrative Law Judge, motions must... unless ordered otherwise by the Administrative Law Judge. (3) Good Faith. A party filing a motion for... the Administrative Law Judge, the nonmoving party is not required to file a response to a motion. If...
31 CFR 10.68 - Motions and requests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Administrative Law Judge. Unless otherwise ordered by the Administrative Law Judge, motions must... unless ordered otherwise by the Administrative Law Judge. (3) Good Faith. A party filing a motion for... the Administrative Law Judge, the nonmoving party is not required to file a response to a motion. If...
31 CFR 10.68 - Motions and requests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Administrative Law Judge. Unless otherwise ordered by the Administrative Law Judge, motions must... unless ordered otherwise by the Administrative Law Judge. (3) Good Faith. A party filing a motion for... the Administrative Law Judge, the nonmoving party is not required to file a response to a motion. If...
31 CFR 10.68 - Motions and requests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Administrative Law Judge. Unless otherwise ordered by the Administrative Law Judge, motions must... unless ordered otherwise by the Administrative Law Judge. (3) Good Faith. A party filing a motion for... the Administrative Law Judge, the nonmoving party is not required to file a response to a motion. If...
Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.
Stålhand, J; Klarbring, A; Holzapfel, G A
2008-01-01
Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.
77 FR 39487 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... in any law enforcement or security matter on DLA property, which requires DLA Police response or... matter on DLA property, which requires DLA Police response or contact. Law Enforcement matters include... property, incident reports, blotters, qualifications, dispatching, and other police information management...
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
NASA Astrophysics Data System (ADS)
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
ERIC Educational Resources Information Center
Engel, Leonard, Jr.
Radiation workers, by law, have the responsibility to maintain their exposure to radiation levels as low as possible. This responsibility has not been accepted. Instead, they have relied solely on the policing action of health physics (HP) technicians, thereby delegating their lawful responsibility. Continued overexposure in the U.S. nuclear power…
Duality of force laws and conformal transformations
NASA Astrophysics Data System (ADS)
Kothawala, Dawood
2011-06-01
As was first noted by Isaac Newton, the two most famous ellipses of classical mechanics, arising from the force laws F ∝r and F ∝1/r2, can be mapped onto each other by changing the location of the center of force. Less well known is that this mapping can also be achieved by the complex transformation, z →z2. We derive this result and its generalization by writing the Gaussian curvature in its covariant form, and then changing the metric by a conformal transformation which mimics this mapping of the curves. We indicate how the conserved Laplace-Runge-Lenz vector for the 1/r2 force law transforms under this transformation, and compare it with the corresponding quantities for the linear force law. Our main aim is to present this duality by introducing concepts from differential geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Gilson F. de, E-mail: gilson@otica.ufpb.br; Lorenzo, Orlando di; Chevrollier, Martine
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complexmore » systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.« less
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
NASA Astrophysics Data System (ADS)
Hladowski, Lukasz; Galkowski, Krzysztof; Cai, Zhonglun; Rogers, Eric; Freeman, Chris T.; Lewin, Paul L.
2011-07-01
In this article a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous consideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using linear matrix inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable.
NASA Astrophysics Data System (ADS)
Che, Jinxi; Zhang, Jinchun; Yang, Haiqiang; Li, Yu; Wang, Hongjun
2018-02-01
In the course of atmospheric transmission, laser atmospheric transmission study a series of linear optical effect produced by the interaction of atmosphere and laser and non-linear effect and the influence of laser transmission due to these effects. In this paper, the linear effects of atmosphere refringence, absorption, scattering and turbulence affecting laser transmission were analyzed. And the non-linear effects affecting laser atmosphere transmission were also analyzed. On this basis, the corresponding improvement measures were analyzed. To understand and master the laws of laser atmospheric transmission and study avoiding or as far as possible decreasing the influence of laser transmission induced by atmosphere, the outcome can be referred.
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. Tinsley
1993-01-01
A priori error estimates are derived for hp-versions of the finite element method for discontinuous Galerkin approximations of a model class of linear, scalar, first-order hyperbolic conservation laws. These estimates are derived in a mesh dependent norm in which the coefficients depend upon both the local mesh size h(sub K) and a number p(sub k) which can be identified with the spectral order of the local approximations over each element.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.
Modal control of an oblique wing aircraft
NASA Technical Reports Server (NTRS)
Phillips, James D.
1989-01-01
A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.
NASA Astrophysics Data System (ADS)
Longhurst, G. R.
1991-04-01
Gas evolution from spherical solids or liquids where no convective processes are active is analyzed. Three problem classes are considered: (1) constant concentration boundary, (2) Henry's law (first order) boundary, and (3) Sieverts' law (second order) boundary. General expressions are derived for dimensionless times and transport parameters appropriate to each of the classes considered. However, in the second order case, the non-linearities of the problem require the presence of explicit dimensional variables in the solution. Sample problems are solved to illustrate the method.